
Manufacturer's manual

Albatros

Tecnologie e Prodotti per l'Automazione

3.1.9

This documentation is property of TPA S.p.A.
Any unauthorized duplication is forbidden.
The Company reserves the right to modify the contents at
any time.

ITable of Contents

Manufacturer's manual

Table of Contents

System Configuration 11

1Introduction1.1

1Devices Configuration1.2

1Introduction1.2.1
1Generic Device1.2.2
2Digital output1.2.3
3Analog input1.2.4
5Axis1.2.5

5Base Data

5Movement parameters

6Interpolation parameters

8Other parameters

9Reference parameters

10Access levels

10Axes chaining

11Screw linearity correction

12Logical Configuration1.3

12Plant configuration1.3.1
14Groups Configuration1.3.2
17Machine configuration1.3.3

18Physical Configuration1.4

18System Configuration1.4.1
19Hardware Configuration1.4.2

22How to write CANBUS.DEF. file

24How to write CANBUS.DEF file for S-CAN devices per dispositivi S-CAN

26Characteristics of the EtherCat Management in Albatros

 26Foreword

 26ECATBUS.DEF file

 27EtherCAT Hardware configuration

 29Description of a PDO

 31Example of EtherCAT hardware configuration

 32Configuration of the virtual-physical EtherCAT links

 33Virtual-physical links in the TRS-CAT

 34Example of virtual-physical link

35How to write EPLBUS.def file

37Virtual physical Configuration1.4.3
39Cabling maps1.4.4
39List of navigation keys to navigate through a tree structure1.4.5

Development tools 402

40Editor GPL2.1

40GPL Editor functions2.1.1
42Avalaible keyboard shortcut list2.1.2
43Insert Message2.1.3
44Cryptography2.1.4

45Libraries2.2

45Create and modify2.2.1

II Albatros

Manufacturer's manual

47Debug2.3

47The debugger2.3.1
48Task in execution2.3.2
49All tasks2.3.3
50Show call stack2.3.4
51Breakpoints2.3.5
52Variable content2.3.6
52Available keyboard shortcut list2.3.7

53Control initialization2.4

53Network Connections2.4.1
54Hardware Diagnostic2.4.2

54Test2.5

54Print global on disk2.5.1
54Start single function2.5.2
55Message Import and Export2.5.3

56Tools2.6

56Customise...2.6.1

58Browser2.7

58The browser2.7.1
58Identifier Search2.7.2
60Available keyboard shortcut list2.7.3

GPL Language 613

61Basic Feature3.1

61Conventions and terminology3.1.1
63Introduction to GPL language3.1.2
63Variables3.1.3

63Type of data

65Data conversion

66Declaration and Visibility of the variables

66Modifiers

67Assigning a RANGE

67Writing and Reading Rights

68Constants

68Predefined constants3.1.4
69Keywords3.1.5
70Functions3.1.6
72Device parameters3.1.7
73Multitasking3.1.8
74Communication3.1.9
75Variables used in programming3.1.10
75Axes3.1.11
77Message handling in different languages3.1.12
77System Error Management3.1.13
78Special functions3.1.14

78Axis movement customization

80Standard calibration and movement functions

84Function OnUIEnd

84Function OnUIPlugged#

84Function OnUIUnplugged#

84Instructions3.2

84Conventions3.2.1
84Types of instructions in the GPL language3.2.2
91Input/Output3.2.3

IIITable of Contents

Manufacturer's manual

91GETFEED

91GETVF

92INPANALOG

92INPBCD

92INPFLAGPORT

92INPPORT

92MULTIINPPORT

93MULTIOUTPORT

93MULTIRESETFLAG

93MULTIRESETOUT

94MULTISETFLAG

94MULTISETOUT

94MULTIWAITFLAG

95MULTIWAITINPUT

95OUTANALOG

95OUTBCD

96OUTFLAGPORT

96OUTPORT

96RESETFLAG

96RESETOUT

96SETFLAG

97SETOUT

97WAITFLAG

97WAITINPUT

98WAITPERSISTINPUT

98Axes3.2.4

98CHAIN

99CIRCABS

100CIRCINC

101CIRCLE

101COORDIN

102DISABLECORRECTION

103EMERGENCYSTOP

103ENDMOV

103ENABLECORRECTION

104FASTREAD

104FREE

105HELICABS

105HELICINC

106JERKCONTROL

106JERKSMOOTH

107LINEARABS

107LINEARINC

108MOVABS

108MOVINC

109MULTIABS

110MULTINC

111NORMAL

111RESRIFLOC

111SETINDEXINTERP

111SETLABELINTERP

112SETPFLY

112SETPFLYCHAINSTRAT

113SETPZERO

113SETQUOTECHAINSTRAT

113SETPZEROCHAINSTRAT

114SETQUOTE

IV Albatros

Manufacturer's manual

114SETRIFLOC

114SETTOLERANCE

116START

116STARTINTERP

117STOP

117SWITCHENC

117SYNCROOPEN

118SYNCROCLOSE

118SYNCROMOVE

119SYNCROSETACC

119SYNCROSETDEC

119SYNCROSETVEL

119SYNCROSETFEED

120SYNCROSTARTMOVE

120WAITCOLL

121WAITDEC

121WAITREG

122WAITSTILL

122WAITTARGET

122WAITWIN

122WAITACC

123Axis Parameter

 123Reading/Writing

123DEVICEID

123GETAXIS

 128Point-to-point Movement

128SETACC

129SETDEC

129SETDERIV

129SETFEED

129SETFEEDF

130SETFEEDFA

130SETINTEG

130SETMULTIFEED

131SETPROP

131SETVEL

 131Interpolated Movement

131LOOKAHEAD

132SETACCI

132SETACCLIMIT

132SETACCSTRATEGY

132SETAXPARTYPE

133SETCONTORNATURE

133SETDECI

133SETDERIVI

134SETFEEDFAI

134SETFEEDI

134SETFEEDFI

135SETINTEGI

135SETPROPI

135SETSLOWPARAM

136SETVELI

136SETVELILIMIT

 136Coordinated Movement

136SETFEEDCOORD

138SETOFFSET

 138Chained Movement

VTable of Contents

Manufacturer's manual

138RATIO

138SETDYNRATIO

 139Generic Parameters

139DYNLIMIT

139ENABLESTARTCONTROL

140NOTCHFILTER

140RESLIMNEG

140RESLIMPOS

141SETADJUST

141SETBACKLASH

143SETBIGWINFACTOR

143SETDEADBAND

144SETENCLIMIT

144SETINDEXEN

144SETINTEGTIME

144SETIRMPP

145SETLIMNEG

145SETLIMPOS

145SETMAXER

146SETMAXERNEG

146SETMAXERPOS

147SETPHASESINV

147SETMAXERTYPE

148SETREFINV

148SETRESOLUTION

149Counter3.2.5

149DECOUNTER

149INCOUNTER

149SETCOUNTER

149Timer3.2.6

149HOLDTIMER

150SETTIMER

150STARTTIMER

150Variables, Vectors and Matrixes3.2.7

150CLEAR

150FIND

151FINDB

151LASTELEM

151LOCAL

152MOVEMAT

152PARAM

153SETVAL

153SORT

154Strings3.2.8

154ADDSTRING

154CONTROLCHAR

154LEFT

155LEN

155MID

155RIGHT

155SEARCH

156SETSTRING

156STR

156VAL

157Communications3.2.9

157CLEARRECEIVE

157COMCLEARRXBUFFER

VI Albatros

Manufacturer's manual

157COMCLOSE

157COMGETERROR

158COMGETRXCOUNT

158COMOPEN

158COMREAD

159COMREADSTRING

159COMWRITE

159COMWRITESTRING

159RECEIVE

164SEND

169SENDIPC

170WAITIPC

170WAITRECEIVE

170Mathematics3.2.10

170ABS

171ADD

171AND

171ARCCOS

172ARCSIN

172ARCTAN

172COS

172DIV

173EXP

173EXPR

174LOG

174LOGDEC

175MOD

175MUL

176NOT

176OR

176RANDOM

177RESETBIT

177ROUND

178SETBIT

178SHIFTL

179SHIFTR

180SIN

180SQR

181SUB

181TAN

181TRUNC

182XOR

182Multitasking3.2.11

182ENDMAIL

183ENDREALTIMETASK

183ENDTASK

183GETPRIORITYLEVEL

183GETREALTIME

183GETREALTIMECOUNT

184HOLDTASK

184RESUMETASK

184SENDMAIL

185SETPRIORITYLEVEL

185STARTTASK

185STARTREALTIMETASK

185STOPTASK

186WAITMAIL

VIITable of Contents

Manufacturer's manual

186WAITTASK

186Flux management3.2.12

186CALL

187FCALL

187DELONFLAG

187DELONINPUT

187FOR/NEXT

188FRET

189GOTO

189IF/IFVALUE/IFTHENELSE

190IFACC

190IFAND

191IFBIT

192IFBLACKBOX

192IFCHANGEVEL

192IFCOUNTER

193IFDEC

193IFDIR

194IFERRAN

194IFERROR

195IFFLAG

196IFOR

196IFINPUT

197IFMESSAGE

197IFOUTPUT

198IFQUOTER

198IFQUOTET

199IFRECEIVED

199IFREG

200IFSAME

200IFSTILL

200IFSTR

201IFTARGET

201IFTASKHOLD

202IFTASKRUN

202IFTIMER

202IFVEL

203IFWIN

203IFXOR

204ONERRSYS

205ONFLAG

205ONINPUT

205REPEAT/ENDREP

206RET

206SELECT

207TESTIPC

207TESTMAIL

208Various3.2.13

208CLEARERRORS

208CLEARMESSAGES

209DEFMSG

210DELAY

210DELERROR

210DELMESSAGE

211ERROR

212IFDEF/ELSEDEF/ENDDEF

214MESSAGE

VIII Albatros

Manufacturer's manual

216SYSFAULT

216SYSOK

216TYPEOF

217WATCHDOG

217CANopen3.2.14

217TMSbus boards with CAN control

 217GETCNSTATE

 217GETSDOERROR

 218GETMNSTATE

 218RECEIVEDPDO

 218SENDPDO

 219SETNMTSTATE

219Board CIF30

 219CANOPENDRIVER

 220CANCLOSEDRIVER

 220CANRESETBOARD

 220CANSETOBJECT

 220CANGETOBJECT

221Mechatrolink II3.2.15

221MECCOMMAND

221MECGETPARAM

222MECGETSTATUS

224MECSETPARAM

224PowerlinkII and EtherCAT3.2.16

224Instructions to initialize the Powerlink nodes

225AXCONTROL

226ACTIVATEMODE

226AXSTATUS

228CNBYDEVICE

228GETPDO

228HOMING

229READDICTIONARY

229SETPDO

230WRITEDICTIONARY

230SLM3.2.17

230SLMCOMMAND

230SLMEEPROMDISABLE

230SLMEEPROMENABLE

231SLMGETEEPROM

231SLMGETPARAM

231SLMGETREGISTER

232SLMGETSTATUS

232SLMSETEEPROM

232SLMSETPARAM

232SLMSETREGISTER

233Simulation3.2.18

233DISABLE

233DISABLEFORCEDINPUT

233ENABLE

233ENABLEFORCEDINPUT

234RESETFORCEDINPUT

234SETFORCEDANALOG

234SETFORCEDBCD

234SETFORCEDINPUT

235SETFORCEDPORT

235Blackbox3.2.19

235ENDBLACKBOX

IXTable of Contents

Manufacturer's manual

236PAUSEBLACKBOX

236STARTBLACKBOX

236ISO3.2.20

236ISOG0

237ISOG1

238ISOG9

238ISOG90

238ISOG91

238ISOG93

239ISOG94

239ISOG216

239ISOG217

240ISOM2

240ISOM6

241ISOSETPARAM

242KINEMATICEXPR

243Instructions which can not be used with interrupt3.2.21
244Instructions which are no longer available3.2.22

245Examples3.3

245Homing on Interrupt3.3.1
246Axis movement server3.3.2
248Main Cycle with error management3.3.3
248Operations on strings3.3.4
249Sequential / Parallel Execution3.3.5
250Homing Routine3.3.6
251Synchronized movement3.3.7
251Iso movements3.3.8

Albatros1

Manufacturer's manual

1 System Configuration

1.1 Introduction

In the chapter concerning the composition of the system, we have already seen how the Albatros system
consists of one or more modules forming a plant and how each one of these is organised in a
hierarchical structure.
To configure the machine from the point of view of Albatros it is necessary to follow a sequence of
operations which enable to configure the various logic levels and the underlying hardware. The general
order to be followed when configuring a system is:

Module Configuration
Definition of Groups and Subgroups
Devices Configuration
Machine Configuration
System Configuration
Hardware Configuration
Virtual physical Configuration

Basically Module, Group and Machine Configuration determine the logic structure of the machine, while
the System, Hardware and Physical Virtual Configuration determine the physical structure.
We will analyze each one of these points in detail in the following paragraphs.

1.2 Devices Configuration

Introduction1.2.1

In the chapter concerning the composition of the Albatros system, we described the various types of
devices which can appear in a module. Now we will describe the devices from the point of view of their
configuration.

Each type of device can be configured a maximum number of times, as specified in the following list:

Type of device Max. number
Analog input 128
Analog output 128
Digital input 4096
Digital output 4096
Output Nibble 256
Input Nibble 256
Input port 512
Output port 512
Axis 240
Timer 128
Counter 128
Flag Bit 1024
Flag Switch 256
Flag Port 256
Function 4096

The data to be specified during configuration depends on the device, however, except for axis devices, it
is almost always the same. We will now see the configuration of certain devices.

IMPORTANT:
To a card Can can be associated only devices of type: digital input, digital output, input port, output port.

Generic Device1.2.2

Most devices require the same configuration parameters. Below we have illustrated the configuration of a
Digital Input, however the same considerations apply to:

Flag bit
Flag switch
Analog output
Input Port

System Configuration 2

Manufacturer's manual

Flag Port
Timer
Counters
Input Nibble
Output Nibble
Function

General Input configuration window

To configure any device among those listed above, the following settings must be specified:
Name: name of the device, a maximum of 40 characters.
Comment: a brief description of the device, it can be translated into various languages, no spaces.
Logical: assigned automatically by the system.
Read Accesses: specifying the minimum access level required for the device to be visualised in
the Diagnostic windows or in the Synoptic Views.
Write accesses: specifying the minimum access level required to modify the state of the device.
Public: specifying if the state of the device can be read or modified by a GPL code not belonging to
the group of the device.

Digital output1.2.3

The digital output has one parameter that standard devices do not have: the One shot multivibrator

Albatros3

Manufacturer's manual

 Digital output configuration window

To configure a digital output, the following settings must be specified:

Name: name of the device, a maximum of 40 characters.
Comment: a brief description of the device, it can be translated into various languages, no spaces.
Logical: assigned automatically by the system.
One shot multivibrator: if selected, it configures the output as one shot multivibrator, which
means that when the output is set to ON it switches automatically back to OFF 200 ms later.
Read Accesses: specifying the minimum access level required for the device to be visualised in
the Diagnostic windows or in the Synoptic Views
Write accesses: specifying the minimum access level required to modify the state of the device.
Public: specifying whether the state of the device can be read or modified by a GPL code not
belonging to the group of the device.

Analog input1.2.4

The analog input has one parameter that standard devices do not have: the type of power in input.

System Configuration 4

Manufacturer's manual

 Analog input configuration window

To configure an Analog input the following settings must be specified:
Name: name of the device, a maximum of 40 characters.
Comment: a brief description of the device, it can be translated into various languages, no spaces.
Logical: assigned automatically by the system.
Type: to select the power interval read in input.
Read Accesses: specifying the minimum access level required for the device to be visualised in
the Diagnostic windows or in the Synoptic Views
Write accesses: specifying the minimum access level required to modify the state of the device.
Public: specifying if the state of the device can be read or modified by a GPL code not belonging to
the group of the device.

Albatros5

Manufacturer's manual

Axis1.2.5

Base Data

The base data to be specified is:

Name: name of the device, a maximum of 40 characters.
Description: a brief description of the device, which can be translated into various languages, no
spaces.
Resolution: resolution of the encoder, depending on the characteristics of the encoder and on the
specified unit of measure . Remember that Albatros axis cards count as pulses the rising edges and
the falling edges of both encoder phases (a 2500 pulses/revolution encoder will be detected as
a10000 pulses /revolution encoder).
Axis Typology: type of axis. The types are: Analog (analogically controlled), Stepping motor,
Digital, Count (only encoder reading), Frequency/Direction (4° AlbSLM card connector),
Virtual.
Unit of Measure: the unit of measure used to indicate the position of the axes. As all the derived
dimensions depend on it, we advise to set this parameter before any other.
Encoder Phases Rev: it allows you to correct via software a possible cable inversion of the
encoder phases.
Reference Reverse: it allows you to reverse the speed reference of the axis. If used with the
encoder phases reverse it allows you to reverse the direction of the axis (if cabling is correct).
Zero pulse enable: only available for counting axes, it automatically resets the position to zero
when the encoder pulse is detected.

Movement parameters

Parameters used for axis point to point movement.

System Configuration 6

Manufacturer's manual

Max Speed: max speed of the axis.
Acceleration: time of acceleration ramp.
Deceleration: time of deceleration ramp.
Minimum Speed: speed reached by the motor in a single step;it can only be set on stepping motor
axes.
Slope Typology: ramp typology of acceleration and deceleration. Not available for stepping
motors.
Proportional: proportional coefficient of the position loop PID controller.
Integrative: integration coefficient of the position loop PID controller.
Derivative: derivation coefficient of the position loop PID controller.
Feed Forward: percentage of feed forward. It allows you to reduce the loop error at equal speed.
Feed Forward Accel.: percentage of feed forward acceleration. It allows you to eliminate the
remaining loop error (not eliminated by the feed forward) during axis acceleration and deceleration
phases.
Integrative Samples: Sets the number of samples of loop error, used to calculate the integral
component. Valid values are in the range 1 to 200. The default value is 50. See gpl SETINTEGTIME
instruction.

Interpolation parameters

Parameters used for axis interpolation movement.

Albatros7

Manufacturer's manual

Except for minimum speed, they have the same meaning as the parameters described in the Moving
Parameters. However these are used for interpolation movements.

Note: acceleration and deceleration values, set in the interpolation parameters, cannot be lower than the
corresponding values in the movement parameters.

System Configuration 8

Manufacturer's manual

Other parameters

Manual Speed: specifying the maximum configuration speed which can be used in manual
movements. It will never exceed the maximum set speed.
Dynamic Servoerror: Valid values are 0 (= normal) and 1 (= dynamic). The default value is 0.
See gpl SETMAXERTYPE instruction.
Wait axis still: enables or disables the overshoot recovery function. It sets a pause of 50 ms at
the end of each movement.
Axis moving timeout: Valid values are in the range 0 to 1024. See gpl ENABLESTARTCONTROL
instruction.
Incorrect encoder connection limit: The set values are expressed in the unit of measure that
axis resolution is expressed in. The settable values must be in the range 128/axis resolution to
16384/axis resolution. The default setting is calculated based on a number of steps equivalent to
1024, i.e. 1024/axis resolution.
Positive Limit for Servoerror: maximum value of the loop error for loop correction in positive
direction.
Negative Limit for Servoerror: maximum value of the loop error for loop correction in negative
direction.
Positive Axis Limit: maximum value of axis running in positive direction.
Negative Axis Limit: maximum value of axis running in negative direction.
Positive quiescent threshold: tolerance on arrival position in positive direction.
Negative quiescent threshold: tolerance on arrival position in negative direction.

Albatros9

Manufacturer's manual

Reference parameters

Reference: value of the reference power corresponding to maximum speed
Automatic Adjust: enables or disables calculation of automatic offset recovery. It's usually
enabled.
Initial Offset: Value to which initial reference offset is set. Value must be in the range -10 to 10.
Default value is 0.
Notch filter frequency: Frequency value to be filtered. Value must be in the range 0 to 500.
Minimum voltage: Sets the minimum voltage parameters for the axis indicated. The negative
value must be in the range -10 to 0, the positive value in the range 0 to +10. See SETDEADBAND
instruction.
Threshold: Sets the threshold values. They are always less than or equal to the respective
minimum voltage values, hence the negative threshold value must be between 0 and the negative
minimum voltage value. The maximum threshold value must be between 0 and the positive
minimum voltage value.

System Configuration 10

Manufacturer's manual

Access levels

Read Accesses: specifying the minimum access level required for the axis to be visualised in the
Diagnostic windows or in the Synoptic Views.
Write accesses: specifying the minimum access level required to modify the state of the axis.
Public: specifying whether the state of the axis can be read or modified by a GPL code not
belonging to the group of the axis.

Axes chaining

Axes chaining parameters. These are the PID controller coefficients which correct the loop error
difference between the master axis and the slave axes.

Albatros11

Manufacturer's manual

Proportional: proportional coefficient
Integrative: integration coefficient
Derivative: derivation coefficient

Screw linearity correction

Setting the screw linearity correction of the axis. The correctors allow axis positioning errors to be
compensated where these are due to mechanical imprecision of the axis itself (auto-correctors) as well
as errors due to the effect deriving from the other axes of the machine (crossed correctors) typically
related to bending in the structure. The correctors are not automatically enabled but must be enabled in
the editing window for correction values ([Edit...] button) and activated with the GPL code using the
command ENABLECORRECTION.

System Configuration 12

Manufacturer's manual

Correction interval: this allows the distance between one correction and the next to be set. The
measurement number is given by the length of the axis divided by the length of the correction
interval.
Corrector file name: this allows the name of the file in which the correction values are saved to
be set. This will be an ASCII file in which the values are separated by the character ";". This
allows them to be edited with a standard text editor. The file extension is not specified, the
extension ".csv" (comma separated values) is automatically assigned.
Correction data: allows the specification of the list of the axes to be included in the calculation
of the correction of the current axis. The current axis is always included in the list, this means
that the auto-corrector is always present. Up to another 5 axes can be specified. To add an axis
select it in the list on the left and press the [>>Add] button. To remove an axis select it in the
list on the right and press the [Remove <<] button. To specify correction values select an axis
from the list on the right and press the [Edit...] button. A window is opened with a table in which
to insert the correction values.

NOTE: There is a limit of 235 screw linearity corrections managed by the system for each axis.
Consequently, the length of the measuring interval must be at least the 235th part of the length of the
axis. For example, if an axis is 2500 mm long, the correction interval must be set at 10.63 mm or
more.There is also a limit to the maximum value of an individual correction: this must be lower than
1024 encoder steps, for example for an axis with a resolution of 256 steps/mm the maximum correction
is ±4 mm.

1.3 Logical Configuration

Plant configuration1.3.1

To define a new machine or modify an existing one, access the Module Configuration screen page. Notice
that, in this case, by Module Configuration we intend the configuration of the modules composing the
plant, as confirmed by the heading of the configuration window shown in the following image: "Plant".

Albatros13

Manufacturer's manual

 Plant configuration window

The Configuration environment can only be opened (from the manufacturer level or a higher level) when
all the other work windows (synoptic, diagnostic, etc.) are closed, and it is done with the following
command:

Access to Configuration

Select the heading Open Configuration from the File menu.

If no modules of the plant have been configured, Module Configuration is opened automatically,
otherwise Machine Configuration will be opened. In this case, to access Module Configuration:

 Select the heading Module Configuration from the Edit menu.

The window shown in fig. 8.1 will appear.

To add a module to the plant simply press [New]. [Modify] allows you to modify the data of an existing
module, [Delete] to remove a module and [Close] to exit plant configuration.

When the [New] button is pressed, the window shown in the following figure is displayed.

System Configuration 14

Manufacturer's manual

 Module configuration window

The data that identifies the machine, to be specified, is:

the number of the module: a progressive integer number which, if not specified, is assigned by
the system
a brief description

It also contains some data concerning the underlying Hardware. The same window can be opened from
the branch of the Configuration Module for the groups and from the branch of the Hardware
Configuration Module.

Groups Configuration1.3.2

When the machine is designed from scratch it is necessary to define all the components and to write all
the control cycles. However, we often develop projects for finished machines which have to be
conveniently modified.
Because in the Albatros environment machines are organised following a hierarchic model (Machine,
Group, Subgroup, Device), it is possible to create a file of loosely configured groups according to the
most frequently used components. In this case, the machine can be designed by taking the required
groups from the files and modifying them where necessary.

Therefore, the groups file is a collection of "standard" groups which allows you to design on a modular
basis and, above all, to re-use the configuration work already done.

Creating a group

To create a new group access the Groups Configuration screen page. All the groups, sub-groups and
devices come from the first branch of the tree, called Module. The Module branch cannot be modified. If
you press the [ENTER] key or the [Modify] button, a dialog box opens to modify the module data.

Select the heading Groups from the Edit menu

Albatros15

Manufacturer's manual

From here it is possible to create new groups, to modify or delete existing ones and to copy a group
giving the copy a new name.

List of the commands to create, modify, delete groups, sub-groups and devices

Command Action

Creating a new group, a sub-group, a device [CTRL+ENTER], Button [New], Edit->New

Modifying a group, a sub-group, a device [ENTER], Button [Modify],Edit->Modify

Deleting a group, a sub-group, a device [DEL], Button [Delete],Edit->Delete

When you create a new group, the window below appears where following data must be set:
the name of the group;
a comment

(both can be translated in the languages used by Albatros).

 Group configuration window

It is also possible to indicate the group as Intergroup. This setting was used in previous versions of
Albatros to allow the GPL code of other groups to access the devices and functions of this group. In this
version the same result can be obtained by setting the devices as public. However at least one group
must be set as Intergroup as this setting is used by Albatros to identify the "main" group of the machine.
This is the group whose main function (the one with the same name as the group) is launched
automatically when the machine is booted. The function of this mechanism is to start the machine and
launch the tasks that verify that everything is functioning correctly, before passing the control to the
user.

Adding devices to a group
To create a subgroup of the group, you must be positioned on the group. The window below opens.

 Subgroup configuration window

If we do not intend to create any subgroups, select the Devices List, as in the figure below and press
[OK]. The name of the subgroup will be given automatically.

System Configuration 16

Manufacturer's manual

It is now possible to insert the single devices in the group. The process is similar to that used to create
subgroups.
In this case a window containing the list of available devices will appear (see figure below).

 Devices selection window

Select the required device and press [OK] for confirmation.

Another window will appear, to enable us to enter a name, a comment and other data which varies
according to the selected device. A detailed description of the devices and their settings will follow in
the chapter Devices Configuration.

Copying a device

The device copy function allows you to make a copy of any device. First, select the device and then
press [Copy]. To insert the device in the list press [Paste] and enter the new name in the dialog
window.

 Device copy window

Copying a group or subgroup

Albatros17

Manufacturer's manual

The group copy function allows you to copy a group with all the subgroups and devices it contains.
Moreover, the corresponding group synoptic (having the same name as the group), if existent, is also
copied.
This function allows you to create rapidly groups which have a similar structure to that of an existing
group, without having to re-create all the devices one at a time. To copy a group, select the required
group, press [Copy] and enter the new name of the group in the dialog window.

 Group copy window

Machine configuration1.3.3

Once all the groups and all the necessary devices within the groups have been configured, the Machine
Configuration consists simply in selecting the groups which really exist .

To access the Machine Configuration:

Select the heading Machine from the Edit menu.
The window shown in the following image will appear.

 Machine Configuration

To insert a new group press [New group]. A window containing the list of all the groups contained in the
file will appear.

System Configuration 18

Manufacturer's manual

 Machine configuration: group selection window

At this stage, select the chosen group and drag it with the mouse to the Machine Configuration
window. Notice that this is the only possible way of performing this operation.
It is also possible to remove an existing group or to search starting from the name of the group.

The machine can have only one intergroup. If more than one group was indicated as intergroup in the
Group file, only one will have to be selected.

If necessary the configuration of certain devices may be modified, especially the axes configuration. In
fact, it is possible to access the parameters of the devices through the machine configuration too,
although most parameters can not be modified from this area. Remember also that any modification
carried out in Machine configuration is not extended to the corresponding device in the group file.

1.4 Physical Configuration

System Configuration1.4.1

The system configuration allows you to connect the physical resources (control units) to the modules
defined in the logic configuration. This is possible into the System Configuration dialog box. The
modules list of the plant is shown and to each of these a Network Node.

Albatros19

Manufacturer's manual

 System Configuration

Local node "Local" systems in which the HW handling the control is mounted directly on the user's
system interface, that is the PC.
Name of a network node: "Remote" systems in which the HW handling the control is connected
to the PC through a serial line or network.
Not configured: no configuration. This is the default at the beginning. If this choice remains, as a
result it will be possible in the dialog box Network Nodes Connections to associate a remote
module.

Up to 16 modules can be configured and one only can be configured as local node.
To assign a module, select the button [Edit] or double-click with the mouse on the network node to
modify. Opening the pull-down menu, the list of the available remote modules is displayed, and it is
also possible to use a local node or to set a module as not configured. To confirm the selection, select

the button .

N.B: The profile machining of Albatros is protected by a USB hardware key, configured by T.P.A.
 S.p.A.

Hardware Configuration1.4.2

Hardware configuration consists in deciding what kind of board, plug or I/O remote units make up the
system.
The card occupying at the first position is called Master board.
Albatros checks if the board of the hardware configuration is correctly inserted. The operator is informed
of incongruences or of errors in inserting.
In this system boards can be configured on Can, POWERLINK II and EtherCAT-Buses.
In this case links between physical and logical devices are defined in an external file, whose name
CANBUS.DEF is fixed for the Can-Bus, EPLBUS.DEF for PowerLinkII and ECATBUS.DEF for EtherCAT.
Clipper NT Embedded remote modules do not manage these field buses.

The TRS-AX , TRS-IO and TRS-16 remote modules can be connected only to TMSbus, TMSbus+ and
TMSCombo+ boards.
No more than 4 TRS-AX remote modules can be connected to each TMSbus and TMSbus+ board.

Kinds of configurable cards:
TMSbus boards max. two
TMSbus+ max. four
TMSCombo+ max. four
DualMech max. four
DualMech Mono max. four
TMSCan max. two
TMSCan+ max. four
AlbNT max. four
AlbSLM board max. four
AlbMech fino a due
AlbIO32 max. two
AlbNTPLC one only
CN2004 one only

System Configuration 20

Manufacturer's manual

These are the I/O remote modules that can be configured on GreenBus (v 3.0):
Albre8 8 digital inputs and 8 digital outputs
Albre16 16 channels which can be configured via software as digital input or output.
Albre24 24 digital inputs and 24 digital outputs
Albre48 48 digital inputs and 48 digital outputs
Albrem 16 digital inputs and 16 digital output, 4 analog inputs and 4 analog outputs
AlbSTEP 8 digital inputs and 6 digital outputs, one stepping motor
AlbEV 20 or 24 electrovalves (D-sub 25 pin connector)
AlbAPP keypad for manual movements and/or teach-in
Albrea 4 analog input and 4 analog output

The configurable types of remote module on GreenBus /v.4.0) are as follows:
TRS-AX
TRS-EV-
24

4 analog or step-by-step axes
24 electrovalves (D-sub 25 pin connector)

TRS-16 16 channels which can be configured via software as digital input or output.
TRS-IO 16 channels which can be configured via software as digital input or output. This can be

expanded through TRS-IO-E and TRS-AN-E (max. 5 items) and TRS-AC-E modules.
TRS-IO-E 16 channels which can be configured as digital input or output; they can only be used as

expansion of a TRS-IO module.
TRS-AN-E 1 analog input and 1 analog output that can be only used as an expansion of a TRS-IO

module
TRS-AC-E 1 counting axes and 2 digital

inputs, configurable as zero
position reference and fast
input. In the table below the
maximum number of TRS-AC-
E, configurable in a TRS-IO
Number of TRS-IO-E and TRS-
AN-E expansions

TRS-AC-E number expansion

The types of remote module that can be configured on EtherCAT are as follows:
TRS-CAT 16 channels that can be configured via software as a digital input or output. This can be

expanded through TRS-IO-E and TRS-AN-E and TRS-AC-E modules.
STAR-CATtransforms a EtherCAT network topology into a star topology by means of an input channel

and up to 3 different output channels.

The table below shows the maximum number of expansions, that can be configured in a TRS-CAT.

Number of TRS-IO-E and TRS-AN-E
expansions

TRS-AC-E expansion

7 0

5 1

3 2

1 3

Describing the hardware configuration window
The hardware configuration window opens if you select in the menu Edit->Hardware.
To insert a board or a module of remote I/O, press [New]. In this way a window appear to select the
board or the module of remote I/O and the position where it should be inserted.
In general, no more of 4 boards for each module and no more of 32 modules of remote I/O for each
board can be configured . Hence, for each module you can configure up to 128 I/O modules. Regarding
the TRS-AX remote modules a more precise clarification should be made; in fact, if the number of the
inserted TRS-AX modules rises, the number of TRS-16 and TRS-IO, which can be used, decreases. To
calculate the maximum number of TRS-16 and TRS-IO remotes, which can be inserted, you need to
apply the following formula: number of other remotes = 32-(number of TRS-AX*4). For instance, if 3
TRS-AX are connected to a TMSbus, applying the formula we get: number of other remotes=32-(3*4),
then no more than TRS-16 and/or TRS-IO 20 remote modules can be inserted.
The position of the remote in the list should be chosen according to the address set through a switch on
the remote module. Please, make reference to the hardware documentation of the single remote.

Albatros21

Manufacturer's manual

Hardware Configuration

According to the selected board, it could be necessary to set the kind of axes managed. This is invalid for
AlbSLM boards, AlbESlm expansions and remote TRS-AX, CN2004 board.
What kinds of axes can be associated to the various hardwares are described as follows:

AlbNT board analog axes and counting axes
AlbENt expansion analog axes and counting axes
AlbSLM board digital axes, frequence/direction axes (IV axis only, if configured as

Frequence/Directon type, counting axes (Aux connectors only)
AlbESlm expansion digital axes, frequence/direction axes (IV axis only, if configured as

Frequence/Directon type, counting axes (Aux connectors only)
AlbMech board digital axes
DualMech board digital axes
DualMech Mono board digital axes
TRS-AX axes analog axes (if configured as analog type), counting axes (if configured as

analog type), step-by-step axes (if configured as Step-by-Step type)
remote AlbStep step-by-step axes
TRS-AC-E expansion counting axes

In the Mechatrolink II the number of the axes that can be configured changes according to the set value
of the control frequency of the axes:

Board Axis frequency control (Hz) Maximum number of
servo drives

AlbMech 1000 8

AlbMech <=500 16

DualMech Mono 1000 8

DualMech Mono 500 20

DualMech Mono 250 30

DualMech 1000 16

DualMech 500 40

DualMech 250 60

The column Settings and descriptions shows or assigns some informations concerning the board or
the remote module set.

Using [Move] you can move a board from a slot to another or a remote module from the bus of a board
to the bus of another board. Through this operation any possible connections concerning the remote and
available in the Virtual-Physical configuration are maintained. If the board to be moved contains some
nodes configured on an external bus, this board cannot be moved. The same command can be selected
from the Edit->Move command.

System Configuration 22

Manufacturer's manual

A remote module can also be disabled. Disabling has the effect of keeping the connections in the Virtual-
Physical configuration whilst the remote module and the devices connected to it are totally disregarded
by the system. Therefore, no error is generated if the module is not detected during initialisation and no
error is generated when a GPL instruction is executed on a device associated with the module.
Consequently, this feature must be used with a special care. To disable a remote module, use the
[Disable] button; to enable a remote module again, use the [Enable] button. The same command can
be selected from the Edit->Disabled command.

How to write CANBUS.DEF. file

Albatros can manage bus devices on CAN field bus through Tpa boards equipped with a CAN Bus
connector or through generic boards for CANbus control. Connections between physical and logical
devices on CANbus are defined in the CANBUS.DEF file, stored in the configuration folder of the
corresponding module(\MODn\CONFIG). The formalism used is in accordance with the standard IEC1131.

Following description must exclusively be used with TMSbus, TMSbus+ and TMSCan+ and TMSCan
boards. The main elements to define the CAN hardware are as follows:

CANBUS.DEF file is a text format file that describes the connections between logical devices and physical
devices on Powerlink. For every module a EPLBUS.DEF file must be written and memorized into the
configuration folder of corresponding module. (\MODn\CONFIG). Inside the file the part describing
Powerlink hardware should come before the description of the logical-physical connections. The main
elements to define the Powerlink hardware are follows:

 (*...*) beginning and ending of a comment. Comments can be written on more than one
text line. You can enter a comment inside another. This is useful when you want to
comment a block of definitions whose rows are commented. For example
.....
CN(3) ID=17 IO RPDO=4 TPDO=8; (*one only RPDO and one only TPDO*)
(*
CN(4) ID=21 IO RPDO=2+2+3 TPDO=8; (*(* two RPDO1 of 2 bytes*)
CN(5) ID=22 IO RPDO=1+4 TPDO=8+8; (*two RPDOs and two TPDOs *)
*)

 MN (number)

attributes

beginning of the description block of a MN (managing node), that is master board of
the CanAddress. Instead of a number you can use an alphanumeric identifier that
will be used later on to identify MN in the description bloc of the logic-physical
connections. In this case the attribute ID is obligatory. The number in brackets is
the index, that will be used for the composition of the Can address. MN is configured
by means of the following attributes:
ID=index number of the board in the Albatros hardware configuration (from 1
onwards); if absent, MN(number) is used.
TIME=number of sampling rate in msec. It cannot exceed 60000 (60 seconds)
BAUDRATE=number of CAN communication rate in kilobits per second (can be
1000, 500, 250, 125, 100)
TIMEPDO=time in msec. It shows the time devoted to the synchronous
communication of the PDOs. The value set cannot exceed the TIME value (it not an
obligatory value).
Service name=YES (to enable the service), NO (to disable the service). It
sets the CAN service or protocol, that can be enabled or disabled. Service list:

Service name Description

SERVICE-EMCY enables or disables the EMCY service

SERVICE-NMT enables or disables the NMT service. If there
are TMSCan and TMSCan+ boards, this
service is always enabled.

SERVICE-CTRL enables or disables the NoteGuarding and/or
HeartBeat protocol check

SERVICE-SYNC enables or disables the SYNC service

SERVICE-SDO enables or disables the SDO service

SERVICE-PDO enables or disables the PDO service

SERVICE-NGUARD enables or disables the NGUARD service

SERVICE-RCOVER enables or disables the RCOVER service: this
service cannot be used, if there are TMSCan

Albatros23

Manufacturer's manual

and TMSCan+ boards.

SERVICE-HBEAT enables or disables the Heartbeat service for
the nodes. This service cannot be used, if
there are TMSbus and TMSBus+ boards.

Example: SERVICE-EMCY=YES (enabling the EMCY service). SERVICE-EMCY=YES
(disabling the EMCY service).
TIMEAFTERRESET=time in msec. It shows the waiting time during the initial
phase after a software reset of the nodes in the network. It cannot exceed 60000
(60 seconds).
LIFETIMEFACTOR=number. This is the number of CAN cycles without answer to
the Node Guarding call before the generation of Disconnected node error. It cannot
exceed 100 or be less than 1. (Default value: 3)

CN (number)
attribute

beginning of description block of a CN (Controlled Node). The number in brackets is
the index, that will be used for the composition of the CanAddress. Instead of a
number you can use an alphanumeric identifier that will be used later on to identify
CN in the description block of the logic-physical connections. In this case the
attribute ID is obligatory. CN will be considered as a part of the CAN subnet of the
previous MN description block. A CN is configured by means of the following
attributes:
IO indicates that it implements the DS401 (I/O) specification
SERVO reserved
DISABLED: disables CN. This word can be entered in any part of the definition,
after CN() at the beginning and before ‘;’ at the end.
ID=number is the CN number (from 1 onward); if this field does not exist,
CN(number) is used.
RDPO=list: sequence of values (max. 8 for TMSBus and TMSBus+ boards, max. 4
for TMSCan and TMSCan+boards) , separated by the character '+'; each value
identifies the dimension of a receiving or transmitting PDO (for TPDO) of CN
(1÷8).M
With TmsBus and TMSBus+ boards ror each PDO the COB-ID can be defined,
enclosed within round brackets (Ex.: “RPDO=2+4+4+2+1(101)+4(102)”).
With TMSCan and TMSCan+ it is also possible to configure asynchronous PDOs, i.e.
PDOs that are not updated at each cycle, but only on specific request. We define an
asynchronous PDO by adding ASYNC . Asynchronous PDOs should be sent in the
GPL code by means the SENDPDO instructions.
TPDO= list: list of sequence of values (max. 8 TMSBus and TMSBus+ boards, max.
3 for TMSCan and TMSCan+ boards), separated by the character '+'; each value
identifies the dimension of a receiving or transmitting PDO (for TPDO) of CN (1÷8).
With TMSBus and TMSBus+ boards it is possible for each PDO to define the COB-ID,
enclosed within round brackets (Ex.: “RPDO=2+4+4+2+1(101)+4(102)”).
With TMSCan and TMSCan+ it is possible to configure asynchronous PDOs, i.e.
PDOs that are not updated at each cycle. We define an asynchronous PDO by
adding ASYNC. Asynchronous PDOs should be received in the GPL code by means
the RECEIVEPDO instructions.
AUTOOP: this device allows the automatic passage to the Operational status after a
reconnection (optional).

