PRL-230 ÷10, ÷100 ÷1k and ÷10k TTL FREQUENCY DIVIDER

APPLICATIONS

- Count-down signal for 'scope trigger
- Applications requiring very large division ratios
- Counter Output simulation
- Square Wave Generator (Except ÷10 Output)
- An Essential Lab Tool for Working with TTL/CMOS Circuits

FEATURES

- 100 MHz Toggle Frequency
- 50 Ω Outputs deliver > 2.2V into 50 Ω loads
- TTL/CMOS Compatible Input Levels
- 50 Ω or 500 Ω Input Resistance
- BNC or SMA I/O Connectors
- Ready-to-Use 1.3 x 2.9 x 2.9-in. Module includes AC/DC Adapter

PRL-230 4-Decade Frequency Divider

DESCRIPTION

The PRL-230 is a four-decade TTL frequency divider capable of operating at clock frequencies in excess of 100 MHz. It has $\div 10$, $\div 100$, $\div 1k$ and $\div 10k$ 50 Ω outputs, each capable of delivering greater than 2.2 V into a 50 Ω load. Except for the $\div 10$ channel, all others have square outputs (50% duty cycle). For the $\div 10$ channel, the output pulse width is equal to the period (1/f) of the input signal. The PRL-230 is ideally suited for applications that require very large division ratios, and the square wave outputs are useful for testing High-pass and Low-pass filters. When used together with the PRL-260NT programmable frequency divider, they can generate divided signals from 1.2 GHz down to 234 Hz. Multiple units can be cascaded for further division.

The input resistance of the PRL-230 can be selected to be 500 Ω or 50 Ω by a toggle switch. The back-matched 50 Ω outputs of this frequency divider can drive long lines with or without 50 Ω terminations. A functional block diagram of the unit is shown in Fig. 1.

The PRL-230 is housed in a 1.3 x 2.9 x 2.9-in. extruded aluminum enclosure. The PRL-230-BNC has BNC I/O connectors, and the PRL-230-SMA has SMA I/O connectors. A \pm 8.5 V AC/DC adapter is included.

If mounting is desired, a pair of 35001420 mounting brackets can accommodate two PRL modules of the same length. A number of PRL modules can also share a single ± 8.5 V AC/DC adaptor using the PRL-730 or PRL-736 voltage distribution module. Please see the Accessories Section for more detail.

*SPECIFICATIONS ($0^{\circ} C \le T_A \le 35^{\circ}C$)

SYMBOL	PARAMETER	Min	Тур	Max	UNIT	Comments
R _{in (Lo)}	Input Resistance	49.5	50	50.5	Ω	
R _{in (Hi)}	Input Resistance	495	500	505	Ω	
I _{DC}	DC Input Current		175	200	mA	
V _{DC}	DC Input Voltage	7.5	8.5	12	V	
V _{AC}	AC/DC Adapter Input Voltage	103	115	127	V	
V _{IH}	Input HI Level	2.0	2.2	5.0	V	
V _{IL}	Input LO Level	-0.5	0	0.5	V	
V _{OH}	Output Hi Level	2.2	2.5		V	$R_L=50 \Omega$
		4.8	5		V	$R_L=1 M\Omega$
V _{OL}	Output Lo Level		0.15	0.25	V	$R_L=50 \Omega$
			0.3	0.5	V	$R_L=1 M\Omega$
T _{PLH/} T _{PHL}	Propagation Delay to f/10 output		4	8	ns	
T _{PLH/} T _{PHL}	Propagation Delay to f/100 output		15	30	ns	
T _{PLH} / T _{PHL}	Propagation Delay to f/1k output		30		ns	
T _{PLH/} T _{PHL}	Propagation Delay to f/10k output		60		ns	
t_r/t_f	Rise/Fall Times (10%-90%)		2/1.8	3	ns	
F _{MAX}	Max clock frequency	100	125		MHz	$R_{in} = 50 \Omega$
	Size	1.3	1.3 x 2.9 x 2.9		in.	
	Weight		5		Oz	

Figure 1A: PRL-230 Block Diagram

