PRL-220A, ÷2, ÷4, ÷8 and ÷16 TTL FREQUENCY DIVIDER PRL-240A, ÷2 and ÷10 TTL FREQUENCY DIVIDER

PRL-240A

APPLICATIONS

- Count down signal for 'scope trigger
- Control Signal for split cycle timing
- Counter Output simulation
- Square Wave Generator (Except ÷10 Output)
- An Essential Lab Tool for Working with TTL/CMOS Circuits

FEATURES

- 100 MHz Input Toggle Frequency
- 50 Ω Outputs deliver > 2.2 V into 50 Ω loads
- TTL/CMOS Compatible Input Levels
- 50 Ω or 500 Ω Input Resistance
- BNC I/O Connectors
- Ready-to-Use 1.3 x 2.9 x 2.9-in. Module includes AC/DC Adapter

DESCRIPTION

The PRL-220A and PRL-240A are self-contained high-speed TTL frequency dividers capable of operating at input clock frequencies in excess of 100 MHz. The PRL-220A has $\div 2$, $\div 4$, $\div 8$ and $\div 16$ outputs. The PRL-240A has $\div 2$ and $\div 10$ outputs. The input resistance of each unit can be selected to be $500~\Omega$ or $50~\Omega$ by a toggle switch. Functional block diagrams of the PRL-220A and PRL-240A are shown in Fig. 1 and Fig. 2, respectively.

The back-matched 50 Ω outputs of these frequency dividers can drive long lines and deliver greater than 2.2 V into 50 Ω loads. Except for the division ratios, the performance characteristics of both units are identical.

The outputs of these frequency dividers are square waves, except for the $\div 10$ output in the PRL-240A, where the output pulse positive duty cycle is 40%. These dividers are useful for testing High-pass and Low-pass filters. The divider outputs are useful as 'scope triggers for viewing multi-frequency signals. The $\div 2$ signal is often needed as a control signal for split-cycle timing applications.

Each unit is housed in a1.3 x 2.9 x 2.9-in. extruded aluminum enclosure with BNC I/O connectors. A ± 8.5 V AC/DC, ± 1.8 A Adapter is supplied with each unit.

If mounting is desired, a pair of 35001420 mounting brackets can accommodate two PRL modules of the same length. A number of PRL modules can also share a single $\pm 8.5 \text{V}$ AC/DC adaptor using the PRL-730 or PRL-736 voltage distribution module. Please see the Accessories Section for more detail.

*SPECIFICATIONS (0° $C \le TA \le 35$ ° C)

All AC measurements are made with all outputs terminated into 50 Ω

SYMBOL	PARAMETER	Min	Тур	Max	UNIT	Comments
R _{INLo}	Input Resistance. 50 Ω	49.5	50.0	50.5	Ω	
R _{INHi}	Input Resistance. 500 Ω	495	500	505	Ω	
I _{DC1}	DC Input Current, PRL-220A		200	225	mA	
I_{DC2}	DC Input Current, PRL-240A		135	180	mA	
V_{DC}	DC Input Voltage	7.5	8.5	12.0	V	
V _{AC1}	AC/DC Adapter Input Voltage, 120 VAC	103	115	127	V	
V_{AC2}	AC/DC Adapter Input Voltage, 220 VAC	206	230	254	V	
$V_{ m IH}$	Input Hi Level	2.0	2.5	5.0	V	
$V_{\rm IL}$	Input Lo Level	-0.5	0.0	0.5	V	
V _{OH1}	Output Hi Level, $R_{LOAD} = 50 \Omega$	2.2	2.5		V	
$ m V_{OH2}$	Output Hi Level, $R_{LOAD} = 1 M\Omega$	4.8	5.0		V	
V_{OL1}	Output Lo Level, $R_{LOAD} = 50 \Omega$		0.15	0.25	V	
V_{OL2}	Output Lo Level, $R_{LOAD} = 1M \Omega$		0.3	0.5	V	
T_{PLH}	Propagation Delay to f/n output ↑		10	13	ns	
T_{PHL}	Propagation Delay to f/n output ↓		10	13	ns	
$t_{\rm r}$	Rise Time (10%-90%)		2.0	3.0	Ns	
${ m t_f}$	Fall Time (10%-90%)		1.8	3.0	Ns	
T_{SKEW}	Skew between outputs		1	2	ns	
F _{MAX}	Max clock frequency	100			MHz	$R_{IN} = 50 \Omega$
	Size	1.3 x 2.9 x 2.9		in.		
	Weight		1	-	lb.	
	Shipping weight, incl. AC adapter		4		lb.	

PRL-240A TTL Frequency Divider Up 500 Ω f/2 50Ω f/2 out Select Dwn 50 Ω Frequency V_{in} Divider Outputs > 2.4 V into 50 Ω f max = 100 MHz +8.5V 50Ω f/10 out f / 10 180 mA www.pulseresearchlab.com

Figure 1: PRL-220A Block Diagram

Figure 2: PRL-240A Block Diagram