; ending a MN or CN description block

Following description, concerning the logical-physical connections, must be used for all the boards on
CANBus

(*...*) beginning and ending of a comment. Comments can be written on more than one
text line. You can enter a comment inside another. This is useful when you want to
comment a block of definitions whose rows are commented.

VAR beginning of block of connections description
DeviceName complete logical device name. It can be written with the form

"Group.Subgroup.Device" or "Group.Device

 AS keyword that separates DeviceName from CanAddress

 CanAddress

(for Tpa boards
with CAN
control)

physical address on CANBus. The formalism for the description is:
% is the first obligatory character.
I or Q is the second character. I indicates an input device, Q indicates an output
device
X or B is the third character. X indicates that the following value must interpreted as
bit, B indicates that the following value must be interpreted as byte. If omitted, the
next value is interpreted as bit. Next characters are a sequence of numbers
indicating the address. If in the system is configurated more than one Can board
then it’s possible to distinguish the board number by putting before the address the

System Configuration 24

Manufacturer's manual

number of the board followed by a point. The address can be expressed in base 2, 8,
or 16 according to the formalism IEC.

CanAddress
(for TMSbus
boards)

shows the address at the beginning, how many bits in dualport and of which board
are available. The formalism for the description is:
% is the first obligatory character.
I or Q is the second character, I showing an input device, Q shows an output device
X o B is the third character. X shows that the next number must be interpreted as a
bit, B shows that the next number must be interpreted as a byte. If omitted, the next
value is interpreted as a bit.
The next characters are a sequence of numbers indicating the address. They are
separated by a dot. The first number refers to the master board (TMSBus) of the
bus, the second one to the node, the third optional one is an offset within the node
(this number is a progressive one depending on the Albatros device type. This offset
can also be expressed in base 2, 8 or 16 according to the IEC formalism.
If the offset is not available, we consider 0.

 ; completes the description of a connection

 END_VAR ending of block of connections description

Whatever is found after the keyword END_VAR of block end is ignored.
Whatever is out of the blocks is ignored.
The correctness of file whether from the point of view of the syntax, or from the point of view of the
contents is verified during Albatros starting. In case of errors notice, is visualized an error message. The
description of all errors is in file ERRCAN.TXT memorized into the folder defined in Tpa.ini at option
DirReport.

Example of definition of CAN Hardware on Tpa board:

MN(1) TIME=10 BAUDRATE=1000;

CN(3) ID=17 IO RPDO=4 TPDO=8; (* one only RPDO and one only TPDO *)
CN(4) ID=21 IO RPDO=2+2+3

TPDO=8;
(* two RPDO1 with 2 bytes and a RPDO3 with 3
bytes *)

CN(5) ID=22 IO RPDO=1+4 TPDO=8
+8;

(* two RPDO and two TPDO *)

VAR
Main.EV1 AS %QX1.30.10;

Main.EV2 AS %Q1.3.11;

Main.Assi.InpPort AS %B1.5.12;

Emerg.InputW AS %IX2.5.13; (*board 2 *)

END_VAR

Example of definition of CAN Hardware on generic boards:
VAR

Main.EV1 AS %QX10; (* output device 10 board 1*)

Main.EV2 AS %Q11; (* output device bit 11 board 1*)

Main.Assi.InpPort AS %B12; (* input device byte 12 board 1*)

Emerg.InputW AS %IX2.13; (* input device bit 13 board 2*)

 END_VAR

How to write CANBUS.DEF file for S-CAN devices per dispositivi S-CAN

The description of the S-CAN hardware configuration is defined in the CANBUS.DEF text file, stored in the
configuration folder of the corresponding module. (\MODn\CONFIG). The formalism used is in accordance
with the standard IEC1131.

Following description must be exclusively used with TMSbus, TMSbus+ boards. The main elements to
define the S-CAN hardware are as follows:

 (*...*) Beginning and end of a comment. Comments can be written on more than one
text line.
You can enter a comment inside another. This is useful when you want to
comment a block of definitions whose rows are commented. For example
.....
CN(3) SERVO RPDO=8 TPDO=8; (*servo*)

Albatros25

Manufacturer's manual

(*
CN(4) SERVO RPDO=8 TPDO=8; (*servo*)
CN(5) SERVO RPDO=8 TPDO=8; (*servo...*)
*)

MN(number)
attributes

beginning of the description block of a MN (managing node), that is master board
of the S-CAN communication. The number in brackets is the index that will be
used for the composition of CanAddress. Instead of a number you can use an
alphanumeric identifier that will be used later on to identify MN in the description
bloc of the logic-physical connections. In this case the attribute ID is obligatory. A
MN is configured by means of the following attributes:
S-CAN shows the type of CAN protocol. It is obligatory.
ID=index number of the board in Albatros hardware configuration (from 1
onwards); if not present, MN(number) is used
TIME=number sampling time in msec (accepted values 2,4 and 6 only).
BAUDRATE=number CAN communication speed in kilobits/second (it can be
1000, 500, 250, 125, 100)
TIMEAFTERRESET=time in msec. It shows the waiting time during the initial
phase after a software reset of the nodes in the network. It cannot exceed 60000
(60 seconds).
LIFETIMEFACTOR=number. This is the number of CAN cycles without answer to
the Node Guarding call before the generation of Disconnected node error. It
cannot exceed 100 or be less than 1. (Default value: 3)

CN(number)
attributes

beginning of description block of a CN (Controlled Node). The number in brackets
is the index that will be used for the composition of CanAddress. Instead of a
number you can use an alphanumeric identifier that will be used later on to
identify CN in the description block of the logic-physical connections. In this case
the attribute ID is obligatory. CN will be considered as a part of the S-CAN subnet
of the previous MN description block. A CN is configured by means of the following
attributes:
SERVO shows that it is a servo drive. It is obligatory.
DISABLED: disables CN. This word can be entered in any part of the definition,
after CN() at the beginning and before ‘;’ at the end.
ID=number is the CN number (from 1 onward); if there is not this field,
CN(number) is used
RDPO= sequence list of values (max. 8) separated by the '+' character, each
one identifying the dimension of a CN reception PDO (1÷8).). For each PDO the
COB-ID can be defined, enclosed within round brackets (Ex.: “RPDO=2+4+4+2
+1(101)+4(102)”).
TPDO=sequence list of values (max. 8) separated by the '+' character, each
one identifying the dimension of a CN reception PDO (1÷8).). For each PDO the
COB-ID can be defined, enclosed within round brackets.

; ending a MN or CN description block

Following description defines the logical-physical connections
 (*...*) Beginning and end of a comment. Comments can be written on more than one text line.

You can enter a comment inside another. This is useful when you want to comment a block
of definitions whose rows are commented.

VAR beginning of block of connections description
DeviceName complete name of the logical device. It can be written under the "Group.Subgroup.Device"

or "Group.Device" form.
AS Keyword separating DeviceName from CanAddress
CanAddress shows the address at the beginning, how many bits in dualport and of which board are

available. The formalism for the description is:
% is the first character, it is obligatory.
I or Q is the second character. I shows an input device, Q shows an output device
X or B or L is the third character. X shows that the following value has to be interpreted as
bit (digital inputs and outputs), B shows that the next value has to be interpreted as byte,
L shows that the next value has to be interpreted as 8 bytes (axes). If omitted, the next
value is interpreted as bit.
The following characters are a set of figures, separated by a point '.', identifying the
address The first number refers to the MN (TMSbus) of the bus, the second one to the CN,
the third one, optional, is an "offset" inside the CN (such a number is a progressive one
linked to the Albatros device typology); the offset can also be expressed with base 2, 8, or
16 according to the IEC formalism.
If the offset is not available, we consider 0. In the S-CAN drive the offset can be used to
send some commands to the drive by means of analog outputs. The following table
provides the commands that can be sent and the offset address. The first three are digital
outputs and the last one is a output port.

Command Offset Example

System Configuration 26

Manufacturer's manual

Servo on 0 Ax.ServoOnX AS %QX1.1.0;

Enabling
movement

1 Ax.EnableX AS %QX1.1.1;

Stop in the ramp 2 Ax.StopX AS %QX1.1.2;

Reset alarms 3 Ax.ResAlmX AS %QX1.1.3;

Sending couple
value

8 Ax.TorqueX AS %QB1.1.8;

; completes the description of a connection
END_VAR end of the description block of the connections

Whatever is found after the keyword END_VAR of block end is ignored.
At Albatros startup the program checks if the file is correct from bot the points of view of the syntax and
of the content. If errors are detected, an error message is displayed. Each error description is provided
in the file ERRCAN.TXT stored into the folder defined in Tpa.ini under DirReport.

Example of definition of S-CAN Hardware on TMSbus board:

MN(1) S-CAN TIME=2 BAUDRATE=1000;
CN(1) SERVO RPDO=8 TPDO=8;
CN(2) SERVO RPDO=8 TPDO=8;

VAR
Ax.X AS %IL1.1

Ax.Y AS %IL1.2

END_VAR

Characteristics of the EtherCat Management in Albatros

The communication mode is always DC-Synchronous. The first node of the network provides the clock,
so it is essential to make sure that that node provides a precise and stable clock, as it is provided for
example by TRS-CAT. It is not possible to use other modes, such as, for example, Free-Run.
Managed protocols are: CoE (CAN application protocol over EtherCAT) and EoE (Ethernet over
EtherCAT). Inside CoE, the device profiles DS401 and DS402 are managed by the default operating
mode of the axis control cyclic synchronous speed mode.

The maximum number of EtherCat nodes is 200.

Foreword

To each physical EtherCAT device an ESI file(EtherCAT Slave Information) is associated, describing the
characteristics and the functionalities of the device. . This file is in XML format. For each device one only
ESI file must exist. Generally, the ESI files can be downloaded from the manufacturer's Internet site.
Albatros searches for these files in the folder defined in Tpa.ini in the section [tpa] under DirESIFiles.
Default option is the subfolder ETHERCAT of SYSTEM. “\EtherCAT” di SYSTEM.

From the ESI Albatros files it obtains the information on the device, by analysing all the elements “/
Devices/Device/Type”. Each device is identified by a Vendor ID, a Product ID and by a Revision Number.
If more than a device with the same name is available, the same Vendor ID and the same Product ID,
that with the greatest Revision Number is considered.

Always from the ESI files the information on the expansions (also called modules) of the devices are
obtained. Albatros finds the information on the types of expansions by searching in the ESI file of the
device the elements “Modules/Module”.

ECATBUS.DEF file

ECATBUS.DEF file is a text format file that describes the hardware configuration and the connections
between logical devices and physical devices on EtherCAT. In each module using this bus a
ECATBUS.DEF file must be written and stored in the configuration folder of the corresponding module
(\MOD.n\CONFIG).

The file is divided into two sections, the first is the one that describes the hardware EtherCAT, and is
equivalent to the Hardware Configuration of Albatros. In this section the physical devices are listed, that
is the nodes of the EtherCAT network and their settings. The second section corresponds to the Virtual-
Physical Configuration; in this section the couplings between logical devices and single inputs and
physical outputs of the different EtherCAT nodes are listed. This section of the files is enclosed between

Albatros27

Manufacturer's manual

VAR and END_VAR key words.

Each single definition available in the file in the hardware configuration section or in that of the Virtual-
Physical can be described on more rows and must be finished by the ‘;’. character. To enter some
comments (or bypass part of virtual-physical and hardware configuration) you enter the characters ' (* '
at the beginning of the comment text and the ' * characters) ' at the end. The comments can be on
multiple lines of text. You can also enter a comment inside another one. This is useful when you want to
comment a block of definitions whose rows are commented.

Example:

(* Beginning of the EtherCAT configuration of the module *)
(*

Here you must enter the definitions concerning EtherCAT hardware
*)
VAR
(*

 Here you must enter the virtual-physical associations among Albatros and I/O EtherCAT logical
devices.
(* This is a comment inside another comment*)

*)
END_VAR

EtherCAT Hardware configuration

The hardware is configured by describing the master boards and, for each board, the list of physical
devices connected to that card on the bus. The physical devices are also called "nodes" of the field bus.
For EtherCAT the master board is not a specific board of bus control, but a network connection of the
module is used. As for the local modules the network connection must be one of those managed by RTX,
while for the remote modules a specific network connection of the module is used among those managed
by Windows CE 6.0. For each local or remote module, you can configure one master only.

The master board is identified in the ECATBUS.DEF master file as MN, i.e Managing Node, while each
hardware device or node, is identified as CN, i.e Controlled Node.

The syntax to describe the master (MN) is the following (please, note that the definition is finished by the

‘;’) character:

MN(index) (* index is the number to use for the virtual-physical* connections)
 ID=address (* board number, from 1 on; optional *)
 NAME=interface_name (* name of the network interface*)
;

Where:

index can be a number, from 1 onwards or an alphanumeric identifier. It will be used in
the virtual-physical section (i.e. between VAR and END_VAR) to show the master
board in the EtherCAT network of which the node to be associated to the logical
device is placed. If you use an alphanumeric identifier, in the definition of MN()
you must also specify the ID=address.

address Board number associated to the EtherCAT bus managed by this MN(). It must be a
number from 1 onwards, if the index field is not used. If the index is an
alphanumeric identifier, then the address must be defined in an explicit way.

interface_name this is the name of the interface acting as EtherCAT master. For the local modules
the default value is “rtnd0”, that is the name of the section describing the network
interface inside the ini file of RTX di IntervalZero. The default name of CN2008
remote module is "RTCENIC1", the default name of CN2128 remote module is
"E1Q51CE61".

Example: MN(1) . Full example in the paragraph "Example of EtherCAT hardware configuration".

The syntax to describe the node (CN) is the following (also in this case the definition is finished by this

System Configuration 28

Manufacturer's manual

character ‘;’):

CN(index) (* index is the number to use for the virtual-physical*)

ID=address (* address of the node, from 1 on *)
TYPE=device_name (* name of hardware device *)
RxPDO=pdo_sequen
ce

(* description of a PDO that the node receive; optional *)

TxPDO=pdo_sequenc
e

(* description of a PDO that the node sends; optional *)

OPMODE=axis_mode (* servo nodes, operating mode of axis control; optional *)
DISABLED (* disables the node; optional *)
 IO (* considers the node as of I/O even if it is a servo; optional *)
;

Where:

index can be a number, from 1 onwards or an alphanumeric identifier. It will be used
in the virtual-physical section (i.e. between VAR and END_VAR) to show the node
to be associated with the logical device. If you use an alphanumeric identifier, in
the definition of CN() you must specify also the ID=address.

Examples:
CN(100) ID=+ TYPE=TRS-CAT:AN-E:IO-E;
CN(200) ID=+ TYPE=STAR-CAT;
 CN(101) ID=+ TYPE=TRS-CAT;
 CN(LTi_1) ID=+ TYPE=3-Axis-module;
 Full example in the paragraph "Example of EtherCAT hardware
configuration".

address Node number of the EtherCAT bus. It must be a number from 1 onwards and if it
is not indicated, the index field is used. If the index is an alphanumeric identifier,
then the address must be defined in an explicit way.

device_name Name of the device that is searched in the file ESI. This name can be indicated in
several ways. It is worth using (1) the name that is in the tag Device\Type
(even only a part of the name), but (2) it is accepted also that in the tag
\Device\Name, or (3) you can write Product ID and the Vendor ID separated by
a point (‘.’). Examples:
Examples:
TYPE=3-Axis-module
TYPE=i700_(Double
 Full example in the paragraph "Example of EtherCAT hardware
configuration".

The devices can also have some expansions (called also modules) are they also
must be indicated, by making the name of the device follow the list of the
expansions, separated by the ':' character. :'. the mandatory modules
(“mandatory”) are automatically added and must not be indicated. if the device
or the expansion name contain some space characters (‘ ’), these can be
replaced by underscores (‘_’).

It is not necessary to write all the components of the device and the expansion
name, but it is sufficient to write those necessary for the univocal identification of
the device and the expansion among all the ESI files.
Example:
TYPE=i700_(Double.
. Full example in the paragraph "Example of EtherCAT hardware
configuration".

pdo_sequence A PDO (Process Data Object) is a communication object defined by the
communication parameter and by the mapped PDO objects (max.8). PDOs are
transmitted in the form "without confirmation". (see paragraph Description of a
PDO).

axis_mode defines the operating mode to be used for the nodes of drive type, i.e. for the
nodes adhering to DS402 (object 606016). The mode is one of the following:

Albatros29

Manufacturer's manual

HOMING Homing

VELOCITY Velocity

PROF-POSITION Profile position

PROF-VELOCITY Profile velocity

PROF-TORQUE Profile torque

INTERPOLATED Interpolated position

SYNC-POSITION Cyclic synchronous position

SYNC-VELOCITY Cyclic synchronous velocity

SYNC-TORQUE Cyclic synchronous torque

If it is not set, SYNC-VELOCITY will be used. At the moment, this is the only

mode supported in a native way by the numeric control.

It is possible to add some attributes to the node definition:

DISABLED This attribute indicates that the node is not present on the bus. Its configuration
is examined, but it is not sent to the numeric control by Albatros. The same
result could be obtained by commenting the whole definition of CN(), but some
errors could be reported by analysing the EtherCAT virtual-physical
configuration. The use of this attribute makes possible for the the logical devices
associated with the node to be considered as not connected. Additionally, in the
Albatros hardware configuration window this node is available and marked as
disabled.
Example:
CN(44) ID=+ TYPE=SGDV-E1 DISABLED
 Full example in the paragraph "Example of EtherCAT hardware
configuration".

IO It is sometimes useful to force the numeric control to consider a particular node
of axes as if it were an I/O node. This attribute applies to nodes only that
support DS402 (servodrives).

In the configuration file, the definition of the several CN () must follow the definition of the MN(), like in a
tree structure, in which each leaf is fastened to a branch.

Description of a PDO

You can define up to eight PDOs sent by the node (TxPDO) and up to eight PDOs received by the node
(RxPDO). Each RxPDO describes one only PDO that the node receives from the master, therefore digital
and analog outputs for I/O nodes or target velocity and controlword for axis nodes. Each TxPDO
describes one only PDO that the node sends to the master, therefore digital and analog inputs for I/O
nodes or current position and statusword for axis nodes.

For the list and the description of the PDOs and of the objects that can be mapped on a PDO please,
make reference to the documentation of the specific EtherCAT device and to its ESI file.

In the description of PDOs you can use the formalism IEC1131-3 to indicate the numbers, i.e. the
sequence of figures representing the number with base 10. However, if it starts by “16#” so the number
is considered to be base 16 and also the characters from A to F (case-insensitive) are considered. If it
starts by “8#”, it is considered to be base 8 and the allowed characters range from 0 to 7. If it starts by
“2#”, it is considered to be base 2, therefore only the figures 0 and 1 are allowed. In the figures you can
enter the underscore ‘_’ character to improve the readibility.

Example:
TYPE=i700_(Double
 Full example in the paragraph "Example of EtherCAT hardware configuration".

System Configuration 30

Manufacturer's manual

 There are three modes to describe the PDOs in a CN:

1. Do not set any PDO.
In this way the numeric control uses PDO configured by default in the device. This is the easiest
mode and fits the majority of the CNs.
Example:
 CN(100) ID=+ TYPE=TRS-CAT:AN-E:IO-E; Full example in the paragraph "Example of
hardware EtherCAT configuration".

2. Set only the PDOs without providing any list of the objects.
To be used when a CN has several alternatives and not programmable PDOs. To use it, write
TxPDO or RxPDO to set the direction of the data, followed by the ‘=’ character and then by the
number of the communication object (PDO number), without spaces in the middle.
Example:
 CN(EL3102_1) ID=+ TYPE=EL3102 TXPDO=16#1A10; Full example in the paragraph
 "Example of hardware EtherCAT configuration".

3. Describe the PDO in a complete way, setting the communication object and the list of the objects
to map.
This mode is the one that provides the best control over the information sent and received by
the CN. To use this mode, describe the PDO like for the previous mode, then add the ‘:’
character and the list of the object to map, joined together by the ‘+’ character.
Example
RXPDO=16#1600:16#6040+16#60FF+16#6060

 RXPDO=16#1610:16#6840+16#68FF+16#6860
 RXPDO=16#1620:16#7040+16#70FF+16#7060
 Full example in the paragraph "Exemple of EtherCAT hardware configuration".

Each object is described by its index in the object dictionary of CN, optionally followed by a sub-index. If
the sub-index is not available, it is considered as 0.
Example:
TXPDO=16#1A00:16#6041+16#6064+16#6061+16#2918.1+16#6077+16#606C
TXPDO=16#1A10:16#6841+16#6864+16#6861+16#3118.1+16#6877+16#686C
TXPDO=16#1A20:16#7041+16#7064+16#7061+16#3918.1+16#7077+16#706C;
 Full example in the paragraph "Example of EtherCAT hardware configuration".

The dictionary object (object dictionary) is the core of every device. It enables the access to all the types

of the device data, to the communication parameters, to the configuration and data processing

parameters.

Attention: not all the object of the object dictionary can be mapped in a PDO.

Examples of description of objects in the configuration file:

 16#7060 (* index with base 10: 28768; sub-index: 0 *)

 16#2918.1 (* index with base 10: 10520; sub-index: 1 *)

As for the CNs of servodrives there is a PDO for each drive, so that the nth TxPDO and the nth RxPDO of
the CN make reference to the nth drive of the CN. The first two objects of each RxPDO and TxPDO have
a preassigned significance and dimension, i.e.:

Drive

RxPDO TxPDO

1° object

16 bit

Controlword

2° object

32 bit

Target velocity

1° object

16 bit

Statusword

2° object

32 bit

Actual position

1° drive 16#6040 16#60FF 16#6041 16#6064

2° drive 16#6840 16#68FF 16#6841 16#6864

Albatros31

Manufacturer's manual

nth drive Add 16#800 to each object of the preceding drive.

When you need to describe a PDO completely, you can use some automatic features that will simplify the
description:

If the PDO number is missing the first programmable PDO among those listed in the ESI file of the
device is used;
Example:
RXPDO=:+16#6060

 TXPDO=:+16#6077;
in the case of servodrives you can replace the list of Controlword e Target velocity with the
character ‘+’; idem for Statusword and Actual position.
Example:
RXPDO=:+16#6060
TXPDO=:+16#6077;

 Full example in the paragraph "Example of EtherCAT hardware configuration".

Reading or writing objects can be added for a specific drive by adding the index (and any subindex) of
each object in the PDO of the drive.
Example:
RXPDO=:+16#6060
 Full example in the paragraph "Example of EtherCAT hardware configuration" .

Then, these values can be read by GPL through the GETAXIS instruction (see the related chapter). It also
possible to trace the additional objects both from the calibration window and from the oscilloscope.

More generally, it is possible to access specific objects in reading and writing within PDO through the
GETPDO and SETPDO instructions (see the related chapters)

Each object inserted in a PDO must be described also in the ESI file of the Ethercat device. If that is not
the case, when Albatros reads the ECATBUS.DEF file reports as warning the use of an unknown object
and presets the length of 32-bit object.

Example of EtherCAT hardware configuration

MN(1) NAME=RTND0;

 CN(100) ID=+ TYPE=TRS-CAT:AN-E:IO-E;
 CN(200) ID=+ TYPE=STAR-CAT;
 CN(101) ID=+ TYPE=TRS-CAT;

 CN(LTi_1) ID=+ TYPE=3-Axis-module;

 CN(LTi_3) ID=+ TYPE=3-Axis-module
 RXPDO=16#1600:16#6040+16#60FF+16#6060
 RXPDO=16#1610:16#6840+16#68FF+16#6860
 RXPDO=16#1620:16#7040+16#70FF+16#7060
 TXPDO=16#1A00:16#6041+16#6064+16#6061+16#2918.1+16#6077+16#606C
 TXPDO=16#1A10:16#6841+16#6864+16#6861+16#3118.1+16#6877+16#686C
 TXPDO=16#1A20:16#7041+16#7064+16#7061+16#3918.1+16#7077+16#706C;

 CN(LTi_4) ID=+ TYPE=1-Axis-module
 RXPDO=:+
 TXPDO=:+16#6077;

 CN(10) ID=+ TYPE=i700_(Double
 RXPDO=16#1605:16#6040+16#60FF+16#6060
 TXPDO=16#1A05:16#6041+16#6064+16#6061+16#6077+16#606C;

 CN(11) ID=+ TYPE=i700_(Double
 RXPDO=:+16#6060
 RXPDO=:+16#6860
 TXPDO=:+16#6061+16#6077+16#606C
 TXPDO=:+16#6861+16#6877+16#686C ;

System Configuration 32

Manufacturer's manual

 CN(20) ID=+ TYPE=I/O-System:EPM-S202:EPM-S302;
 CN(102) ID=+ TYPE=TRS-CAT:AN-E:IO-E;
 CN(EK1100) ID=+ TYPE=EK1100;
 CN(EL3102_1) ID=+ TYPE=EL3102 TXPDO=16#1A10;
 CN(EL3102_2) ID=+ TYPE=EL3102 TXPDO=16#1A10;
 CN(EL4031) ID=+ TYPE=EL4031;
 CN(EK1100) ID=+ TYPE=EK1100;
 CN(40) ID=+ TYPE=EL2809;
 CN(41) ID=+ TYPE=EL1809;
 CN(42) ID=+ TYPE=EK1122;
 CN(43) ID=+ TYPE=L7NH
 (* RXPDO=16#1600:16#6040+16#60FF+16#6060
 RXPDO=16#1601:16#6040+16#60FF+16#6060
 RXPDO=16#1602:16#6040+16#60FF+16#6060
 RXPDO=16#1603:16#6040+16#60FF+16#6060 *)
 (* TXPDO=16#1A00:16#6041+16#6064+16#6061+16#6077+16#606C
 TXPDO=16#1A01:16#6041+16#6064+16#6061+16#6077+16#606C
 TXPDO=16#1A02:16#6041+16#6064+16#6061+16#6077+16#606C
 TXPDO=16#1A03:16#6041+16#6064+16#6061+16#6077+16#606C *);

 CN(44) ID=+ TYPE=SGDV-E1 DISABLED
 (* RXPDO=16#1600:16#6040+16#60FF+16#6060
 RXPDO=16#1601:16#6040+16#60FF+16#6060
 RXPDO=16#1602:16#6040+16#60FF+16#6060
 RXPDO=16#1603:16#6040+16#60FF+16#6060 *)
 (* TXPDO=16#1A00:16#6041+16#6064+16#6061+16#6077+16#606C
 TXPDO=16#1A01:16#6041+16#6064+16#6061+16#6077+16#606C
 TXPDO=16#1A02:16#6041+16#6064+16#6061+16#6077+16#606C
 TXPDO=16#1A03:16#6041+16#6064+16#6061+16#6077+16#606C *);

VAR
 (* There are no virtual-physical links*)
END_VAR

Configuration of the virtual-physical EtherCAT links

The formalism used is in accordance with the standard IEC1131-3. All links between logical devices and
EtherCAT addresses must be indicated within the block defined by VAR and END_VAR. With EtherCAT
address we are referring to the start position of a sequence of bits inside one of the PDOs of a CN. The
length of a PDO is given by the addition of the lengths of the objects that the PDO transfers. The first
PDO of a CN has offset 0, while the offset of the next ones corresponds to the addition of the length of
the preceding PDOs.

The syntax for the description of a virtual-physical link is as follows (here also the link is finished by the
‘;’ character):

device_name AS EtherCAT_address;

Where:

device_name Complete name of the logic device. It can be written under the
"Group.Subgroup.Device" or "Group.Device" form.

EtherCAT_address Sequence of characters that identifies precisely an address within an EtherCAT
node. The sequence is made in this way:

‘%’ first character, obligatory.

‘I’ or ‘Q’ ‘I’ identifies the address as the address of an input (i.e.,
transmitted by the CN), ‘Q’ identifies it as of the address of an
output (i.e., received by the CN)

‘X’, ‘B’,
‘W’, ‘L’

number of bits associated to the data, received or sent:
‘X’ = 1 bit, per for the digital inputs and the outputs
‘B’ = 8 bits, for input and output ports
‘W’ = 16 bits, for analog inputs and outputs

Albatros33

Manufacturer's manual

‘L’ = special character to connect logical axes
If it is missing, you must consider X, i.e 1 bit.

MN_index Number, from 1 on, or alphanumeric identifier showing the
EtherCAT bus to which the node is connected

‘.’ Separation character between MN_index and CN_index

CN_index Number, from 1 on, or alphanumeric identifier showing the node

‘.’ Separation character between CN_index and offset

offset Offset with respect to the beginning of the first PDO of the node.
It ranges from 0 on and the unit of measure depends on the
number of the bits associated to the data, therefore in an
EtherCAT address like %QB1.1.3 the byte given begins at the
bit 24 of the PDO.

Like in the case of the description of the PDOs, also for the
offset it is possible to use the formalism IEC1131-3 to set the
numbers.

Example:

SERVERIP.Limit1 AS %IX1.100.16;
SERVERIP.Limit2 AS %IX1.100.17;
 Full example in the paragraph "Example virtual-physical links" .

As for the servo drive nodes, the axes are considered as input and output devices and the offset of each
axis is the index of the drive inside the node. Statusword and controlword can be connected to logic
devices of digital input and output with displacement 16 from an axis to the next one. The significance of
each bit of the controlword is set in the AXCONTRI instruction . For the statusword, the significance of
each bit is described in the AXSTATUS instruction. We remind you that the offset of the first bit is 0 and
not 1.

Example:

LTi.X.Ax AS %IL1.LTi_1.0;
LTi.X.STOP AS %QX1.LTi_1.2;
LTi.X.SVON AS %QX1.LTi_1.3;
LTi.X.RESET AS %QX1.LTi_1.7;
LTi.X.ALM AS %IX1.LTi_1.3;
LTi.X.WARN AS %IX1.LTi_1.7;

LTi.B.Ax AS %IL1.LTi_1.1;
LTi.B.STOP AS %QX1.LTi_1.18;
LTi.B.SVON AS %QX1.LTi_1.19;
LTi.B.RESET AS %QX1.LTi_1.23;
LTi.B.ALM AS %IX1.LTi_1.19;
LTi.B.WARN AS %IX1.LTi_1.23;
 Full example in the paragraph "Example virtual-physical links" .

Virtual-physical links in the TRS-CAT

The I/O TRS-CAT device is the equivalent EtherCAT device of the TRS-IO onGreenbus. To this device,
that shows digital 16 I/O, you can add IO-E (16 digital I/O), AN-E (an analog input and an analog output),
AC-E (encoder reading) expansions, that physically are the same used for the remote Greenbus TRS-IO.

In the basic module, TRS-CAT, the available outputs are 16 starting from the address 0. For the inputs,
the first 16 bits have a diagnostic significance and after them 16 available inputs follow. The initial
address of the available bits in an expansion is the addition of the bit of the preceding expansions and of
the basic module.

System Configuration 34

Manufacturer's manual

Map of the inputs

Element Description of the bits set Space

base Offset Length Description

0 8 bits State of each expansion; it can be connected to a
port of digital inputs

8 1 bits State BUS

9 1 bits State VOLTAGE

10 1 bits State CURRENT

11 1 bits State NEWMSG

12 4 bits (reserved)

16 16 bits Max 16 inputs, if the outputs are not used. The
corresponding bits used as outputs cannot be used
as inputs.

32 bits

IO-E Max 16 inputs, if the outputs are not used. The corresponding bits used as
outputs cannot be used as inputs.

16 bits

AN-E An analog input 16 bits

AC-E An input encoder, that can be connected to a logic device of counting axis.

Offset Description

Number of the expansion from 1
onwards

Input encoder

16 + Space in bits of all the preceding
inputs

Phase C, i.e. zero position
reference

17 + Space in bits of all the preceding
inputs

Quick input

32 bits

Map of the outputs

Element Description of the bits set Space

base Max 16 inputs, if the inputs are not used. The corresponding bits used as
inputs cannot be used as outputs.

16 bits

IO-E Max 16 inputs, if the inputs are not used. The corresponding bits used as
inputs cannot be used as outputs.

16 bits

AN-E An analog output 16 bits

AC-E Cannot be used 32 bits

Example:

SERVERIP.Limit1 AS %IX1.100.16;
SERVERIP.Limit2 AS %IX1.100.17;
SERVERIP.CATIN AS %IB1.100.3;
 Full example in the paragraph "Example virtual-physical links" .
In the case of AC-E encoder counting modules, the value entered corresponds to the expansion number

of the TRS-CAT.

Example of virtual-physical link

(* The initial part of the file is that indicated in the previous example*)

(*

Albatros35

Manufacturer's manual

Virtual-Physical Link
*)

VAR

 (* TRS-CAT *)
 SERVERIP.Limit1 AS %IX1.100.16;
 SERVERIP.Limit2 AS %IX1.100.17;
 SERVERIP.CATIN AS %IB1.100.3;

 (* SERVO LTi_1 *)
 LTi.X.Ax AS %IL1.LTi_1.0;
 LTi.X.STOP AS %QX1.LTi_1.2;
 LTi.X.SVON AS %QX1.LTi_1.3;
 LTi.X.RESET AS %QX1.LTi_1.7;
 LTi.X.ALM AS %IX1.LTi_1.3;
 LTi.X.WARN AS %IX1.LTi_1.7;

 LTi.B.Ax AS %IL1.LTi_1.1;
 LTi.B.STOP AS %QX1.LTi_1.18;
 LTi.B.SVON AS %QX1.LTi_1.19;
 LTi.B.RESET AS %QX1.LTi_1.23;
 LTi.B.ALM AS %IX1.LTi_1.19;
 LTi.B.WARN AS %IX1.LTi_1.23;

 LTi.Z.Ax AS %IL1.LTi_1.2;
 LTi.Z.STOP AS %QX1.LTi_1.34;
 LTi.Z.SVON AS %QX1.LTi_1.35;
 LTi.Z.RESET AS %QX1.LTi_1.39;
 LTi.Z.ALM AS %IX1.LTi_1.35;
 LTi.Z.WARN AS %IX1.LTi_1.39;

 (* SERVO LTi_3 *)
 LTi.Y.Ax AS %IL1.LTi_3.0;
 LTi.Y.STOP AS %QX1.LTi_3.2;
 LTi.Y.SVON AS %QX1.LTi_3.3;
 LTi.Y.RESET AS %QX1.LTi_3.7;
 LTi.Y.ALM AS %IX1.LTi_3.3;
 LTi.Y.WARN AS %IX1.LTi_3.7;

(*
 (* SERVO LTi_4 *)
 LTi.X.Ax AS %IL1.LTi_4.0;
 LTi.X.STOP AS %QX1.LTi_4.2;
 LTi.X.SVON AS %QX1.LTi_4.3;
 LTi.X.RESET AS %QX1.LTi_4.7;
 LTi.X.ALM AS %IX1.LTi_4.3;
 LTi.X.WARN AS %IX1.LTi_4.7;
*)

END_VAR

How to write EPLBUS.def file

CANBUS.DEF file is a text format file that describes the hardware configuration and the connections
between logical devices and physical devices on POWERLINK. For every module a EPLBUS.DEF file must
be written and saved into the configuration folder of corresponding module. (\MODn\CONFIG). Inside the

System Configuration 36

Manufacturer's manual

file the part describing POWERLINK hardware should come before the description of the logical-physical
connections. The main elements to define the hardware configuration are as follows:

 (*...*) beginning and ending of a comment. Comments can be written on more than one text
line. You can enter a comment inside another. This is useful when you want to
comment a block of definitions whose rows are commented. For example
.....
CN(1) SERVO; (*NODE 1*)
(*
CN(2) SERVO; (*NODE 2*)
CN(3) IO ; (*NODE 3*)
*)

 MN (number) of

attributes

beginning of description's block of a Managing Node (MN). Number represents the
index used to the EplAddress arrangement. Instead of a number you can use an
alphanumeric identifier that will be used later on to identify MN in the description bloc
of the logic-physical connections. In this case the attribute ID is obligatory. A MN is
configured by means of the following attributes:
MASTER: MN gives the signal of synchronism to the others
ID=number: reference to the MN board position in the PC bus.
TIME=number: sampling time in msec (it can be 1,2,4,8)

CN (number of
attributes)

beginning of description block of a Controlled Node (CN). Number represents the
index used for the EplAddress composition. Instead of a number you can use an
alphanumeric identifier that will be used later on to identify CN in the description
block of the logic-physical connections. In this case the attribute ID is obligatory. A
CN is considered a part of the POWERLINK subnetwork of the preceding MN
description block. A CN is configured by means of the following attributes:
SERVO: implements the DS402 specification (servodrives)
DISABLED:disables CN. This word can be entered in any part of the definition, after
CN() at the beginning and before ‘;’ at the end
IO: implements the DS401 (I/O) specification
ENCODER: implements the DS406 specification (encoder)
ID=number: CN number. If this attribute is not defined, CN (number) is used
MPX=mult+slot: if defined, CN is used in multiplexing. Mult represents the sampling
time multiplier. Following values can be defined: 0=CN is queried in the
asynchronous phase (not realtime);1=CN is queried every cycle;from 2 to 16= CN
is queried in multiplexing. Slot represents in which slot of time CN will be queried.
The range of possible values is between 1 and the value assigned to mult.
RPDO=number: Process Data Object dimension of CN's reception. Value should be
between 1 and 1490
TPDO=number: Process Data Object dimension of CN's transmission. Value should
be between 1 and 1490

; ending the description of a MN or CN descritpion block

Below the description of the main elements to define the logical-physical connections:
The formalism used is in accordance with the standard IEC1131. The described data should be located
inside the block defined by VAR END_VAR.

(*...*) beginning and ending of a comment. Comments can be written on more than one
text line. You can enter a comment inside another. This is useful when you want to
comment a block of definitions whose rows are commented.

VAR beginning of block of connections' description.
DeviceName full name of the logical device. It can be written in the form "Group.Subgroup.Device"

or "Group.Device"
AS keyword separating DeviceName from EplAddress
EplAddress shows the hardware address, how many bit employs and which CN is referred to. Its

describing formalism is :
% is the first compulsory character
I or Q is the second character. I shows an input device, Q shows an output device
X or B or W or L is the third character. X shows the the next value has to be
interpreted as a bit and it has to be used in the definition of digital inputs and
outputs. B shows that the next value should be interpreted as a byte and it has to be
used in the definition of digital input and outputs ports.
W shows that the next value should be interpreted as a word and it has to be used in
the definition of digital input and outputs ports. D shows that the next value should to
be interpreted as 32 bit and it has to be used in the definition of analog input and
outputs ports. L shows the the next value should be interpreted as 8 byte and it has
to be used in the axes definition. If omitted, the next value is interpreted as a bit. The
following characters are a sequence of figures, divided by a point '.' , showing the
address. The first number refers to MN, the second one to CN, the third, optional, is
an offset inside CN. This offset can also be expressed on 2, 8 or 16 according to the
IEC formalism. If the offset is omitted, a value equal to 0 is considered.

Albatros37

Manufacturer's manual

; ending the connection's description
END_VAR ending of block of connections description

Whatever is found after the keyword END_VAR of end block is ignored.
Correctness of the file from both points of view of syntax and content is verified at the startup of
Albatros. If an error is found, an error message is displayed. All the errors described are in the file
ERREPL.TXT saved in the folder provided in Tpa.ini under DirReport.

