RAPID APPLICATION NOTE

RESEARCHe<LAB

BUILD YOUR OWN CUSTOM ATTENUATORS (BROADBAND AND PRECISION)
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Fig.1
WHY THE NEED?

Attenuators are one of the most frequently used devices in the lab. They are easily misplaced and frequently “borrowed” by
colleagues. Although attenuators with standard dB values, such as 3 dB, 6 dB, 10 dB, 20 dB, etc. are readily available commercially,
non-standard value devices are not. In non-RF applications, attenuator requirements are also specified in voltage ratios, such as 2X,
4.4X, 15X, 50X, etc., often with tolerance tighter than £3%, or £+ 0.25 dB. Attenuators with non-standard values require custom
orders, often carrying setup charges, long lead times, minimum quantities, and higher costs. This App Note illustrates how to build
your own custom broadband precision attenuators using the PRL family of MNET, PINET and TNET kits shown above. Subsequent
work sheets show the application schematics and component placement diagrams. Using these kits and standard 1% SMT
components an attenuator can be built in less than 15 minutes and at a much lower cost compared to custom units from special
orders. Ultra precision attenuators can easily be built using off-the-shelf 0.1% resistors.

ATTENUATOR BASICS

An attenuator is a four terminal device with an input port and an output port as shown in Fig. 1.1t is normally driven by a voltage
source with a source resistance Rg and connected to a load Ry. For a given input voltage V|, the output is attenuated, or reduced, by
a fixed amount. The ratio of V|n/V is the attenuation value. A 5X attenuator, for example, attenuates the input voltage Viy by 5, so
that VIN/VO =35.

In RF applications, the attenuation value is usually expressed in dB. By definition,
dB = 2010g (VIN/ Vo) (1)

Therefore, if Vin/Vois 10, then 20log (10) is equal to 20, hence a 20 dB attenuator. If the attenuation in dB is given, then the voltage
ratio can be found from (1) as:

Viv/Vo= log™ (dB/20) )
For example, a 6 dB attenuator has a voltage ratio of

Viv/Vo=log™(6/20) =1.9953, but it is commonly accepted as a 2 to 1 attenuator. In precision amplifier testing, however, a chain of
2X attenuators, instead of 6 dB attenuators, is required. Similarly a 5X attenuator, commonly accepted as a 14 dB attenuator, is
actually a 13.979 dB attenuator.
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The Pi and Tee configurations are most commonly used for high-speed applications, and they are shown in Fig.2A and Fig. 2B,
respectively. Although the simple two resistor divider attenuators are also widely used, they are not suitable for matched impedance
applications and will, therefore, not be discussed here. For the Pi configuration shown in Fig.2A, the values for the shunt resistors R1
and the series resistor R2 are governed by the equations:

R1 =Zy(o+1)/(a-1) 3)

R2 = Zy(o*-1)/2a (4), where

a =V/Vo is the attenuation ratio, and Z, the characteristic impedance of the attenuator.

For the Tee configuration shown in Fig. 2B, the applicable equations are:

R1 =2a Zy/(0’-1) (5)
R2 = Zy(a-1)/( o+1) (6)
Vv
R2
+ Rb
Vlin R1 R1 Ra
Fig. 2A: The Pi Attenuator Fig. 2B: The Tee Attenuator Fig. 3: Parallel Resistors

These attenuators have the unique property that when Rg = Ry, = Z, then the I/O impedances of the attenuator are both equal to Z,.
Therefore they are desirable for matched impedance applications. The Pi configuration has one additional desirable feature in that
each shunt leg can be biased at a different voltage. This capability allows the Pi attenuator to be used as a level shifter. For example,
a TTL signal can be converted to an NECL signal, and an NECL signal can be converted to a ground-referenced signal for scope
viewing, etc. The most common values for Z; are 50 Q (RF/Microwave), 75 Q (TV), 93 Q and 600 Q.

THE DESIGN AND IMPLEMENTATION OF THE 50 Q Pi ATTENUATORS

Due to time and space constraints, the Tee configuration will not be discussed in this application note.

In the design of attenuators, the calculated resistor values from (3) and (4) are seldom found in the standard 1% resistor table, except
for a very few cases. It is, therefore, necessary to use series and/or parallel combinations to obtain the desired values. In general,
parallel combinations are simpler and require less board space. The basic design approach is illustrated below.

When an exact value is not available, the next higher standard value is first chosen, and the required parallel component can be
calculated. The value of two resistors connected in parallel, as shown in Fig. 3, is given by:

R, = (Ry x Rp)/ (R, + Ry) (7

If the required resistor value is calculated to be Rp and the next higher value available from the 1% table is chosen to be R,, then the
parallel resistor Ry, required is, from (7),

Ry= (R, X Ry)/(R, — Ry) (8)

Using the next higher value from the 1% table for R, generally yields the more accurate result, because the choice for R, is then less
critical. If the next higher value from the 1% table is not available, a common practice is to choose an available value for R, and then
calculate the needed value for Ry, from (8). If this is still not satisfactory, another parallel resistor may be added. From the PCB
footprints of the MNET, PINET and TNET Kkits, it is shown that each shunt component site (top and bottom) can accommodate up to
four components and each series site can accommodate two. If still higher accuracy (or higher power) is required two or more
resistors can be soldered and “stacked” on top of each site. Using 0.1% resistors for ultra precision applications is also an option.

