

PRL-414B-C003-BNC

APPLICATIONS

- 1 PPS Distribution for GPS
- 5 V TTL/CMOS Signal Distribution
- 1:4 Fanout Line Driver
- High Speed Digital Communications System Testing
- Mini Modular Instrument

FEATURES

- $\mathrm{f}_{\text {max }}>75 \mathrm{MHz}, 80 \mathrm{MHz}$ Typical
- 5 V outputs for driving 50Ω loads
- Drives 100 ft of cable @ 50 MHz
- 2 ns Typical Output Rise \& Fall Times
- TTL Compatible 50Ω or $10 \mathrm{k} \Omega$ Input
- Four in-phase 50Ω TTL Outputs
- BNC or SMA I/O Connectors
- DC Coupled I/Os
- Self-contained $1.3 \times 2.9 \times 3.9-i n$. unit includes AC/DC Adapter
- Can also operate from a single 8.0 V to 12.0 V supply

DESCRIPTION

The PRL-414B-C003 is a modified version of the standard PRL-414B 1:4 fanout 50Ω TTL Line Driver. In this modified version, all outputs can deliver 5 V into 50Ω loads. It is intended for distribution of high-speed clock and data signals to multiple loads via long lines. With 50Ω load terminations, all outputs of the PRL-414B-C003 can drive 100 ft of 50Ω cables at clock rates greater than 50 MHz . The PRL-414B-C003 is also used for distributing 1 PPS clock signals from popular GPS receivers to multiple instruments requiring 5 V into 50Ω loads.

The input resistance of the PRL-414B-C003 can be selected to be either 50Ω or $10 \mathrm{k} \Omega$ by a switch. The $10 \mathrm{k} \Omega$ input is desirable when interfacing with low power circuits. All I/Os are DC coupled and have either BNC or SMA connectors.

The PRL-414B-C003 is housed in a $1.3 \times 2.9 \times 3.9-\mathrm{in}$. extruded aluminum enclosure and is supplied with a $\pm 8.5 \mathrm{~V} / \pm 1.8 \mathrm{~A}$ AC/DC Adapter. It can also be operated from a single $8.0 \mathrm{~V}-12.0 \mathrm{~V}$ supply. A maximum of four units can share a single PRL-760C AC/DC adapter. If mounting is desired, a pair of the \# 35001420 mounting brackets can accommodate any two PRL modules of the same length. Please visit www.pulseresearchlab.com/accessories for more detail.

A block diagram showing the equivalent input and output circuits of the PRL-414B-C003 is shown in Fig. 1.

SPECIFICATIONS* ($0^{\circ} \mathrm{C} \leq \mathrm{TA}^{\mathrm{C}} \leq \mathbf{3 5}^{\circ} \mathrm{C}$)

Unless otherwise specified, dynamic measurements are made with the input set to 50Ω and all outputs terminated into 50Ω.

SYMBOL	PARAMETER	Min	Typ	Max	UNIT	Comments
$\mathrm{R}_{\text {IN Low }}$	Input Resistance Low Range	49.5	50.0	50.5	Ω	
$\mathrm{R}_{\text {IN Hi }}$	Input Resistance High Range	9.9	10.0	10.1	$\mathrm{k} \Omega$	
Rout	Output Resistance		10		Ω	
$\mathrm{V}_{\text {IL }}$	TTL Input Low Level	-0.5	0.0	0.5	V	
$\mathrm{V}_{\text {IH }}$	TTL Input High Level	2.0	2.4	5.0	V	
VoL	TTL Output Low Level	0.0	0.25	0.5	V	$\mathrm{R}_{\mathrm{L}}=50 \Omega$
Voh1	TTL Output High Level	5			V	$\mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{f} \leq 50 \mathrm{MHz}$
VOH2	TTL Output High Level	4.8	5.0		V	$\mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{f} \leq 75 \mathrm{MHz}$
Vон3	TTL Output High Level		6.0		V	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{DC} 1}$	DC Input Currents		480	500	mA	$\mathrm{f} \leq 50 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{DC} 2}$	DC Input Currents		580	600	mA	$\mathrm{f} \leq 75 \mathrm{MHz}$
$\mathbf{V}_{\text {DC }}$	DC Input Voltages	8.0	8.5	12	V	
$\mathrm{V}_{\text {AC }}$	AC/DC Adapter Input Voltage	105	115	127	V	
$\mathrm{T}_{\text {PLH }}$	Propagation Delay to output \uparrow		14	20	ns	
$\mathrm{T}_{\text {PHL }}$	Propagation Delay to output \downarrow		16	20	ns	
$\mathrm{tr}_{\text {r }}$	Rise Time (10\%-90\%)		2.2	3.0	ns	$\mathrm{f}=50 \mathrm{MHz}$ sq. wave
t_{f}	Fall Time (10\%-90\%)		1.8	3.0	ns	$\mathrm{f}=50 \mathrm{MHz} \mathrm{sq}$. wave
T SKEW	Skew between any 2 outputs		500	1500	ps	$\mathrm{f}=50 \mathrm{MHz}$ sq. wave
$\mathrm{F}_{\max 1}$	Max. Clock Frequency ${ }^{(2)}$	75	80		MHz	RG58C/U, Cable length $=3 \mathrm{ft}$
$\mathrm{F}_{\text {max } 2}$	Max. Clock Frequency ${ }^{(3)}$		50		MHz	RG58C/U, Cable length $=100 \mathrm{ft}$
PWmin	Minimum Pulse Width		6		ns	\uparrow Input
PWmin	Minimum Pulse Width		6		ns	\downarrow Input
	Size	$1.3 \times 2.9 \times 3.9$			in.	
	Weight	5			Oz	

Notes:
(1). For sharing a single PRL-760C4, $\pm 8.5 \mathrm{~V}, \pm 1.8 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$ adapter, the total current should not exceed 1.8 A .@ the +8.5 V output
(2). $\mathrm{f}_{\mathrm{MAX}}$ should not exceed 85 MHz ; otherwise, damage of the unit due to overheating may result.
(3). $\mathrm{f}_{\mathrm{MAX} 2}$ is measured by connecting a second PRL-414B at the end of the 100 ft cable.

Fig. 1: PRL-414B-C003 Functional Block diagram