Example:
MN (1) ID=142332 TIME=1 MASTER;

CN (1) SERVO MPX=1 RPDO=4 TPDO=8;

CN (2) SERVO MPX=1 RPDO=4 TPDO=8;

CN (3) ID=17 IO MPX=2 RPDO=4 TPDO=8;
CN (4) ID=21 IO MPX=4+1 RPDO=4 TPDO=8;
CN (5) ID=22 IO MPX=4+2 RPDO=4 TPDO=8;
CN (6) ID=108 ENCODER MPX=0 RPDO=4 TPDO=8;

VAR
Main.EV1 AS %QX1.3.10;

Main.EV2 AS %Q1.3.11;

Main.Axes.InpPort AS %IB1.5.12;

Emerg.InputW AS %IX1.5.13;

Axes.AxisX AS %IL1.1;

Axes.AxisY AS %IL1.2;

END_VAR

Virtual physical Configuration1.4.3

Virtual physical Configuration is the last configuration step and consists in connecting the logic devices to
the hardware components.

For each axes of a Mechatrolink II board 6 inputs and 1 digital output can be configured in virtual-
physical. For a detailed description, please, read chapter GPL Language->Instruction->Mechatrolink
II->MECGETSTATUS.

If Ether-CAT bus is available in a module, you can anyway configure some boards for the Mechatrolink II
bus, but with some restrictions: with 1 ms realtime you cannot connect more than 6 Mechatrolink II axes
(each bus); with 2 ms realtime, the restriction rises to 16 axes.

Opening the Virtual physical Configuration two windows are displayed: the Machine Configuration window
(virtual) on the left, and the Hardware Configuration window (physical) on the right. Both show a graphic
representation of all the elements composing the system in a tree structure.

System Configuration 38

Manufacturer's manual

Virtual-Physical Configuration

The existing virtual-physical connections are highlighted in the "Machine Configuration", by the Name of
the device (in red), while in the "Hardware Configuration" window they are highlighted by the name of
the type of signal, which follows the number of the terminal, also in red.
If in the system some devices are configured on CAN, POWERLINK and EtherCAT buses, they are
displayed in fuchsia and they cannot be modified. All this because bringing together the logical device
and the physical device must be defined in the external .DEF files.
The devices or the terminals still to be connected are marked in black.
The signals indicating the axes, in the "Hardware Configuration" window, are all preceded by a rectangle
whose colour corresponds to the colour of the sheathing of the wire inside the connection cable.
It is possible to highlight a connection by selecting a logic device (or a hardware component) and
pressing the space bar: the connection is shown as a red line between the device and the hardware
component. It is also possible to keep the connection visible at all times by pressing [Alt+Enter].
To show which logic device is connected to the hardware component, select the hardware component and
double click on it with the mouse.
To select the logical device and the physical device to connect various procedures are possible:

First procedure
Display on the screen, through the "Hardware Configuration" window, the physical terminal to
which the device has to be connected.
Select, or point, the logical device required in the "Machine Configuration" window.

Second procedure
Select, or point, the chosen virtual device in the "Machine Configuration" window.
Select the command from Edit->Find the suitable physical device menu or [CTRL+space]
key combination . Albatros displays automatically in the "Hardware Configuration" window the first

Albatros39

Manufacturer's manual

physical unengaged device to which the logical device can be connected.

Third possible procedure
Select, or point, a virtual device in the "Machine Configuration" window.
Select the command from the menu Edit->Find next unlinked device or the shortcut key
[CTRL+NumPad+] or the command Edit->Find previous unlinked device or [CTRL
+NumPad-] keyboard shortcut.

To connect the two selected devices:
Click on the logical device to connect with the left hand button of the mouse, and keeping it
pressed, drag it towards the selected terminal. A red line will appear to indicate connection in
progress. When you have reached the terminal line, release the button to terminate the operation
or
select the command Link! from the menu Edit or the keyboard shortcuts [CTRL+L].

To remove a connection, select the device or the affected component and press the button [Remove] or
the button [Delete] on the keyboard.

Cabling maps1.4.4

When the virtual devices and the corresponding physical devices have been connected, it is possible to
print maps or lists of the virtual-physical connections.

To perform this operation it is necessary to have installed MS-Word (version 6 or later) on the system, as
Albatros uses its functions to format the maps.
The system must also have been configured correctly, which means that the system must have the
model files used for map compiling. These are a series of files with a ".doc" extension which normally lie
in the System folder or in another installing folder (often the "Map" file). The important is that the folder
where these files lie corresponds to the one specified in the TPA.INI file, key: "DirMaps". For example:

[TPA]
DirMaps=C:\Albatros\Maps

To print the cabling maps, select any hardware component in the right hand window of the Virtual-
Physical configuration or in the window of the Hardware configuration.

Press the Print icon in the Status Bar, or select the heading Print from the File menu; the usual print
options window will appear. When the printer is set to your satisfaction, confirm by pressing [OK] and
another window will show the list of hardware components present in configuration.
Select from this window all the components to be included in the cabling map. To select more than one
component, select the components with the mouse while keeping the "Ctrl" key pressed.
Click on [OK] and the cabling maps will be printed. If the Print on paper option is deselected, the maps
will be saved as MS- Word documents in the file of the current module (Mod.0, etc).

Because of the large number of pages which are often necessary for printing, we suggest printing a proof
sheet, with only one hardware component, to check that everything is working. If a list of logic devices is
printed instead of the map, probably no component (for example an axis card or remote) was selected in
the hardware window. When a component is selected, its name appears highlighted in blue.

List of navigation keys to navigate through a tree structure1.4.5

Key Description
Up Arrow
Down Arrow

moves the selection to the immediately previous row or to the following one

Right arrow expands the selected branch to an extra level and, if already expanded,
moves the selection on the next branch

Left arrow collapses the selected branch and, if already collapsed, transfers the
selection on the previous branch

+ expands the selected branch to one level
- collapses the selected branch
* expands all the levels of the selected branch

Development tools 40

Manufacturer's manual

2 Development tools

2.1 Editor GPL

GPL Editor functions2.1.1

GPL editor is the instrument that allows you to create and modify the files in the Albatros GPL code. This
function can only be activated as from the manufacturer password level. Each functions file contains
information which can be displayed in the File->Information menu.
The functions are the ones typically used in a text editor, so we find commands such as Copy, Paste,
Find, Replace etc. All these commands can be selected from the menu Edit.

Undo if possible, erases the last operation performed. The situation is reverted to the
older state, before the last operation performed.

Redo The situation is reverted to the older state preceding the last Undo command.
Cut Text or selected data are removed and copied in a temporary memory to

enable their possible insertion with the command Paste
Copy Text or selected item is copied in a temporary memory to be inserted again

with the command. Paste.
Paste Temporary memory content is inserted using different criteria according to the

active function.
Delete Text or rows or the selected item are deleted. Deleted data can be recovered

by acting immediately upon the command Delete
Select All allows the whole text of the active file to be selected. To the selected rows

Copy, Cut, Paste commands can be applied.
Find... searches a text in the current document. You can set some criteria to use under

research such as search direction and case-sensitive distinction.
Find next permits the repetition of a previous search, enabling the change of the research

criteria, set by with the command Find.
Replace allows you to search a text of the current document and to replace it with

another text.
Insert device inserts a device by selecting it from the list of the devices. This function is

particularly useful when you work with a large number of devices whose name
can be difficult to remember. Only the devices of the current module that can
be recalled and all the public devices of the other modules are displayed.

Insert function inserts an empty function including some comments to use as a guide in Edit.
It inserts a function or a part of a function starting from the position of the
cursor. The function is read by a prototype file, written from the machine
constructor. More prototype files can be written. A prototype file is a text file,
whose name must start with the GPL prefix and TXT extension. It must be
stored in the directory, where the libraries are normally stored (usually system
\lib). If more prototype files are defined, selecting a command, a dialog box is
opened, in which the list of the prototype names is displayed without prefix and
without extension.
Prototype files can contain, for instance, const definitions commonly used,
handling functions of system errors, generic functions, codes implementing
algorithms for various usages, and so on. They also content some comments.
A prototype file can be created by saving the selected text in the file of GPL
functions. This command is available only as keyboard accelerator [Ctrl+Shift
+C]. A dialog box opens to insert the name that has be given to the code
fragment.

Insert message... inserts in the GPL text the numeric code associated to the chosen message.
Enables some new messages to be entered in the language files.

Enable/Disable new
page

inserts or removes a page break . Page break can be used as a bookmark to
spring to remarkable positions inside the function file.

Enable page break
after

moves edit cursor to the row of the next page break with respect to its position

Enable page break
before

moves edit cursor to the row of the previous page break with respect to its
position

Albatros41

Manufacturer's manual

 GPL Editor

Syntax corrections are carried out in the archiving phase, when the text is also compiled. However, the
programmer can easily make a preliminary inspection, as the text is displayed in different colours
according to what it represents. For example, instructions are in blue, comments in green and labels in
red.
The value of tabulations for the initial position of the GPL code, the initial position of the first subject of
instructions and the initial position of the comment, can be modified using the Options->Tabulations...
menu.
Tab value can be modified from menu Options->Tabulations... Two types of tabulations can be
defined:

absolute tabulations: they set the initial position for the instructions of GPL code the initial position of
the first argument of the instructions and the initial position for the comment.
relative tab (spaces): it sets how many spaces is a tab

Tabulations also help to make the lay out of the GPL code more immediately comprehensible.

Each instruction or keyword is linked to the online help for further support when editing a function. To
recall the help simply place the cursor on the instruction and press [F1].

Each line of text can contain only one instruction. To continue the instruction in the following row press
the character '_' (preceded by a space) as the last one of the row. This allows you to insert comments in
the middle of an instruction:

Message _
1000 ;code of the message that will be displayed _
3 ;synoptic cell in which it will be displayed [Enter]

Development tools 42

Manufacturer's manual

Avalaible keyboard shortcut list2.1.2

Clearing a text

Key Description
Backspace erases a character on the left or the selected text
Ctrl+Backspace erases the word on the left
Del erases a character on the right or the selected text
Ctrl+T erases the words or the spaces on the right
Ctrl+Del erases the word on the right and all the following spaces until

the beginning of a new word

Comment of more text rows

Key Description
Ctrl+';'. In the Italian
keyboards [Shift]
key must be pressed as well

this adds or removes the comment characters to the selected rows.

Cursor positioning

Key Description
Up arrow
Down arrow
Right arrow
Left arrow

moves the cursor to the selected direction

Home moves the cursor to the beginning of the row to the beginning of
the row and to the first character of the row alternately

End: moves the cursor to the end of the row
Ctrl+Home moves the cursor to the beginning of the document
Ctrl+End moves the cursor to the end of the document
Ctrl+Left Arrow moves the cursor by one word on the left
Ctrl+Right Arrow moves the cursor by one word on the right
Ctrl+Enter moves the cursor on the first character of the following row

Select

Key Description
Shift+Home selects from the cursor position until the beginning of the row
Ctrl+Shift+Home selects from the cursor position until the beginning

of the document
Ctrl+Shift+End selects from the cursor position until the end of the document
Ctrl+Shift+Left Arrow selects the word or the the spaces on the left of the cursor
Ctrl+Shift+Right Arrow selects the word or the the spaces on the right of the cursor
Shift+Page Up selects a page up from the current position of the cursor
Shift+Page Down selects a page down from the current position of the cursor
Ctrl+W selects the word where the cursor is placed
Ctrl+A selects the whole document

Rectangular selection

Key Description
Alt+
Shift+Up Arrow
Shift+Down Arrow
Shift+Left Arrow
Shift+Right Arrow

selects a rectangular code group

Tabulations

Key Description
Tab in case of unavailable selected text, it inserts spaces between

characters, as defined in Options->Tabulations. If many rows
have been selected, Tab inserts on the right the spacing set for
the relative tabulation.

Shift+Tab In case of unavailable selected text, Shift+Tab moves the cursor
on the left side or the spacing defined Options->Tabulations. If
one or more rows have been selected, they are moved to the left
side of the spacing set for the relative tabulation.

Albatros43

Manufacturer's manual

Copy and Paste

Key Description
Ctrl+C
Ctrl+Ins

copy the selected text into the Clipboard

Ctrl+X
Shift+Del

deletes the selected text and copy it into the Clipboard

Ctrl+V
Shift+Ins

inserts the content of Clipboard from the cursor position

Ctrl+Y eliminates the row where the cursor is placed and copies its content
into the Clipboard

Drag'n'drop (with the
mouse)

the selected text is draged and moved to the new position
after its release

Ctrl+Drag'n'drop (with the
mouse)

the selected text is draged and copied to the new position
after its release

Cancel / Restore

Key Description
Ctrl+Z
Alt+BackSpace

cancels the last typing

Ctrl+Shift+Z restores the last typing

Search and Replace

Key Description
Ctrl+F3 searches down into the whole document for the word which the

cursor is placed on.
Ctrl+Shift+F3 searches up into the whole document for the word, which the cursor

is placed on.
F3 searches for the following occurrence. The dialog box Find should be

closed.
Shift+F3 searches for the previous occurrence. The dialog box Find should be

closed.
Alt+F3 opens the dialog box Find and as a text to be searched sets the

word, which the cursor is placed on.

Displaying compilation errors

Key Description
Double-click on the error places the cursor on the row of the GPL function where the error

described occurred
F4 places the cursor on the row of the GPL function where occurred

the error, that follows the last selected error.
Shift+F4 places the cursor on the row of the GPL function where occurred

the error, that precedes the last selected error..

 Creating a prototype file

 Key Description
 Ctrl+Shift+C saves the text selected in the file of GPL functions. A dialog box

opens to insert the name that has to be given to the code.
Folding control

Key Description
Ctrl+M expands or collapses the selected folding.

Insert Message2.1.3

 Albatros uses two kinds of messages: module messages and group messages. The command can be
selected from the menu Edit->Insert Message.
Group messages are inserted directly in editor when writing the GPL code, by using the DEFMSG
instruction. These messages can be displayed and used only inside the group in which they are defined,
so that the same message definition can be used in various groups, without creating superimposition.
Module messages, unlike group messages, can be used by any group. They can be inserted through the
dialog window that allows both recalling any existing message from the language file and introducing new
messages.

Development tools 44

Manufacturer's manual

 Message management window

Using this procedure avoids having to pass to Winmess.exe and worrying about opening the right file.
The message will be inserted in the current language although, later, it will have to be translated in the
other languages (this time using Winmess.exe).
All the messages in the language file are listed under the heading Description. To insert a message in
the function, choose the required text and select the [Modify text] button.
To modify an existing message [Modify] or create a new one [New], first type in the modification or the
new text and then press the corresponding button.

Cryptography2.1.4

In Albatros it is possible to use encryption so that the source text of functions cannot be displayed.

Cryptography is enabled by selecting Tele+=0 or 1 in TPA.INI. The default value is 0. In this case,
when Albatros saves a functions file, the save mode does not change.

When a functions file is saved and cryptography is enabled, the following message will be displayed: "Do
you want to encrypt the file?". If you choose no, the file will be saved as plaintext. A previously saved,
plaintext file can subsequently be encrypted, while an encrypted file will not change, and will be saved in
the same way by default.

When a functions file is saved for the first time, with cryptography enabled, and a daily Manufacturer
password is used, the file will not be encrypted, but only saved as plaintext.
Subsequently, the encrypted functions file may only be displayed or edited in Albatros by the user who
previously saved it. The owner of an encrypted functions file cannot change!

The external file SBIANCA.EXE must be used to decipher the file. This is located in the Bin folder of
Albatros. When the programme is run, the following window is displayed:

Albatros45

Manufacturer's manual

In this window, files to decrypt can be selected. The Status and Credentials are displayed for each file.
The status may be "Plaintext" or "Encrypted".
"Credentials" gives information about file visibility. "Freely readable" means the file can be displayed
from the current password level. Blocked means the file cannot be displayed.
Select the files, then click on "Decrypt!" to decipher them.

2.2 Libraries

Create and modify2.2.1

A library is a collection of GPL functions which can be called within the custom GPL code without being
limited to a particular configuration. Libraries are very useful, as they can be easily copied from one
machine to another, which avoids having to rewrite common code when implementing new machines. For
example, we could create a mathematical and geometrical functions library.

Library files are archived in the system\lib folder. They are compiled by executing one of the following
commands: CNC->Initializing, File->Compile All, Save library file or global variables file.

If in the GPL code a machine is given a function or variable name which already exists in a library, in the
compiling phase the machine will always have the priority. If the same name is used in two different
libraries, when writing the GPL code, we suggest using the following full syntax to identify the required
one: namelibrary.namefunction. For example, if the LengthSegment function appears both in the
LIBGEO library and the LIBMAT library, and we want to identify the function belonging to the LIBGEO
library, we write:

Development tools 46

Manufacturer's manual

LIBGEO.LengthSegment.

 GPL library management window

All the operations concerning the library are managed through the dialog window above. It is possible to
create new libraries [New]. The name given to the library will be added to the list of libraries installed.
Moreover it is also possible to import already existing libraries and to transform files of groups into a
new library; this is done by recalling them through the dialog window opened by pressing [Import..].
The same operation is used to recover libraries which had previously been eliminated with the [Erase]
command.

 New library

To modify the code of a library, select the [Edit] button. The library is opened by GPL editor. When
writing the library functions remember these basic rules:

it is not possible to access devices, functions, and variables belonging to the configuration in which the
function is being written.
it is possible to call public functions and variables from other libraries.
the functions declared inside a library are defined as private by default. To make it possible for other
function files to recall them, they have to be declared as PUBLIC.

Library modification is subject to access level limitations of the person using Albatros. It is possible to
assign or modify library access authorisations by selecting the [Properties] button.

Albatros47

Manufacturer's manual

 Library properties

Any global variables declared in a library are displayed in a section of Diagnostic. The display of library
elements depends on the access rights of the person using Albatros.

2.3 Debug

The debugger2.3.1

The debugger is a function of Albatros which allows you to follow the sequence of instructions of a GPL
task step by step, thus allowing you to identify and correct any logic errors and anomalous behaviour of
the code.

This function can only be activated from the manufacturer level or a higher password level.
The debugger allows the user, for example:

to assign breakpoints
to interrupt the execution of a task and display the value of a variable
to supervise the execution sequence of a function
to check the value adopted by a local variable
to check that, in the case of an instruction, the right branch was chosen

The commands required in debug mode can be selected from the Debug menu. The main ones are:
Go resumes the execution of a blocked task. The task will continue until the end,

it will not be stopped again or an interruption point will not be.
Restart restarts the debug of the current task
Break now stops the execution of the task which is being debugged. The cursor is placed

at the row, where the instruction has been broken.
Once the task has been stopped, its execution can be piloted and the status
of the local variables can be checked.

Step into steps into a single GPL instruction The task should have been previously
broken.

Step out carries out all the instructions until the first instruction after the current one
Step over carries a single GPL instruction out or, if the instruction is a function call, it

carries the whole instruction out
Step to Cursor carries out the instructions until the cursor position
End debug usage. The function file that was being debugged is opened in Edit

mode.

To access the debugger, display the list of tasks in execution (from the menu Debug->Task in
execution or the list of All tasks (from the menu Debug->All tasks) and then select the task to be
debugged.

Before executing the debug make sure there are no function compiling errors (for example: syntax
errors and undeclared variables) and that the module to be debugged has been started correctly.

Development tools 48

Manufacturer's manual

The debug window is similar to the GPL editor window, however it does not allow you to modify the code.
The background of the window is grey and the line in execution is highlighted in yellow.

 Debugger window

Notice: It is not possible to debug simultaneously more than one task belonging to the same module.

Task in execution2.3.2

The command can be selected from the menu Debug->Task in execution. It displays the list of tasks
in execution associated to a machine or module. It is possible to execute the debug or interrupt
execution of a task by selecting the task and clicking on the [Debug] or [End] button, accordingly.

Albatros49

Manufacturer's manual

 List of active tasks

All tasks2.3.3

It displays in a dialog window the list of all the tasks defined in the GPL code. These are represented
graphically as a tree structure, as shown in the figure below. When we select a function, the file in which
it is defined is opened and the curser is positioned on the first instruction of the function. This allows you
to set Breakpoints even before starting execution.
It is important to select the function from the task branch we want it to be called from.

Development tools 50

Manufacturer's manual

 List of tasks

Below we describe the meaning of the symbols used in the composition of the task execution tree. An
interesting symbol is the one indicating the recursive function, that indicates a function which includes a
recall to the function from which it is called.

Symbol Description
task of the Intergroup's main function

autorun task

generic task

real-time task

group function

group function executed by instructions such as ONINPUT,

ONFLAG

library function

library function executed by instructions such as ONINPUT,

ONFLAG.

recursive function

Show call stack2.3.4

During debug it is possible to display the list of functions which have been called but still haven't returned
(that is, all the functions in which the FRET instruction has not yet been executed). A dialog window
appears, listing all the function calls leading to the current instruction. The function executed last is at the
top of the list.

Albatros51

Manufacturer's manual

 List of all function calls

To observe the behaviour of a function call:
move the curser to the desired position in the function
select Debug->Step to cursor to take program execution to the desired position
select Debug->Show Call stack, or the shortcut button [CTRL+K].
the name of a function can be selected from the Call stack dialog window. The cursor will then go to
the first instruction of the chosen function.

Breakpoints2.3.5

A breakpoint allows you to examine all the details of an instruction execution sequence, to examine or
modify variables and devices, to examine the list of function calls etc.
Task execution is interrupted when the instruction containing the breakpoint is reached.
Breakpoints can be set both before executing a certain task and during execution (from the menu
Debug->Breakpoints). It is also possible to delete the breakpoints when they are no longer necessary.

 List of breakpoints

In certain situations, despite having inserted breakpoints the task is not interrupted, because execution
never reaches the breakpoint. In this case the task can be interrupted by using the command: Debug-
>Break now. The cursor will be positioned on the GPL instruction which was about to be executed when
the task was interrupted.

Development tools 52

Manufacturer's manual

Variable content2.3.6

This command can be selected from the menu Debug->Content of variabile.
After interrupting task execution the following can be displayed:

the value of the local variables declared in the function where the task has been interrupted
global variables
the value assumed by an expression
the state of devices and device parameters

Display/Change content of a variable

If the variable (or device) in not read-only, its content can be modified: obviously any modifications will
affect the execution of the next task.
Changing the value of a variable or device allows you to test execution in different conditions from usual,
to correct errors and carry on with the execution of the next instructions.

It is possible to display the content of a variable, of a device or of a constant also by moving the mouse
on the variable, on the name of the device or on the constant. A tooltip is displayed, where the type, the
name and the value of the data is shown. If you select an expression, its result is displayed. If the mouse
pointer is inside the selection, the whole selection is used, otherwise only the word where the mouse
pointer is placed. If the mouse pointer is not inside a word, the whole argument is used.
E.g., to see the value of the Mx[3][column], if the mouse pointer is on "3", 3 is displayed in the tooltip; if
the mouse pointer is on "column", the value of the column is displayed; if it is on "matrix" nothing is
displayed; if it is on a square bracket, the value of Mx Mx[3][column] is displayed.

Available keyboard shortcut list2.3.7

To activate the commands of Debug, the options can be selected the menu Debug or typed directly on
the keyboard.

The keyboard shortcuts are as follows:

Key Description
Ctrl+F5 opens the dialog window showing the list of the tasks in execution
Ctrl+Shift+F5 opens the dialog window showing the list of all the tasks
Ctrl+B opens the dialog window to insert or cancel the breakpoints
Ctrl+F9 inserts or eliminates the breakpoints on the row where the cursor is placed
Ctrl+K opens the dialog box to display the list of the functions called, but not yet

returned
Shift+F9 opens a dialog window to display the content of a variable
F8 executes the instruction If this is a function, it enters the function
Shift+F7 executes all the instructions of the function
F10 executes the instruction If this is a function, it executes it without entering
F7 executes all the instructions until the instruction where the cursor is placed.

The cursor should be placed on an instruction within a function
Alt+Interr interrupts the execution of the code at the last executed instruction
F5 resume the code execution after an interruption
Shift+F5 ends the current task and executes it again
Alt+F5 ends the debug

Albatros53

Manufacturer's manual

2.4 Control initialization

Network Connections2.4.1

The profile machining of Albatros is protected by a USB hardware key, configured by T.P.A. S.p.A.
This command can be selected from the menu Cnc->Network Connections. It displays the state of the
remote modules connected to the system. If a module is not connected, the symbol with which it is
indicated is marked with a red cross.
Each module has two fields. The first one is the name of the associated module and the second one is the
name of the network station. Usually the name of the network station begins with the fixed characters
"TPANT" or "TPACE" followed by the serial number of the remote module.

 Remote modules connection

Assigning a network node to a logical module
To assign a network node to a module, position the mouse pointer on the text "Not configured" or click
on the button [Edit]. A few seconds later a window containing the list of available remote modules in the
network will appear (each remote module must be switched on and it must have received an IP address
correctly)

 Assigning a remote module

Now, select the network node you want to connect to the logical module and confirm your choice by

pressing the button.

Notice that this operation can be carried out at a "Service" password level, without having to access
Albatros's System configuration for which a "Manufacturer" password level is required.
However, the module must be configured as "remote ALBRTX" in System configuration, beforehand.

Development tools 54

Manufacturer's manual

Hardware Diagnostic2.4.2

This command can be selected from the menu Cnc->Hardware Diagnostic.
Hardware Diagnostic displays the list and the state of configured modules, of axis cards and of the
remotes belonging to them, as defined in hardware configuration. If the symbol of a card or of a remote
is marked with a red X, it can either mean that this item was not found among the hardware in the
control panel or that it was not possible to initialize it correctly.
If an item is marked with a yellow question mark, it means the system has detected a card or remote,
but it does not match the type defined in configuration.

2.5 Test

Print global on disk2.5.1

This command can be selected from the menu. It saves the content of a global variable on disk as a

formatted text file. The file's name is variablename.txt and the file is saved in the Report folder.

This operation can only be performed if the read access level of the global variable is compatible with the
current access level.

 Saving a global variable

Start single function2.5.2

This command can be selected from the menu Test->Start function.
It executes a function independently of the rest of the system, creating a new task. The task begins its
execution from the selected function, from which it will take its name.
Only the functions without input parameters and whose read access level is compatible with the current
access level can be executed. If the executed function is the main function of the inter-group, all the
autorun tasks will also be executed after.

Albatros55

Manufacturer's manual

 Selecting a function to be executed manually

Message Import and Export2.5.3

Group messages, assigned by means of the GPL DEFMSG instruction, can be stored in a text file to be
modified and later re-introduced into the GPL code. This function is useful, for example, when you need
to translate messages or create an archive of used DEFMSG instructions.
To import or export group messages, all the GPL code must be compiled without mistakes. Otherwise,
the user would be prompted with a message saying "Not all the GPL code is compiled".
Group messages belonging to encrypted files cannot be exported or imported (See Chapter
Development tools->Editor GPL->Cryptography). Therefore, the user is not authorised to decipher
(or decrypt) these group messages into plain text.

Export Group Messages
This command can be selected from the menu Test->Export group messages.
A dialog box prompts you to enter the name of the text file where to store group messages. The default

name is MSGEXP.TXT and it is saved in the folder defined in tpa.ini at the dirReport item.

Import Group Messages
This command can be selected from the menu Test->Import group messages.
A dialog box prompts the name of the text file from which you can retrieve group messages to be
introduced into the GPL code. The default name is MSGEXP.TXT. It is saved in the folder defined in tpa.ini

at the dirReport item. Only the messages which have already been defined in the GPL code can be

imported. The GPL text cannot be modified if there is at least one DEFMSG instruction following an IFDEF
instruction.
While importing group messages, errors can be detected when:

among the texts of a particular group message, the language identifier code is present more than once
a text is empty (that is: "")
the name of a group or a library is defined more than once.

At the end of the import process all modules, containing modified groups or libraries, are compiled.

File Format
The file is in text format. The keywords are GROUP, LIBRARY, AUXLANG and each language is identified
by the relevant three-letter name.
Here is an example of how the file can be written:

;Complete list of messages

GROUP Main: ;Main group of any module

Development tools 56

Manufacturer's manual

 MSG_BASE ITA "Italian translation"
DEU "German translation"

ENG "English translation"

ESP "Spanish translation"

FRA "French translation"

 GROUP 1.Main: ;Main group of module 1
 MSGERR "Error of the only Main group of module 1"
LIBRARY Calculations:
TOOCOMPLEX ITA "Troppo complesso" ENG "Too complex"
ERROR ITA "Errore generico" ENG "Generic error"
BADARG ITA "Argomento errato" ENG "Bad argument"

GROUP: it assigns the name of the group to which messages belong ("GROUP Main:"). If groups with the
same name already exist in different modules, messages are imported in all groups. If you like that a
few messages are imported only in one group of a given module, you need to put the module number
and a “.” (point) before the group name ("GROUP 1.Main:").

LIBRARY: it assigns the name of the library to which messages belong ("LIBRARY Calculations:").
DEFMSG Description: it assigns the DEFMSG parameters: label (mnemonic name of the message to
be displayed), language prefix (language in which the message is written: one of the 5 basic
languages), message string (message to be displayed. It should be placed between quotation marks
(""))
AUXLANG: it assigns the name of the additional language used, while importing a group message, to
enter an “additional” message into the GPL code, when the desired language is not included in the five
main languages. It should be specified before the first GROUP or LIBRARY. ("AUXLANG: SQI")

2.6 Tools

Customise...2.6.1

This command can be selected from the menu Tools->Customise.
It allows you to set a maximum of 10 programs whose execution can be started by Albatros's Tools
menu.

Albatros57

Manufacturer's manual

 Configuration of the Tools menu

Menu Structure: lists the programs displayed in the Tools menu.
Command: name of the program to be executed. The folder in which the program is stored

may also be indicated, especially if it is not the same folder from which Albatros is
executed or from the folders whose operating system looks for the executable
files (variable of PATH windows environment).

Text in Menu: the name appearing in the Tools menu to identify the executable program.
Arguments: any combination of command line arguments needed by the program for correct

execution. It is possible to insert dynamic subjects. For exemple by using the
string $TER during ViewRER execution report file of current month open.
Here is subjects list:

$File Complete Path name of current file.

$FileName File name and extension of current file.

$FileDir Disc and folder of current file.

$Ter Complete Path name of report file of errors of current month.

$DirModule Disc and folder containing MODx of current file.

$Module Module number of current file.

$Bin Disc and folder containing Albatros executables.

$TpaIni Complete Path name of initialization file TPA.INI

$ReqDirMo
dule

Path (disk and folders) of Albatros module. If several modules are
configured,

the module dialog box opens. Example:
$ReqDirModule\config\canbus.def corresponds to the path
c:\albatros\bin\mod.1\config\canbus.def if the second module is
selected.

$ReqModul
e

Albatros module number If several modules are configured,
the dialog box of the module number opens.

Ask for Arguments: if selected, whenever program execution is requested, a dialog window appears to

Development tools 58

Manufacturer's manual

allow you to introduce different arguments from the ones set in the Arguments
field. These can vary according to the launch mode of the program.

 It specifies the program-start arguments

Enable level: it sets the display level of the program in the Tools menu. Albatros's test
programs and data modification programs are normally given a manufacturer
level. Machining editing programs are assigned a user level.

Certain fields can be edited using the [Add] button. This opens the Add Tool dialog window for the
selection of the program to be executed. The allowed executable files are the
following: .EXE, .COM, .PIF, .BAT.
When the dialog window is closed, after confirming the data, the program is inserted in the Menu
Structure window and the name of the program and its folder, in the Command row.
The other buttons provided are [Delete], [Move Up], [Move down] which are used respectively to
delete a program and order the list of programs.

2.7 Browser

The browser2.7.1

Albatros's browser function uses the information generated by the compiler to create a database for the
rapid search of symbols defined in the functions.
This function can only be activated at manufacturer or higher access levels. To select the commands, use
the Debug menu.
The browser enables to:

position the cursor in the line where a function, or a module, group or library variable or a
module or group constant is first defined (from the menu Debug->Go to definition)
position the cursor in the lines where a function, a device, a module or group variable or a GPL
instruction (except for FCALL and FRET instructions) is mentioned. (from the menu Debug-
>Go to reference, to display the previous reference or the next one select from the menu
respectively the options Debug->Previous o Debug->Next)

Group variables can only be managed from the edit window of the group they belong to.
To update the browser when switching to a new version, it is advisable to save the global variables first,
and then execute the command File->Compile All.
When editing the functions, the link between text and symbols is lost. The link is reestablished in the filing
stage.

Identifier Search2.7.2

This command can be selected from the menu Debug->Source browser. The identifier search opens a
dialog window that allows you to insert the name of the symbol to be found in the GPL code. According to
the selected Type of search, this function will find either the definition or the first reference to the
symbol.

Albatros59

Manufacturer's manual

Identifier search window

The inserted name can have the following characteristics:
if it contains no "." (period) character: the name is searched for in all the function files.
if it contains only one "." (period) character: the name preceding the period is identified as
the name of the group, and the symbol will only be looked for in that group. For example, if
a VisError function has been defined both in the MAIN group and in the AXES group, when a
search is called for AXES.VisError, the cursor will go to the first row of the VisError function
in the AXES group.
if it contains two "." (period) characters: the name preceding the first period is identified as
the name of the group and the one preceding the second period is identified as the name of
the subgroup. The symbol will only be searched for in that subgroup.
if it ends with an "*" (asterisk) character the search will include all the symbols beginning
with the characters preceding the asterisk.

In case of ambiguity in the search for a symbol, a dialog window is opened displaying all the symbols
with the requested name. From this window it is possible to select the required symbol.

Identifier selection window

Below is a description of the special symbols used in the list for the identifier selection.

Symbol Description

GPL instruction

module or group or library constant

module or group variable

Development tools 60

Manufacturer's manual

library variable

library vector

library matrix

library function

group message

label

local variable

local vector

local matrix

single parameter

array parameter

matrix parameter

Available keyboard shortcut list2.7.3

To enable the Browser commands, select the menu items Debug or type directly on the keyboard.
The keyboard shortcuts are as follows:

Key Description
F2 positions the cursor on the line where the selected symbol is

defined. If the browser data-base contains several symbols
with the requested name, a dialog window opens to allow the
user to select the required symbol.

Shift+F2 positions the cursor on the first reference to the selected
symbol. In case of ambiguity a dialog window opens to allow
the user to select the required symbol.

Ctrl+F2 opens a dialog window for the selection of the required
symbol.

Ctrl+'+' or Ctrl+PgUp positions the cursor on the following reference (use the "+" on
the numeric pad)

Ctrl+'-' or Ctrl+PgDown positions the cursor on the previous reference (use the "-" on
the numeric pad)

Albatros61

Manufacturer's manual

3 GPL Language

3.1 Basic Feature

Conventions and terminology3.1.1

Basic terms

ARGUMENT One of the arguments of the instructions; it can be defined as constant,
variable, or parameter, depending on the kind of instruction; if between

square brackets ([]) it means that it may be omitted, implying that the
instruction can be executed in a different way.

KEYWORD An argument to be chosen among the arguments with a predetermined
value, normally written in capital letters; the list of keywords is provided in a
specific help page.

PARAMETER The argument of an instruction which is not defined within the instruction, but
is passed to the function, precisely as a parameter, when the function is

executed; in certain cases it is also called parameterised argument.

CONSTANT A fixed argument defined by means of the CONST metacontrol or an
argument which is rigidly fixed within the instruction.

VARIABLE An argument defined as machine or group global variable or defined by a
LOCAL instruction, which can be organised as simple variable, vector or
matrix. See variables.

CONFIGURATION
PARAMETER An argument defined in configuration, such as the parameters of an axis, for

example.

Most frequent arguments in instruction descriptions

The list below contains the terms relating to arguments which are frequently used in GPL instruction
syntax. Each one is followed by a brief description. In cases in which an argument can assume a

different value from the one described below, its description continues in the arguments section of the

instruction's help page.

inputname name of digital input device
outputname name of digital output device
flagname name of flag switch or flag bit device
portname name of input port, output port or flag port device
timername name of timer device
countername name of counter device
functionname name of a function (also valid as device parameter in the case of ERRSYS.)
subprogramname name of a subprogram, it is the equivalent of label, to which we refer to for

explanations; to call a subprogram use the instruction "CALL
subprogramnameme".

axis name of an axis
constant a character, an integer or double number, or a keyword

value constant or variable (the type depends on the instruction)

variable name of: variable, vector element or matrix element
variabledevice name of device parameter
matrix name of a matrix
vector name of a vector
label name of the jump label or name of a subprogram.
state logic state, options: ON or OFF, or 1 or 0
timeout amount of time within which something has to happen, or a delay time

(constant or variable)
position coordinates of the position (double constant or double variable)
radius value of the radius (double constant or double variable)

GPL Language 62

Manufacturer's manual

angle value of the angle (double constant or double variable)
numrev number of revolutions (double constant or double variable)
speed value of speed (float constant or float variable)
direction clock or anti clockwise rotation (variable or constant: CW o CCW)
operand (constant o variabile o devicename)
result result of the operation (variable or devicename)
devicename name of any type of device (or device parameter)
constantstr sequence of characters in inverted commas (ex. "string")
variablestr the name of a character vector, namely a string
operator comparison operators:

> (greater than)

= (equal to)

< (less than)

they can also be used in combination, for ex. >= (meaning: greater or

equal to)
type type of constant or variable:

"char" (8 bit), "integer" (32 bit), "float" (32 bit), "double" (64 bit), "string"

device parameter is a variable that stands for a device. The devices are defined in
Configuration.

Main terms used for axes

theoretical position
(or target) Current "theoretical" position set, second by second, by the numerical

control on the basis of the algorithm of speed profile generation.

real position Real position of the axis as detected by the position transducer. The
difference between the real position and the theoretical position is known
as "tracking error" or "loop error".

final position It corresponds to the programmed arrival position of a movement. The
calculation algorithm of the speed profile enables the theoretical position to
reach exactly the final value.

arrival position window Programmable interval whose central point corresponds to the final
theoretical position: when the real position enters this area, the movement
is considered concluded.

arrival position big
window Position arrival window multiplied by a factor to be set by means of the

instruction SETBIGWINFACTOR.

loop error The difference, second after second, between the theoretical position and
the real position of an axis: it is usually proportional to translation speed
and inversely proportional to the "proportional loop gain".

proportional [loop] gain Axis regulation parameter, programmable: it determines the ratio between
current speed and relative loop error.

feed forward Axis regulation parameter, programmable: it determines a direct
contribution (proportional to programmed speed) injected on the drive
speed control. It allows you to reduce, at equal speed and equal
proportional gain, the value of the loop error.

feed rate override Percentage of programmed speed. This parameter allows you to reduce
execution speed, compared to programmed speed, by a percentage
ranging between 0% and 100%.

tolerance Move value according to which the axis moves away from the original
trajectory in a multi-axis interpolation between two consecutive blocs of
displacement.

backlash Space between the cogs of a couple of gears.

Albatros63

Manufacturer's manual

Introduction to GPL language3.1.2

GPL language (General Purpose Language) is the language used to create functions in the Albatros
system.

Although its structure, for some aspects, is similar to BASIC, it is characterised by a large number of
device control instructions.
The language is composed of more than 200 instructions, called instruction, which have been divided into
groups of instructions with similar functions, for your convenience.
Moreover, the language is multitasking, allowing the execution of various tasks at the same time.

Typical Syntax of GPL instructions
GPL instructions all have a similar structure, corresponding to the following pattern:

instructionname parameter-1, parameter-2, parameter-N

The number of parameters depends on the instruction and the contest in which it is used, the absolute
maximum paremeters number for a function or an instruction is 120. In certain cases the instruction may
not contain any parameters at all.

The smallest block of GPL code is the function.

Dividing the code into groups
The GPL code is subdivided into blocks that reflect the logic subdivision of the machine into groups. This
means that each group has a corresponding file containing its code. To these files, containing the code
of the groups present in the machine, we must add the file containing the global variables and constants
which are visible from any group's GPL code and the libraries. These contain code not related to
machine configuration hence easily portable to other machines.

Variables3.1.3

Variables are information containers which in the GPL language are used to store all the values
necessary for program functioning.
Variables are characterised by a "type" that indicates the kind of information they contain. Moreover
each variable has a specific visibility which determines which code groups or subgroups can operate
(read or write) on it.

