PRL-4122, 1:22 FANOUT 50 Ω TTL/CMOS LINE DRIVER

APPLICATIONS

- TTL/CMOS Clock Distribution
- 1:22 Fanout Line Driver
- High Speed Digital Communications System Testing
- Mini Modular Instrument

FEATURES

- $f_{MAX} > 100 \text{ MHz}$
- Drives 100 ft of cable @ 80 MHz
- 1.8 ns Typical Output Rise & Fall Times
- 2.5 V into 50 Ω Typical
- TTL Compatible 50 Ω or 1 k Ω Input
- Twenty in-phase 50 Ω TTL Outputs
- Two auxiliary 50 Ω TTL Outputs suitable for cascading
- Active Low EN (Enable) Inputs for each bank of 10 outputs
- BNC I/O Connectors, plus two SMA auxiliary outputs
- DC Coupled I/Os
- Self-contained 3.0 x 6.8 x 4.0-in. unit includes an AC/DC Adapter

PRL-4122-BNC, Front View

PRL-4122-BNC, Rear View

DESCRIPTION:

The PRL-4122-BNC is a 1:22 fanout, 50 Ω TTL Line Driver. It is intended for distribution of high-speed clock and logic signals to multiple loads via long lines. The 50 Ω back-terminated outputs can drive long lines with or without 50 Ω load terminations. With 50 Ω load terminations, however, all outputs of the PRL-4122 can drive 100 ft of 50 Ω cables at clock rates greater than 80 MHz.

The PRL-4122 is implemented as a 1:4 fanout buffer (equivalent to a PRL-414B module) with two of its outputs externally cabled to the inputs of two 1:10 fanout buffers (each equivalent to a PRL-4110 module). The twenty outputs from the two 1:10 modules are in phase, while the additional two outputs of the 1:4 module are advanced by approximately 10 ns. These auxiliary outputs can be used to drive PRL-4110 or PRL-4220 units for additional in-phase outputs.

The input resistance of the PRL-4122's primary input can be selected to be either 50Ω or $1 k\Omega$ by a switch. The $1 k\Omega$ -input is desirable when interfacing with low power circuits. The 50Ω back terminated outputs typically deliver 2.5 V into 50Ω or 5.0 V into Hi-Z loads. All I/Os are DC coupled and have BNC connectors, except for the auxiliary outputs which are SMA. SMA primary I/Os are available on special order (P/N PRL-4122-SMA).

Each 1:10 fanout bank also has an independent TTL-compatible \overline{EN} input pulled down via a 1 k Ω resistor. When left open the Enable is active, and the fanout bank will output signals. Each bank can be disabled by driving its \overline{EN} input high. A block diagram showing the equivalent input and output circuits of the PRL-4122 is shown in Fig. 1.

The PRL-4122 is housed in a 3.0 x 6.8 x 4.0-in. extruded aluminum enclosure and is supplied with the PRL-760C, $\pm 8.5 \text{ V/} \pm 1.8 \text{ A C/DC}$ Adapter.

RELATED PRODUCTS:

PRL-4110, 1:10 Fanout 50 Ω TTL Line Driver

PRL-4220, 2:20 Fanout 50 Ω TTL Line Driver, equivalent to two PRL-4110 units in a single enclosure

PRL-4330, 3:30 Fanout 50 Ω TTL Line Driver, equivalent to three PRL-4110 units in a single enclosure

1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 sales@pulseresearchlab.com www.pulseresearchlab.com

PRELIMINARY SPECIFICATIONS* (0 °C \leq Ta \leq 35 °C)

Unless otherwise specified, dynamic measurements are made with the input set to 50Ω and all outputs terminated into 50Ω .

SYMBOL	PARAMETER	Min	Тур	Max	UNIT	Comments
R _{IN Low}	Input Resistance Low Range	49.5	50.0	50.5	Ω	
R _{IN Hi}	Input Resistance High Range	990	1000	1010	Ω	
R _{IN EN}	Input Resistance, Enable		1		kΩ	
R _{OUT}	Output Resistance		50		Ω	
V_{IL}	TTL Input Low Level	-0.5	0.0	0.5	V	
V_{IH}	TTL Input High Level	2.0	2.4	5.0	V	
V _{IL EN}	EN Input Low Level	-0.5	0.0	0.5	V	
V _{IH EN}	EN Input High Level	2.0	2.4	5.0	V	Drive EN High to disable output
Vol	TTL Output Low Level	0.0	0.25	0.5	V	R_L =50 Ω
Voh1	TTL Output High Level	2.2	2.5		V	$R_L=50 \Omega @ DC$
Voh2	TTL Output High Level	4.4	5.0		V	$R_L=1 M\Omega @ DC$
I _{DC1}	DC Input Current ⁽¹⁾		1220		mA	f=50 MHz sq. wave ⁽¹⁾
I_{DC2}	DC Input Current ¹⁾		1510		mA	f ≤ 100 MHz
I_{DC3}	DC Input Current ¹⁾			1800	mA	f=125 MHz
V _{DC}	DC Input Voltages	7.75	8.50	12.00	V	
V _{AC}	AC/DC Adapter Input Voltage	103	115	127	V	
T_{PLH}	Propagation Delay to output ↑		19	22	ns	
$T_{ m PHL}$	Propagation Delay to output ↓		19	22	ns	
t_r/t_f	Rise/Fall Times (10%-90%)		1.8/1.5	2.5	ns	
T _{SKEW1}	Skew between any 2 outputs		500	900	ps	Within one 1:10 bank
T _{SKEW1}	Skew between any 2 outputs		1200	1600	ps	Any two primary outputs
F _{MAX1}	Max. Clock Frequency ⁽²⁾⁽³⁾	100	125		MHz	RG58C/U, cable length = 3 ft
F _{MAX2}	Max. Clock Frequency		80			RG58C/U, cable length = 100 ft
PW _{MIN1}	Minimum Pulse Width		4		ns	↑ Input
PW _{MIN2}	Minimum Pulse Width		6		ns	↓ Input
	Size			3.0 x 6.8 x 4.0		
	Weight	1.5			lb.	Excluding AC adapter

Fig. 1: PRL-4122 Block diagram

Notes:

- (1) Power dissipation includes all three internal boards with all outputs terminated into $50~\Omega$. Each 1:10 board draws 725 mA maximum. The 1:4 board is powered internally from the bottom 1:10 board and draws 350 mA maximum.
- (2) f_{MAX} should not exceed 125 MHz, otherwise damage of the unit due to overheating may result.
- (3) f_{MAX2} is measured by driving a PRL-414B at the end of a 100 ft cable.

