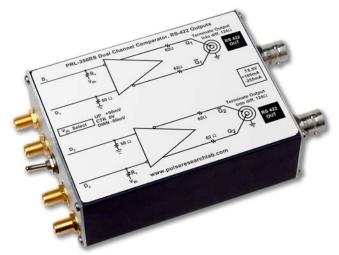
PRL-350RS DUAL CHANNEL COMPARATOR, RS-422 OUTPUT


APPLICATIONS

- Window Comparators
- High Speed Timing
- Line Receivers
- Threshold Detection
- Peak Detection
- RS-422 translation

FEATURES

- f_{MAX} >500 MHz
- 1.1 ns Typical t_r
- +50 mV, 0 V or -50 mV Preset Input Threshold Voltage
- -2.0 V to +3.0 V Input Common Mode Range
- 10 mV_{P-P} Minimum Input @ 100 MHz
- DC Coupled 50 Ω Inputs (75 Ω for Option C001)
- Differential 124 Ω RS-422 Outputs
- SMA or Triax I/O Connectors
- Self-contained 1.3 x 2.9 x 3.9-in. module includes AC/DC Adapter

DESCRIPTION

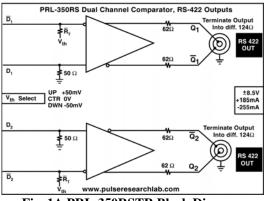
PRL-350RSTR Dual Channel Comparator, RS-422 Outputs, Triax option

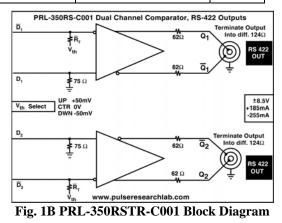
The PRL-350RS is a ready-to-use, high-speed, dual-channel comparator module with RS-422 outputs. The PRL-350RS has a typical maximum clock frequency in excess of 500 MHz and has differential RS-422 outputs designed for driving floating 124 Ω transmission lines.

The PRL-350RS has DC-coupled 50 Ω inputs and differential 124 Ω outputs. Option C001 has 75 Ω inputs. The input threshold voltage can be selected either from a set of preset values of +50 mV, 0 V or -50 mV using a common three-position switch, or varied independently for each channel by applying a DC bias voltage to one of the two inputs. The input Common Mode Range is -2.0 V to +3.0 V. The 0V threshold setting is intended for signals with zero crossings, such as a sine waves or AC-coupled square waves, etc.

These high-speed comparators are Mini Modular InstrumentsTM that can be used as peak detectors, threshold detectors, sinewave-to-square wave converters, window comparators or differential line receivers, etc. The typical minimum input voltage of 10 mV_{P-P} is required for up to 100 MHz. It is recommended that the non-driven input be terminated into 50 Ω when the input frequency is near f_{MAX} and its amplitude is less than 20 mV_{P-P}.

The PRL-350RS model has SMA input and output connectors. The PRL-350RSTR has SMA inputs and Triax output connectors.


Each unit is supplied with a ±8.5 V AC/DC Adapter and housed in a 1.3 x 2.9 x 3.9-in. extruded aluminum enclosure.


SPECIFICATIONS (0° C \leq T_A \leq 35° C)

Unless otherwise specified, dynamic measurements are made with all outputs terminated into 50 Ω/V_{TT} , where $V_{TT} = -2$ V for ECL outputs and 0 V for TTL outputs.

		PRL-350RS			PRL-350RS-C001			
SYMBOL	PARAMETER	Min	Тур	Max	Min	Тур	Max	UNIT
R _{in}	Input Resistance	49.5	50	50.5	49.5	50	50.5	Ω
R _{out}	Differential Output Resistance	123	124	125	123	124	125	Ω
V_{TH^+}	Preset positive threshold voltage	45	50	55	45	50	55	mV
V _{TH-}	Preset negative threshold voltage	-55	-50	-45	-55	-50	-45	mV
V _{TH0}	Preset zero threshold voltage ⁽¹⁾	-2	0	2	-2	0	2	mV
V _{OL}	Output Low Level	-0.5	0	0.5	-0.5	0	0.5	V
V _{OH}	Output High Level	2	2.2	2.4	2	2.2	2.4	V
^I DC	DC Input Current		165/ -235	175/ -250		165/ -235	175/ -250	mA
V _{DC}	DC Input Voltage	±7.5	±8.5	±12	±7.5	±8.5	±12	V
V _{AC}	AC/DC Adapter Input Voltage	103	115	127	103	115	127	V
t _{PLH}	Propagation Delay to output \uparrow		2			2		ns
t _{PHL}	Propagation Delay to output \downarrow		2			2		ns
t _r /t _f	Rise/Fall Times ⁽²⁾		1100	1250		1100	1250	ps
t _{SKEW}	Skew between any 2 outputs		200	400		200	400	ps
V _{IN} I**	Minimum Input Voltage @ 150MHz ⁽³⁾	20	10		20	10		mVp-p
V _{IN} II**	Minimum Input Voltage @ 250MHz ⁽³⁾	40	20		40	20		mVp-p
V_{CM}	Input Common Mode Range		-2.0/ +3.0			-2.0/ +3.0		V
f _{MAX}	Max Clock Frequency ⁽⁴⁾	500	550		500	550		MHz
	Size	1.3 x 2.9 x 3.9		1.3 x 2.9 x 3.9			in.	
	Weight	7			7			Oz

(1) If the switch is set to the center position (0 V threshold) a non-driven channel will oscillate and induce jitter in the driven channel. Connect any output to any input to stop the oscillation.

(2) 20%-80% for ECL outputs, 10%-90% for TTL outputs. For the PRL-350ECL, an unused complementary output must be either terminated into 50 Ω/V_{TT} or AC coupled into a 50 Ω load; otherwise, output waveform distortion and rise time degradation will occur. Use the PRL-ACT-50, Dual Channel AC-Coupled 50 Ω Termination, for terminating unused complementary outputs. Use the PRL-550NQ/PQ4X, Four Channel NECL/PECL Terminators, respectively, for the 50 Ω/V_{TT} termination and for connection of NECL/PECL signals to 50 Ω input oscilloscopes. If preservation of DC levels is not required, then the PRL-SC-104, 0.1 µf DC block or the PRL-ACX-12dB, 12 dB AC-coupled attenuator may be used to connect the NECL/PECL outputs to 50 Ω input instruments.

(3) In order to reduce jitter near f_{MAX} , terminate the non-driven input into 50 Ω when the input voltage is less than 20 mV_{P-P}.