Type of data

SIMPLE OR SCALAR DATA
GPL supports both simple and aggregate data. The types of simple data are similar to the ones used in
most programming languages:

Char
Is an integer with sign ranging between [-128 ; +127] and its length is 1 byte.
To declare a Char variable, the following syntax is used:

VariableName as char

Integer
Is an integer with sign ranging between [-2147483647 ; +2147483647] and its length is 4 byte (it
corresponds to the long type in C).
To declare an Integer variable, the following syntax is used:

VariableName as integer

Float
Is a floating point number ranging between [-3,402823 E+38 ; -1,401298 E-45] and [+1,401298 E-45
; +3,402823 E+38], its length is 4 byte (it is usually used to indicate speed).
To declare a Float variable, the following syntax is used:

GPL Language 64

Manufacturer's manual

VariableName as float

Double
Is a floating point number ranging between [-1,79769313486231 E+308 ; -4,94065645841247 E-
324] and [4,94065645841247 E-324 ; 1,79769313486231 E+308], its length is 8 byte (it is usually
used to indicate positions)
To declare a Double variable, the following syntax is used:

VariableName as double

These types of data can be used together in one expression. The GPL converts them automatically
without giving any warning messages. For this reason, when using different types of data in the same
expression, it is advisable to check that no information has gone lost.
In certain situations conversion is not allowed. In this case the compiler usually sends an alert message
or a system error occurs.

AGGREGATE DATA

Array
It is a group of simple variables, all of the same type, obtained by associating an index to the name
of the variable. The index must be enclosed in square brackets. If the array is called, for example,
"parameters", the first item of the group will be called "parameters[1]", the second "parameters[2]",
and so on.
The array has a fixed number of items which must be determined in the declaration. A typical array
declaration uses the following syntax:

parameters[10] as integer

Where parameters[10] indicates that the name of the array is "parameters" and that it's composed

by 10 items; as integer indicates the type of simple data used for the array's individual elements,

which in this case is an integer.
The arrays can be made up of simple data or strings.
An array can have a maximum of 262144 elements.
Vectors can be directly initialized in the GPL code, at the time of their declaration. GPL syntax can
be:
[READONLY] vector[numberofrows] as integer = 1,2,3,4
[READONLY] vector[numberofrows] as string = "one","two","three","four"

Matrixes
Matrixes are bidimensional arrays, that is, variables with two indexes. A matrix can be visualized as
a table divided into rows and columns. To indicate a cell on the table, we can indicate in which row
and which column it is. The first index indicates the number of the row and the second the number of
the column.
Unlike arrays, matrixes can contain different types of data, but with the following restriction: we may
use a different type of simple data for each column but it is not possible to vary within the column.
For example we can define a matrix in which the first column is integer type and the second is float
type. However we can not have a matrix where the first row is occupied by an integer and a float
and the second by a char and a double. In the rows, the elements must all be composed by the
same type of data.
The declaration of a matrix can be written using the following syntax:

offset[10] as double double double

dim_part[50] as float:length float:width float:thickness

In the second type of declaration a label or symbolic name is given to each column. The symbolic
names of the columns are very useful when working with large matrixes, as in this kind of situation it
s difficult to remember the values memorised inside each column of the matrix. The symbolic name
allows us to identify immediately the type of data we are working with. For ex. " "Offset[1][3]" is not
as clear as "Offset[1].axis_X".
Matrixes can only contain simple data. For example, it is not possible to create matrixes containing
strings. The maximum number of rows in a matrix is 262144.
Matrices can be directly initialized in the GPL code, at the time of their declaration. GPL syntax can
be:
[READONLY] matrixname[numberofrows] as double double integer double = _

1.1, 2.2, 3, 0.1 _
1.2, 3.4, 5, 0.1 _

Albatros65

Manufacturer's manual

2.1, 5.6, 6, 0.1

Strings
Strings are groups of characters, that is char data. However, because they represent legible text,
they are treated in a special way.
A string is very similar to a char array. The main difference is given by the presence of a terminating
character, which is automatically added at the end of the string. The GPL also provides some macros
which allow you to manipulate the strings.
Usually strings are used to write messages, which the user can read on the screen or in a report file.
To declare a String variable, the following syntax is usually used:

VariableName as String

To declare a String variable, the following syntaxes may be used:

VariableName as String

VariableName[20] as String

In the first declaration the string assumes a default size of 256 characters. In the second case a
maximum string size is defined.

Data conversion

In all mathematical expressions, but EXPR instruction, the types of data of the operands are converted
according to the type of data of the result variable and then the operation is executed. It is important to
pay attention to the declaration of types of data, because they can influence the result. Following table is
an example of how the results based on the type of data given may change:

DIV Operand 1(Integer) Operand
2(Double)

Result (char)

3 5.0 0
5 1.9 5
1200 107.2 Undefined
1200 250.0 Undefined

DIV Operand 1(Double) Operand
2(Double)

Result (Double)

3 5.0 0.6
5 1.9 2.631
1200 107.2 11.194
1200 250.0 4.8

In the EXPR instruction, if the operands are not of the same type, an automatic conversion is carried out
and the type of the result of the operation is the same as the greater one of the two results, according
the following rule:

char <integer
float < double
char or integer < float or double.

After resolving the expression, the result is converted according to the type of the result variable.

EXPR Operand
1(Double)

+ Operand
2(Integer)

/ Operand
3(Float)

Result (Integer)

900.0 + 100 / 400.0 900

EXPR Operand
1(Double)

+ Operand
2(Integer)

/ Operando 3
(Float)

Result (Double)

900.0 + 100 / 400.0 900.25

GPL Language 66

Manufacturer's manual

Declaration and Visibility of the variables

Variables and constants can only be declared in specific parts of the GPL code.
We can classify as variables:

Module globals
Group globals
Locals (variables only)
Library globals

A maximum of 2048 variables (module and group) can be declared.

It is possible to define some modifiers that assign additional characteristics to the variables.

Module global variables
Module global variables are grouped in a special file which is accessed by selecting the heading
Menu->File->Open Global Variables.
The declaration is performed, as shown in previous paragraphs, by specifying the name of the
variable, followed by the keyword "AS", followed by the type of data (or types of data in the case of
matrixes).
These variables are visible directly from the code of all the groups.

Group global variables
Group global variables are defined at the beginning of the group code. They must be declared before
the GPL functions.
These variables are directly visible from the integer code inside the group. Moreover it is possible to
extend the visibility of these variables outside the group by declaring them as "Public" variables.
Public variables are not directly accessible from outside the group. To access them, we have to use
their name preceded by the name of the group they belong to. For example, if we want to modify the
 "offset" public variable, belonging to the "axes" group, from the code of the "main" group, we will
write "SETVAL 10 axes.offset".
To declare a group global variable, the same syntax used for module global variables is used. The
main difference lies in the definition of public variables. To define one or more public or private
variables use the labels "Public" and "Private". For example:

Public:
 offset as double
 speed as float
Private:
 tool as integer

Local Variables
Local variables are declared in the body of a function. They must be declared before any other
instruction, except for the declaration of the function's parameters.
Local variables are only accessible from inside the function.
These variables are created with a 0 value (the necessary memory is allotted) only at the beginning
of function execution and are destroyed (the memory is released) at the end of execution. Global
variables, on the other hand, are created when the module is initialized and are always visible in
"Diagnostic".
The declaration of a local variable uses the syntax we have already seen, but is preceded by the
keyword "LOCAL".
For example:

Function processing
local position_centre_ as double
movabs X,position_centre
fret

Library global variables
Library global variables are declared in GPL code libraries. They are similar to group global variables.

Modifiers

Modifiers: READONLY
Module and group global variables can be declared as READONLY.
A readonly variable is a variable whose value can not be modified by the GPL code, although it can

Albatros67

Manufacturer's manual

be modified from "outside", that is by Albatros's technological parameters file.
The technological parameters file is a database which stores the values that characterize the
machine but could vary in the long term if the machine were modified or in case of extraordinary
maintenance. This data is normally inserted in a GPL matrix during control initialization.
An example of this type of information are the machining area offsets or the dimensions and
technological parameters of the tools.
By declaring these variables as readonly we avoid accidental modifications of the information which
shouldn't vary during normal machine functioning.
The maximum size of a readonly variable is 128 Kbyte.
To declare a readonly variable, the following syntax is used:

readonly VariableName as type

Modifiers: NONVOLATILE
Variables declared as NONVOLATILE class are memorized on the non volatile RAM (provided with
batteries) instead of the normal RAM. Consequently the values stored in these variables are not lost
when the numerical control is switched off.
For the declaration of a nonvolatile variable, the following syntax is used:

nonvolatile VariableName as type

For example:
nonvolatile OffsetArea[2] as double:offsetX double:offsetY double:offsetZ

Only group and machine global variables can be classified as "nonvolatile".
The maximum size of variables memorized on nonvolatile RAM is 15100 byte. The maximum size of
a single non volatile matrix is 1024 byte.

Assigning a RANGE

When formulating a declaration it is possible to assign a range of values to the variable. However, at
the moment, there is no control of limits observance in execution phase, except for a compiler control
in the case of constant values (for ex. to initialize the variable).
Consequently, the main advantage is constituted by a sort of code auto documentation.
For the definition of ranges, the following syntax is used:

VariableName Range:minval..maxval AS type

For example:
ToolNumber Range:1..100 as integer

Writing and Reading Rights

Writing and reading rights allow you to specify the minimum access level to the system, necessary to
display (read right) and modify (write right) its value.
The syntax used is:

VariableName Read=S Write=M AS type

The keywords used to specify the rights are:
READ reading
WRITE writing

The values which can be assigned are:
U or USER user
S or SERVICE service
M or
MANUFACTURER

manufacturer

T or TPA tpa

The values' defaults are:
READ reading for service (S or SERVICE)

GPL Language 68

Manufacturer's manual

WRITE writing for manufacturer (M or MANUFACTURER) and tpa (T or TPA)

Constants

Constants
GPL uses four types of constants:

Integer
Double
Char
String

Char constants are declared by using inverted commas, as below:

Const COD = 'A'

String constants are declared by using inverted commas, as below:

Const MSG = "Start processing"

For Integer constants and Double constants the following syntax is used:

Const PI = 3.14
Const MSGBOX = 12

For Integer constants a binary and hexadecimal notation is allowed:

Const MASK = $11001001b ; binary
Const MASK = $F5h ; hexadecimal

Also group and library constants can be public or private.
The sintax is similar to variables' one.
Example:

Public:
Const PI = 3.14
Const MSGBOX = 12

Private:
Const MASK = $11001001b

NOTE: Float constants do not exist. Decimal numbers must necessarily be declared as Double. In certain
cases this might cause alert messages from the compiler (when optimized GPL macros are used for Float
types).

The constants can be defined as the result of calculation expressions, with the following syntax:

Const a = 10
Const b = 20
Const c = a + b

Permitted operators are the same as those used in the EXPR instruction.

Predefined constants3.1.4

The GPL language has some predefined constants, which can be used directly without having to define
them.
The predefined constants and their respective values are:

ON 1
OFF 0
UP +1
DOWN -1
POSITIVE +1
NEGATIVE -1
CW 1
CCW 0

Albatros69

Manufacturer's manual

TRUE 1
FALSE 0
NOWAIT 0
WAIT 1
WAITACK 2
STORE 1
NOSTORE 0
NOPLACE 0
COM1 0
COM2 1
COM3 2
COM4 3
COM5 4
COM6 5
COM7 6
COM8 7
NOPARITY 0
ODDPARITY 1
EVENPARITY 2

Keywords3.1.5

Keywords are identifiers with a specific function and can not be used in any other way.

Available keywords are:

All the names of GPL instructions See the "Instructions" part of the manual for the description of
all GPL instructions

All kinds of data See Variables

Device parameters See Device parameters

EXIST Used in IFDEF instructions to verify the existence of a group.
See IFDEF instruction

NOTEXIST Used in IFDEF instructions to verify the non existence of a
group. See IFDEF instruction

LINKED used in the IFDEF instruction to enable the compilation of code
blocks, if the device is connected in virtual-physical. See
IFDEF instruction.

UNLINKED used in the IFDEF instruction to enable the compilation of block
codes, if the device is not connected in vitual-physical See
IFDEF instruction.

_ID_MODULE Used in the IFDEF instruction to verify the current module
number. See the instruction IFDEF

_REMOTE_MODULE Used in the IFDEF instruction to verify if the connected module
is a remote module (value=1). See instruction IFDEF

_VER_MAJOR Used in IFDEF instruction to verify the main version number of
Albatros. See instruction IFDEF

_VER_MINOR Used in the IFDEF instruction to verify the secondary version
number of Albatros. See instruction IFDEF

_VER_REVISION Used in the IFDEF instruction to verify the revision number of
Albatros. See instruction IFDEF

_VER_SP Used in the IFDEF instruction to verify the service pack of
Albatros .See instruction IFDEF

GPL Language 70

Manufacturer's manual

_VER_FULL Used in the IFDEF instruction to verify the service pack of
Albatros. See instruction IFDEF

FUNCTION Declaration of a function. See Functions

AS Used for variable declarations. See Variables

PUBLIC An attribute of functions. See Functions

AUTORUN An attribute of functions. It indicates that the function runs
automatically. See Functions

R= o READ An attribute of functions or variables. It indicates the read

access level. See Functions, Variables and Access rights

W=o WRITE An attribute of functions or variables. It indicates the write

access level. See Functions, Variables and Access rights

CONST It allows you to assign a significant name, called symbolic
constant, instead of a number, character or string. See
Variables

READONLY An attribute of global variables. See Variables

NONVOLATILE An attribute of global variables. See Variables

PRIVATE An attribute of functions. See Functions

RANGE Used for the definition of an interval of values for variables.
See Variables

USER An attribute of functions or variables. It indicates the type of
access. In this case user. See Functions or Variables

SERVICE An attribute of functions or variables. It indicates the type of
access. In this case service. See Functions or Variables

MANUFACTURER An attribute of functions or variables. It indicates the type of
access. In this case manufacturer. See Functions or Variables

TPA An attribute of functions or variables. It indicates the type of
access. In this case TPA. See Functions or Variables

Functions3.1.6

Functions are the smallest block of GPL code. GPL instructions can not be inserted in a file in sequence,
they have to be grouped in functions.

As far as the compiler is concerned, a function is any block of GPL code beginning with a line whose first
word is FUNCTION. However, there is no keyword indicating the end of the text of a function: the function
ends with the line preceding the beginning of another function or with the end of the file containing the
functions.

The syntax used to define a function is:

FUNCTION FunctionName Attributes

Parameters

Local Variables

List of GPL instructions

A function is also a special type of Albatros device. As a device, it is characterised by a series of
properties common to all devices: a univocal name (untranslatable), a descriptive name (which can be

Albatros71

Manufacturer's manual

translated, although it can not be set in GPL text), a logic address, a visibility indicator (whether the
device is public or not), an access rights for reading and an access level for writing (see next
paragraph).

Access rights
Because functions are a special kind of device, they are subject to access rights like all other devices.
Access rights allow you to specify the minimum access level to the system necessary to allow visibility
(read right) and execution (write right).
The syntax used is the following:

Function FunctionName READ=S WRITE=M

The rights are identified by the keywords READ (reading) and WRITE (execution)
Assignable values, corresponding to the various access levels, are:

U or USER user
S or SERVICE service
M or
MANUFACTURER

manufacturer

T or TPA tpa

The values' defaults are:
READ reading for service (S or SERVICE)
WRITE writing for manufacturer (M or MANUFACTURER) and tpa (T or TPA)

Autorun Functions
Autorun functions are executed automatically when the machine is booted.
Autorun functions have a characteristic: they are restarted automatically after being closed down
because of a system error.
The syntax used is the following:

Function FunctionName autorun

So it is sufficient to add the modifier "autorun" to the declaration of the function.

Public Functions
Normally a function can only be executed (called) by the code inside the group file. To make it possible
for a function to be executed by the GPL code of a different group, it must be defined as public. The
syntax used to define a public function is the following:

Function FunctionName public

So it is sufficient to add the modifier "public" to the declaration of the function.
Functions belonging to the intergroup are an exception, as they are always public.

Subgroup Functions
A function can be connected to a subgroup simply by putting the name of the subgroup in front of the
name of the function. The subgroup and the function's name must be separated by a full stop ".". For
example the following function belongs to "X" subgroup of the "Axes" group.

Function X.homing

local vel as float

movabs X,100

waitstill X

Fret

Asynchronous Functions
Asynchronous functions are automatically called by the numerical control when the event connected to
the function takes place.
Three types of events are possible:

Change of state of a digital input: instruction ONINPUT
Change of state of a flag bit or flag switch: instruction ONFLAG
System error: instruction ONERRSYS

When the event takes place, the function is called (not as autonomous task but in the context of the task
in which the corresponding ON... instruction was executed) as implicit FCALL, as soon as the current
instruction has terminated execution.
Typically, asynchronous functions are used to resolve emergency situations, and they must be extremely

GPL Language 72

Manufacturer's manual

fast. For this reason, these functions can't use just any GPL instruction; they use a subgroup which
guarantees short execution times.

Functions with input parameters (parametric)
A function can have some parameters declared in input, without ever returning any values.
These parameters can be considered as special local variables whose value is initialized externally the
moment the function is executed. The parameters are indicated with the keyword PARAM and use the
same syntax used for local parameters. The parameters must be listed in the first lines of the body of the
function, before any other instruction and before the local variables.
There are two ways the parameters can be passed:

by value: all simple data types are passed by value, that is CHAR, INTEGER, FLOAT and DOUBLE.
Passing by reference means that a copy of the original value is created. Changes made to the
parameter only have an effect in the context of the function.
by reference: aggregate data types are passed by reference, that is ARRAY, MATRIXES and
STRINGS. Passing by reference means using the source variable; consequently the changes made
to the parameter have an effect in the context of the calling function. This characteristic can be
exploited to send return values back to the calling function.

Typically a function is sent in execution with the instruction FCALL. If the concerned function is a
parametric function, the list of values to be given to the parameters must be specified after the name.
In the following example we find a parametric function executing a perforation operation. The
coordinates of the centre of the hole and feed speed of the Z-axis are passed to the function as
parameters.

Function Perforation
 Param Qx as Double ; position X of the centre of the hole
 Param Qy as Double
 Param vel as Float ; feed speed

 Movabs X, Qx, Y, Qy
 Waitstill X,Y

 Fret

This function call, for example to make a hole in the position (12.5 , 25.7), with a feed speed of 3m per
minute, could be written in the following way:

Fcall Perforation 12.5, 25.7, 3.0

The parameters passed to the function must match in name and type, those declared in the call function.
The execution of the call function restarts at the end of the called function.
It is also possible to declare a device as a function parameter. This enables to write general use
functions, such as a homing function, to be used with all the axes in the machine:

Function HOMING PUBLIC

param axis as Axis

movabs axis,100

Fret

Function MAIN

.....

Axes.Homing x

Fret

The homing function belongs to the Axes group and is declared PUBLIC to allow it to be seen by the
functions declared in other groups. The Main function calls the axes group homing function, specifying the
axis which has to be moved as an input parameter.

Device parameters3.1.7

Device type parameters are special variables which allow you to call a machine device.
This kind of data can be used exclusively in the declaration of function parameters. So it is not possible
to declare variables of this type. The definition of names and other characteristics of the devices pertain
to System Configuration.
The following table contains the type of Device and the relative keywords to be used for the declaration
of the parameters.

Albatros73

Manufacturer's manual

Type Keyword
Digital input INPUTDIG
Digital output OUTPUTDIG
Analog input INPUTANALOG
Analog output OUTPUTANALOG
Axis AXIS
Timer TIMER
Counter COUNTER
Flag bit FLAGBIT
Flag switch FLAGSWITCH
Flag port FLAGPORT
Input port INPUTPORT
Output port OUTPUTPORT
Input Nibble INPUTNIBBLE
Output Nibble OUTPUTNIBBLE
Function FUNCTION (only for ONERRSYS)
Generic device DEVICE (only for ONERRSYS)

Example of axis parameter declaration and use:

Function test
 Param axis as axis

 MovAbs axis,100
 WaitStill axis

Fret

Multitasking3.1.8

As the system is multitasking, it is possible to have more than one GPL task in progress at the same
time, and by task we intend the handling process of a logic entity (usually a group).

There are two types of task available: normal tasks and the most recent "Real-time Tasks".

Normal tasks
Multitasking is based on a cooperative algorithm based on priorities. This guarantees that all the tasks
are executed cyclically, varying their priority. The scheduling algorithm ensures that one instruction is
executed for each active task (running state). Every task has a priority set using the instruction
SETPRIORITYLEVEL assigned to it. The priority is identified by a whole number between 0 (highest
priority and 255 (lowest priority). For tasks with a priority of 0 (zero) an instruction is carried out every
scheduling cycle, for tasks with a priority of 1 an instruction is executed every two scheduling cycles and
so on up to tasks with a priority of 255 for an instruction is carried out every 256 scheduling cycles.

The execution of normal tasks is asynchronous with respect to the frequency of refresh of the axes. This
means that there is no guarantee that a GPL function will be completed in the time span between two
updates of the state of the axes.

A task is identified by the name of the GPL functio
n from which its execution starts.
The execution of a task can begin:

automatically with the initialisation of the system: main intergroup function and autorun functions.
following the execution of a STARTTASK execution.
Following the triggering of Albatros in manual mode using the graphics interface.

Each task is characterised by an internal state:

RUNNING The task is running
HOLD The task is suspended
BREAK The task has been interrupted by the debugger

Tasks are organised hierarchically in a tree structure. Each task is created by another, which means that
if the mother task finishes, all the child tasks will also be terminated.
The maximum number of tasks in execution at the same time is 500.

GPL Language 74

Manufacturer's manual

It must be considered that an high number of running tasks implies a decrease in speed, at which every
single task is performed.
If the application to be made is supposed to imply the use of a number of tasks higher than 200, the
operator should use a proper hardware such as Cn2128.

Real-Time Tasks
Real-time tasks differ from the foregoing in that they are not subject to a scheduling procedure nor are
they arranged by priority, but are executed completely with each update of the state of the axes (axes
real-time).

It is absolutely necessary for the execution of these tasks to end by a set time because the execution of
the GPL tasks described earlier remains on hold while the real-time tasks are being run.
The system runs checks on the execution time of real-time tasks and should these exceed the maximum
time allowed the system generates an error.
It is therefore not advisable to create infinite cycles (e.g. using GOTO instructions) within these tasks;
cycles, moreover, are not necessary given that the execution of the code starts again from the
beginning with each axes real-time task.
In order to avoid excessively long execution times real-time task use is limited to some GPL

instructions. The instructions whose use is not allowed are those that cannot be used on interrupt.

We advise using real-time tasks only for those activities that must of necessity be carried out
synchronously with the update of the axis positions. For most control activities it is better to use normal
tasks.

Real-time tasks are sent with the instruction STARTREALTIMETASK and can be interrupted with the
instruction ENDREALTIMETASK. Up to 256 real-time tasks can be activated at the same time.
The tree structure is no longer applicable, so if the task creating a real-time task ends, the real-time
task will still run.

The local variables declared in the realtime task are initialized only by the start of the task and then

they maintain the value of the last run.

Real-time tasks are not characterized by states typical of normal tasks. A real-time task can be
debugged, but when this happens the system automatically declasses the task to a "normal task" for the
duration of the debug.

If a system error is detected in a real-time task, the task is declassed to a "normal task" and it is put on
HOLD to allow it to be analysed with the debugger.

Communication3.1.9

Communications between the GPL and the outside world occur in three different ways:
SEND / RECEIVE
Serial communication
IPC

Send / Receive
The instructions SEND and RECEIVE implement a message-orientated communication mechanism.
The communication may occur within the same module (of little advantage), between different modules
of a line or between the modules and the supervisor Albatros or with OLE applications.
The way it works is similar to e-mails; for every message there is an addressee, an identifier of the
information sent (or requested), the information itself plus the service information. Albatros performs
the collect and sorting function of the information and in some cases directly supplies the information
requested.
This mode of communication is normally used to send working programmes between the supervisor and
the control units, to synchronize the activity of the machines of a line and to interface with external
applications (OLE server).

Serial communication
The GPL language supplies some instructions, for example, COMREAD and COMWRITE, that make it
possible to send and receive data via the serial ports of the numerical control. It is thus possible to
interface the control with external devices like inverters, terminals or PLCs. When correctly used these
instructions make it possible to implement serial communication protocols like MODBUS-RTU etc.

IPC
IPC or Inter Process Communication is a communication mode between processes. In particular, this
mode allows an area of memory to be defined which is shared by two or more processes and can be

Albatros75

Manufacturer's manual

used for data exchange. Compared with other methods of communication, for example OLE, IPC is less
sophisticated as there is no check on the data transmitted but it is substantially quicker.
Typically it is used when big quantities of data have to be transmitted or in general when the
performances supplied by the OLE interface Albatros are not adequate.
On the GPL side IPC communication is implemented using the instructions SENDIPC, WAITIPC and
TESTIPC. The external processes, however, may refer to the APIs supplied by RTX (an application
written in C or C++) or to the COM component gplipc2.dll supplied by TPA S.p.A. which simplifies use
(in particular for MS Visual Basic applications).
In addition, IPC makes it possible to communicate with other real-time processes (developed with RTX)
and thus to integrate Albatros with hardware produced by third parties in the system.
For further information contact T.P.A. S.p.A.

Variables used in programming3.1.10

Most instructions have been written so as to allow operating with various types of variables (CHAR,
INTEGER, FLOAT, DOUBLE). However, each instruction has been optimised for a specific variable; for the
best performance during GPL code execution, we advise using the type of variable suggested in the
description of each instruction. In general, we suggest following the table below, which associates the
main quantities used in programming to the relative optimal types:

quantity type

position double
speed float
time double
counter integer
value port / flag port integer
value nibble / BCD integer
timeout double
analog input / output float
director cosines double
string control character char
acceleration / deceleration integer

Axes3.1.11

The term "axis" normally indicates an electromechanical system whose function is the controlled
movement of a part of a tool machine.
Describing this system from the point of view of its components, we can subdivide them according to
their technological characteristics.
The mechanical components are:

frame
guides
bearings
screws + ball screws

whose function is to contrast the forces involved, reduce friction, turn rotational motion into translation
motion, etc.
The electric and electronic components are:

motor
end run switches
encoder
tachimetric dynamo

whose function is to provide the necessary power for movement and detect the state of the system.
These elements are connected so as to allow controlled execution of movements.

GPL Language 76

Manufacturer's manual

The function of the numerical control is to control the position and the movement of the axes.

Axis movement can be broken up into 5 phases:

Acceleration initial phase during which the speed of the axis is gradually increased, until it
reaches programmed speed.

Regime intermediate phase during which the axis moves at constant speed (this phase
may be omitted if the space to be covered is smaller than the space covered in
acceleration and deceleration phases).

Deceleration phase during which the axis reduces its speed back to 0

Window pause, while the loop error is reduced to the value indicated in configuration as
"arrival position window"

Position end of movement

At the end of the movement the axis will have to be positioned within an interval called "arrival position
window" (that determines tolerance for axis positioning). If this is not done within 5 seconds of expected
end of movement, the system generates a "movement not concluded" system error.

For each movement the numerical control calculates a speed profile like the one shown in the figure
above. It then calculates the target positions by subdividing the speed profile in time intervals equivalent
to axis refreshment time and calculating the area of each part. The area corresponds to the position
increase which the axis has to reach in that space of time to comply with the above mentioned speed
profile.

Albatros77

Manufacturer's manual

Axis control is implemented by means of a PID controller that "closes the position loop", meaning that,
when the machine starts, it provides a speed reference calculated on the basis of the position that has to
be reached (target position) and the real position read by the encoder. The difference between the real
position and the target position is called Loop Error.

 Diagram of Albatros axis control

Message handling in different languages3.1.12

As said in the chapter describing the Composition of the System, Albatros supports the display of text
messages in various languages.
This support is provided by a program independent of Albatros that manages the message files:
Winmess.exe. Manufacturer is the minimum access level required to modify the language of the
messages. Winmess reads the content of the language file and provides Albatros with the translation of
the message in the selected language. It also handles language changes and memorizes the language
selected by the user.

Text associated to Cycle Errors and Messages
Messages and Cycle errors are a special kind of text generated by the GPL code which are displayed by
Albatros.
These are normally defined by the person who develops the GPS when writing the code itself. To simplify
the programmer's work, the GPL editor allows you to insert the text of a message directly from Albatros,
without having to use Winmess.
A second option for message handling in various languages is using the GPL DEFMSG instruction.

System Error Management3.1.13

Whenever a system error occurs (See Chapter System Errors->Introduction to System Errors)
 the normal control behaviour is that of ending all tasks: the system error management allows you to
avoid ending the tasks for which this function was enabled.
System errors generated by faults, stack underflow and stack overflow are directly managed by the
relevant control without recalling the function of system error management: the task is placed in HOLD
status.

Error Management Function
Within the GPL code, one or more functions should be defined to examine the system error and
consequently to establish the most suitable actions to set the machine in safety conditions. The function
to recall is passed as a parameter to the GPL ONERRSYS instructions. (See Chapter GPL Language-
>Instructions->Flux management->ONERRSYS).

GPL Language 78

Manufacturer's manual

Whenever a system error occurs, the task which generated this error is placed in HOLD status. In case
the autorun tasks generate system errors, they are relaunched only if the system error is not a FAULT.
If the system error is generated without task number, the current task is palced in HOLD status.

Special functions3.1.14

Axis movement customization

Albatros system graphical interface allows you to perform manual axis movements and provides a
graphical tool for axis calibration.
Manual axis movement is performed by the manual movement control board, calibration may be
performed by the calibration control board. Both can be accessed by the Diagnostic window and synoptic
views.
In both cases axis movement is controlled by a set of GPL functions whose execution is hidden to the
user.
The system has a predefined set of these functions which are adequate in most cases. Anyway in some
cases may be necessary to customize the functions, for instance to define axes movement restrictions
depending on to machine status or to manage auxiliary devices as drive brakes.

Customisation is performed by creation of two GPL function for each axis: one for the manual
movements and one for the calibration. These functions are optional, if the system finds them uses
them, otherwise standard ones are used. Furthermore a partial customization of the movement functions
is possible.

Manual axis movement

The customized manual movement functions must respect the following rules:

The function must belong to the same subgroup of the referred axis.

Function name must be MoveAx#axis_name where axis_name will be changed to the axis name as
defined in Configuration. For instance X axis function name will be: MoveAx#X .

The function must provide the following parameters:

1. Required action. May be an absolute position movement, an incremental movement, a stop etc.
Actions are identified by an integer number, the GPL compiler provides a predefined constant for
each action:

_MOVAXABS absolute position movement
_MOVAXINC incremental movement
_MOVAXSET position setting
_MOVAXFREE free status setting
_MOVAXNORMAL normal status setting
_MOVAXEND axis status reset after a movement (not used to stop the axis)

2. Result. Needed by the system to know whether the required action may be performed by the
customized function. If the required action is not supported, the corresponding standard function is
used. So this is a return value that the customized function has to set, therefore it is defined as a
"by reference" parameter (one element array).

3. Speed. Meaningful only when the required action is a movement, it is the required movement
speed.

4. Position. Meaningful only for movement and position setting actions.

Custom axis movement function example:

Function MoveAx#X
param action as integer
param result[1] as integer
param speed as float
param position as double

setval 1,result[1]

select action
case _MOVAXEND

fcall EndMovement

Albatros79

Manufacturer's manual

case _MOVAXABS
fcall AbsMovement X, speed, position

case _MOVAXINC
fcall IncMovement X, speed, position

case _MOVAXSET
fcall PositionSet X, position

case _MOVAXFREE
fcall FreeAxis

case _MOVAXNORMAL
fcall NormalAxis

case else
call Unknown

endselect

fret

Unknown:
setval 0, result[1]
ret

The EndMovement, AbsMovement, etc. functions (the names are not compulsory) should implement the
customized management of the required actions. To ease the programmer's job standard movement
functions are provided as a guide to develop customized ones.

Calibration

The customized calibration functions must respect the following rules:

The function must belong to the same subgroup of the referred axis.

Function name must be CalibAx#axis_name where axis_name will be changed to the axis name as
defined in Configuration. For instance X axis function name will be: CalibAx#X

The function must provide the following parameters:

1. Required action. May be a point-to-point movement or an interpolated movement.
2. Result. Needed by the system to know whether the required action may be performed by the

customized function. If the required action is not supported, the corresponding standard function is
used.

3. Speed. Calibration movement speed
4. Positive position. Positive calibration movement position.

5. Negative position. Negative calibration movement position.

6. Wait time. Wait time between subsequent movements.

NOTE: please keep in mind that in some cases actions performed on the calibration control board cause
the execution of the axis movement function. For instance at the end of a calibration movement (when
the stop button is pressed) an axis status reset is performed calling the customized axis movement
function with the "required action" parameter set to _MOVAXEND. The same way when the axis position
is modified in the calibration control board the axis movement function is called with the "required
action" parameter set to _MOVAXSET.

Custom axis calibration function example:

Function CalibAx#X
param action as integer
param result[1] as integer
param speed as float
param PosPosition as double
param NegPosition as double
param WaitTime as float

setval 1,result[1]

GPL Language 80

Manufacturer's manual

select action
case _CALAXPP

fcall PPCalibration X, speed, PosPosition, NegPosition, _
 WaitTime

case _CALAXINT
fcall IntCalibration X, speed, PosPosition, NegPosition, _

 WaitTime
case else

call Unknown
endselect

fret

Unknown:
setval 0, result[1]
ret

The PPCalibration, IntCalibration etc. functions (the names are not compulsory) should implement the
customized management of the required actions. To ease the programmer's job calibration standard
functions are provided as a guide to develop customized ones.

Interaction with the window of Manual axis movement

Functions for interaction with the window of manual axis movement should comply with the following
specifications:

The function should be in the same sub-group which belongs to the reference axis
The function name should be MoveAx#axis_name#Action where name_axis should be replaced
with the axis name defined in the configuration and Action can assume one of the following definitions:

OPEN indicates that the user has just opened the movement axis window
CLOSE indicates that the user is going to close the movement axis window
ACTIVE shows that the movement axis window is active

INACTIVE shows that the movement axis window is not active
JOG indicates that a shifting movement managed in runtime by the operator is set
STEP indicates that a shifting movement with an predefined pitch is set
ABSOLUTE indicates that a shifting movement with a determined position is set.

For instance, if the axis handling window for X-axes has been opened, the function named
MoveAx#X#Open will be called.

Modifying the Window of Manual axis movement

It is possible to add up to 4 buttons to the axis movement window. Some GPL functions with fixed name
MoveAx#NomeaAsse#BUTTONtext should be defined in the same sub-group where the concerned axis is
defined. NameAxis represents the concerned axis name and test represents the test, that will be
displayed on the button.The test can contain the character '&' to introduce a keyboard accelerator. If the
test begins with a number between 1 and 4, this number is considered as the position where the button
will be inserted in the axis movement window. The button test can be translated, if a DEFMSG with
MOVEAX#BUTTONtest as identificator is introduced into the group where the axis is. Pressing the
customized button includes the execution of the associated GPL function. Any exiting function delay or
any check of function's run start are not executed.

Standard calibration and movement functions

Those shown below are standard functions used by manual movement and calibration control boards.
The functions change depending on axis type: encoder reading, stepper, etc.
The following functions may be customized.

Standard manual movement functions

Absolute position movement

; for stepper motor axes

Albatros81

Manufacturer's manual

Function AbsMovement

param axisname as axis

param speed as float

param position as double

ifstill axisname goto move

fret

move:

setvel axisname, speed

movabs axisname, position

waitstill axisname

fret

; for all other kind of axis
Function AbsMovement

param axisname as axis

param speed as float

param position as double

iftarget axisname goto move

ifstill axisname goto move

fret

move:

setvel axisname, speed

movabs axisname, position

waitstill axisname

fret

Incremental movement

; for stepper motor axes
Function IncMovement

param axisname as axis

param speed as float

param position as double

ifstill axisname goto move

fret

move:

setvel axisname, speed

movinc axisname, position

waitstill axisname

fret

; for all other kind of axis
Function IncMovement

param axisname as axis

param speed as float

param position as double

iftarget axisname goto move

ifstill axisname goto move

fret

move:

setvel axisname, speed

movinc axisname, position

waitstill axisname

fret

GPL Language 82

Manufacturer's manual

Position setting

; for encoder reading axes
Function PositionSet

param axisname as axis

param position as double

setquote axisname, position

fret

; for stepper motor axes
Function PositionSet

param axisname as axis

param position as double

ifstill axisname goto set

fret

set:

setquote axisname, position

fret

; for all other kind of axis
Function PositionSet

param axisname as axis

param position as double

iftarget axisname goto set

ifstill axisname goto set

fret

set:

setquote axisname, position

fret

Free status setting

Function FreeAxis

param axisname as axis

free axisname

fret

Normal status setting

Function NormalAxis

param axisname as axis

normal axisname

fret

Calibration standard functions

Point-to-point movements calibration

; for stepper motor axes
Function PPCalibration

param axisname as axis

param speed as float

Albatros83

Manufacturer's manual

param PosPosition as double

param NegPosition as double

param WaitTime as float

setvel axisname, speed

loop:

movabs axisname, PosPosition

waitstill axisname

delay WaitTime

movabs axisname, NegPosition

waitstill axisname

delay WaitTime

goto loop

fret

; for all other kind of axis
Function PPCalibration

param axisname as axis

param speed as float

param PosPosition as double

param NegPosition as double

param WaitTime as float

setvel axisname, speed

loop:

movabs axisname, PosPosition

waitstill axisname

ifquotet axisname,<>,PosPosition goto exit

delay WaitTime

movabs axisname, NegPosition

waitstill axisname

ifquotet axisname,<>,NegPosition goto exit

delay WaitTime

goto loop

exit:

fret

Interpolated movements calibration

Function IntCalibration

param axisname as axis

param speed as float

param PosPosition as double

param NegPosition as double

param WaitTime as float

setveli axisname, speed

loop:

linearabs axisname, PosPosition

waitstill axisname

ifquotet axisname,<>,PosPosition goto exit

delay WaitTime

linearabs axisname, NegPosition

waitstill axisname

ifquotet axisname,<>,NegPosition goto exit

delay WaitTime

goto loop

GPL Language 84

Manufacturer's manual

exit:

fret

Function OnUIEnd

The function "OnUIEnd#" is performed, if available, by Albatros before ending all the tasks in a module.
The function must be defined in the file of intergroup functions. Maximum execution time of the function
"OnUIEnd#" is 2 seconds, then Albatros will terminate all the tasks.

Function OnUIPlugged#

The OnUIPlugged# function is executed, when you need to know, for instance, if Albatros, after switching
on the plant, is informed of the remote module.
This function must be defined within the intergroup.

Function OnUIUnplugged#

Function "OnUIUnplugged#" is executed before ending the execution of Albatros (and so before Albatros
disconnects from a module). This function must be defined within the intergroup. Albatros executes this
function within max. 2 seconds.
During this time

Cycle errors
System errors
Messages are read.

At the end of the execution, Albatros closes.

3.2 Instructions

Conventions3.2.1

The following pages have been organized as files and contain, for each instruction:

the Syntax
a description of the arguments: type of data and admitted values
a Description of functioning
Notes
Examples

All the instructions of the same type have been grouped together, to simplify learning and consultation.