Table I contains a collection of attenuators with the most commonly used dB and voltage ratio values. The calculated models, the
implementation using parallel resistor combinations and the resultant equivalent models are displayed in separate columns for easy
visualization and comparison. Pulse response for a number of attenuation values is also included.
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Table I. Schematic Diagrams of Pi Attenuators
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Pulse Response for SMA 1/0 Attenuators driven by Tektronix 80E04, t, =
660 ps

PRL-470B Outputs, t,=

30 ps, and

When driven by an extremely fast rise time signal, such as the Tektronix 80E04 TDR pulse generator, the parasitic capacitance
across series resistor R2 (see Fig. 2A) produces output overshoots with increasing attenuation ratio, as shown in Fig. 7, Fig. 9 and
Fig. 11. The overshoots can be significantly reduced using a two-stage design, as in Fig. 10 and Fig. 12, or a slower rise time signal,

say 660 ps as in Fig.13,

When dealing with signals in the 200 ps rise time range, these attenuators show very little overshoot (see BNC 1/O attenuators on
next page). In general, for attenuation higher than 20 dB and t, <200 ps, a two stage design produces less overshoot. Fig. 13 shows a
40 dB, 4-stage 10 dB design, with little overshoot for a 660 ps rise time step input. Single stage attenuators in the 3 dB-12 dB range,
as shown in Figs. 5-8, using the SMA PINET kit, can achieve bandwidth better than 6 GHz, where BW(GHz) x t, (ps) = 350.
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Flg 7:10 dB PINET Single Stage
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Flg 9:14 dB PINET Single Stage

Fig. 10: 14 dB TNET, 10 dB + 4 dB
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Fig. 12:20 dB TNET, 10 dB + 10 dB

Fig. 13:40 dB MNET, 4 x 10 dB
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Pulse Response for BNC 1/0O Attenuators driven by PRL-430AN output, t,=165 ps

In general, BNC I/O devices have lower bandwidth, because BNC connectors have larger physical dimensions compared to those in
SMA connectors. Furthermore, BNC to SMA adapters are generally needed for the I/O connections because the high speed signal
source and the measurement equipment usually have SMA I/O connectors.
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Fig. 17: 12 dB PINETB Single Stage Fig. 18: 14 dB PINETB Single Stage Fig. 19: 20 dB PINETB Single Stage

Table II shows a number of multi-stage attenuators built using either the TNET or MNET PCB configuration. In constructing the
multi-stage attenuator, it will be helpful first to decide which sections are to be combined. Next, the exact values of the parallel
combination of the two adjacent shunt legs of the two sections to be combined should then be calculated. The required parallel
combination is then found using equation (8). For example, cascading two 10 dB sections yields a common shunt leg of 48.125 Q
(96.25 Q/2 from Table I). This value can be obtained by using either 82.5 Q in parallel with 115 Q (48.04 Q) or 93.1 Q in parallel
with 100 Q (48.21 Q).

It should be noted that attenuators with lower attenuation values have higher resistance values in the shunt legs. Therefore it is
desirable in most cases to use the lower value attenuator sections at both ends in order to handle higher power dissipation.

Tables III and IV show examples of assembled SMA and BNC I/O attenuators, showing how the series and parallel combinations of
resistors are installed on both sides of the PCB. When multi-layer ceramic capacitors are used, as in AC coupled attenuators
and filters, they should be installed last in order to avoid repeated thermal cycling from the soldering iron.

Instead of discrete resistors, commercially available ceramic attenuator chips can also be used with these PINET, TNET and MNET
kits, but at a higher cost and often limited to standard dB values only.
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Although this App Note is devoted to attenuator design and assembly, the PINET, TNET and MNET Kkits are multi-purpose signal
conditioning kits suitable for many other applications. Shown below are examples of a number of additional applications used by

PRL customers.

Description Circuit Configuration Kit Type Applications
Series Resistor ° AAN o PINET Current Source/In-line Probe*
Series Capacitor . | o PINET DC Block

Series Inductor

PINET AC Block/In-Line LF Signal Injection*

Series Diode

PINET Rectification

Series/Parallel LCs ° e MNET/ Filters, High-Pass
?—{ ?—{ T TNET
Series/Parallel LCs - - ) MNET Filter, Low-Pass
I T 1T 1
Series/Parallel LCs o —e MNET Filter, Band-Pass
Shunt Resistor - PINET Feed through Termination

Shunt Capacitor

PINET Feed through Decoupling

Shunt Diodes

PINET Line Termination/Signal Clipping

Series C/Shunt Diode

|

PINET DC Restoration

Series R/Shunt Capacitor

[
—

PINET Rise Time Integration

Series C/Shunt R

T=\AVA—9

PINET AC Termination for ECL
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