PRL-304ANI-0dB, 1:2 Differential RF Distribution Amplifier Preliminary

APPLICATIONS

- 1:2 Differential RF Signal Fanout
- Transmission Line Driver
- Single-Ended to Differential Signal Conversion
- RF Receiver
- Pulse Amplifier
- General Purpose Wideband Amplifier

FEATURES

- Ready to Use Amplifier with Two Pairs of Differential Outputs
- 0.5 dB Gain Match Typical @ 10 MHz
- Small Signal 3 dB Bandwidth up to 412 MHz (Preliminary)
- Clean Pulse Response
- 0 dB gain, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{IN}}\left(\mathrm{R}_{\mathrm{L}}=50 \Omega\right)$, well suited for cascading
- $\pm 1.5 \mathrm{~V}, 3.0 \mathrm{~V}_{\mathrm{PP}}$, Maximum Outputs, $\mathrm{R}_{\mathrm{L}}=50 \Omega$
- DC Coupled 50Ω I/Os
- $\pm 110 \mathrm{~mA}$ Supply Current Typical
- $1.3 \mathrm{H} \times 2.9 \mathrm{~W} \times 2.9 \mathrm{~L}-\mathrm{in}$. Module includes $\pm 8.5 \mathrm{~V}$ AC/DC Adapter

PRL-304ANI-0dB, 1:4 RF Distribution
Amplifier

DESCRIPTION

The PRL-304ANI-0dB is a 0 dB gain, DC-coupled 1:2 differential output RF splitter amplifier. It converts a single-ended input into two pairs of identical differential outputs. The gain match between any pair of differential output is 0.5 dB typical (a) 10 MHz , and the small signal bandwidth is 412 MHz typical. Maximum output is $\pm 1.5 \mathrm{~V}$, or $3.0 \mathrm{~V}_{\mathrm{PP}}$ into 50Ω. Each output is 50Ω back-terminated, and the input has a 50Ω-to-ground termination. The 0 dB gain, $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{IN}}\left(\mathrm{R}_{\mathrm{L}}=50 \Omega\right)$, allows multiple amplifiers to be cascaded for signal distribution applications.

The PRL-304ANI-0dB has been optimized both for pulse response and for CW response, so that output overshoots and ringing for a fast pulse input are much smaller compared to those from amplifiers designed mainly for CW applications. With a 50Ω back termination at each output, the amplifier can drive long transmission lines with or without load terminations. For optimum output response all outputs should be terminated into 50Ω.

The PRL-304ANI-0dB is housed in a $1.3 \mathrm{H} \times 2.9 \mathrm{~W} \times 2.9 \mathrm{~L}-\mathrm{in}$. aluminum enclosure, and four amplifier modules can share a single PRL-760C, 4-output $\pm 8.5 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ adapter. Besides the I/O and power connections, no other set up or connection is required. The PRL-304ANI-0dB is a part of the PRL family of Mini Modular Instruments (MMIs).

PRELIMINARY SPECIFICATIONS ($0^{0} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathbf{3 5}^{\circ} \mathrm{C}$)

Unless otherwise specified, dynamic measurements are made with all outputs terminated into 50Ω.

SYMBOL	PARAMETER	Min	Typ	Max	UNIT
$\mathrm{R}_{\text {IN }}$	Input Resistance	49.5	50.0	50.5	Ω
$\mathbf{R}_{\text {OUT }}$	Output Resistance	49.5	50.0	50.5	Ω
\mathbf{A}_{0}	Open Circuit Voltage Gain, $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$		2		
$\mathbf{A}_{\mathbf{L}}$	Loaded Voltage Gain, $\mathrm{R}_{\mathrm{L}}=50 \Omega$		1		
$\mathbf{A}_{\text {dB }}$	Voltage Gain in dB		0		dB
$\Delta \mathrm{V}$	Differential Gain Match @ $10 \mathrm{MHz}, 1 \mathrm{~V}_{\text {PP }}$ Sinewave Input		0.5		dB
$\mathrm{I}_{\text {DC1 }}$	Quiescent DC Input Current, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		± 50	± 60	mA
$\mathrm{I}_{\text {DC2 }}$	DC Input Current @ 100MHz, $\mathrm{V}_{\mathrm{O}}= \pm 1.5 \mathrm{~V}$ into 50Ω		± 125	± 135	mA
$\mathbf{V}_{\text {DC }}$	DC Input Voltage	± 7.5	± 8.5	± 12.0	V
$\mathrm{V}_{\text {AC1 }}$	AC/DC Adapter Input Voltage, switched to "120 V"	103	115	127	V
$\mathrm{V}_{\text {AC2 }}$	AC/DC Adapter Input Voltage, switched to " 230 V "	206	230	254	V
${ }^{\text {PLLH }}$	Propagation Delay to output \uparrow		1.8		ns
${ }^{\text {P }}$ PHL	Propagation Delay to output \downarrow		1.8		ns
$\mathbf{t r i}^{1} / \mathrm{t}_{\mathrm{fl}}$	Small Signal Rise/Fall Times ($\mathrm{V}_{\mathrm{O}}= \pm 200 \mathrm{mV}$)		850	1000	ps
BW1	Small Signal 3 dB Bandwidth	350	412		MHz
$\mathrm{t}_{\mathrm{r} 2} / \mathrm{t}_{\text {r }}$	Large Signal Rise/Fall Times ($\mathrm{V}_{\mathrm{O}}= \pm 1.25 \mathrm{~V}$)		1.25	1.50	ns
BW2	Large Signal 3 dB Bandwidth	233	280		MHz
${ }^{\text {t SKEW }}$	Skew between any two outputs @ 25 MHz		100	250	ps
$\mathrm{V}_{\text {In Max dc }}$	Maximum Input, DC Coupled	-2.0	± 2.0	2.0	V
$V_{\text {In max ac }}$	Maximum Input, AC Coupled	3.8	4.0	4.0	V_{pp}
$V_{\text {OMAX }}$	V_{O} maximum, all outputs terminated into 50Ω	3.0	4.0	4.2	V_{pp}
	Size	$1.3 \times 2.9 \times 2.9$			in
	Weight, w/o AC adapter	5			Oz
	Shipping weight, w/AC adapter	4			lb

Fig. 1, PRL-304ANI-0dB
1:2 Differential RF Distribution Amplifier