Types of instructions in the GPL language3.2.2

The language is composed of instructions that can be grouped as follows:

Instructions for Input/Output management

GETFEED reads the override feed rate
GETVF reads the voltage/frequency converter
INPANALOG reads an analog input
INPBCD reads a series of digital nibbles in BCD format
INPFLAGPORT reads a flag port
INPPORT reads a digital port

MULTIINPPORT reads up to 4 output ports

MULTIOUTPORT sets up to 4 output ports

MULTISETFLAG sets several flags on 1
MULTISETOUT sets several outputs on 1
MULTIRESETFLAG sets several flags on 0
MULTIRESETOUT set several outputs on 0

MULTIWAITFLAG waits for the state of a flag bit or flag switch

MULTIWAITINPUT waits for the state of various inputs

OUTANALOG modifies an analog output
OUTBCD modifies a series of digital nibbles in BCD format

Albatros85

Manufacturer's manual

OUTFLAGPORT modifies a flag port
OUTPORT modifies a digital port
RESETFLAG sets a flag on 0
RESETOUT sets an output on 0
SETFLAG sets a flag on 1
SETOUT sets an output on 1

WAITFLAG waits for the state of a flag bit or flag switch

WAITINPUT waits for the state of an input

WAITPERSISTINPUT waits for a persistent state of an input

Instructions for Axes management

CHAIN chains an axis to another
CIRCABS absolute circular interpolation
CIRCINC incremental circular interpolation
CIRCLE makes a circle
COORDIN coordinated axis movement

DISABLECORRECTION disables the linear correction for the specified axis

EMERGENCYSTOP forces an emergency stop of the axes

ENABLECORRECTION enables the linear correction for the specified axis

ENDMOV end of axis movement

FASTREAD fast axis position read

FREE sets the axis in free
HELICABS absolute helicoidal interpolation
HELICINC incremental helicoidal interpolation

JERKCONTROL enables or disables interpolation movement control

JERKSMOOTH links with acceleration and speed continuity, the speed profiles of the

axis while contouring.
LINEARABS absolute linear interpolation
LINEARINC incremental linear interpolation
MOVABS absolute movement of axes
MOVINC incremental movement of axes

MULTIABS absolute multi-axis linear interpolation

MULTIINC incremental multi-axis linear interpolation

NORMAL disables axis free

RESRIFLOC resets initial reference

SETINDEXINTERP associates a variable for the counting of executed interpolation

SETLABELINTERP associates a variable for the identification of a displacement block

SETPFLY fly homing

SETPFLYCHAINSTRAT enables control of slave axes behaviour for a master setpfly

instruction

SETPZERO homing on zero

SETPZEROCHAINSTRAT enables control of slave axes behaviour for a master setpfly

instruction

SETQUOTECHAINSTRAT enables control of slave axis behaviour for a setquote instruction on

the master
SETRIFLOC set spacial reference points

SETTOLERANCE sets the tolerance values for the linear interpolation

START restarts axis movement

STARTINTERP forces start of an interpolation

STOP interrupts axis movement

SWITCHENC allows replacing the encoder of an axis with that of another axis

SYNCROOPEN opens a synchronized movement channel

SYNCROCLOSE closes the synchronized movement channel

SYNCROMOVE assigns a synchronized movement point

SYNCROSETACC sets the acceleration for synchronized movements

SYNCROSETDEC sets the acceleration for synchronized movements

SYNCROSETVEL sets the acceleration for synchronized movements

SYNCROSETFEED sets the axes speed for a synchronized movement

SYNCROSTARTMOVE starts processing a synchronized movement

GPL Language 86

Manufacturer's manual

Instructions for the management of Timers and
Counters

DECOUNTER decrements a counter
HOLDTIMER locks a timer
INCOUNTER increments a counter
SETCOUNTER sets a counter
SETTIMER sets a timer
STARTTIMER starts the timer

Instructions for Communications' management

CLEARRECEIVE empties the list of RECEIVE to satisfy

COMCLEARRXBUFFER empties inbox buffer of a serial port

COMCLOSE closes a serial port

COMGETERROR reads the error code

COMGETRXCOUNT reads the number of bytes in inbox buffer

COMOPEN opens a serial port

COMREAD reads from the serial port

COMREADSTRING reads a string from the serial port

COMWRITE writs on the serial port

COMWRITESTRING writes a string on the serial port

RECEIVE external data reception
SEND sends data from outside
WAITRECEIVE external data reception with standby

Instructions for Mathematical management

ABS absolute value
ADD sum
AND AND binary
ARCCOS arc cosine
ARCSIN arc cosine
ARCTAN arc tangent
COS cosine
DIV division
EXP exponential
EXPR resolves mathematical expressions
LOG natural logarithm
LOGDEC base 10 logarithm
MOD module
MUL multiplication
NOT binary NOT
OR binary OR
RANDOM generates a random number
RESETBIT sets a bit on 0
ROUND rounds
SETBIT sets a bit on 0
SHIFTL rotates the bits to left
SHIFTR rotates the bits to right
SIN sine
SQR square root
SUB subtraction
TAN tangent
TRUNC truncation
TYPEOF type of the argument
XOR binary XOR

Instructions for Multitask management

Albatros87

Manufacturer's manual

ENDMAIL reports the end of the execution of a task

ENDREALTIMETASK terminates a realtime task

ENDTASK terminates a task
GETPRIORITYLEVEL reads the priority level of the current task

GETREALTIME returns time lapsed since the beginning of axis realtime

GETREALTIMECOUNT returns the number of RealTime lapsed

HOLDTASK interrupts the execution of a task
RESUMETASK resumes the execution of a task

SENDIPC sends an IPC information

SENDMAIL sends a command to the 'mail' mailbox
SETPRIORITYLEVEL sets the priority level of the current task

STARTREALTIMETASK starts a realtime task

STARTTASK starts the execution of a task
STOPTASK stops the execution of a task and interrupts the movement of the

associated axes

WAITIPC waits for an IPC information

WAITMAIL receives a command from the 'mail' mailbox

WAITTASK waits for a task to terminate

Instructions for Matrix management

CLEAR sets variable, vector and matrix to zero
FIND searches for an element
FINDB searches for an element in a vector or in a matrix increasingly ranged
LASTELEM last element of a vector or of a matrix
LOCAL declaration of a local variable, vector, local matrix
MOVEMAT copies the row of a matrix in another
PARAM declaration of a function parameter
SETVAL changes a variable
SORT sorts vector or matrix

Instructions for Flux management

CALL calls a subprogram
DELONFLAG disables the emergency management on flag bit or flag switch
DELONINPUT disables the emergency management on digital input
ENDREP end of the block repetition with REPEAT
FCALL calls a function
FOR extension of REPEAT
FRET return from call to function
GOTO jumps to a label
IF test on a variable
IFACC tests, if the axis is accelerating
IFAND test on AND operation
IFBIT test on bits

IFBLACKBOX tests if the record of the logical device activity is active.

IFCHANGEVEL tests, if the axis is changing speed
IFCOUNTER test on a counter
IFDEC tests if the axis is decelerating
IFDIR test on axis direction
IFERRAN test on loop error

IFERROR test on active cycle error

IFFLAG test on a flag
IFINPUT test on an input

IFMESSAGE test on the active message

IFOR test on OR operation
IFOUTPUT test on an output
IFQUOTER test on real position
IFQUOTET test on real position

IFRECEIVED test on data reception

IFREG tests if the axis is in steady-state conditions
IFSAME verifies that both arguments refer to the same data
IFSTILL tests if the axis is still
IFSTR test on a string

GPL Language 88

Manufacturer's manual

IFTARGET tests if the axis has reached the target
IFTASKHOLD tests if the parallel function is interrupted
IFTASKRUN tests if the parallel function is running
IFTIMER test on a timer
IFVALUE test on a variable
IFVEL test on axis speed
IFWIN tests if the axis is in the window
IFXOR test on XOR operation
NEXT end of block repetition with FOR
ONERRSYS sets the call to a function on a system error
ONFLAG emergency in flag bit or flag switch
ONINPUT emergency in digital input
REPEAT repetition of an instruction block
RET return from subprogram
SELECT multiple selection with jump

TESTIPC verifies the presence of an IPC information

TESTMAIL test and reception of a command

WAITACC waits for axis acceleration

WAITCOLL waits for the axis to exceed a position from which it should start

checking the presence of a collision

WAITDEC waits for axis deceleration

WAITREG waits for the axis to be in steady-state conditions
WAITSTILL waits for the final position to equal the target position
WAITTARGET waits for the axis to reach the target
WAITWIN waits for the axis to be in the window

Instructions for String management

ADDSTRING chains two strings
CONTROLCHAR sets a control character in a string variable
LEFT extracts the first characters
LEN reads the length of a string
MID extracts some characters
RIGHT extracts the last characters
SEARCH searches for a string
SETSTRING modifies a string variable
STR converts from number to a string
VAL converts from string to number

Instructions for axis Parameter management

DYNLIMIT enables or disables dynamically the test on axis limit exceeding.

ENABLESTARTCONTROL enables and sets the timeout to control the non-start up or the sudden

stop of the axis

DEVICEID writes the logical address associated to a device

GETAXIS reads one or more data of an axis

LOOKAHEAD sets the interpolation lookahead

NOTCHFILTER sets the notch filter cut-off frequency for the specified axis

RATIO sets the chaining ratio of a slave axis with respect to its own master

RESLIMNEG disables the negative limit of the axis

RESLIMPOS disables the positive limit of the axis

SETACC sets acceleration

SETACCI sets the acceleration for interpolation

SETACCLIMIT enables and disables the automatic calculation of the interpolation

steady state speed

SETACCSTRATEGY sets the type of acceleration

SETADJUST sets the adjust of an axis
SETAXPARTYPE changes the axis parameter set currently in use

SETBACKLASH decreases or deletes the effects of the mechanical blacklash on the

axis trajectory

SETBIGWINFACTOR modifies the multiplication factor for the calculation of the big window

on the requested axis.

Albatros89

Manufacturer's manual

SETCONTORNATURE sets the contouring angle

SETDEC sets the deceleration
SETDECI sets the deceleration for the interpolation
SETDEADBAND sets the minimum voltage for the affected axis
SETDERIV sets the coefficient of derived action
SETDERIVI sets the coefficient of interpolation derived action

SETDYNRATIO changes dynamically the chaining ratio during the movement of the

master axis.
SETFEED sets the point-to-point feed rate

SETFEEDCOORD sets the percentage value of the highest instantaneous variation of the

axis feed rate.
SETFEEDF sets the feed forward

SETFEEDFA sets the acceleration feed forward

SETFEEDFAI sets acceleration feed forward in interpolation

SETFEEDI sets feed forward in interpolation
SETFEEDFI sets the feed forward in interpolation
SETINDEXEN enables or disables on the axis the reset of the position that

corresponds to the zero position reference
SETINTEG sets the coefficient of integral action
SETINTEGI sets coefficient of interpolation integral action
SETINTEGTIME it sets the number of loop error samples used to calculate the integral

component
SETIRMPP sets the speed of start ramp
SETLIMNEG sets the negative limit of the axis

SETLIMPOS disables the positive limit of the axis

SETMAXER sets the highest tolerated tracking value

SETMAXERNEG sets highest tolerated tracking value (negative direction)

SETMAXERPOS sets highest tolerated tracking value (positive direction)

SETMULTIFEED sets the percentage value of feed rate override of the affected axes

.

SETOFFSET enables a position offset

SETPHASESINV enables or disables on the affected axis thye phase inversion

SETPROP sets the coefficient of proportional action
SETPROPI sets coefficient of interpolation proportional action
SETQUOTE sets the position

SETREFINV enables or disables on the affected axis the inversion of speed

reference

SETRESOLUTION changes the resolution if an axis

SETSLOWPARAM changes the parameters to calculate the slowdown speed in the event

that the slowdown functionality while contouring is active
SETVEL sets the speed
SETVELI sets the interpolation speed

SETVELILIMIT sets the individual components of the affected axis speed

Various instructions

CLEARERRORS deletes all the module cycle errors

CLEARMESSAGES deletes all messages of the module

DEFMSG defines a group message

DELAY locks the current function for a period of time
DELERROR deletes ma previous cycle error
DELMESSAGE deletes a previous message
ERROR sends a cycle error to the PC

IFDEF/ELSEDEF/ENDDEF test for the conditional compilation

MESSAGE sends a message to the PC
SYSFAULT disables SYSOK signal
SYSOK enables SYSOK signal
WATCHDOG enables, updates, disables the whatchdog from GPL on the TMSWD

hardware module

Instructions for SLM management

GPL Language 90

Manufacturer's manual

SLMCOMMAND executes a SLM command

SLMEEPROMDISABLE execute an EEPROM writing disabling command

SLMEEPROMENABLE executes an EEPROM wiring enabling command

SLMGETEEPROM reads an EEPROM memory location

SLMGETPARAM reads a SLM parameter

SLMGETREGISTER reads a SLM register

SLMGETSTATUS reads a drive quantity

SLMSETEEPROM writes an EEPROM memory location

SLMSETPARAM sets a SIM parameter

SLMSETREGISTER sets a SLM register

Instructions for CANopen management

CANOPENDRIVER opens a CANopen communication canal

CANCLOSEDRIVER closes a CANopen communication channel

CANRESETBOARD resets a CANopen board

CANSETOBJECT writes a CANopen object

CANGETOBJECT reads a CANopen object

GETCNSTATE returns the NMT protocol state for the node of a CANOpen board.

GETSDOERROR returns the last error occurred

GETMNSTATE returns the status of the NMT protocol for the master node of the

CANOPen board.

SENDPDO writes the content of an asynchronous PDO

SETNMTSTATE sets the status of the NMT protocol for the node of the CANOpen board.

RECEIVEPDO reads the content of an asynchronous PDO

Instructions for Mechatrolink II management

MECCOMMAND sends a command to the axis drive

MECGETPARAM reads a parameter of the indicated axis

MECSETPARAM writes a parameter in the indicated axis

MECGETSTATUS reads the values of STATUS, ALARAM and IO_MON

Instructions for Simulation

ENABLE enables one or more axes

ENABLEFORCEDINPUT enables the inputs to be forced

DISABLE disables one or more axes

DISABLEFORCEDINPUT disables the inputs to be forced

SETFORCEDINPUT forces an input to ON

RESETFORCEDINPUT forces an input to OFF

SETFORCEDBCD forces a nibble set in BCD format

SETFORCEDPORT forces an input port

SETFORCEDANALOG forces an analog input

Instruction for the "Blackbox" functionalities

ENDBLACKBOX ends the record functionality

PAUSEBLACKBOX interrupts the record functionality

STARTBLACKBOX starts the record functionality

Instructions for Powerlink II and EtherCAT management

AXCONTROL sets a value for ControlWord

Albatros91

Manufacturer's manual

ACTIVATEMODE sets an operating mode

AXSTATUS returns the value in the StatusWord

CNBYDEVICE returns the EPL coordinates of a device

GETPDO returns an object inside a PDO Ethercat

HOMING searches the "zero position"

READDICTIONARY reads the content of a dictionary object

SETPDO sets an object inside a PDO Ethercat

WRITEDICTIONARY writes the content of the dictionary object

Instructions for ISO control

ISOG0 sets the rapid movement

ISOG1 sets the interpolated movement

ISOG9 sets the forced stop of the movement

ISOG90 sets the interpretation of the positions as absolute positions

ISOG91 sets the interpretation of the positions as relative positions

ISOG93 sets the interpretation as inverse of the time

ISOG94 sets the interpretation of the speed as unit of measure per minute

ISOG216 defines the matrices for machine parametrisation

ISOG217 describes the physical axes and the virtual axes, which make up the

machine

ISOM2 frees the axes free from ISO movement

ISOM6 selects the indices of parametrisation matrices

ISOSETPARAM sets some parameters that characterize the fluidity of the ISO

interpolation movement.

KINEMATICEXPR sets the single expressions of inverse and direct kinematics

Input/Output3.2.3

GETFEED

Syntax
GETFEED variable

Arguments
variable feed rate

Description
It copies the value of the feed rate read from the remote I/O card, in the specified variable.
Feedrate value is included between 0 and 100 and it is a percentage value.
It operates on an analog input which is not visible in configuration.
On a Albnt board this is the connector of the 4th axis (red) which, when the card has been
appropriately configured, acts as an analog input (grey/greywhite wires).
For Cn2004 board the feed rate is managed by configuring the first analogical input AIN1. For all the
other T.P.A boards controlling the feed rate a dedicated connector is available.

GETVF

Syntax
GETVF variable

Arguments
variable integer variable

Description
It reads the voltage/frequency converter value normally used to manage the feed rate override and
puts the result in the specified variable. The read value interval ranges from 0 to 16000, which
corresponds to an input voltage of 0 - 8 volts. For example the value 8000 corresponds to 4 volts.

GPL Language 92

Manufacturer's manual

INPANALOG

Syntax
INPANALOG inpanalogname, variable

Arguments
inpanalogname name of analog input device
variable variable

Description
It copies the value of the analog input specified by inpanalogname in the specified variable.

INPBCD

Syntax
INPBCD digitname1 [,digitname2, ...], variable

Arguments
digitname1 name of nibble device
variable variable

Description
It reads the input nibbles specified by the digitname arguments (from 1 to 4 max). It reads each
nibble as a number, where argument digitname1 has the highest weight, and it sets the value of the
number in the variable.
In practice it is used to read decimal numbers from physical devices which indicate them as groups
of 4 inputs (nibble). The inputs of each nibble correspond to the bits necessary to represent the
decimal number in the binary system.

INPFLAGPORT

Syntax
INPFLAGPORT flagportname, variable

Arguments
flagportname name of flag port device
variable variable

Description
It copies the state of the flag port specified by flagportname in the specified variable.
The flag port is detected as a bit mask. A bit is associated to each flag of the port. If a flag is "ON",
the corresponding bit is set on 1.

INPPORT

Syntax
INPPORT portname, variable

Arguments
portname name of input port device
variable integer or char variable

Description
It copies the state of the portname input port in the specified variable.
The input port is detected as a bit mask. If the input of the port is "ON" the corresponding bit is set
on 1.

MULTIINPPORT

Syntax
MULTIINPPORT port1[,...,port4],variable

Arguments

Albatros93

Manufacturer's manual

port1 provides the bits from 0 to 7
port2 provides the bits from 8 to 15
port3 provides the bits from 16 to 23
port4 provides the bits from 24 to 31
variable integer variable receiving the input ports

Description
It reads no more than 4 output ports at the same time and writes them into a variable. Ports are
read atomically. This procedure guarantees that the ports are read within the same real-time. Port1
corresponds to the lower byte, port4 corresponds to the greater byte.

MULTIOUTPORT

Syntax
MULTIOUTPORT value, portname1[,...,portname4]

Arguments
value number or integer value to be written in the output ports
portname1 receives the bits from 0 to 7
portname2 receives the bits from 8 to 15
portname3 receives the bits from 16 to 23
portname4 receives the bits from 24 to 31

Description
It writes the value into four output ports at the same time. Ports are read atomically. This
procedure guarantees that the ports are written within the same real-time. If portname2,
portname3, portname4 are not specified, the value of the byte is 0.

MULTIRESETFLAG

Syntax
MULTIRESETFLAG mask, flagname1[, ..., flagname32]

Arguments
mask mask of involved flags - constant or variable
flagname1 name of flag device

Description
It disables, that is, it switches to "OFF", all the flagnames (1÷32), whose bit is set on 1 in the
argument mask.
The mask 0 bit (lowest weight) corresponds to flagname1.

MULTIRESETOUT

Syntax
MULTIRESETOUT mask, outputname1[, ..., outputname32]

Arguments
mask mask of involved outputs - constant or variable
outputname1 name of output device

Description
It disables all the outputnames (1÷32), whose bit in the argument mask is set on 1. The mask 0
bit (lowest weight) corresponds to outputname1.

GPL Language 94

Manufacturer's manual

MULTISETFLAG

Syntax
MULTISETFLAG mask, flagname1[, ..., flagname32]

Arguments
mask mask of involved flags - constant or variable
flagname1 name of flag device

Description
It enables, that is, it switches to "ON", all the flagnames (1÷32), whose bit in the argument mask is
set on 1. The mask 0 bit (lowest weight) corresponds to flagname1.

MULTISETOUT

Syntax
MULTISETOUT mask, outputname1[, ..., outputname32]

Arguments
mask mask of involved outputs - constant or variable
outputname1 name of output device

Description
It enables all the outputname outputs (1÷32), whose bit in the argument mask is set on 1.
The 0 bit of mask (lowest weight) corresponds to outputname1. If the output is a monostable
output it is disabled automatically after 200 milliseconds.

MULTIWAITFLAG

Syntax
MULTIWAITFLAG mask, flag1[, ..., flag32], state [, timeout [, GOTO label]]
MULTIWAITFLAG mask, flag1[, ..., flag32], state [, timeout [, CALL

subprogramname]]
MULTIWAITFLAG mask, flag1[, ..., flag32], state [, timeout [, functionname]]

Arguments
mask constant or variable. Mask of involved flags
flag1[,...flag3
2]

name of flag device

state predefined constant. Acceptable values are:
ON flag state: enabled
OFF flag state: disabled

timeout constant or variable. Maximum wait time.
label jump to label (GOTO)
subprogramn
ame

subprogram label (CALL)

functionname name of function

Description
It waits for the specified flags, from flag1...flag32 to be in the state indicated by the state
parameter (ON/OFF).
It checks all the flags whose bit in the argument mask is enabled (ON). The 0 bit of the argument
mask (lowest weight) corresponds to the bit defined by flag1, the 1 bit corresponds to the bit
defined by flag2 and so on, up to the bit defined by flag32.
The timeout parameter allows you to set a different timeout from default timeout which waits one
second.
When label, subprogramname or functionname are present, at the end of timeout the program
jumps to label or calls subprogramname or functionname.

Albatros95

Manufacturer's manual

MULTIWAITINPUT

Syntax
MULTIWAITINPUT mask, input1[, ..., input32], state [, timeout [, GOTO label]]
MULTIWAITINPUT mask, input1[, ..., input32], state [, timeout [, CALL

subprogramname]]
MULTIWAITINPUT mask, input1[, ..., input32], state [, timeout [, functionname]]

Arguments
mask constant or variable. Mask of involved inputs
flag1[,...flag32] name of input
state predefined constant. Acceptable values are:

ON flag state: enabled
OFF flag state: disabled

timeout constant or variable. Maximum wait time.
label jump to label (GOTO)
subprogramname subprogram label (CALL)
functionname name of function

Description
It waits for the specified inputs, from input1...input 32 to be in the state indicated by the state
parameter (ON/OFF).
It verifies all the inputs whose bit in the argument mask is enabled (ON). The 0 bit of the argument
mask (lowest weight) corresponds to the bit defined by input1, the 1 bit corresponds to the bit
defined by input2 and so on, up to the bit defined by flag32.
If no optional arguments are specified, a second after the beginning of instruction execution (default
time), the following parametrised message appears: "Wait inputn ON/OFF". The name of the
indicated input corresponds to the first enabled input which still has not satisfied the state. If the
timeout parameter is included, the above mentioned message will appear when the set timeout
expires. If the requested condition takes place, when timeout has expired, a parametrised message
will appear automatically to delete the previous one.
When label, subprogramname or functionname are present, at the end of timeout the program
jumps to label or calls subprogramname or functionname

OUTANALOG

Syntax
OUTANALOG outanalogname, value

Arguments
outanalogname name of analog output device or axis
value constant or variable

Description
It sets the analog output or the axis indicated by outanalogname to the voltage specified by value.

OUTBCD

Syntax
OUTBCD digitname1 [,digitname2, ...], variable

Arguments
digitname name of nibble device
variable constant or variable

Description
In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of
decimal numbers, where each decimal digit is represented by a binary code of four bits, whose
value ranges from 0 (0000) to 9 (1001).

This instruction converts the decimal value contained in the variable to a sequence of numbers.
Each digit is converted to the binary system and the bit mask thus obtained is set in the
corresponding nibble. The digit with the highest weight is associated to the first nibble
(digitname1).

GPL Language 96

Manufacturer's manual

Example
OUTBCD nib1,nib2,nib3 234

; 4 in binary is 0100 and lights the third led of the nibble3
; 3 in binary is 0011 and lights the first and the second led of the
nibble2
; 2 in binary is 0010 and lights the second led of the nibble1

OUTFLAGPORT

Syntax
OUTFLAGPORT flagportname, value

Arguments
flagportname name of the flag port device
value constant or variable

Description
It copies the value in the flag port specified by flagportname.
The value parameter is detected as a bit mask. Each bit is associated to a port flag. If the bit is set
on 1 the flag is "ON".

OUTPORT

Syntax
OUTPORT portname, value

Arguments
portname name of output port device
value constant or variable, integer or char

Description
It copies the value in the portname output port.
The ouptput port is detected as a bit mask. It the bit is set on 1 the corresponding output is on "ON".

RESETFLAG

Syntax
RESETFLAG flagname

Arguments
flagname name of flag device

Description
It disables (switches to OFF) the flagname flag.

RESETOUT

Syntax
RESETOUT nameoutput

Arguments
nameoutput name of digital output device

Description
It disables (switches to OFF) the nameoutput output.

SETFLAG

Syntax
SETFLAG flagname

Arguments

Albatros97

Manufacturer's manual

flagname name of flag device

Description
It enables (switches to ON) the flagname flag.

SETOUT

Syntax
SETOUT nameoutput

Arguments
nameoutput name of digital output device

Description
It enables (switches to ON) the nameoutput output.
If the output is configured as monostable it is automatically disabled after a 200 millisecond timeout.

WAITFLAG

Syntax
WAITFLAG flagname, state [, timeout [, GOTO label]]
WAITFLAG flagname, state [, timeout [, CALL subprogramname]]
WAITFLAG flagname, state [, timeout [, functionname]]

Arguments
flagname name of flag device
state predefined constant. Acceptable values are:

ON flag state: enabled
OFF flag state: disabled

timeout constant or variable. Maximum wait time.
label jump label (GOTO)
subprogramname subprogram label (CALL)
functionname name of function

Description
It waits for the flag flagname to be in the state indicated by the parameter state (ON/OFF).
If the only optional argument present is timeout, the cycle error "flagname flag awaiting state" is
generated at end of timeout.
If the condition is satisfied after timeout expiry, the cycle error previously sent out for that task is
automatically cancelled.
When label, subprogramname or functionname are present, at the end of timeout the program
jumps to label or calls subprogramname or functionname without generating any automatic
display.

Note
To avoid waiting for flags during work cycles, we suggest setting a timeout.

WAITINPUT

Syntax
WAITINPUT nameinput, state [, timeout [, GOTO label]]
WAITINPUT nameinput, state [, timeout [, CALL subprogramname]]
WAITINPUT nameinput, state [, timeout [, functionname]]

Arguments
nameinput name of input
state predefined constant. Acceptable values are:

ON flag state: enabled
OFF flag state: disabled

timeout constant or variable. Maximum wait time.
label jump label (GOTO)
subprogramn
ame

subprogram label (CALL)

functionnam
e

name of function

GPL Language 98

Manufacturer's manual

Description
It waits for the nameinput input to be in the state indicated by the parameter state (ON/OFF).
If no optional arguments are specified, the cycle error "Nameinput digital input awaiting state" is
generated automatically 20 seconds after the beginning of instruction execution. If the only optional
argument present is timeout, the above mentioned message is generated at the end of timeout.
If the condition is satisfied after timeout expiry, the cycle error previously sent out for that task is
automatically cancelled.
If label, subprogramname or functionname are present, when timeout expires the program
jumps to label or calls subprogramname or functionname without generating any automatic
display.

Note
To avoid having to wait for input signals during a work cycles, we suggest setting a shorter timeout
than default time (20 seconds).

Example
Routine of Axis Homing

WAITPERSISTINPUT

Syntax
WAITPERSISTINPUT nameinput, state, timepersist [, timeout [, GOTO label]]
WAITPERSISTINPUT nameinput, state, timepersist [, timeout [, CALL

subprogramname]]
WAITPERSISTINPUT nameinput, state, timepersist [, timeout [, functionname]]

Arguments
nameinput name of digital input device
state predefined constant. Acceptable values are:

ON flag state: enabled
OFF flag state: disabled

timepersist constant or variable
timeout constant or variable. Maximum wait time.
label jump label (GOTO)
subprogramn
ame

subprogram label (CALL)

functionname name of function

Description
It waits for the nameinput input to reach the state indicated by the parameter state (ON/OFF) and
to remain in that state for the time specified in timepersist (unit of measure: seconds).
If no optional arguments are specified, the cycle error "Nameinput digital input awaiting state" is
generated automatically 20 seconds after the beginning of instruction execution.
If the only optional argument present is timeout, the above mentioned message is generated at the
end of timeout.
If the condition is satisfied after timeout expiry, the cycle error previously sent out for that task is
automatically cancelled.
When label, subprogramname or functionname are present, at the end of timeout the program
jumps to label or calls subprogramname or functionname without generating any automatic
display.

Note
To avoid having to wait for input signals during work cycles, we suggest setting a shorter timeout
than default time (20 seconds).

Axes3.2.4

CHAIN

Syntax
CHAIN master_axis, slave_axis1 [, ...slave_axis5]

Arguments
master_axis name of axis device functioning as master
slave_axis1...slave_axis5 name of axis device functioning as slave

Albatros99

Manufacturer's manual

Description
After executing this instruction, the slave_axes (1÷5) will execute will execute movements linked to
those of the master axis by the chaining ratio set with the RATIO instruction. Both point-to-point and
interpolated movements will be chained.
Slave_axis1 is not an optional parameter, it must always be defined.
If a slave axis is to be chained, it can not be engaged in an interpolation and can not be master of
other slaves.
In his turn, the master axis cannot be the slave of other axes.
Chaining can be carried out both with positioned axes and moving axes.
To disable axes chaining it is sufficient to execute the instruction NORMAL on the master axis. This
last operation can be carried out both with axes in position and with axes in motion. When the chain
is disabled while the axes are in motion, the slave gradually decelerates and stops.
A maximum of 8 master axes can be simultaneously defined.
The instruction can be performed also with step-by-step axes (stepper), as long as they can be
controlled through TRS_AX.
In addition, all the axes must have a real and not simulated encoder, otherwise the system error no.
"4101 - Inconsistent axis AxisName management" is generated".
See also RATIO.

Example

CHAIN X, Y ; Y axis is chained to X
MOVINC X, 100 ; X axis moves. Y axis replicate

; X axis movement

CIRCABS

Syntax
CIRCABS [label],axis1, position1, axis2, position2, direction, ±radius [,

angle]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1, axis2 name of axis devices
positon1, position2 constant or variable. It indicates the absolute move position
direction integer variable. It specifies the kind of rotation. Acceptable values

are:
CW clockwise
CCW anti clockwise

radius constant or variable. It indicates the value of the radius of the circle.

angle constant or variable. It indicates the angle of the starting point

Description

2 axes circular interpolation with absolute transfer based on programmed positions: position1,

position2.
The arch is determined by the starting point (current point), the final point, the value of the radius
and the direction.
The sign applied to the radius allows you to select the minor arch (+radius) or the major arch (-
radius).
In the rare case in which the starting position of axis1 coincides with position1 final position and the
starting position of axis2 coincides with the position2 final position a complete circle is drawn. In
this case it is necessary ti indicate the argument angle, having the same meaning as the instruction
CIRCLE (to be referred to).
The angle parameter is necessary to determine precisely the centre of the circle, with the same
meaning as the instruction CIRCLE. It is only used when, before instruction execution, position1
and position2 coincide with the current position of the axes.
The optional parameter label is used in association with the instruction SETLABELINTERP to indentify
univocally the displacement bloc
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote.
In this case it must be taken into account that the word interpolation refers to a coordinated
movement of more axes affected by discrete error due to axis piloting method.

GPL Language 100

Manufacturer's manual

CIRCINC

Syntax
CIRCINC [label],axis1, position1, axis2, position2, direction, ±radius [,

angle]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1, axis2 name of axis devices
positon1,
position2

constant or variable. It indicates the incremental move position

direction integer variable. It specifies the kind of rotation. Acceptable values are:
CW clockwise
CCW anti clockwise

radius constant or variable. It indicates the value of the radius of the circle
angle constant or variable. It indicates the angle of the starting point

Description

2 axes circular interpolation with incremental transfer based on programmed positions position1

and position2.
The arch is determined by the starting point (current point), the final point, the value of the radius
and the direction.
The sign applied to the radius allows you to select the minor arch (+radius) or the major arch (-
radius).
In the rare case in which position1 = position2 = 0, a complete circle is drawn. In this case it is
necessary to indicate the argument angle, with the same meaning as the instruction CIRCLE (to be
referred to).
The angle parameter is necessary to determine precisely the centre of the circle, with the same
meaning as the instruction CIRCLE. The optional parameter label is used in association with the
instruction SETLABELINTERP to indentify univocally the displacement bloc.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In
this case it must be taken into account that the word interpolation refers to a coordinated movement
of more axes affected by discrete error due to axis piloting method.

Albatros101

Manufacturer's manual

CIRCLE

Syntax
CIRCLE [label],axis1, axis2, direction, radius, angle

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1, axis2 name of axis devices
direction integer variable. It specifies the kind of rotation. Acceptable values are:

CW clockwise
CCW anti clockwise

radius constant or variable. It indicates the value of the radius of the circle.
angle constant or variable. It indicates the angle of the starting point.

Description
Complete circular interpolation.
It generates a circle with axis1 and axis2, in the indicated direction, with the indicated radius and
according to the set starting angle.
The radius can only have positive values.
The angle must be given according to the trigonometric convention, positive, clockwise, starting
from the X axis. The position of the centre C0 of the circle is determined by specifying the angle
formed by the radius passing from the programmed initial point P (current point) and the horizontal
direction X+. The optional parameter label is used in association with the instruction
SETLABELINTERP to indentify univocally the displacement bloc.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In
this case it must be taken into account that the word interpolation refers to a coordinated movement
of more axes affected by discrete error due to axis piloting method.

COORDIN

Syntax
COORDIN matrix, value deltaT, direction, begin, end, mask, axis1, n°

_column_axis1

[, (axis2, n°_column_axis2) ÷ (axis32, n°_column_axis32)]

Arguments
matrix data matrix
value deltaT constant or variable. Time basis
direction predefined constant. Direction of data reading in matrix

UP from the last row, upwards
DOWN from the first row downwards

begin global integer variable. The number of the first row
end global integer variable. The number of the last row

GPL Language 102

Manufacturer's manual

mask axis mask to be enabled
axis1 [....axis32] name of axis devices
n°
_column_axis1[...n_colum
n_axis32]

number of matrix column referring to axis

Description
This instruction allows you to carry out synchronised movements of axes axis1, axis2, etc. by
means of incremental transfers (microvectors) defined by a data matrix.
The parameters axis1 and n_column_axis1 must always be defined.
The values contained in the matrix indicate the absolute positions reached by the various axes one
at a time.
Relative incremental transfers (interval between the position of row (n) and row (n-1)) are executed
in a lapse of time equivalent to a multiple of the time basis (1 ms = Real Time of axes refresh)

specified by the argument value t, which must consequently be expressed by an integer number.

When the value of this time has been defined, the distance covered at each movement by each axis
determines its speed. This instruction allows you to coordinate the movement of a maximum of 32
axes, along any curved line in space, as generated by SPLINE techniques.
It is not necessary to wait until the instruction is completed; it does not need the STARTINTERP
instruction to start. However, a WAITSTILL instruction should be brought to its end, in order to wait
for the correct arrival phase of the axes. Possible changes of the feedrate override should be made
by means of the SETFEEDI instruction and worked through the SETFEEDCOORD istruction.
The parameter direction allows you to determine the direction of the matrix, allowing you to
execute the trajectory in both directions.
The columns of the matrix to be scanned can be float or double but not both at the same time.

In addition to the movement of axes along a finite path (defined by the number of matrix rows),
infinite movement can be selected using:

one matrix of a single row. With this operating mode, the control always reads the only row of the
matrix and applies the coordinates in the row to the axes. To move the axes, the matrix row
should be changed, preferably using a real-time task which guarantees coordinates updating is
synchronised with the axes refresh frequency. With this operating mode, the control always reads
the only row of the matrix and applies the coordinates in the row to the axes. To move the axes,
the matrix row should be changed, preferably using a real-time task which guarantees coordinates
updating is synchronised with the axes refresh frequency;
a matrix of more rows. It is possible to scan the matrix with cycles from the first to the last row
indefinitely by setting the values ini = 1, fin = 0 and direction = UP. If a single multi-row matrix
row must be executed, it is necessary to set parameters ini, fin and direction in the following
way: ini = numer of row that must be executed, fin = number of row preceding row that must be
executed, direction = UP. In other case a system error is generated.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote.

DISABLECORRECTION

Syntax
DISABLECORRECTION axis [, axis1, ..., axis6]

Arguments
axis name of axis device
axis1, ..., axis6 name of axis device

Description
Disables the linear correction for the specified axis.
The first parameter is the axis whose correction is to be deactivated, if it is the only parameter
specified all the corrections present in the configuration are deactivated. The following parameters
allow the specification of which corrections are to be deactivated, if one of these coincides with the
first parameter the auto-correction is deactivated.
For a more detailed description see ENABLECORRECTION.

Example
; disables only the auto-correction for axis X
DISABLECORRECTION X, X

; disables the crossed correction (towards X and Y) for axis Z,
; but not the auto-correction
DISABLECORRECTION Z, X, Y

Albatros103

Manufacturer's manual

EMERGENCYSTOP

Syntax
EMERGENCYSTOP axis, time

Arguments
axis name of axis devices
time constant or integer variable. Ramp time (ms)

Description
It stops the specified axis and any axes possibly involved with it in the interpolated movement. The
movement is stopped by a deceleration ramp over the time indicated by the variable [time].
In the point-to-point movements if the time set is greater than the configured deceleration time, this
latter is used.
In the interpolated movements, if the time set is greater than the maximum value of the deceleration
times of all axes involved, the maximum time configured is used.
The movement can be resumed by a START instruction.
The instruction cannot be used if [axis] is a slave axis.
The instruction can generate following system errors:

"4101 - Inconsistent axis management" when [axis] is executing a synchronized movement or a
multilinear interpolation or an ISO movement.
"4105 - instruction not executable on axis" when [axis] is a counting axis.
"4399 - parameter out of range" if the [time] indicated is equal or less than 0.

ENDMOV

Syntax
ENDMOV axis [, position]

Arguments
axis name of axis device
position constant or variable.

Description
It stops movement of the specified axis. The difference from the STOP instruction is that when
movement is interrupted it can not be restarted by using the START instruction. If the parameter
position is specified, you can set the position at which the axis will end its movement, otherwise the
point at which the axis stops will depend on current speed and the last programmed deceleration.
Where necessary, to reach the end-of-movement point, the controller reverses axis motion.

 Note

This parameter is used only if the movement concerns a point-to point movement. In case of
interpolated movement, the movement of the axis stops without considering the position value.

Example
; stops current movement, taking axis to 0.0 position
ENDMOV X, 0.0

ENABLECORRECTION

Syntax
ENABLECORRECTION axis [, axis1, ..., axis6]

Arguments
axis name of axis device
axis1, ..., axis6 name of axis device

Description
Enables the linear correction for the specified axis. The correction consists of the auto-correction and
the crossed correction. The auto-correction is a correction of the real position of an axis in relation to
its own position, a crossed correction is a correction of the real position of an axis in relation to the
position of other axes. Up to five crossed correctors can be defined.
The first parameter is the axis whose correction is to be deactivated, if it is the only parameter
specified all the corrections present in the configuration are activated.
The following parameters allow the specification of which corrections are to be activated, if one of

GPL Language 104

Manufacturer's manual

these coincides with the first parameter the auto-correction is activated.
See also DISABLECORRECTION.

NOTE: For the instruction to have effect the correction must also be enabled in the configuration.

Example
; enables all the corrections contained in the configuration for axis X
ENABLECORRECTION X

; enables only the auto-correction for axis X
ENABLECORRECTION X, X

; enables the auto-correction and
; the crossed correction (towards X and Y) for axis Z
ENABLECORRECTION Z, X, Y, Z

FASTREAD

Syntax
FASTREAD axis1, state, variable1 [,axis2, variable2],[..., axis8,

variable8]

Arguments
axis1...[...axis8] name of axis devices. Axis1 is the master axis
state predefined constant. It can assume the following values:

ON rising edge
OFF falling edge

variable1...
[...variable8]

variable or double matrix/vector element. Memorised position

Description
The positions of the indicated axes are read and saved in the variables the instant the rapid input
of axis1 (Master axis) switches to the set state.

If the indicated axes are analog, they must be part of the same board (8 for ALBN and 4 for TRS-AX).
If the indicated axes are digital, the rapid input signal is located directly on the drive; therefore, in
case of multiple fastread, the signal should be connected in parallel on various devices.
If the indicated axes are configured on EtherCAT bus, they must be part of the same drive.
The instruction ends when the input switches to the indicated state (ON/OFF).
If a STOP instruction is executed before switching to rapid input, these instructions remain active and
restart after the START instruction.
More than one fast reading can be activated at the same time on the same axis board.

During the execution of the instruction it is not possible to execute the instructions SETPZERO and
SETPFLY at the same time on the same axis, if it is connected to boards with Mechatrolink II bus.

Note
The rapid input for the axes being part of an ALBNT board stands on the axis1 connector and doesn't
need to be configured in virtual-physical
The rapid input for digital axes on board with Mechatrolink II bus stands on EXTI2 input and doesn’t
need to be configured in virtual-physical. The rapid inputs of digital Mechatrolink II axes need to be
“short circuited”, because the axis coordinate should stored only with reference to its own rapid axis.

FREE

Syntax
FREE axis [, voltage]

Arguments
axis name of axis device
voltage constant float or variable float. Reference voltage

Description

It sets the axis in "open loop" (Free) mode, disabling the position control. If the voltage parameter is

specified, the axis reference voltage is set on the specified value.

Albatros105

Manufacturer's manual

This instruction can be used in the case of measuring axes, for position detection, or for axes whose
movement can be forced by external mechanical instruments which could alter their position.
During functioning the position of the axis is regularly detected and updated, allowing to position the
axis definitively after enabling position control (instruction NORMAL).

HELICABS

Syntax
HELICABS [label],axis1, position1, axis2, position2, axis3, position3,

direction, ±radius [,angle [, numrev [, axis4, position4 [, ...,
axis6, position6]]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1...axis3[...axis6] name of axis devices
position1...position3[...
position6]

constant or variable. Absolute move position

direction integer variable. Kind of rotation clockwise/anticlockwise (CW/CCW)
radius constant or variable. Radius of the helix
angle constant or variable. Angle of starting point
numrev constant or variable. Number of revolutions

Description
Helicoidal interpolation with absolute move equal to programmed positions position1, position2
and position3. The movement consists in a circular interpolation associated to axes axis1 and
axis2 (using the same syntax rules as CIRCABS /CIRCINC, relative to the arguments direction,
±radius and angle), and an associated linear of axis3 (and possibly axis4, axis5 and axis6). The
helicoidal movement can be developed in a series of revolutions, as indicated by the argument
numrev. The position of the axis with linear movement (as the possible positions of axis4, axis5
and axis6) refers to the total move (not to move/revolution). The optional parameter label is used
in association with the instruction SETLABELINTERP to indentify univocally the displacement bloc.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In
this case it must be taken into account that the word interpolation refers to a coordinated movement
of more axes affected by discrete error due to axis piloting method.

Note
1.Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed
profile. To obtain a correct movement, an instruction WAITSTILL between an instruction HELICABS
and the other should be interposed.

2.If a reference local system is set using the instruction SETRIFLOC the three axes definint the new
reference system should be always be indicated among the parameters of the instruction
HELICABS, even if they do not displace anything.

HELICINC

Syntax
HELICINC [label],axis1, position1, axis2, position2, axis3, position3,

direction, ± radius [,angle [, numrev [, axis4, position4 [, ...,
axis6, position6]]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1...axis3[...axis6] name of axis devices
position1...position3[...po
sition6]

constant or variable. Incremental move position

direction integer variable. Type of rotation clockwise/anticlockwise (CW/
CCW)

radius constant or variable. Radius of the helix
angle constant or variable. Angle of starting point
numrev constant or variable. Number of revolutions

Description
Helicoidal interpolation with incremental move equal to programmed positions position1, position2
and position3.
The movement consists in a circular interpolation involving axes axis1 and axis2 (using the same
syntax rules as CIRCABS /CIRCINC, relative to arguments direction, ±radius and angle), and a

GPL Language 106

Manufacturer's manual

linear interpolation involving axis3 (and possibly axis4, axis5 and axis6).
The helicoidal movement can be developed in a series of revolutions as indicated by the argument
numrev.
The position of the axis with linear movement (as the possible positions of axis4, axis5 and axis6)
refers to the total move (not to move/revolution). The optional parameter label is used in
association with the instruction SETLABELINTERP to indentify univocally the displacement bloc.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In
this case it must be taken into account that the word interpolation refers to a coordinated movement
of more axes affected by discrete error due to axis piloting method.

Note
1.Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed
profile. To obtain a correct movement, an instruction WAITSTILL between an instruction HELICINC
and the other should be interposed.

2.If a reference local system is set using the instruction SETRIFLOC the three axes that define the
new reference system should be always be indicated among the parameters of the instruction
HELICINC, even if they do not displace anything.

JERKCONTROL

Syntax
JERKCONTROL axis, state

Arguments
axis name of axis devices
state predefined constant. It can assume the following values:

ON rising edge
OFF falling edge

Description
According to whether the parameter state is set on ON or OFF, it enables or disables the jerk
control on axis interpolation and point-to-point movements.The jerk control is enabled only with
axes that have configured one acceleration ramp and Esse deceleration. If the axis has configured
one Linear ramp the jerk is not checked.

JERKSMOOTH

Syntax
JERKSMOOTH axis, value

Arguments
axis name of devices of axis type.
value constant or variable float.

Description
In any classic interpolated movements, the axes can move while contouring, that is without stopping
between a bloc and the next one. This occurs, if discontinuous function of tangency in the blocs is
lower than the value "Maximum contouring angle", set in the module configuration (default value is
15), or lower than the value set through the instruction SETCONTORNATURE. In the opposite case,
the axes are stopped in the edge point with controlled deceleration and let start again along the new
bloc with controlled accelerations and speed rates. However, stop and restart reduce the machine
movement performances. When the contouring angle takes on consistent values such as, e.g., a
discontinuous function of tangency value higher than 1 degree, remarkable jumps of speed for the
axes involved in contouring are determined, with infinite acceleration values and discontinuous
functions in the speed rate profile, consequently. According to a value established by the user, the
instruction JERKSMOOTH allows to link smoothly, that is with acceleration and speed continuity, the
speed profiles of the axis while contouring. It should be noted that this smooth link inserts little
variation in the performed trajectory compared to the performed one, because around the
contouring point the axes show a speed rate profile different from the theoretical one.
The variable value expressed through a percentage value between 0 and 100, defines how much
the speed rates profiles should be smoothly linked. A value equal to 0 maintains a theoretical profile
by creating some discontinuities in the accelerations and in the speed rates profiles. A value equal to
100 obtains smooth linked profiles, a better performance, but also the high deviation from the
theoretical trajectory, proportionate to the speed rate along the trajectory.

Albatros107

Manufacturer's manual

Note
The instruction is only applied in the movements with classic interpolation (instructions LINEARABS,
LINEARINC, CIRCABS, CIRCINC, HELICABS, HELICINC). It cannot be applied in movements of
multiaxis interpolation (instruction MULTIABS and MULTIINC).

LINEARABS

Syntax
LINEARABS [label],axis1, position1, [axis2, positon2 [, axis3, position3

[, ..., axis6, position6]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1[...axis2[...axis6]] name of axis devices
position1[...position2[...pos
ition6]]

constant or variable. Absolute move position

Description
Linear interpolation, with absolute move, in positions specified by position1, position2, etc. The optional
parameter label is used in association with the instruction SETLABELINTERP to identify univocally the
displacement bloc.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In this
case it must be taken into account that the word interpolation refers to a coordinated movement of more
axes affected by discrete error due to axis piloting method.

Note
1.Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed
profile. To obtain a correct movement, an instruction[****]WAITSTILL between an instruction
LINEARABS and the other should be interposed.

2.If a reference local system is set using the instruction SETRIFLOC, the three axes that define the
new reference system should be always be indicated among the first three parameters of the
instruction LINEARABS, even if they do not displace anything.

LINEARINC

Syntax
LINEARINC [label],axis1, position1, [axis2, positon2 [, axis3, position3

[, ..., axis6, position6]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1[...axis2[...axis6]] name of axis devices
position1[...position2[...pos
ition6]]

constant or variable. Incremental move position

Description
Linear interpolation, with incremental move, in positions specified by position1, position2, etc. The
optional parameter label is used in association with the instruction SETLABELINTERP to identify
univocally the displacement bloc.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In
this case it must be taken into account that the word interpolation refers to a coordinated movement
of more axes affected by discrete error due to axis piloting method.

 Note
1.Contornature condition is evaluated only on the three first axes making up the reference system.

Adding and possibly modifying a further one, you obtain an incorrect management of the speed
profile. To obtain a correct movement, an instruction WAITSTILL between an instruction LINEARABS
and the other should be interposed.

2.If a reference local system is set using the instruction SETRIFLOC, the three axes that define the new
reference system should be always be indicated among the parameters of the instruction LINEARINC,
even if they do not displace anything.

GPL Language 108

Manufacturer's manual

MOVABS

Syntax
MOVABS axis1, value1 [, axis2, value2 [, ..., axis6, value6]]

Arguments
axis1...[...axis6] name of axis devices
value1...[...value6] constant or variable. Value of absolute move

Description

It instructs the specified axes to execute an absolute moveme according to values specified in

value1 [,...value6].
To execute the move the axis must not be engaged in an interpolated move and it must be in
position or in window. The movement of the axis begins as soon as the instruction is executed. If
more than one point-to-point movement instruction is performed in the same task, they are chained.
If a second task tries to carry out point-to-point instructions on an axis that is already engaged in a
move, this task will wait for the move commanded by the first task to end.
It is also possible to change the velocity of a point-to-point movement and the following move using
the instruction SETVEL. The two movements will be linked by a speed ramp without stopping the
axes.
If the instruction SETVEL is not used, the highest possible velocity is represented by the value of the
manual speed configured.
A point-to-point movement can be halted with the instruction STOP and subsequently restarted with
the instruction START. During the interruption of the movement the axis remains in a normal running
state even though physically it is not moving.
A move can be aborted with the instruction ENDMOV. In this case it cannot be restarted.

NOTE: Previously point-to-point movements:
allowed no speed variation unless the axis was motionless. The current behaviour is similar to
that of interpolated movements.
when interrupted by a STOP the corresponding axis assumed the state "in position".

2) We suggest the reader to use linear interpolation instructions instead of point-to-point movement
instructions, when the number of moving blocks exceeds 32 and the blocks are made by micro-
segments. For further details references shall be made to the document ""Limiti Firmware Movimento
Punto Punto.doc" available from T.p.A. S.p.A.

Example
Homing Routine on Interrupt

Example 2

; speed change
Function SpeedChange
 setvel X, 20
 setvel X, 20
 movabs X, 100, Y, 200
 movabs X, 150, Y, 180
 setvel X, 5
 movabs X, 80, Y, 100
 waitstill X, Y
fret

MOVINC

Syntax
MOVINC axis1, value1 [, axis2, value2 [, ..., axis6, value6]]

Arguments
axis1...[...axis6] name of axis devices
value1...[...value6] constant or variable. Value of incremental move

Description

It instructs each axis to execute an incremental move on the basis of the corresponding value.

To execute the move the axis must not be engaged in an interpolated move and it must be in

Albatros109

Manufacturer's manual

position or within tolerance. The movement of the axis begins as soon as the instruction is executed.
If more than one point-to-point movement instructions on the same task is executed, they are
chained. If a second task tries to carry out point-to-point instructions on an axis that is already
engaged in a move, this task will wait for the move commanded by the first task to end.
It is also possible to change the speed of a point-to-point movement and the following move using
the instruction SETVEL. The two movements will be linked by a speed ramp without stopping the
axes.
If the instruction SETVEL is not used, the highest possible speed is represented by the value of the
manual speed configured.
A point-to-point movement can be halted with the instruction STOP and subsequently restarted with
the instruction START. During the interruption of the movement the axis remains in a normal running
state even though physically it is not moving.
A move can be aborted with the instruction ENDMOV. In this case it cannot be restarted.

NOTE: Previously point-to-point movements:
allowed no speed variation unless the axis was motionless. The current behaviour is similar to
that of interpolated movements.
when interrupted by a STOP the corresponding axis assumed the state "in position".

2) We suggest the reader to use linear interpolation instructions instead of point-to-point movement
instructions, when the number of moving blocks exceeds 32 and the blocks are made by micro-
segments. For further details, references shall be made to the document "Limiti Firmware Movimento
Punto Punto.doc" available from T.p.A. S.p.A.

Example
Homing Routine of an axis

Example 2

; speed change
Function SpeedChange
 setvel X, 20
 setvel X, 20
 movinc X, 100, Y, 200
 movinc X, 150, Y, 180
 setvel X, 5
 movinc X, 80, Y, 100
 waitstill X, Y
fret

MULTIABS

Syntax
MULTIABS [label],axis1, value1, [axis2, value2 [, axis3, value3 [,...,

axis16, value 16]]]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1 ... axis16] name of axis devices
value1... [... value16] constant or variable. Value of theoretical position of displacement bloc

end

Description
Absolute multi-linear interpolation up to 16 axes. This interpolation movement enables to advance the
speed profiles, properly setting their respective tolerances on the axes by means of the instruction
SETTOLERANCE (axes tolerance refers to a portion of path, where a constant interpolation ratio could
not possibly exist). Axes addition order into the MULTIABS instruction should always be the same
and all the axes involved in the movement should be present. The move blocs are queued in the
normal lookahead and the movement is partially joined to the execution of an instruction WAITSTILL,
STARTINTERP or to the filling of the same lookahead. From the axes involved in the move one can be
used as a collider by means of the WAITCOLL instruction. The optional parameter label is used in
association with the instruction SETLABELINTERP to identify univocally the displacement bloc.
Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In
this case it must be taken into account that the word interpolation refers to a coordinated movement
of more axes affected by discrete error due to axis piloting method.

GPL Language 110

Manufacturer's manual

Note
With this kind of interpolation, virtual reference systems (SETRIFLOC and RESRIFLOC instructions)
cannot be used. It is possible to perform some movements with chained axes (in CHAIN). The axes
involved in the multiaxis interpolated movement should be declared master of other axes not
involved in the movement. Furthermore, FeedRateOvveride can be applied.

Example

SETQUOTE x, 0
SETQUOTE y, 0
SETQUOTE z, 0

;first bloc
setveli x, velx1
setveli y, vely1
setveli z, velz1
multiabs x, positionx1, y,positiony1, z,position1

;second bloc
settolerance x, tollx2, y,tolly2, z,tollz2
setveli x, velx2
setveli y, vely2
setveli z, velz2
multiabs x, positionx2, y,positiony2, z,positionz2

;third bloc
settolerance x, tollx3, y,tolly3, z,tollz3
setveli x, velx3
setveli y, vely3
setveli z, velz3
multiabs x, positionx3, y,positiony3, z,positionz3

; fourth bloc

settolerance x, tollx4, y,tolly4, z,tollz4
setveli x, velx4
setveli y, vely4
setveli z, velz4
multiabs x, positionx4, y,positiony4, z,positionz4
waitstill x, y,z

MULTINC

Syntax
MULTIINC [label],axis1, value1, [axis2, value2 [, axis3, value3 [,...,

axis16, value 16]

Arguments
label constant or variable integer. Label identifying a displacement bloc
axis1 ... axis16] name of axis devices
value1... [... value16] constant or variable. Value of theoretical position increase of

displacement bloc end

Description
Incremental multi-linear interpolation up to 16 axes. This interpolation movement enables to advance
the speed profiles, properly setting their respective tolerances on the axes by means of the instruction
SETTOLERANCE (axes tolerance refers to a portion of path, where a constant interpolation ratio could
not possibly exist). Command of axes addition into the MULTINC instruction should always be the
same and all the axes involved in the movement should be present. The movement blocs are queued
in the normal lookahead and the movement is partially joined to the execution of an WAITSTILL,
STARTINTERP instruction or to the filling of the same lookahead. From the axes involved in the
movement one can be used as a collider by means of the WAITCOLL instruction. The optional
parameter label is used in association with the instruction SETLABELINTERP to identify univocally the
displacement bloc.

Albatros111

Manufacturer's manual

Step-by-step axes can only be used in this instruction, if they are controlled by a TRS-AX remote. In
this case it must be taken into account that the word interpolation refers to a coordinated movement
of more axes affected by discrete error due to axis piloting method.

Note
With this kind of interpolation, virtual reference systems (SETRIFLOC and RESRIFLOC instructions)
cannot be used. It is possible to perform some movements with chained axes (in CHAIN). The axes
involved in the multiaxis interpolated movement should be declared master of other axes not
involved in the movement. Furthermore, FeedRateOvveride can be applied.

NORMAL

Syntax
NORMAL axis

Arguments
axis name of axis device

Description

It enables the position control on the axis and disables the axes chain.

When the system is switched on, all the configured axes set in free state and switch to normal state
when this instruction is executed or when the first movement takes place.
However it is advisable to execute this instruction before carrying out axis reset procedure, to
restore any existing emergency conditions.

RESRIFLOC

Syntax
RESRIFLOC axis1, axis2, axis3

Arguments
axis1...axis3 name of devices. Type of axis

Description
It resets the absolute reference system for axes X Y Z (axis1, axis2, axis3).
It is normally used after setting a rototranslation reference system with a SETRIFLOC instruction.

SETINDEXINTERP

Syntax
SETINDEXINTERP axis, varname

Arguments
axis name of axis device
varname name of global integer variable

Description
It defines an index which counts the number of interpolation blocks executed by an axis.
During interpolation movements, the variable varname increases by 1 at each block change.

Note
The variable used as index must be a group global variable or a machine global.

SETLABELINTERP

Syntax
SETLABELINTERP axis, value

Arguments
axis name of device of type axis
value global variable of type integer

Description

GPL Language 112

Manufacturer's manual

In the variable value during a movement in interpolation, every time that the bloc is changed, the
label value of the new bloc is assigned. The label is defined in the instructions of interpolated
movement.

Note
The variable value should be a global group variable or a machine global.

SETPFLY

Syntax
SETPFLY axis, state, speed, position,[error]

Arguments
axis name of axis device
state predefined constant. It indicates the state of the micro to be tested.

Acceptable values are:

ON

OFF

speed float constant or variable
position constant or variable
error integer variable. Error code

Description
It allows you to reset the axis position "on the fly". The resetting is piloted by a switch connected to
the rapid input of the axis connector (on boards with Mechatrolink II bus reference is made to
EXTI1).
During axis movement, it waits for the corresponding home micro to switch to the indicated state.
When this transition is intercepted, the real position of the axis is reset on zero, without interrupting
movement, and target position and speed are automatically and dynamically redefined. If the set
position is reached without detecting an input change and the parameter error has not been set, a
system error is generated. If an error parameter has been set, this will contain the numeric code for
the corresponding system error.
In this case the homing has not been executed and it is necessary to execute the SETQUOTE
instruction to reset the micro search.
To interrupt the "on the fly" homing execution, execute a NORMAL on the axis or simply end the task
that requested the homing.

During the execution of the instruction it is not possible to execute the instructions SETPZERO and
FASTREAD at the same time on the same axis, if it is connected to boards with Mechatrolink II bus.

Example
Homing Routine on Interrupt

SETPFLYCHAINSTRAT

Syntax
SETPFLYCHAINSTRAT axis, type

Arguments

axis name of axis device
type Integer constant. Permitted values:

0 = only the master axis zeroes the coordinate. The slave axis keeps the
previous coordinate
not equal to 0 = both master and slave axes synchronously zero the
coordinate

Description
This instruction enables to set, how the indicated slave axes will behave for a master setpfly
instruction.
The istruction has to be executed indicating the slave axis. If the variable Type is omitted, a default
value equal to 0 is set.

Albatros113

Manufacturer's manual

SETPZERO

Syntax
SETPZERO axis, position [,error]

Arguments
axis name of axis device
position constant or variable. It is an incremental position
error integer variable. Error code

Description
It starts an incremental movement of the axis in the specified position and waits for the encoder
zero pulse to be detected (before reaching the specified position).
As soon as the pulse is detected the real position is set on zero and the axis is stopped.
If the set position is reached without detecting the Zero pulse and the parameter error has not been
set, a system error is generated. If an error parameter has been set, this will contain the numeric
code for the corresponding system error. In this case the set point has not been executed and the
SETQUOTE instruction must be executed to reset the pulse search.
The incremental position can reach a maximum of 50,000 encoder impulses.
The instruction is not applicable to digital axes on ALBSLM.
The movement of the axes, generated by this instruction, can be interrupted with a STOP and
restarted by a START.
If the instruction is executed with S-CAN axes and with EtherCAT axes, a FREE instruction must be
executed first.

During the execution of the instruction it is not possible to execute the instructions SETPZERO and
FASTREAD at the same time on the same axis, if it is connected to boards with Mechatrolink II bus.

Example
Function TestSetpZero
 free X
 setpzero x,100
fret

SETQUOTECHAINSTRAT

Syntax
SETQUOTECHAINSTRAT axis, [value]

Arguments

axis name of axis device
value integer variable. Permitted values:

0= only the master axis zeroes the new coordinate, the slave axis keeps the
previous coordinate
not equal to 0= the coordinates of the slave axes are synchronously initialized with
the master axis coordinates

Description
This instruction enables to set how the indicated slave axis will behave for a master SETQUOTE
instruction
The instruction has to be executed on the slave axis.
If the variable value is omitted, a default value equal to 0 is set.

SETPZEROCHAINSTRAT

Syntax
SETPZEROCHAINSTRAT axis, [value]

Arguments

axis name of axis device
value integer variable. Permitted values:

0= only the master axis zeroes the coordinate, the slave axis keeps the previous
coordinate
not equal to 0= both master and slave axes synchronously zero the coordinate

Description

GPL Language 114

Manufacturer's manual

This instruction enables to set how the indicated slave axis will behave for a master SETPZERO
instruction
The instruction has to be executed on the slave axis.
If the variable value is omitted, a default value equal to 0 is set.

SETQUOTE

Syntyax
SETQUOTE axis, position

Arguments
axis name of axis device
position constant or variable

Description
This instruction forces, at the same time, the theoretical and the real position of an axis to the value
specified in position. If the axis is moving, this instruction causes the axis to stop abruptly as it is
suddenly set in position (real quote coincides with target quote). For this reason we do not
recommend using this instruction on moving axes if not at a very reduced speed.

Example

Axis Homing routine

SETRIFLOC

Syntax
SETRIFLOC position1_ax1, position2_ax1, position3_ax1,

position1_ax2, position2_ax2, position3_ax2,
position1_ax3, position2_ax3, position3_ax3,
axis1, axis2, axis3

Arguments
position1ax1...position3_ax3 director cosine of the three axes
axis1...axis3 name of devices. Axes

Description
It allows you to activate an X' Y' Z' Cartesian reference system with a rototranslation with respect to
the X Y Z absolute reference system of the machine, represented by the physical axes axis1,
axis2 and axis3.
The nine arguments indicate the Director Cosines of the three local axes in reference to the absolute
axes

cos 1 cos 1 cos 1

cos 2 cos 2 cos 2

cos 3 cos 3 cos 3

which compose the transformation matrix of the coordinates.
The origin of the new reference system is set in the current point.
All the interpolation movement instructions, involving axes X, Y and Z, refer to this reference
system, until the RESRIFLOC instruction is executed.

SETTOLERANCE

Syntax
SETTOLERANCE axis1, value1, [axis2, value2 [, axis3, value3 [, ..., axis16,

value 16]]]

Arguments
axis1...axis16 name of axis devices
value1...[...value16] constant or variable. Maximum tolerance value that can be applied to

the axis.

Description

For each defined axis it sets the tolerance value to apply on the multi-axis interpolation motion.
Tolerance value is the displacement value according to which the axis moves away from the original
trajectory in a multi-axis interpolation.

Albatros115

Manufacturer's manual

Tolerance has to be set for each axis involved in the interpolation and the system will advance the
speed rate profiles and respect the tolerances on all the axes without exceeding the ramp space, that
represents the upper limit to anticipate the profiles. A missing assignment of tolerance before a multi-
axis instruction means that the last tolerance will be applied on the axis itself. If a tolerance value has
never been assigned before, the same is considered with null tolerance. In this case each multi-axis
motion, involving that axis, does not set any ramp in advance.

A classic multi-axis trajectory is shown above and is made of two moving blocks, where the first one
consists in a displacement of 100 of the X-axis, while the second one consists in an Y-axis motion of
300 and in an X-axis motion of 100. The red line marks the trajectory in case of null tolerance, the
blue one instead is the trajectory in case of maximum tolerance axis.
The tolerance can also be seen as the area subtended by the speed rate profile during the time of
advance, as below.

GPL Language 116

Manufacturer's manual

START

Syntax
START axis

Arguments
axis name of axis device

Description
It restarts axis movement after a stop.

STARTINTERP

Syntax
STARTINTERP axis

Arguments
axis name of axis device

Description
It starts an interpolation whose channel is identified by axis. Normally the movement of axes
associated to an interpolation channel begins when the interpolation buffer is completely full (512
instructions) or when a WAITSTILL instruction is given, to stop movement. This allows the algorithm
of the interpolator to determine optimal speed profiles, as it is provided with information concerning
a large number of (or all) stages of interpolation movement.
The STARTINTERP instruction allows you to force axis movement even if the above described
conditions are not fulfilled.

Albatros117

Manufacturer's manual

STOP

Syntax
STOP axis

Arguments
axis name of axis device

Description
It interrupts axis movement. The axis executes a deceleration ramp whose length depends on
current speed and configuration parameters.

Example
Homing Routine of an axis

SWITCHENC

Syntax
SWITCHENC axis1, [axis2, [direction, coordinate]]

Arguments
axis1 name of the device of axis type
axis2 name of the device of axis type indicates counting axis
direction predefined constant.

UP=encoder exchange, when the coordinate in positive direction is exceeded
DOWN=encoder exchange, when the coordinate in negative direction is
exceeded

coordinate constant or double variable

Description
Allows you to replace the encoder of axis 1 with the encoder of axis2. The encoder is exchanged
when the quote indicated is exceeded in positive (UP) or in negative (DOWN) direction.
If the parameters direction and coordinate are left out, the encoder exchange is immediately
executed, regardless of the axis position.

If only axis1 is declared, the functioning with a single encoder is restored.

Axis1 cannot be of step-by-step, counting and virtual type, Axis2 can be a counting axis only.
Further, both axis1 and axis2 cannot be involved in movements in chain as slave axis

The instruction generates the system error 4101 - Inconsistent axis AxisName management", when
axis1 or axis2 are declared as slave in a movement in chain and the system error 4105 Instruction
not executable on axis AxisName, when the declared axis type does not belong to the possible ones.

SYNCROOPEN

Syntax
SYNCROOPEN channel, deltaT, matrix, var, [smoothing]

Arguments
channel variable or constant integer. Number of channel to open
deltaT time interval
matrix matrix in which the positions are saved
var number of lines generated
smoothing optional, admissible values: ON and OFF. Enables the profile

smoothing function

Description
Opens a synchronized movement channel. With this type of movement a points profile is generated
that is then executed using the instruction COORDIN. The profile is generated starting from a series
of "crossing points" through which the axes must move all at the same moment. The crossing points
are assigned using the instruction SYNCROMOVE.
The parameter deltaT assigns frequency with which the points of the profile joining the various
crossing points are generated.
The parameter matrix specifies the GPL matrix in which the profile of points is saved. The matrix

GPL Language 118

Manufacturer's manual

must be composed of a double (or float) column for each axis involved in the movement, plus an
integer column (the last). The double column is used to save the positions of the profile points, while
the integer column is used to save an index which corresponds to the crossing point to which the
current stroke of the profile must be brought. This index is useful for synchronizing the movement of
the axes with other activities (e.g. activating an output).
The parameter var is a variable in which the number of points generated is saved; it is used by the
instruction COORDIN to know what the last useful line of the GPL matrix is in which the profile is
saved.
The parameter smoothing allows the activation of a function that avoids discontinuities in the speed
of the axes, thus making the movement more fluid.
Within a profile the speed and the acceleration of the individual axes involved can be varied and the
speed of the axes can be scaled down, see SYNCROSETACC, SYNCROSETDEC, SYNCROSETFEED.
Once all the crossing points are assigned the profile can be generated using the instruction
SYNCROSTARTMOVE.
When the generation of the profile is over the synchronized movement channel is closed with the
instruction
SYNCROCLOSE.
Up to 4 synchronized movement channels can be opened at the same time. The channel enumeration
starts from 1.

Example
Synchronized movements

SYNCROCLOSE

Syntax
SYNCROCLOSE channel

Arguments
channel variable or constant integer. Number of channel to close

Description
Closes a synchronized movement channel. See SYNCROOPEN.

Example
Synchronized movements

SYNCROMOVE

Syntax
SYNCROMOVE channel, axis1, position1, [axis2, position2, [... axis32,

position32]]

Arguments
channel variable or constant integer. Number of synchronized movement

channel
axis1 first axis
position 1 position of first axis
axis32 thirty second axis
position32 position of thirty second axis

Description
This assigns a crossing point for the axes and the movement channel specified. The crossing points
are inserted in a internal table that is processed when the instruction SYNCROSTARTMOVE.
is executed.
The instruction allows up to thirty two axes to be moved.
Step-by-step axes can be used in this instruction, only if controlled by a TRS-AX remote. In this case
it must be taken into account that the word interpolation refers to a coordinated movement of more
axes affected by discrete error due to axis piloting method.
The instruction SYNCROMOVE must be preceded by the instruction to open the synchronized
movement channel: SYNCROOPEN.

Example
Synchronized movements

Albatros119

Manufacturer's manual

SYNCROSETACC

Syntax
SYNCROSETACC channel, axis, accPos, accNeg

Arguments
channel variable or constant integer. Number of channel
axis axis device
accPos variable or constant integer. Acceleration in positive direction
accNeg variable or constant integer. Acceleration in negative direction

Description
Sets the duration of the acceleration ramps of an axis during a synchronized movement. The
acceleration of a movement can be defined in a positive and in a negative direction. See
SYNCROOPEN.

Example
Synchronized movements

SYNCROSETDEC

Syntax
SYNCROSETDEC channel, axis, decPos, decNeg

Arguments
channel variable or constant integer. Number of channel
axis axis device
decPos variable or constant integer. Deceleration in positive direction
decNeg variable or constant integer. Deceleration in negative direction

Description
Sets the duration of the deceleration ramp of an axis during a synchronized movement. The
deceleration of a movement can be defined in a positive and in a negative direction. See
SYNCROOPEN.

Example
Synchronized movements

SYNCROSETVEL

Syntax
SYNCROSETVEL channel, axis, velPos, velNeg

Arguments
channel variable or constant integer. Number of channel
axis axis device
velPos variable or constant double. Speed in positive direction
velNeg variable or constant double. Speed in negative direction

Description
Sets the speed of an axis during a synchronized movement. The speed of a movement can be
defined in a positive and in a negative direction. See SYNCROOPEN.

Example
Synchronized movements

SYNCROSETFEED

Syntax
SYNCROSETFEED channel, axis, feed

Arguments
channel variable or constant integer. Number of channel
axis axis device

GPL Language 120

Manufacturer's manual

feed variable or constant integer. Feed rate value

Description
Allows the scaling of the speed of all the axes associated with a synchronized movement channel.
The parameter feed represents the percentage of the speed previously programmed to be applied
to the following movements. Admissible values range from 0 to 100.
NOTE: This instruction has effect during the generation of the profile and not during its execution
which is triggered by the instruction COORDIN. To scale the speed of the axes while they are in
motion use the instruction SETFEEDI.

Example
Synchronized movements

SYNCROSTARTMOVE

Syntax
SYNCROSTARTMOVE channel, [line]

Arguments
channel variable or constant integer. Number of channel
line initial process line

Description
Start the processing of the profile for the specified channel. The optional parameter line allows the
specification of which will be the first line of the internal table in which the SYNCROMOVE instructions
to include in the processing are queued; if this is omitted the processing starts from the first line. See
SYNCROOPEN.

Example
Synchronized movements

WAITCOLL

Syntax
WAITCOLL axis, value, timeout, delta

Arguments
axis name of the axis device
value constant or variable. Absolute position value

timeout constant or variable. It is the waiting time, when the axis is still

delta constant or variable.it is the window value to obtain a still axis

Description
When the axis moves, the achievement of a programmed position can be prevented by an obstacle
of mechanical nature, represented at times also by the same workpiece. In this case the system
generates an error in the system "servoerror" or "movement not finished". This instruction defines a
position value at which
- the system begins to verify the presence of a collision;
- the waiting time (timeout) before the axis, after the collision, is placed on "position";
- the delta that defines the tolerance on the axis positioning.

When the axis exceeds its position, which is defined in value, the system checks, whether the axis is
still moving . Once the obstacle is intercepted, the critical situation is identified and, while ensuring the
engine thrust, the loop error exceeding the limit is not checked anymore. The motion direction on
which the collision occurred is verified, has the same direction of the last movement joined at the end.
The timeout is expressed in seconds, the delta value should be greater than 0.001 mm and less than
the difference between the programmed arrival position and the position value.

The instruction can be used with the multi-axis interpolator, since within such interpolator the
temporary loss of the interpolation link.
The instruction can be applied also to virtual axes and to Master axes of a movement in chain.
An error system is generated when:

the axis is executing a classic interpolated movement (see instructions LINNEARBS, LINEARINC,.
CIRCABS, CIRCINC, HELICABS, HELICINC) or in coordinated motion

the axis is a slave-axis

Albatros121

Manufacturer's manual

the axis is a counting axis or a step-to-step axis

the value set is higher than the end-movement position

Example

; sets the X axis position
SETQUOTE X, 0.0
; moves the x axis to the absolute position 1000
MOVABS X, 1000.0
; waits for the collision point, waits 2 seconds before setting
; the axis on "position", after
; intercepting a collision with a precision of 0.01 mm
WAITCOLL X, 980.0,2.0,0.01

WAITDEC

Syntax
WAITDEC axis1 [, ..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for the deceleration state or one of the subsequent states of all the specified axes (1÷6).
The task where the instruction is executed is put on wait status, until the axis reaches the
acceleration, coordinate, wait on the higher threshold, wait on the lower threshold and axis quiescent
waiting state.

Axis states are identified by an integer:
- acceleration = 1
- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher threshold = 5
- axis quiescent waiting = 6
- wait on the lower threshold = 7

WAITREG

Syntax
WAITREG axis1 [, ..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for the regime state or one of the subsequent states of all the specified axes (1÷6).
Il task in cui viene eseguita l'istruzione viene messo in attesa fino a quando l'asse si trova negli stati
di steady, deceleration, coordinate, wait on the higher threshold, wait on the lower threshold and axis
quiescent waiting state.

Axis states are identified by an integer:
- acceleration = 1
- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher threshold = 5
- axis quiescent waiting = 6
- wait on the lower threshold = 7

GPL Language 122

Manufacturer's manual

WAITSTILL

Syntax
WAITSTILL axis1 [, ..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for all the specified axes (1÷6) to end movement (Position state).

Example

Axis Homing routine

WAITTARGET

Syntax
WAITTARGET axis1 [, ..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for the theoretical current position of all the specified axes (1÷6) to reach target position.
The real quote will not match the theoretical position until the loop error is cleared.

WAITWIN

Syntax
WAITWIN axis1 [, ..., axis6]

Arguments
axis1 [...,axis6] name of axis device

Description
It waits for the thereshold state or one of the subsequent states of all the specified axes (1÷6).
he task where the instruction is executed is put on wait status, until the axis reaches the wait on the
higher threshold, wait on the lower threshold and axis quiescent waiting state.

Axis states are identified by an integer:
- acceleration = 1
- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher threshold = 5
- axis quiescent waiting = 6
- wait on the lower threshold = 7

WAITACC

Syntax
WAITACC axis [, ..., axis6]

Arguments
axis1[...,axis6] name of axis device

Description
It waits for the acceleration state or one of the subsequent states of all the indicated axes (1÷6).
The task where the instruction is executed is put on wait status, until the axis reaches the
acceleration state or one of the subsequent states.

Axis states are identified by an integer:
- acceleration = 1

Albatros123

Manufacturer's manual

- steady = 2
- deceleration = 3
- coordinate = 4
- wait on the higher threshold = 5
- axis quiescent waiting = 6
- wait on the lower threshold = 7

Axis Parameter

Reading/Writing

DEVICEID

Syntax
DEVICEID device, variable

Arguments
device name of the device or the device parameter
variable integer variable receiving the logical address

Description
It writes in variable the logical address associated to any kind of device.
This instruction may enable an univocal "key" associated to the device, as an index or a search key in
data structures.

GETAXIS

Syntax
GETAXIS axis, dataname, varname
GETAXIS axis, dataname1, dataname2, [...,dataname20,] matrix[row]

Arguments
axis name of axis device
dataname predefined constant (See list below). Axis parameter(1÷20)
varname variable or name of device
row constant or integer variable. Row number of the matrix
matrix name of matrix

Description
In the first version the instruction reads one datum (dataname) of an axis and saves it in a
variable.
In the second version, the instruction reads various data of an axis at the same time (from 1 to 20)
and saves it, in the same order as it was requested, in the elements of the specified matrix row.
In this case the number of columns of the matrix must correspond to the number of requested data.
The list reported below includes all the predefined constants that can be assigned to the parameter
dataname.
The first column is the name of the constant.
The second describes the quantity of the axis read by the instruction.
The third is the format of the datum returned to the variable varname or the matrix[row], where:

d means double,
f means float,
i means integer
b means char.

If the declaration of the variable, where the data will be memorised, is different from the value
returned by the instruction, the compiler changes the datum (cast) to the type requested by the user.
Sometimes this implies losing a certain amount of data. For example a double value equal to 12,345,
changed into an integer, becomes 12. For this reason we recommend keeping to the requested types
when declaring varname and matrix[row] variables.
The last column describes either the return value or the measuring unit of the relative parameter.
Constants beginning with "_CFG" allow to configuration values, that is the values set when the
machine is started.

costant description type return value

_CFGTYPE Axis typology i 1=analog,3=stepping

GPL Language 124

Manufacturer's manual

costant description type return value

motor,4=digital,5=count,
6=frequency/
direction,7=virtual

_CFGUM unit of measure i 0=millimetres,1=inches,2
=degrees,3=revol.

_CFGRIS resolution d impulses per _UM

_CFGVMAX maximum speed f m/1' or inch/1' or
degrees/1' or rotations/1'

_CFGVMAXD maximum speed in
manual mode

f m/1' or inch/1' or
degrees/1' or rotations/1'

_CFGVMAXI maximum interpolation
speed

f m/1' or inch/1' or
degrees/1' or rotations/1'

_CFGPHINV encoder phase inversion b 0=no inversion,
1=inversion

_CFGRFINV reference inversion b 0=no inversion,
1=inversion

_CFGZIND enable on-index position
reset

b 0=disabled, 1=enabled

_CFGTRPP type of acceleration/
deceleration ramp in
point-to-point mode

b 0=linear, 1= 'S' shaped ,
2= double ‘S’ shaped

_CFGKFFA acceleration feed
forward

f

_CFGKFFAI interpolation acceleration
feed forward

f

_CFGSRPP step by step ramp start
speed

f m/1' o inch/1' o gradi/1'
o giri/1'

_CFGACC acceleration time from 0
to _CFGVMAX

i msec

_CFGDEC deceleration time from
_CFGVMAX

i msec

_CFGACCI acceleration time from 0
to _CFGVMAXI

i msec

_CFGDECI deceleration time from
_CFGVMAX to 0

i msec

_CFGQLP positive axis limit d position

_CFGQLN negative axis limit d position

_CFGKP proportional coefficient f

_CFGKI integral coefficient f

_CFGKD derivative coefficient f

_CFGKFF feed forward f percentage

_CFGKPS slave axis proportional
coefficient

f

_CFGKIS slave axis integral
coefficient

f

_CFGKDS slave axis derivative
coefficient

f

_CFGQEAP positive loop error d position

_CFGQEAN negative loop error d position

_CFGKPI interpolation proportional
coefficient

f

_CFGKII interpolation integral
coefficient

f

_CFGKDI interpolation derivative
coefficient

f

_CFGTMINP minimum positive
voltage

f volt

_CFGTMINN minimum negative
voltage

f volt

_CFGSTMINP positive threshold
voltage

f volt

_CFGSTMINN negative threshold
voltage

f volt

_CFGESC axis moving timeout i msec

Albatros125

Manufacturer's manual

costant description type return value

_CFGDSE enable dynamic
servoerror

b 0=disabled, 1=enabled

_CFGAEN enable automatic adjust b 0=disabled, 1=enabled

_CFGOFFSET adjust voltage - initial
offset

f volt

_CFGCEE incorrect encoder
connection position

d position

_CFGNOTCH notch filter frequency i Hz

_CFGBUFI integrative calculation
dimension buffer

i [1, 200]

_CFGQAP positive quiescent
threshold

d

_CFGQAN negative quiescent
threshold

d

_CFGTRI type of acceleration/
deceleration ramp in
interpolation mode

f 0=linear, 1= 'S' shaped
,2= double ‘S’ shaped

_CFGKFFI interpolation feed
forward

f percentage

_CFGAAF wait axis still b 0=disabled, 1=enabled

_CFGENCTYPE type of encoder i 0=simulated or absent,
1=real

_SRPP step by step ramp start
speed

f m/1' or inch/1' or
degrees/1' or rotations/1'

_ACC acceleration time from 0
to _VMAX

i msec

_DEC deceleration time from
_VMAX to 0

i msec

_ACCI acceleration time from 0
to _VMAXIin
interpolation mode

i msec

_DECI deceleration time
from_VMAXI to 0 in
interpolation mode

i msec

_QLP positive axis limit d position

_QLN negative axis limit d position

_KP proportional coefficient f

_KI integral coefficient f

_KD derivative coefficient f

_KFF feed forward f percentage

_KPS slave axis proportional
coefficient

f

_KIS slave axis integral
coefficient

f

_KDS slave axis derivative
coefficient

f

_QEAP positive loop error d position

_QEAN negative loop error d position

_VEL point- to-point speed f m/1' or inch/1' or
degrees/1' or rotations/1'

_VELI interpolation speed f m/1' or inch/1' or
degrees/1' or rotations/1'

_MODE axis functioning mode b 1=normal, 2=free,
8=interpol., 10=coord.

_PHINV encoder phase inversion b 0=no inversion,
1=inversion

_RFINV reference inversion b 0=no inversion,
1=inversion

_ZIND enable on-index position
reset

b 0=disabled, 1=enabled

_KPI interpolation proportional
coefficient

f

_KII interpolation integral
coefficient

f

GPL Language 126

Manufacturer's manual

costant description type return value

_KDI interpolation derivative
coefficient

f

_KFFI interpolation feed
forward

f percentage

_KFFA acceleration feed
forward

f percentage

_KFFAI interpolation acceleration
feed forward

f percentage

_ESC axis moving timeout i msec

_CEE incorrect encoder
connection position

d position

_NOTCH notch filter frequency i Hz

_BUFI integrative calculation
dimension buffer

i [1,200]

_QAP positive quiescent
threshold

d

_QAN negative quiescent
threshold

d

_QEAPINV positive loop error limit
in inversion

d

_QEANINV negative loop error limit
in inversion

d

_OFSCOORD offset position
coordinated move

d

_MS axis typology master or
slave

b 0=not in
chain,4=master,5=slave

_QENC encoder position d position

_QR real position d position

_RIS resolution used by the
axis

d

_ST axis state b 1=accel., 2=regime,
3=decel.,4=position,
5=wait big win.,6=wait
axis stop,7=wait small
win, 8=start

_QT theoretical position d position

_EA loop error d position

_FF feed forward i

_VC current speed f

_P proportional correction i

_I integral correction i

_D derivative correction i

_FLGS axis flags b

_VCR real speed f

_ADJUST axis compensation offset i whole number showing
the tension to be
transmitted to the drive,
as seen from the side of
the DAC axis card. The
full scale of the drive is
10 Volt and that of the
DAC is 32767.

_DAC DAC value i whole number
representing the tension
to be transmitted to the
drive, as seen from the
side of the DAC axis
card. The full scale of the
drive is 10 Volt and that
of the DAC is 32767.

_ACCINST instantaneous
acceleration value

f

_FFA acceleration feed
forward

i

Albatros127

Manufacturer's manual

costant description type return value

_GONETIME elapsed time from the
beginning of the
movement

f sec (0 for slave axis and
step-by-step axis)

_RESTIME time left until the end of
the movement. The
values are related to the
allocated movement in
the buffer when
requested.

f sec (0 for slave axis,
coordinated moving axes
and step-by step axis)

_GONESPACE space from the
beginning of the
movement. The values
are related to the
allocated movement in
the buffer when
requested.

f percentage (100 for
slave axis, interpolated
moving axes and step-
by-step axis)

_RESSPACE space left until the end
of the movement. The
values are related to the
allocated movement in
the buffer when
requested.

f percentage (100 for
slave axis, interpolated
moving axes and step-
by-step axis)

_AXESJERK enabling the jerk control
on the axis

b 1=enabled control,
0=control not enabled

_MOVEJERK enabling the jerk control
on the movement on
which the axis is
engaged

b 1=enabled control,
0=control not enabled

_MOVETYPE axis motion on which the
axis is engaged.

b 1=classical interpolated
movement,
2=interpolated multi-axis
motion,
3= coordinated movement
4= movement point-to-
point, 5=movement in
chain (slave axes only)

_PARTYPESET type of parameter axes
in use during the
movement

i 1=interpolation, 0=point-
to-point

_AXINRIFLOC current axe in a local
reference system

i 1=yes, 0=no

_QTARGETTOOL target position of the
axis. In case of ISO
interpolation target
position of the
coordinate of the tool
point of the axis

d

_QREALTOOL real position of the axis.
In case of ISO
interpolation real
position of the
coordinate of the tool
point of the axis

d

_BACKLASH value of the mechanical
clearance defined for the
axis

d

_DISABLED disabling an axis b 1=disabled axis, 0=
enabled axis

_DYNLIMIT enabling dynamic
numeric control of axis
limits

b 1=enabled control, 0=
disabled control

_AXESFEED override feedrate value
currently applied to the
axis

f

_CORRLIN kind of linearity
correction in use

i 0=no correction in use,
1=self correction,
2=crossed correction,

GPL Language 128

Manufacturer's manual

costant description type return value

3=self correction with
crossed correction

_VELISO the tool point speed
during the ISO -
movement

f

_ISOSTOPS number of the forced
stops of the interpolated
movement due to
borderline situations of
the lookahead

i

_CURRATIO value of the chaining
ratio currently used

 d

_DYNRATIO returns, if a dynamic
change of the chaining
ration is in execution

i 0=no, 1 = yes

_RESBLOCK number of total queued
displacement blocs in the
movement (current
value)

i

_EXECBLOCK number of the
displacement blocs still
to be performed

i

_TOTALBLOCK number of performed
displacement blocs

i

_SWITCHENC monitors if the encoders
are being exchanged

i -1=the axis does not use
the SWITCHENC
instruction, 0= a
SWITCHENC instruction
has been executed, but
the axis is using its
encoder, 1= a
SWITCHENC instruction
has been executed and
the axis is using the
encoder of the counting
axis

_QOFSENC
encoder offset value d

Point-to-point Movement

SETACC

Syntax
SETACC axis, [value]

Arguments
axis name of axis device
value constant or variable. Acceleration time

Description
It assigns to the axis the acceleration time indicated by value. Acceleration time is expressed in
milliseconds.
If value is omitted, it assigns the configuration parameter. If the instruction is placed between two
instructions MOVABS or MOVINC, the first movement instruction (with stop of the movement)is
executed, using the acceleration and deceleration parameters previously set. The second instruction
is executed, when the new parameter of acceleration are applied. SETACC instruction has an effect
only on the movements coming after its execution.
If the specified value is smaller than the configuration parameter then the latter is taken.

See also SETDEC, SETACCI and SETDECI.

Albatros129

Manufacturer's manual

SETDEC

Syntax
SETDEC axis, [value]

Arguments
axis name of axis device
value constant or variable. Deceleration time

Description
It assigns to the axis the deceleration time indicated by value. Deceleration time is expressed in
milliseconds.
If value is omitted, the configuration parameter is taken. If the instruction is placed between two
instruction, MOVABS or MOVINC, the first movement instruction (with stop of the movement), is
executed using the acceleration and deceleration parameters previously set. The second instruction
is executed, when the new parameter of deceleration are applied. SETACC instruction has an effect
only on the movements coming after its execution.
If the specified value is smaller than the configuration parameter then the latter is taken.

See also SETACC, SETACCI and SETDECI.

SETDERIV

Syntax
SETDERIV axis [, value]

Arguments
axis name of axis device
value constant or variable. Char and integer variables are not allowed

Description

It assigns the value derivative action coefficient to the axis.
If value is omitted, the configuration derivative action coefficient is used.
The instruction can not be applied to a step-by-step motor.
See also instruction SETDERIVI.

SETFEED

Syntax
SETFEED axis, value

Arguments
axis name of axis device
value constant or variable. It represents the feed rate override percentage

Description
It modifies the percentual value of the axis feed rate override in relation to point-to-point
movements. See also SETFEEDI.

SETFEEDF

Syntax
SETFEEDF axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed rate override percentage

Description
It assigns the value feed forward percentage to the axis.
If value is omitted, the configuration feed forward coefficient is used.
If the instruction is applied to a step-by-step motor a system error is generated. The same happens
if the value variable is set on a value which is not included between 0 and 100.
See also instructions SETFEEDFI, SETFEEDFA, SETFEEDFAI.

GPL Language 130

Manufacturer's manual

Note

If the instruction is applied to an engine with SLM command and plate speed higher than 3750 RPM,
the maximum feed forward adjustable value is 50. This is because the engine with Commands SLM
performs a scaling on internal reference speed sent by the control.

SETFEEDFA

Syntax
SETFEEDFA axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed forward percentage

Description
It assigns to the axis the acceleration feed forward percentage value for point-to-point movements.
If value is omitted, the configuration feed forward coefficient is used.
If the instruction is applied to a step-by-step motor a system error is generated. The same happens
if the value variable is set on a value which is not included between 0 and 100.
See also instructions SETFEEDF,SETFEEDFI,SETFEEDFAI.

Note

If the instruction is applied to an engine with SLM command and plate speed higher than 3750 RPM,
the maximum feed forward adjustable value is 50. This is because the engine with Commands SLM
performs a scaling on internal reference speed sent by the control.

SETINTEG

Syntax
SETINTEG axis [, value]

Arguments
axis name of axis device
value constant or variable. Integral action coefficient. Char and integer

variables are not allowed.

Description
It assigns the value integral action coefficient to the axis.
If value is omitted, the configuration integral action coefficient is used.
The instruction can not be applied to step-by-step motors.
See also instruction SETINTEGI.

SETMULTIFEED

Syntax
SETMULTIFEED axis1, value1, axis2, value2 [, axis3, value3 [, ..., axis16,

value 16]]]

Arguments
axis1...axis16 name of devices of type axis
value1...[...value16] constant or variable. It represents the feed rate override percentage

Description
It modifies the feed rate override percentage value of the indicated axes indicated as far as the
point- to-point movements are concerned. For each axis a different value can be set.

Albatros131

Manufacturer's manual

SETPROP

Syntax
SETPROP axis [, value]

Arguments
axis name of axis device
value constant or variable. Proportional action coefficient. Chars and integers

are not allowed

Description
It assigns the proportional action coefficient value to the axis.
If value is omitted, the configuration proportional action coefficient is used.
The instruction can not be applied to step-by-step motors.
See also instruction SETPROPI.

SETVEL

Syntax
SETVEL axis [, speed]

Arguments
axis name of axis device
speed float constant or float variable

Description
It sets the highest speed of the axis for point-to-point movements.
Speed is expressed in the axis measuring unit, specified in configuration.
If the programmed value is higher than the value of configuration, the latter is used.
It the speed argument is omitted, the configuration value is used. Only positive speed values are
allowed.
See instruction SETVELI.

Example

Axis Homing routine

Interpolated Movement

LOOKAHEAD

Syntax
LOOKAHEAD [value]

Arguments
value constant or variable. Look ahead value

Description
Sets the interpolator look ahead value. Look ahead is the number of interpolation blocks that will be
processed before starting axes motion. It allows generation of optimized speed profiles, specifically
when using "S" shaped acceleration and deceleration ramps.
In case value parameter is not specified, a default look ahead of 512 blocks is assumed.
Maximum allowed value is 4096/channelsnumber where channelsnumber is the number of
interpolation channels as defined in module configuration. Minimum allowed value is 256.

NOTICE: an interpolation block is constituted by the set of information associated to any instruction
of interpolated displacement (e.g. LINEARABS).

Example

LOOKAHEAD 1024

GPL Language 132

Manufacturer's manual

SETACCI

Syntax
SETACCI axis1 [, ..., axis6] [, value]

Arguments
axis1,[...axis6] name of axis device
value constant or variable. Acceleration time

Description
It assigns to axes axis1 and axis2 the interpolation movement acceleration time indicated by
value. Time is expressed in milliseconds. If value is omitted, the configuration parameter is taken
instead.

See also SETACC, SETDEC and SETDECI.

SETACCLIMIT

Syntax
SETACCLIMIT axis,[value]

Arguments
axis name of axis device
value operating time constant

Description
It enables and disables the automatic calculation of interpolation regime speed according to the
acceleration tolerated by the axes. The value parameter is a time constant used to define the speed
limit tolerated by the axis, in milliseconds. This parameter is optional. If omitted, the macro will
disable the automatic calculation. A standard value for this parameter is 30 milliseconds. If this time is
further reduced, the profile will slow down making movement more gentle. By increasing this time,
the opposite effect is obtained. This instruction can’t be applied to helical interpolations.

SETACCSTRATEGY

Syntax
SETACCSTRATEGY axis, [value]

Arguments
axis name of axis device
[value] acceleration strategy

Description
Allows the selection of the type of acceleration wanted for the following interpolation movements. The
instruction is executed for all the axes involved in the interpolation.
There are two admissible values for the parameter value: 0 and 1. If the value 0 is passed, the
usual acceleration strategy is adopted (the least of the axes involved in the interpolation is chosen as
profile acceleration). If the value is equal to 1 the highest acceleration that the individual axes can
support is taken (considering the individual components). In this latter case, only the linear
interpolation strokes will be considered and the algorithm will work only so long as the acceleration
and deceleration ramps are contained in the same interpolation stroke.

SETAXPARTYPE

Syntax
SETAXPARTYPE axis, [value]

Arguments
axis name of the axis device
[value] variable or integer constant.

Description
When a multilinear interpolation is performed, this instruction allows you to change the axis parameter
set in use, changing from the typical parameters of the interpolation (value =1) to those used for the

Albatros133

Manufacturer's manual

point-to-point movement (value = 0). If the variable value is omitted, the resolution value used is
the interpolation one.
The parameter set change can only be made if the axis is still in POSITION state, otherwise the
instruction generates the system error no. 4101 "Inconsistent axis AxisName management".

SETCONTORNATURE

Syntax
SETCONTORNATURE [value1[,value2]]

Arguments
value1 constant or variable. Maximum contouring angle
value2 constant or variable. Maximum slowdown angle

Description
Sets the minimum angle between the tangents of two trajectories carried out in interpolation. If the
angle is exceeded, the machine will not carry out the contouring, that is, the axes will stop at the end
of the first trajectory and then restart along the second one. For this reason a maximum contouring
angle is defined as value1 and represents the maximum angle between two displacement lines,
below which the movement does not stop. If the angle between two displacement blocks is greater
than the maximum contouring angle, the movement stops. To avoid the stop, a maximum
deceleration angle (value2) can be set. If the angle between two displacement blocks is included
between themaximum contouring angle and the maximum deceleration angle, the movement does
not stop, but only slows down. Thus, the maximum deceleration angle represents the angle over
which the movement must be compulsorily stopped. For angles less than the maximum contouring
angle the movement does not slow down, for angles between the maximum contouring angle and
the maximum deceleration angle the movement stops.
Value1 and value2 are optional parameters; if both are not set, 15 degrees are taken on as a
default value. If only the first parameter is set, maximum deceleration angle is equal to the maximum
 contouring angle. Deceleration feature is disabled when the maximum deceleration angle is less or
equal to the maximum contouring angle. The maximum deceleration angle is equal to 180 degrees. If
an greater value is set, the generates the following error no. 4399 "Parameter out of range".
Deceleration feature is enabled only if the instruction JERKSMOOTH is active; however, the contouring
is always active.

Nota
L'uso di questa istruzione è associato all'uso delle istruzioni JERKSMOOTH e SETSLOWPARAM e it is
only applied in the movements with classic interpolation
(LINEARABS, LINEARINC, CIRCABS, CIRCINC, HELICABS, HELICINC instructions).

SETDECI

Syntax
SETDECI axis1 [, ..., axis6] [, value]

Arguments
axis1,[...axis6] name of axis device
value constant or variable. Deceleration time

Description
It assigns to axes axis1 and axis2 the interpolation movement deceleration time indicated by
value. Time is expressed in milliseconds. If value is omitted, the configuration parameter is taken
instead.

See also SETACC, SETDEC, and SETACCI.

SETDERIVI

Syntax
SETDERIVI axis [, value]

Arguments
axis name of axis device
value constant or variable. Derivative action coefficient. Char and integer

variables are not allowed

GPL Language 134

Manufacturer's manual

Description
It assigns to the axis the value derivative action coefficient during axis interpolation movement.
If value is omitted, the configuration derivative action coefficient is used.
The instruction can not be applied to a step-by-step motor.
See also instruction SETDERIV.

SETFEEDFAI

Syntax
SETFEEDFAI axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed forward percentage

Description
It assigns to the axis the acceleration feed forward percentage value for interpolation movements
If value is omitted, the configuration feed forward coefficient is used.
If the instruction is applied to a step-by-step motor a system error is generated. The same happens
if the value variable is set on a value which is not included between 0 and 100.
See also instructions SETFEEDF,SETFEEDFI,SETFEEDFA.

Note

If the instruction is applied to an engine with SLM command and plate speed higher than 3750 RPM,
the maximum feed forward adjustable value is 50. This is because the engine with Commands SLM
performs a scaling on internal reference speed sent by the control.

SETFEEDI

Syntax
SETFEEDI axis, value

Arguments
axis name of axis device
value constant or variable. It represents the feed rate override percentage

Description
It modifies the percentual value of axis feed rate override in relation to interpolation movements.
See also instruction SETFEED.

SETFEEDFI

Syntax
SETFEEDFI axis [, value]

Arguments
axis name of axis device
value constant or variable. Feed forward percentage

Description
It assigns to the axis the feed forward percentage value for interpolation movements.
If the argument value is omitted, the system takes the feed forward percentage set in the
configuration parameters of the concerned axis device.
The instruction can not be applied to step-by-step motors.
The value variable admits values included between 0 and 100.
See also instructions SETFEEDF,SETFEEDFA,SETFEEDFAI.

Note

If the instruction is applied to an engine with SLM command and plate speed higher than 3750 RPM,
the maximum feed forward adjustable value is 50. This is because the engine with Commands SLM
performs a scaling on internal reference speed sent by the control.

Albatros135

Manufacturer's manual

SETINTEGI

Syntax
SETINTEGI axis [, value]

Arguments
axis name of axis device
value constant or variable. Integral action coefficient. Char and integer

variables are not allowed.

Description
It assigns to the axis the integral action coefficient value used during axis interpolation movements.

If value is omitted, the configuration integral action coefficient is used.
The instruction can not be applied to step-by-step motors.
See also instruction SETINTEG.

SETPROPI

Syntax
SETPROPI axis [, value]

Arguments
axis name of axis device
value constant or variable. Proportional action coefficient. Chars and integers

are not allowed

Description
It assigns to the axis the proportional action coefficient value used during axis interpolation
movements.
If value is omitted, the configuration proportional action coefficient is used.
The instruction can not be applied to step-by-step motors.
See also instruction SETPROP.

SETSLOWPARAM

Syntax
SETSLOWPARAM axis [,value1,value2]

Arguments
axis name of device of axis type

value1 constant or variable double. General reduction factor

value2 constant or variable double. Inversion reduction factor

Description
This instruction modifies the parameters needed to calculate the deceleration, where deceleration
features are active while contouring (see instruction SETCONTORNATURE).
Deceleration speed is initially calculated for each axis in a technical way. In case of motion reversal, it
can be reduced using value2. Later, among all the calculated speed rates, the minimum speed rate is
taken into account, in order to comply with the dynamic of the more limiting axis. Finally, a further
reduction of the deceleration speed of a factor which depends on value1, is possible.

If value1 or value2 are omitted, values by default are taken on, so that both the parameters do
not take effect. The value1 parameter represents the reduction percentage value of the theoretical
speed slowdown. The applied slowdown speed is equal to (100 value1((100-valore1)/100))*
theoretical speed. Maximum reduction value is equal to 100. In this case the resulting speed
corresponds to 1% of the theoretical speed. Vice versa, when the value is 0 or it is omitted, the
default value, that is, the entire theoretical speed, is taken into account.
The parameter value2 represents the percentage of reduction, between 1 and 10 times, of the
theoretic slowdown, should an axis reverse its motion. In particular, when value2 is 100, the speed
rate drops by 10 times. Vice versa, when it is equal to zero or it is omitted, the speed rate does not
drop.

GPL Language 136

Manufacturer's manual

The instruction generates the system error 4399 "Parameter out of range", when the value set is less
than 0 or greater than 100. It is important to remember that if the parameter value1 is omitted, also
the value2 parameter must be omitted.

Note
This instruction requires the instructions JERKSMOOTH and SETCONTORNATURE and is only effective
with classical interpolation (instructions LINEARABS, LINEARINC, CIRCABS, CIRCINC, HELICABS,
HELICINC).

SETVELI

Syntax
SETVELI axis1 [, ..., axis6] [, speed]

Arguments
axis1 [...axis6] name of axis device to be interpolated
speed float constant or float variable

Description
It sets the highest speed of axis1 and axis2, for interpolation movements.
Speed is expressed in the axis measuring unit, specified in the configuration parameter. If the
speed argument is omitted, maximum configuration speed is taken.
Step-by-step axes can be used in this instruction only if they are controlled by a TRS-AX remote.
See instruction SETVEL.

SETVELILIMIT

Syntax
SETVELILIMIT axis, speed

Arguments
axis name of axis device
speed float constant or float variable

Description
It sets the single speed components of the indicated axis, for interpolated movements.
The speed is expressed in the UOM of the axis.

Coordinated Movement

SETFEEDCOORD

Syntax
SETFEEDCOORD axis, value1, value2

Arguments
axis name of the device of axis type
value1 constant or variable double. It represents the maximal percentage of feed rate

override.
value2 constant or variable integer. It represents the number of real time where the

feed rates variation has to be applied.

Description
This modifies value1 percentage of the axis feed rate's maximal instantaneous variation. Feed rate
is not changed anymore in the time, expressed as a real time and defined into the value 2 variable.
In other words, after applying a variation of feedrate override of value1, as highest value, by a
Real Times number of value2, any new feedrate variation cannot be applied. The combination of
these two parameters defines a sort of acceleration/deceleration, that the axis can sustain. By
modulating these two parameters, we can obtain some "step ramps" of the ramp required.

Note
For each axis involved in the coordinate move feedrate value and time should be set, otherwise the
default values value 1=100 and value2=1 are taken. During the execution of the coordinated move
(instruction COORDIN), the system calculates again the parameters value1 and value2 to apply to

Albatros137

Manufacturer's manual

the move according to all the involved axes' parameters. The motionless axes are excluded from the
control. Both parameters are calculated as follows:
value1: minumum value set on the moving axis;
value2: value obtained dividing value1 by the lowest ratio value1/value2.

Exemple
;
Function CoordinatedMove

Setquote X,0
Setquote Y,0
Setquote Z,0

setFeedCoord X, 20, 80
setFeedCoord Y, 10, 1
setFeedCoord Z, 3, 3

coordin matrix, deltaT, UP, rigaInit, rigaEnd,mask, _
 X,columnX, Y,columnY, Z,columnZ

waitstill x,y,z

fret

Suppose that in a specific passage of the coordinated move the z-axis does not move. Set parameters
result to be

Max_Variation = 10
Delta_T = 10 / 0.25 = 40

Therefore we have to following trace of oscilloscope, where the speed rate profile of the X-axis is marked
in green and that of the Y-axis is marked in yellow.

GPL Language 138

Manufacturer's manual

SETOFFSET

Syntax
SETOFFSET axis, position

Arguments
axis name of axis device
position constant or variable. Offset for coordinated movements

Description
It allows you to apply an offset to the position of a coordinated movement.
The offset specified by the position parameter will be used in later coordinated movements, adding
the indicated position to all the positions in the table.
See also instruction COORDIN.

Chained Movement

RATIO

Sintassi
RATIO axis, [value]

Argomenti
axis name of axis device
value costant or variable. Reduction ratio.

Descrizione
Sets the chaining ratio of a slave axis with respect to its master. Slave axis movements will be scaled
with respect to master movements by the set chaining ratio. If the value parameter is omitted, the
ratio is reset to 1.0 (identical movements). Instruction generates system error if executed when the
axis is not in slave state and the corresponding master axis is not in position state.
See CHAIN instruction.

Esempio

CHAIN X, Y
RATIO Y, 0.5 ; reduction ratio 1/2

MOVABS X, 100 ; Y axis will move to position 50
WAITSTILL X

SETDYNRATIO

Syntax
SETDYNRATIO axis, value

Arguments
axis name of the axis device
value constant or double variable

Description
This instruction allows the chaining ratio to be changed in a dynamic way during the movement of the
master axis. It is possible to apply the new value of the chaining ratio, even though the previous
variation has not ended. The declared axis must be a slave axis.
If the instruction is executed with master axis at the state POSITION, the new value of the chaining
ratio value is instantaneously applied.
The variation of the chaining ratio occurs by means of a linerar acceleration (or deceleration) ramp.
The acceleration value employed is given by the acceleration of the Master-axis currently used for the
point-to-point movement. This means that it is also possible to modify this ramp by setting a new
acceleration value using the instruction SETACC.
This instruction can generate following system error:

"4101: Inconsistent axis AxisName management", in the event that the axis declared is not a slave
axis.

Albatros139

Manufacturer's manual

Generic Parameters

DYNLIMIT

Syntax
DYNLIMIT axis, state

Arguments
axis name of axis device
state predefined constant Permitted values:

ON enabling dynamic controls of the axis limits
OFF disabling dynamic controls of the axis limits

Description
It enables or disables the dynamic test of exceeded axis limit.
What distinguishes the dynamic test of exceeded axis limit from the static test of exceeded axis limit
is that the first one verifies at each real time that the axis exceeds its limits, according to its current
speed rate and to its maximum deceleration. The test of static type, instead, verifies instant by
instant that the current arrival position of each axis is located within the positive or negative set axis
limits. Furthermore, before the beginning of the move, the test of static type verifies if the positions
given by the movement instructions exceed the set limits.
Before a DYNLIMIT instruction SETLIMPOS and SETLINMNEG instructions must be set, in order to
define the new limits.

Example
Check of the axes limits according to both typologies of static and dynamic test, with axes on the
same movement directrix.

Static test.
In a generic movement the Axis X1 cannot exceed the initial positive limit given by the Axis X2
position. Axes limit check generates a system error no. 4108 " Axis X1: final position exceeding the
software limit".

Dynamic test
It verifies in a generic movement that the instantaneous X1 position is located, with a proper sign
and according to the movement direction of the axis, within the axis limits decreased of the minimum
stop space of the same axis. The minimum stop space is calculated according to the instantaneous
speed rate and to the deceleration set into the configuration of the point-to-point movement.
Furthermore, this test does not verify before the beginning of the movement, if the positions given by
the movement instructions exceed the set limits.

ENABLESTARTCONTROL

Syntax

ENABLESTARTCONTROL axis, [timeout]

Arguments

GPL Language 140

Manufacturer's manual

axis name of axis device
timeout variable. Wait timeout

Description
This instruction allows for timeout to be enabled and selected to control the non-start up or sudden
stop of the axis.
If the axis does not move by at least 2 steps in 200 RealTime when movement is executed, a system
error is generated.
If the timeout parameter is set to zero, the control is disabled. The instruction is not enabled if the
theoretical speed is slower than two steps in 200 RealTime or if the movement ends in less than 200
RealTime.

Example

; axes starting timeout equal to 10 ms
ENABLESTARTCONTROL x, 10

NOTCHFILTER

Sintassi
NOTCHFILTER axis, [value]

Argomenti
axis name of axis device
value constant or variable. Frequency value [Hz]. Valid values are in the

range 0 to 500.

Descrizione
Sets the notch filter's cut-off frequency for the axis specified. If value equals 0, the filter is disabled.
If the value parameter is omitted, the value set in configuration will be used.

Esempio

; frequency cut-off 97 Hz
NOTCHFILTER X, 97

RESLIMNEG

Syntax
RESLIMNEG axis

Arguments
axis name of axis device

Description
It disables the test on the negative limit of the indicated axis.
These instructions are usually used in homing routines to search for home switches, allowing the
axes to exceed the set configuration values.
See also instructions SETLIMNEG, SETLIMPOS, RESLIMPOS.

Example
Axis Homing routine

RESLIMPOS

Syntax
RESLIMPOS axis

Arguments
axis name of axis device

Description
It disables the test on the positive limit of the indicated axis.

Albatros141

Manufacturer's manual

These instructions are usually used in homing routines to search for home switches, allowing the
axes to exceed the set configuration values.
See also instructions RESLIMNEG, SETLIMPOS, SETLIMNEG.

Example
Axis Homing routine

SETADJUST

Syntax
SETADJUST axis, state [value]

Arguments
axis name of axis device
state predefined constant. Possible values are:

ON to enable
OFF to disable

[value] float variable or constant. Voltage [Volt]

Description
It enables or disables, on the specified axis, the automatic calculation of offset recovery, that is the
ADJUST.
The adjust allows you to compensate slight position offsets at the end of axis movement. It is
normally enabled.
It can be convenient to disable the adjust for axes moved by motors with a high position hysteresis
which would not benefit by using this control function.
When the adjust is reactivated after having been disabled, the control does not consider the value
calculated previously, so the instruction can also be used to delete the accumulated adjust of an axis
without having to restart the control.
When the third parameter is present, offset is set on the indicated value apart from
automatic ADJUST activating or deactivating. The use of this instruction allows you to compensate via
software a speed reference offset instead of compensating it on drive, even if the compensation on
drive is to be preferred.
The instruction can only be used with analog controlled axes (AlbNT cards).

SETBACKLASH

Syntax
SETBACKLASH axis, value

Arguments
axis name of the device type axis
value variable or float constant. Backlash value.

Description

This instruction allows you to reduce or eliminate the effects of mechanical slackness on the axis
trajectory. The value of the game that can be set should be between 0.0 and 3.0. This value is
independent of the unit of measure choice. Special situations occur in the following cases:

if the axis is disabled, backlash recovery function is not applied, even if requested.
In case of vertical axis, given the particular configuration, it does not occur any backlash.
In case of axis with a load of great inertia, there may be a partial or at times a total load
compensation. As a matter of fact, due to the mass of the load, the motion of the axes could stop
later than the engine. The resulting positioning of the reduction gear teeth as regards the teeth
positioning of the driving gear can reduce or even cancel the backlash.
Visualization of the real quotes and encoder of the axis, sampled by the oscilloscope on the points,
where the backlash recovery is activated (movement reversal), shows a pick equivalent to the
backlash value itself.

The instruction generates a system error, in case of use:
on step-to-step, not controlled by TRS-AX remotes, counting, virtual axes
on step-to-step axes, controlled by TRS-AX remotes with simulated encoder

Exemple
; Function whose backlash recovery is disabled (red line in the drawing)
SETQUOTE X, 0

GPL Language 142

Manufacturer's manual

SETQUOTE y, 0
SETVELI X, 1.0
CIRCLE X,Y,cw,100,90
WAITSTILL X,Y

; Function whose backlash recovery is enabled
; (black line in the drawing)
SETQUOTE X, 0
SETQUOTE y, 0
SETVELI X, 1.0
SETBACKLASH X, 1.9
SETBACKLASH y, 1.8
CIRCLE X,Y,cw,100,90
WAITSTILL X,Y

Carrying out the two functions generates two different traces.
The first figure shows the interpolation on two axes, that present a backlash in the mated engine-
reduction gear.

The second figure represents the same interpolation, but containing the instruction of backlash
recovery.

Albatros143

Manufacturer's manual

SETBIGWINFACTOR

Syntax
SETBIGWINFACTOR axis, value

Arguments
axis name of axis device
value double constant or variable. Multiplication factor for the calculation of the big

window

Description
This instruction allows you to modify the multiplication factor for the calculation of the big window on
the axis requested. To calculate the big window, we need to multiply the variable value by the
parameter defined in the axes configuration of the position arrival window. The value that can be set
should be included between 1 and 257 first and final value excluded. Default value is 4.0.

SETDEADBAND

Syntax
SETDEADBAND Asse,VMinPos,VMinNeg,VThrePos,VThreNeg

Arguments
axis name of axis device
VMinPos float variable or constant. Minimum positive voltage [Volt]
VMinNeg float variable or constant. Minimum negative voltage [Volt]
VThrePos float variable or constant. Positive threshold [Volt]
VThreNeg float variable or constant. Negative threshold [Volt]

Description
It sets the minimum voltage for the indicated axis. The minimum (positive/negative) voltage values
are added to the theoretical reference voltage (positive/negative) , if this exceeds the (positive/
negative) threshold value selected. If the theoretical reference voltage falls within threshold values,
the actual reference voltage is forced to zero. Minimum voltage management can be disabled,
setting all values to zero. The threshold values must always be below or equal to relative minimum
voltage values.

GPL Language 144

Manufacturer's manual

When the system starts up, minimum voltage management is disabled.

SETENCLIMIT

Syntax
SETENCLIMIT axis [, value]

Arguments
axis name of axis device
value double constant or variable

Description
It changes the incorrect encoder connection limit. This parameter is expressed in the axis UOM.
Permitted values must fall within a range equal to 128 – 16384 encoder steps. If the parameter is
omitted, the default value equal to 1024 steps is restored.
For example, permitted values for an axis with a 1000 impulse/mm resolution will range from 0.128
to 16.384 mm.

If the value parameter is set to zero, the control of the incorrect encoder connection limit is
disabled.

Example

; set a incorrect encoder connection limit equal to 3.5
SETENCLIMIT X, 3.5

SETINDEXEN

Syntax
SETINDEXEN axis, state

Arguments

axis name of axis device
state default constant. Permitted values:

ON zero pulse state enabled
OFF zero phases pulse disabled

Description
It enables or disables coordinate zeroing on the indicated axis at the zero pulse.
To execute this instruction, the axis must be a metering-type axis.

SETINTEGTIME

Syntax
SETINTEGTIME axis [, value]

Arguments
axis name of axis device
value integer constant or variable

Description
It sets the number of link error samples used to calculate the integral component. Values are valid
from 1 to 200. This parameter may be changed suddenly, but this may generate steps on the axis
speed reference. It is advisable to change this parameter when the axes are stationary and
disabled, or preferably free.

SETIRMPP

Syntax
SETIRMPP axis, speed

Arguments
axis name of axis device

Albatros145

Manufacturer's manual

speed float constant or float variable. Ramp start speed

Description
It assigns the ramp start speed value to the axis. It is the minimum speed of a step-by-step
motor.
This instruction is used for axes moved by step-by-step motors.

SETLIMNEG

Syntax
SETLIMNEG axis [, position]

Arguments
axis name of axis device
position constant or variable. Negative limit

Description
It sets the axis negative limit position.
If position is omitted, the configuration negative limit is set.
These instructions are usually used in homing routines to look for home switches, allowing the axes
to exceed set configuration values.
See also instructions RESLIMNEG, SETLIMPOS, RESLIMPOS.

Example

Axis Homing routine

SETLIMPOS

Syntax
SETLIMPOS axis [, position]

Arguments
axis name of axis device
position constant or variable. Positive limit

Description
It sets the positive limit position for the axis.
If position is omitted, the configuration positive limit is set.
These instructions are usually used in homing routines to look for home switches, allowing the axes
to exceed set configuration values.
See also instructions RESLIMNEG, RESLIMPOS, SETLIMNEG.

Example

Axis Homing routine

SETMAXER

Syntax
SETMAXER axis, value [, direction]

Arguments
axis name of axis device
value constant or variable. Maximum loop error
direction predefined constant. Axis direction

Possible values are:
POSITIVE
NEGATIVE

Description
It assigns to the axis the maximum chase value admitted by control, in the indicated direction,
before generating a "servoerror".
If direction is omitted, the maximum tracking value is set for both directions.

GPL Language 146

Manufacturer's manual

SETMAXERNEG

Syntax
SETMAXERNEG axis, backlog , advance

Arguments
axis name of axis device
backlog constant or variable. Maximum backlog error
advance constant or variable. Maximum advance error

Description
Sets the axis maximum values for backlog and advance loop errors allowed by control, in negative
direction, before generating "servo error". Loop error is computed as the difference between
theoretical coordinate (where the axis should be positioned) and real coordinate. When the axis
moves in negative direction, a negative value of loop error indicates that the axis has a backlog,
while a positive value of loop error indicates that the axis is in advance. If this instruction is not used,
the maximum loop error values set in axis configuration will be assumed as default by the numerical
control; in this case, the maximum advance error will be equal to 1/4 of the maximum backlog error.

Example

;Maximum axis delay is 10mm, maximum advance 5mm
SETMAXERNEG Axes.X, 10, 5

SETMAXERPOS

Syntax
SETMAXERPOS axis, backlog , advance

Arguments
axis name of axis device
backlog constant or variable. Maximum backlog error
advance constant or variable. Maximum advance error

Description
Sets the axis maximum values for backlog and advance loop errors allowed by control, in positive
direction, before generating "servo error". Loop error is computed as the difference between
theoretical coordinate (where the axis should be positioned) and real coordinate. When the axis
moves in positive direction, a positive value of loop error indicates that the axis has a backlog, while
a negative value of loop error indicates that the axis is in advance. If this instruction is not used, the
maximum loop error values set in axis configuration will be assumed as default by the numerical
control; in this case, the maximum advance error will be equal to 1/4 of the maximum backlog error.

Example

;Maximum axis delay is 10mm, maximum advance 5mm
SETMAXERPOS Axes.X, 10, 5

Albatros147

Manufacturer's manual

SETPHASESINV

Syntax

SETPHASESINV axis, state

Arguments
axis name of axis device
state default constant. Permitted values:

ON phases inversion stage enabled
OFF phases inversion state disabled

Description
It enables or disables phases inversion on the indicated axis, allowing any encoder phase wiring
inversion to be offset using software. If used with the reference inversion, the axis direction can be
inverted (if wiring is correct).
To execute this instruction, the axis must be in a FREE state.

SETMAXERTYPE

Syntax
SETMAXERTYPE axis, type

Arguments
axis name of axis device
type integer constant. Permitted values:

0 = sets servoerror to threshold value (default value)
1 = sets dynamic servoerror

Description
This instruction allows the type of servoerror test to be set. Conventional servoerror management
sets a pair of limits (positive and negative), which are constant as axis speed changes. This type of
management sizes the limits depending on the axis's maximum speed, i.e. it sets a limit so that the
error in normal operating conditions is not set off. However at low speeds, the link error generally
has far lower values than the set limit, and this delays error condition identification.

Window management of the servoerror is based on calculating the theoretical link error. The positive
and negative servoerror limits are calculated as a function of this, adding and subtracting a threshold
value from them. If the actual link error exceeds this threshold, a servoerror is generated.

Nota

If you set the test on dynamic servoerror it is generally necessary to amend the limit values of
positive servoerror and negative servoerror limit set in axis configuration for the servoerror
threshold. This is because the above values are used as initial values for the calculation of the loop-
error.

"Classic" ServoError limit":

GPL Language 148

Manufacturer's manual

"Window" ServoError limit":

SETREFINV

Syntax
SETREFINV axis, state

Arguments

axis name of axis device
state default constant. Permitted values:

ON reference inversion state enabled
OFF reference inversion state disabled

Description
It enables or disables reference inversion on the indicated axis. If used with phases inversion, the
axis direction can be inverted (if wiring is correct).
To execute this instruction, the axis must be in a FREE state.
See also SETPHASESINV.

SETRESOLUTION

Syntax
SETRESOLUTION axis [, value]

Arguments

axis device name of axis type

Albatros149

Manufacturer's manual

value constant or double variable

Description
changes the resolution of the specified axis. If value is left out, the resolution value, that was set in
the configuration, is used. Resolution value can only be edited if the axis is stationary (axis
state=coordinate), otherwise the system error no. 4101 "Inconsistent axis management" is generated.

Counter3.2.5

DECOUNTER

Syntax
DECOUNTER countername [, value]

Arguments
countername name of counter device
value constant or variable or counter device

Description
It decreases the counter countername by the specified value. If no value is set, it assumes value
1. See also instructions SETCOUNTER and INCOUNTER.

INCOUNTER

Syntax
INCOUNTER countername [, value]

Arguments
countername name of counter device
value constant or variable or counter device

Description
It increases the counter counter name by the specified value. If no value is set, it assumes value
1. See also instructions SETCOUNTER and DECOUNTER.

SETCOUNTER

Syntax
SETCOUNTER countername, value

Arguments
countername name of counter device
value constant or variable or counter device

Description
It sets the counter countername to the specified value.
See also INCOUNTER and DECOUNTER.

Timer3.2.6

HOLDTIMER

Syntax
HOLDTIMER timername

Arguments
timername name of timer device

Description
It blocks the updating of the timer timername.
See also STARTTIMER and SETTIMER.

GPL Language 150

Manufacturer's manual

SETTIMER

Syntax
SETTIMER timername, time

Arguments
timername name of timer device
time constant or variable or timer device

Description
It sets the timername to the specified time (in seconds).
Only positive values (higher than 0) are admitted. Maximum precision of timers is 4 ms.
See also STARTTIMER and HOLDTIMER.

Example

;The Function sets a timer
SETTIMER Timeout,20 ; Set timer TimeOut to value: 20 seconds
STARTTIMER Timeout,DOWN ; Timer starts in decrease mode. When it

; reaches 0 it stops

STARTTIMER

Syntax
STARTTIMER timername [, direction]

Arguments
timername name of timer device
direction predefined constant. Possible values are:

UP crescent
DOWN decrescent

Description
It starts the timername timer on the mode specified by direction, if specified.
If direction is omitted, it is automatically set on DOWN mode.
When a timer (started in decrescent mode) reaches zero it automatically stops.
See also HOLDTIMER and SETTIMER.

Variables, Vectors and Matrixes3.2.7

CLEAR

Syntax
CLEAR varname or vector or matrix[rowmatrix]

Arguments
varname name of variable
vector name of vector
matrix name of matrix
matrixrow constant or variable or counter. Matrix row

Description
It clears to 0 the part of memory reserved for variables (varname), vectors (vector), matrixes
(matrix) or the elements of a matrix row.

FIND

Syntax
FIND matrix, column, min_limit, max_limit, value, variable
FIND vector, min_limit, max_limit, value, variable

Arguments
matrix name of the matrix. The matrix in which to search.
vector name of the vector. The vector in which to search.

Albatros151

Manufacturer's manual

column constant or integer variable or countername. Number of the matrix
column in which to search

min_limit constant or variable. Minimum index of the vector or matrix from
which search starts

max_limit constant or variable. Maximum index of the vector or matrix where the
search ends

value constant or variable. Value to be found
variable variable. Result of the search

Description
It carries out a sequential search of a value inside a vector or the column of a matrix and puts the
index of the element in the variable variable.
If the value is not found, the variable variable will assume value -1.

FINDB

Syntax
FINDB matrix, column, min_limit, max_limit, value, variable
FINDB vector, min_limit, max_limit, value, variable

Arguments
matrix name of the matrix. The matrix in which to search.
vector name of the vector. The vector in which to search.
column constant or integer variable or countername. Number of the matrix

column in which to search
min_limit constant or variable. Minimum index of the vector or matrix from

which search starts
max_limit constant or variable. Maximum index of the vector or matrix where the

search ends
value constant or variable. Value to be found
variable variable. Result of the search

Description
It performs a rapid search for a value inside a vector or the column of the matrix and puts the
index of the element in the variable variable. For the search to be successful, the vector or the
column of the matrix must have been previously sorted with the SORT instruction according to an
increasing order.
If the value is not found, variable will assume value -1.

LASTELEM

Syntax
LASTELEM vector, vectelements
LASTELEM matrix, matrows

Arguments
matrix name of matrix
vector name of vector
vectelements variable. Number of elements of the vector
matrows variable. Number of rows of the matrix

Description
It writes the number of elements of the vector in the vectelements variable, or the number of
rows of the matrix in the matrows variable.

LOCAL

Syntax
LOCAL varname AS type
LOCAL vector[n° elements] AS type
LOCAL matrix[n° rows] AS type, type, type, etc.
LOCAL matrix[n° rows] AS type:colname1, type: colname2,

type:colname3, etc.

Arguments

GPL Language 152

Manufacturer's manual

varname name of variable
[n° elements] variable or constant (obligatory argument). Number of elements of the

vector
[n° rows] constant or variable (obligatory argument). Number of rows of the

matrix
type char, integer (32 bit), float (32 bit), double (64 bit), string, timer
colname1...colnameN name of column. Label.

Description
Declaration of a local variable. Only the PARAM instruction, which defines the parameters of the
function, can appear before this instruction.
For further information about local variables see Local variables.

MOVEMAT

Syntax
MOVEMAT matsourcename, mataddrname

MOVEMAT matsourcename[row source], mataddrname[row addr]

MOVEMAT matsourcename[row source], mataddrname[row addr],num row

Arguments
matsourcename name of source matrix
row source start rows number for the copy of the source matrix (obligatory argument)
mataddrname name of addressee matrix
rowaddr start rows number for the copy into the destination matrix (obligatory argument)
numrow rows number to copy

Description
It copies the content of the entire matrix matsourcename in the matrix mataddrname or one or
more rows num row of the matrix row matsourcename[rowsource] in the matrix row
mataddrname[rowaddr]. If the parameter numrow is not specified one only row is copied. The
two matrixes must have the same type of structure (same number of columns and same type of data
in each column) and when entire matrix is copied the same number of rows. It is possible to move
rows of data within the same matrix.

Example

Movemat Mx1, Mx2 ; copies Mx1 matrix in Mx2

Movemat Mx1[10], Mx2[3] ; copies row 10 of matrix Mx1 in row 3
; of Mx2

Movemat Mx1[1], Mx1[7] ; copies row 1 of matrix Mx1 in row 7
; of Mx1

Movemat Mx1[2], Mx2[8],6 ; copies 6 rows starting from row 2
: of matrix Mx1
; into matrix Mx2 starting from row 8

Movemat Mx1[2], Mx1[10],4 ; copies 4 rows starting from
; row 2 of matrix Mx1 into the same
; matrix Mx1 starting from row 10

PARAM

Syntax
[PARAM] varname AS type
[PARAM] vector[n° elements] AS type
[PARAM] matrix[n° rows] AS type, type, type, etc.
[PARAM] matrix[n° rows] AS type: alias, type:alias, type:alias, etc.

Albatros153

Manufacturer's manual

Arguments
varname name of variable
[n° elements] constant (obligatory argument)
[n° rows] constant (obligatory argument)
type char, integer (32 bit), float (32 bit), double (64 bit), string

Description
The parameters behave like the local variables (see LOCAL), but are activated by whoever calls the
function. The syntax for parameter declarations is the same used for local variables.
Parameters may be by value or by reference depending on their kind. See "Functions".
They must be declared before any other instruction.
For further information see Local variables.

SETVAL

Syntax
SETVAL value, varname

Arguments
value constant or variable or devicename
varname variable or devicename

Description
It assigns the specified value to the varname variable or to the n-th vector or matrix element.

SORT

Syntax
SORT matrix, column [, order], min_limit, max_ limit
SORT vector [,order], min_limit, max_limit

Arguments
matrix name of the matrix.
vector name of the vector.
column constant or integer variable or countername. Matrix column number
order predefined constant. It indicates order mode

Possible values are:
UP increasing order
DOWN decreasing order

min_limit constant or variable. Minimum index of the vector or matrix from which sorting
starts

max_limit constant or variable. Maximum index of the vector or matrix where sorting
ends

Description
It sorts the values inside a vector or a matrix, according to the order specified in the order
constant.
In the case of a matrix, the order of the rows is dictated by the increasing (UP) or decreasing
(DOWN) disposition of the values in the selected column.
If the order argument is omitted, the UP mode is automatically selected.

Minimum Index

Maximum Index

Matrix

GPL Language 154

Manufacturer's manual

Strings3.2.8

ADDSTRING

Syntax
ADDSTRING stringname1, stringname2, stringname3

Arguments
stringname1 string constant or string variable. Source string
stringname2 string constant or string variable. String to be added
stringname3 string variable. Result string

Description
Chain of two strings.
It adds the string identified by stringname2 to the string identified by stringname1 and puts the result
in the string identified by stringname3.
The maximum dimension of a string is 255 characters+ the terminator, so that the result of the
chaining of the first two strings can not exceed this limit.

Example

Operations on strings

CONTROLCHAR

Syntax
CONTROLCHAR value, stringname

Arguments
value char or integer constant or char or integer variable. Value to be

converted
stringname string variable. Result string

Description
It converts the value identified by value in ASCII characters and puts the result in the stringname
string (which corresponds to the first byte).
The former content of the string is lost. This instruction is useful if control or unprintable
characters(such as the character NULL = 0x00) have to be inserted in a string.
It accepts strings of at least 2 characters: 1 character + the terminator. If the string is of only one
array[1] as char character, the "Incorrect macro argument" system error is signalled

Example

Operations on strings

LEFT

Syntax
LEFT sourcestringname, numcharacters, leftstringname

Arguments
sourcestringname string constant or string variable. Source string
numcharacters constant or variable. Number of characters to be copied
leftstringname string variable. Destination string

Description
It copies the first numcharacters of the sourcestringname in the leftstringname.
In practice, it fetches the left side of the source string. See also instructions MID and RIGHT.

Example

Operations on strings

Albatros155

Manufacturer's manual

LEN

Syntax
LEN stringname, variable

Arguments
stringname string variable. String
variable variable

Description
It calculates the number of characters contained in the stringname string (excluding the terminator)
and puts the result in variable.

Example

Operations on strings

MID

Syntax
MID sourcestringname, firstchar [, numcharacters],

rightstringname

Arguments
sourcestringname string constant or string variable. Source string
numcharacters constant or variable. Number of characters to be copied
rightstringname string variable. Destination string
firstchar constant or variable. Position of start copy character

Description
It extracts a number of characters identified by numcharacters, starting from firstchar, from the
string identified by sourcestringname.
The extracted substring is set in the string identified by namerightstring.
If numcharacters is omitted, the sourcestring is copied from the firstchar position, to the end of
it. In practice it fetches the middle part of the source string.
See also instructions LEFT and RIGHT.

Example

Operations on strings

RIGHT

Syntax
RIGHT sourcestringname, numcharacters, rightstringname

Arguments
sourcestringname string constant or string variable. Source string
numcharacters constant or variable. Number of characters to be copied
rightstringname string variable. Destination string

Description
It copies the last numcharacters of the sourcestringname string in the rightstringname string.
In practice, it fetches the right side of the source string. See also instructions LEFT and MID

Example

Operations on strings

SEARCH

Syntax
SEARCH stringname, character, variable

Arguments
stringname string variable.

GPL Language 156

Manufacturer's manual

character char constant or string constant or string variable. Character or string
to be found

variable variable

Description
It looks for the position of the ASCII character identified by character (which may also be a string)
within the stringname string and puts the index of the result in variable.
If character is not found, variable will contain the value -1.

Example

Operations on strings

SETSTRING

Syntax
SETSTRING "value", stringname

Arguments
value string constant or string variable (in inverted commas)
stringname destination string

Description
It copies a string.
It copies the ASCII characters contained in the string identified by "value" in the string identified
by stringname.
To insert unprintable characters in a string see instruction CONTROLCHAR.

Example

Operations on strings

STR

Syntax
STR value, stringname

Arguments
value constant or variable. Source value to be converted
stringname string variable. Destination string

Description
It converts the value in ASCII characters and puts the result in the stringname string. It can be
used to change an integer variable in a string. For example the number 10 becomes the string "10".

Example

Operations on strings

VAL

Syntax
VAL stringname, result

Arguments
stringname string variable. String to be converted
result variable. Transformed string

Description
It transforms the content of the stringname string in a decimal number and puts the result in the
variable.
For example, the "123" string becomes 123..

Example

Operations on strings

Albatros157

Manufacturer's manual

Communications3.2.9

CLEARRECEIVE

Syntax
CLEARRECEIVE

Arguments
No argument

Description
It empties the list of executed but not satisfied RECEIVES.

COMCLEARRXBUFFER

Syntax
COMCLEARRXBUFFER COMnumber

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.

Description
The instruction empties the receive buffer of the serial COMnumber. Any data contained is deleted.

COMCLOSE

Syntax
COMCLOSE COMnumber

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.

Description
It closes the COMnumber serial line opened by a COMOPEN. It is also necessary to close the serial
line when a task that has opened a serial port is closed for any reason.

COMGETERROR

Syntax
COMGETERROR COMnumber, variable

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
variable integer variable. The result of the last operation executed on the serial

Description
The instruction reads the return code of the last serial communication instruction called on the
COMnumber port. Through this instruction it can learn whether a read or write task was successful
and, if not, it can find the returned error code.
The error codes are listed below.

Normal return 0
Transmission buffer full 2
Device already open 3
Port not valid or not configured 6
I/O port enabling failed 7
Connection to interrupt not possible 8
Serial port (com) not yet open 9
The serial device (com) is occupied 12
Connection to RTX not possible 14

GPL Language 158

Manufacturer's manual

COMGETRXCOUNT

Syntax
COMGETRXCOUNT COMnumber, numchar

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
numchar number of characters in buffer

Description
The instruction returns the number of characters present in the reception buffer. It allows you to know
 if the serial port has received any characters.

COMOPEN

Syntax
COMOPEN COMnumber, baudrate, wordsize,stopbits,parity

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
baudrate communication baudrate. Possible values are: 2400, 4800, 9600,

19200, 38400, 57600, 115200
wordsize size of data words. Possible values are. 5, 6, 7, 8.
stopbits stop bits. Possible values are: 1, 2
parity predefined constant. Parity. Possible values are: NOPARITY,

ODDPARITY and EVENPARITY

Description
It opens a serial line. This instruction is executed before any other instruction for serial line
management. If any other instruction concerning the same serial line is executed before COMOPEN, a
system error is generated. The transmitted parameters must be included among the above mentioned
values.
The serial line communication channel is bound to the task wich has executed the COMOPEN
instruction. If task ends, the communication channel is automatically closed.
See also COMCLOSE, COMREAD, COMWRITE, COMREADSTRING, COMWRITESTRING.

Note
The number of the serial available lines depends on the hardware environment of the numeric
control (see documentation). In the RTX environment only COM1 and COM2 are available.

COMREAD

Syntax
COMREAD COMnumber, buffer, numchartoread, numcharread [,timeout]

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
buffer vector of char. The vector where the data is deposited.
numchartoread number of characters which should be read on the serial line
numcharread number of characters really read
timeout wait timeout (in seconds)

Description
The instruction reads certain characters of the COMnumber serial. The read characters are
memorised in the variable buffer. This variable must be char vector type. The field ToRead indicates
the number of characters that the instruction must read. If the serial reception buffer contains less
characters and the timeout parameter is not specified, the instruction will end immediately,
specifying the number of characters it has really read in the parameter Read. If the parameter
timeout is specified, the instruction will have to wait a maximum of seconds indicated in the variable,
for other characters to arrive. If timeout runs out, the instruction will exit, still specifying in Read the
number of characters really copied in buffer.

Albatros159

Manufacturer's manual

COMREADSTRING

Syntax
COMREADSTRING COMnumber, buffer, numcharread [,terminator [,timeout]]

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
buffer vector of char. The vector where the data is deposited.
numcharread number of characters really read
terminator transmission termination character
timeout wait timeout (in seconds)

Description
The instruction reads certain characters of the COMnumber serial. Unlike the COMREAD it reads the
serial until it finds the terminator character. The read characters are memorised in the variable
buffer . This variable must be a char type vector. The numcharread field indicates the number of
characters which the instruction has really read in the serial line and copied in the buffer. The
parameter terminator indicates the character that will function as transmission terminator. In
practice the instruction will have to read the characters of the serial until it reaches a character like
the one specified in this parameter. This parameter is optional. If no other character is set, the
terminator character is zero. The zero is not copied in the buffer as it is recognised as a parameter,
while any other termination character specified in the instruction will be copied. The timeout is
another parameter that indicates how many seconds the instruction will have to wait for more
characters if it has emptied the reception buffer without finding any termination character. If the
timeout parameter is not specified, the instruction will terminate as soon as the reception buffer has
been emptied.

COMWRITE

Syntax
COMWRITE COMnumber, buffer, towrite

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
buffer char vector. The vector containing the data to be written.
towrite number of characters to be written

Description
The instruction writes the characters present in the buffer variable in the COMnumber serial line.
The towrite parameter specifies the number of characters to be written.

COMWRITESTRING

Syntax
COMWRITESTRING COMnumber, buffer [,terminator]

Arguments
COMnumber predefined constant. Number of serial port. Possible values are: from

COM1 to COM8.
buffer char vector. The vector containing the data to be written.
terminator transmission termination character

Description
The instruction writes the characters contained in the buffer variable on the COMnumber serial line.
Unlike the COMWRITE it writes on the serial until it finds the character terminator. The parameter
terminator is optional. If it is not specified, the instruction will transmit until it finds a zero character.
The zero is not transmitted, while any other specified control character is.

RECEIVE

Syntax
RECEIVE [source,] identifier, flags [, container]

GPL Language 160

Manufacturer's manual

Arguments
source string constant
identifier string constant
flags integer constant
container name of device or variable (numeric or string)

Description
This instruction is used, together with SEND, to exchange information between the modules of the
plant and the supervisor PC. SEND is used to send information, RECEIVE to ask for information.
Information can be requested from Albatros or an external program (Server OLE Automation). In the
second case the request is still received by Albatros who will then send it to the external program.

The parameter source is a string that allows you to specify where the request for information is
directed to. There are three classes of sources:

sources beginning with the "@" character (see list further on). The source is really Albatros, or
better, one of its functions.
sources not beginning with the "@" character. They are considered as Server OLE, as soon as
Albatros receives an information request addressed to them, it will try to send them in execution
and then to pass on the information request received from the module.
unspecified source (the parameter is actually optional). In this case the information is read in a
table kept by Albatros. If the information is not included in the table the request remains open and
will be satisfied as soon as the information is available (provided by another module or an external
program).

The parameter identifier is the name of the requested information, and can not be omitted. It
takes on different meanings according to the source:

if Albatros is the source, the identifier will be a command related to the accessed function
if a Server OLE is the source, it will be a property of the OLE object requested.
if the source is not specified it will be the label that identifies the information in the Albatros table.

The flags parameter allows you to specify how the requested information is to be treated by
Albatros. The acceptable values and their effects are the following:

value command description
$0008H CancelAfter The information is deleted after being read.
$0800H UpdateFlags Modifies the state of the information (already read/to be read) without

modifying the data
$8000H Delete Deletes the information

The parameter container is the variable (or device) in which the requested information will be
stored. This may be omitted, in which case the request is the notification of an event (it can be used
to synchronise the execution of the GPL code on various modules).

List of sources managed by Albatros and their commands:

"@List"
Makes possible to control the commands Simulation and Setpoint
Following commands are allowed (Parameter identifier):

Sim,0,container: requires the Simulation button state, that is written on the Simulazione flag
switch. The return variable container has a 1 value, if any error did not occur, otherwise it
has a value 0.
Setp,0,container: requires Setpoint button state, that is written on CmdSetP flag switch. The
return variable container has a 1 value, if any error did not occur, otherwise it has a 0
value.
Esc,0, container: requires Setpoint button state, that is written on Escluso flag switch. The
return variable container has a 1 value, if any error did not occur, otherwise it has a value 0.

 "@Environ"
It allows you to receive information about the state of the system: user's access level, modules
connected to the supervisor etc. The requested information is stored in the parameter
container. The acceptable values for the parameter identifier and the relative answers are:

 AccessLevel" access level to the system 0=user, 1=service, 2=builder, 3=tpa
"MaskConfModules" mask of configured modules
"MaskActiveModules" mask of connected modules
"CurrentModule" module sending the request

"mod:NamePC" name of PC corresponding to module "mod". (mod must be between 0

and 15)
"LocalDateTime" date and time of PC in YYYY/MM/DD HH:MM:SS format

Albatros161

Manufacturer's manual

The masks of the connected and configured modules are bit masks. The lowest weight bit is
module 0. The bit of each module is 1 if the module is connected or configured. In case of
"NamePC" the module number is not compulsory; if omitted, the number is assumed of the
module which instanced the request.

"@Syn"
Communication between GPL and the synoptic view display. It allows you to open and close the
synoptic views with GPL control and request information from a synoptic cell.
The following commands are possible (parameter identifier):

"Open:filename" opening of the synoptic filename.syn
"Close:filename" closure of the synoptic filename.syn
"cellname" cell from which the requested information is read

It is possible to get information about the axes move window according to the technical data,
that has been defined also for the parameter source "@Devices" , as below.
It is possible to get some information about the axes movement, according to the specifications
defined also for the parameter source "@Devices", as below.

"@FileName"
stores an association between a constant string and a file name, which can be made up with
string variables. Since Albatros has received the communication of the association it replaces all
the following file names with the name received by means of this instruction. The parameter
identifier is the name of the file. The name of the file is a variable string. If in the parameter
identifier the complete path in which to store the file is not specified, Albatros considers the one
defined in tpa.ini into the section [tpa] at the item dirreport. The value of the parameter
identifier is stored in tpa.ini in the section [GPLFileName] at the item Log, so that it can be used
again also in the Albatros executions, that follow. To cancel the association you need to set an
empty string as parameter identifier. The association, which is defined in this way, can be used
for each module.

"@FileDelete"
Delete a file. The identifier parameter is the name of the file which will be deleted (complete
path). If in the parameter identifier the complete path in which to store the file is not specified,
Albatros considers that defined in tpa.ini in the section [tpa] at the item dirreport. The file name
can be defined according to the rules, that have been described in the parameter source
@FileRead. The container parameter contains the value:

1 if the file has been deleted
0 if not

"@FileRead"
It reeds the file content. The parameter indentifier is the name of the file that will be read
(complete path). If in the parameter identifier the complete path in which to store the file is not
specified, Albatros considers that defined in tpa.ini in the section [tpa] at the item dirreport. If
the identifier starts and finishes with a %-symbol, the inside string is searched in tpa.ini into the
section [tpa] and used as a file name. Inside the name can be inserted some symbols that will
be substituted during the instruction execution:

%n module number that execute RECEIVE instruction
%h current time (format 00-23)
%d current day (format 01-31)
%m current month (format 01-12)
%y current year (four numbers format)

If the parameter container is defined as a char variable, it will contain a byte read by the file,
if it is define as a string, it will contain an entire string of the file test, if defined as a file integer,
it will contain the missing number of bytes to reach the end of the file (0= file end).
To place the pointer on the file at the beginning of the file itself, the parameter container
should be omitted.

"@FileExist"
It checks the existence of a file. The parameter identifier is the name of the file that will be
read (complete path). If in the parameter identifier the complete path in which to store the file
is not specified, Albatros considers that defined in tpa.ini in the section [tpa] at the item
dirreport. The name of the file can be defined according to the rules that have been described in
the parameter source @FileRead. The parameter container contains the value:

different from 0, if the file exists
0, if the file does not exist

"@Devices"

GPL Language 162

Manufacturer's manual

Request to open or close the Diagnostic window of the module sending the information. The
identifier parameter can assume the following values:

"Open" open Diagnostic
"Close" close Diagnostic

The parameter identifier, when we need to interact with the move axis window, can assume
the values, as follows:
"MoveAX#nome_asse#HasFocus" the parameter container contains 1, if the specified move
axis window is active, otherwise it contains 0.
"MoveAX#nome_asse#Jog" the parameter container contains 1, if the move for
displacements managed in runtime by the operator is set, otherwise it contains 0.
"MoveAX#nome_asse#Step" the parameter container contains 1, if the move with
predefined steps is set, otherweise it contains 0.
"MoveAX#nome_asse#Absolute" the parameter container contains 1, if the move with
defined position is set, otherweise it contains 0, where the axis name represents the name of
the axis displayed in the window. E.g., if we need to verify, if the move axis window is active,
the parameter identifier will be "@MoveAX#X#HasFocus". The name of the axis can be
expressed in one of the following forms:

1.Name_Group. Name_Subgroup. Name_Axis or Name_Group. Name_Axis: the complete path
of the axis is shown.

2.Name_Axis: to identify the correct axis checks are made according to the following order:
if the task from which it arrives the command is a function of subgroup, the axis is
searched in that sub-group.
if the task from which it arrives the command is a function of the main subgroup, the axis
is searched in all the group. If there is more than one axis with that name, the research
fails.
if the previous checks failed, the axis is searched in all the groups in the module. If there
is more than one axis with the name Name_Axis, the research has not positive outcome.

"@Vars"
It requests the updating of a GPL global variable. It allows you to perform data refreshment of
technological Parametric and tools. The parametric data is normally sent to the GPL during
machine booting. The parameter identifier will indicate the name of the global variable
(machine or group) whose update is requested. The parameter container will contain the
value:

1 if the variable has been correctly updated
0 if not

"@Application"
Interaction with Albatros. It allows you to display the "message box" on the screen and close
down Albatros. Possible values for the identifier parameter are:

"
Q
u
i
t
"

to close Albatros

"Is
Locke
d"

verifies, if the exit from the Albatros is locked. The parameter container contains 1,
if the interface is locked, 0, if it is possible to exit Albatros.

"MsgB
ox"

reads the answer of a message box previously opened with a SEND

The parameter container makes it possible to know, in the case of a message box, which
button has been pressed by the operator:

1 "OK" button
2 "Cancel" button
3 "Abort" button
4 "Retry" button
5 "Ignore" button
6 "Yes" button
7 "No" button

In the case of the "Quit" control, the parameter container will contain the value:
1 IF Albatros has been closed down correctly
0 if not

Albatros163

Manufacturer's manual

"@Param"
It allows you to know the progressive numer of Partec.par and Partool.par parametric files
storing. Requested information is stored into container parameter. Admited values for the
parameter identifier are:

"partec" it requests the progressive of partec.par storing

"partool" it requests the progressive of partool.par storing

"@Ini"
reads a key=value combination from the tpa.ini file. The parameter identifier is the name of
the key to read in tpa.ini at section [Tpa]. To read from a specific section, the name of the
section in square brackets ("[Section]Key") must be added to the name of the key.

"@ShellExecute"
asks the operating system to open a file using the program associated to the file extension. An
executable program can be also launched. The parameter identifier is the name of the file to
open or the name of the program to launch. The name of the file can be declared with a
complete path; if not, it is charged in the current folder of Albatros. The name of the file is
searched also among those, that are defined through "@FileName". The parameter container
contains the value 0, if no errors occurred while opening the file; otherwise, it contains the code
of the error.

"@StartProg"
execute the program defined in the parameter identifier. In is not possible to pass the
arguments to the program to launch. The name of the program must contain the whole path; if
not, it is charged in the current folder of Albatros. The name ofthe program is also searched
also among those that are defined through "@FileName". The parameter container contains the
value 0, if the program was successfully launched; otherwise, it contains the code of the error.
If the program had already been launched, the code or the error is 1056.

"@ProgRunning"
verifies if the program, launched with "@StartProg" is still being executed. The name of the
program is defined in the parameter identifier. The name of the program must contain the
whole path; if not, it is charged in the current folder of Albatros. The name ofthe program is
also searched also among those that are defined through "@FileName". The parameter
container contains value 1, if the program is still being executed, if not it contains value 0.

"@TermProg"
ends the program defined in the parameter identifier and launched through "@StartProg" . The
name of the program must contain the whole path; if not, it is charged in the current folder of
Albatros. The name of the program is searched also among those, that are defined through
"@FileName". The parameter container contains the value 0, if the program was successfully
launched; otherwise, it contains the code of the error. If the program had already been
launched, the code or the error is 1056.

"@DialogFile"
opens the dialog box of File Open or File Save to allow you to choose a file name. To open the
window of File Open set the parameter identifier = "Open", to open the window of File Save to
set the parameter identifier = "Save". The name of the selected fileis stored in the parameter
container.

Example
 ;in GPL
 RECEIVE "@Param", "partec", 0, prog
 RECEIVE "@Param", "partool, 0, prog

;in GPL
; reads the Radix key value in the [Albatros] section from the
;tpa.ini file

 RECEIVE "@INI", "[Albatros]Radix", 0, value

; opens the window of File Open and stores the name of file in the FileName
variable

RECEIVE "@DialogFile", "Open", 0, FileName

GPL Language 164

Manufacturer's manual

SEND

Syntax
SEND [addressee,] identifier, flags [, information]

Arguments
addressee string constant
identifier string constant
flags integer constant
information name of device or constant or variable (numeric or string)

Description
This instruction is used, together with RECEIVE, to exchange information between the modules of the
plant and the supervisor PC. SEND is used to send information, RECEIVE to ask for information.
Information can be requested from Albatros or an external program (Server OLE Automation). In the
second case the request is still received by Albatros who will then send it to the external program.

The parameter addressee is a string which allows you to specify who the information is sent to.
There are three classes of addressees:

addressees beginning with the "@" character (see list further on). The addressee is really Albatros,
or better, one of its functions.
addressees which do not begin with the "@" character. They are considered as Server OLE, and as
soon as Albatros receives an information request addressed to them, it will try to send them in
execution and then to pass on the information request received from the module.
unspecified addressee (the parameter is actually optional). In this case the information is kept in
a table by Albatros where it is available for anyone requesting it (another module or external
program).

The parameter identifier is the name of the information, and can not be omitted. It takes on
different meanings according to the addressee:

if Albatros is the addressee, the identifier will be a command related to the accessed function
if a Server OLE is the addressee, it will be a property of the OLE object requested.
If the addressee is not specified it will be the label identifying the information contained in the
Albatros table

The parameter flags allows you to specify how the requested information is to be treated by
Albatros. The acceptable values and their effects are the following:

value command description
$0001H Broadcast Normal request broadcast
$0008H CancelAfter The information is deleted after being read.
$0020H ReadOnly The information can only be deleted by the sender
$1000H UpdateFlags Modifies the state of the information (read / to read) without

modifying the data
$8000H Delete Deletes the information

The information parameter is the information sent. This can be omitted, in which case the empty
information indicates the notification of an event (it can be used to synchronise the execution of the
GPL code on a series of modules). All devices (except for the axes), simple GPL variables and strings
are recognised as information parameters.

List of addressees managed by Albatros and their commands:

"@List"

makes possible to control the commands Simulation and Setpoint

Following commands are allowed (parameter identifier):
Sim: notifies the change in state of the Simulating switch flag. According to the flag state, its
identification button is visualized pressed or released in the toolbar (1=checked,
0=unchecked).
Setp: notifies the change in state of the CmdSetp switch flag. According to the flag state, its
identification button is visualized pressed or released in the toolbar (1=checked,
0=unchecked).
Esc: notifies the change in state of the Excluded switch flag. According to the flag state, its
identification button (same as the flag switch CmdSetp button) is visualized pressed or
released in the toolbar (1=checked, 0=unchecked)
End: ends the list execution. This command lowers the Start and Stop buttons and disallows

Albatros165

Manufacturer's manual

the Start and Stop options of the menu
Hold: lowers the Stop button and enables the Stop option of the menu. It raises the Start
button and disallows the Start option of the menu

"@Syn"
Communication between GPL and the synoptic view display. It allows you to open and close the
synoptic views through GPL control and to send information to a synoptic cell.
The following commands are possible (parameter identifier):

"Open:filename" opening of the synoptic filename.syn
"Close:filename" closure of the synoptic filename.syn
"Open" opening of a synoptic. The file name is read from variable
information

"Close" closure of a synoptic. The file name is read from variable information

"cellname" cell in which the sent information is displayed
It is possible to interact with the axis move window according to the technical data, that has
been defined also for the parameter addressee "@Devices" , as below.

"@File"
Writing on a file. It allows you to create personalised log files to memorise the operations
performed by a machine. The files are text files (ASCII). The identifier parameter is the name
of the file which will be written on.
If in the parameter identifier the complete path, in which to store the file, is not specified,
Albatros considers that defined in tpa.ini in the section [tpa] at the item dirreport.
If the identifier starts and finishes with the symbol % inside the string is cherched in tpa.ini in
section [tpa] and used as file name. Inside the name can be inserted symbols that will be
substituted during the instruction execution:

%n module number that execute SEND instruction
%h current time (00-23 format)
%d current day (01-31 format)
%m current month (01-12 format)
%y current year (four numbers format)

See the example.
Writing operations are carried out in append mode (the data is added at the end of the file).
Numeric data (automatically converted to ASCII) and strings can be sent in a file. It is possible
to write date/time format strings using format characters %d for the date and %t for the time.
For the time we use the format "HH:mm:ss" (that is: hours, minutes and seconds separated by
":") and for the date we use a format, that depends on each national settings. It is possible to
use another format, if you set in tpa.ini in the section [Albatros] the option "LogNoLocale=1" (by
default it is LogNoLocale=0, that is use of the current format). It is also possible to set the
format to be used for the date and the time apart from the format set in Windows, defining
always in tpa.ini in the section [Albatros] the options "LogDateFormat=" e "LogTimeFormat="
and assigning a string of characters according the table below. If these options are not available
or are empty, we use the formats set by Windows.

Time format

h Time in 12-hours format without leading zeros

hh Time in 12-hours format with leading zeros

H Time in 24-hours format without leading zeros

HH Time in 24-hours format with leading zeros

m minutes without leading zeros

mm minutes with leading zeros

s seconds without leading zeros

ss seconds with leading zeros

t one only character to show the time marker, e.g. A or P

tt several characters to show the time marker, e.g. AM or PM

Notes "t" and "tt" format use the time marker shown in the control panel of the current user. It
is not necessarily "AM" and "PM".
Example: if it is 11:29 in the afternoon and the string is made up in this way "hh':'mm':'ss tt",
"11:29:40 PM" appears.

Day format

d day of the month without leading zeros, represented by the digits

dd day of the month with leading zeros, represented in digits
ddd day of the week, represented in characters and shortened to three letters
dddd day of the week, represented in characters with its full name
M month without leading zeros, represented in digits

GPL Language 166

Manufacturer's manual

MM month with leading zeros, represented in digits
MMM month, represented in characters and shortened to three letters
MMMM month, represented in characters with its full name

y year with two digits without leading zeros for years less than 10

yy year with two digits with leading zeros for years less than 10

yyyy year represented by four or five digits according to the calendar in use

yyyyy year represented by four or five digits according to the calendar in use

Example: if it is Wednesday, 31 August, 1994 and its string is made up in this way "ddd',' MMM
dd yy", "Wed, August 31 94" appears.
If the information is omitted a "return to beginning" is added to the file.

"@FileName"
stores an association between a constant string and a file name, which can be made up with
string variables. Since Albatros has received the communication of the association it replaces all
the following file names with the name received by means of this instruction. The parameter
identifier is the name of the file, which will be written. The name of the file is a variable string.
If in the parameter identifier the complete path in which to store the file is not specified,
Albatros considers the one defined in tpa.ini into the section [tpa] at the item dirreport. The
value of the parameter identifier is stored in tpa.ini in the section [GPLFileName] at the item
Log, so that it can be used again also in the Albatros executions, that follow. To cancel the
association you need to set an empty string as parameter identifier. The association, which is
defined in this way, can be used for each module.

"@FileDelete"
deletes a file. The parameter identifier is the name of the file which will be deleted (complete
path). If in the parameter identifier the complete path, in which to store the file, is not specified,
Albatros considers that defined in tpa.ini in the section [tpa] at the item dirreport cannot be
used. File name can be defined according to the rules described for the parameter addressee
@File

"@FileRead"
places the pointer at the beginning of the file. The parameter identifier is the file name
(complete path). If in the parameter identifier the complete path, in which to store the file, is not
specified, Albatros considers that defined in tpa.ini in the section [tpa] at the item dirreport. File
name can be defined according to the rules described for the parameter addressee @File.

"@Axis"
interacts with the axis manual movement window according to the technical data, that have been
defined also for the parameter addressee "@Devices", as below. If a window that controls the
movements of the indicated axis is already open, this command acts on this window, whether it is
open in a synoptic data table or it is open in diagnostics. If the window is shut, the command tries
to open it in Diagnostics or in one of the synoptic data tables already open and that contains that
axis.

"@Devices"
requires to open or close the Diagnostic window of the module sending the information.
Commands execution within the axis move window in diagnostic. The identifier parameter can
assume the following values:

"Open" open Diagnostic
"Close" close Diagnostic

 The parameter identifier, when we need to interact with the move axis window, can assume
the values, as follows:
"MoveAX#nome_asse#Open" opening of the axis move window
"MoveAX#nome_asse#Close" closing of the axis move window
"MoveAX#nome_asse#Plus" pushing the button of axis move (positive direction)
"MoveAX#nome_asse#Minus" pushing the button of axis move (negative direction)
"MoveAX#nome_asse#Stop" pushing the button of move stop
"MoveAX#nome_asse#Jog" setting the mode of move for displacements managed in
runtime by the operator
"MoveAX#nome_asse#Step" setting the mode of move for displacements with predefined
steps
"MoveAX#nome_asse#Absolute" setting the mode of move with axis defined position

where the axis name represents the axis name displayed in the window. E.g, if you need to
open the X-axis move window, the parameter identifier is "@MoveAX#X#Open". The axis can
be named as follows:
1.Name_Group.Name_Subgroup.Name_Axis or Name_Group .Name_Axis: the complete axis

path is given.

Albatros167

Manufacturer's manual

2.Name_Axis: to identify the right axis, tasks are verified according the following order:
If the task from which the command arrives is a function of subgroup, the axis is searched
in that subgroup.
If the task from which the command arrives is a function of the main group, the axis is
searched in all the group. If there is more than one axis with that name, the research
fails.
If the previous checks failed, the axis is searched in all the groups of the module. If there
is more than one axis with Name_Axis, research has not positive outcome.

It is possible to prevent the user to act on the keys of axis move of all the axis movement
windows of the module in diagnostic. For this purpose the parameter identifier should be set
as follows:

"MoveAX##UIENABLE" if the parameter information is set on 0, the axes move from
Albatros is disabled; if it is set on 1e, the axes move is enabled from Albatros.

We suggest to disable axes move from Albatros, when the axes are moved from the machine's
control panel.

"@Vars"
requires to save the content of a GPL global variable in the store of the technological
parameters or tools. The parameter identifier is the name of the global variable (of machine
whether group or library) for which the update is required.

"@Application"
Interaction with Albatros. It allows you to display "message boxes" on the screen and close
down Albatros. Possible values for the identifier parameter are:

"Quit" to close Albatros

"Lock" prevents from closing Albatros from File->Exit or from keyboard shortcuts [ALT
+F4] or from closing button.

"Unlock" restores the possibility of closing Albatros
"MsgBox:fla
gs"

to open a message box

The behaviour of the message boxes is controlled by the "flags" of the identifier string. This

can be a combination of the following strings:
"O" "OK" button
"OC" "OK" and "Cancel" buttons
"YN" "Yes" and "No" buttons
"YNC""Yes", "No" and "Cancel" buttons
"RC" "Retry" and "Cancel" buttons
"ARI" "Abort", "Retry" and "Ignore" buttons
"S" Stop icon
"?" Question mark icon
"!" Exclamation mark icon
"*" information icon
"1" the first button is for default
"2" the second button is for default
"3" the third button is for default

For example "MsgBox:?YN2" identifies a message box with a question mark icon and two "Yes"
and "No" buttons where the latter one is the default button.
The information parameter can be a string, containing the text to be displayed, or an integer
number which is recognized as the code of a module message handled by Winmess.exe or a
group message label defined by the DEFMSG instruction.

"@Help"
opens a help file. It allows you to command the display of a help file by specifying the argument
to be displayed. Possible values for the identifier parameter are:

"Open:filename" to open a help file

"Close:filename" to close a help file

The "filename" part of the string, specifies the name of the help file to be opened.

The parameter information can be a string or a number and assumes accordingly the
meaning of key or context number (to identify the page or help argument to be displayed).

"@Report"

adds messages to the Albatros report file (MONTH (n month).TER). The parameter Identifier

 is:
"Add"

GPL Language 168

Manufacturer's manual

The parameter Information can be:
a string variable or a string constant: the text, contained in the string, is saved in the report
file
an integer variable or an integer numeric value: the text, defined by the DEFMSG instruction,
is saved
defined by the DEFMSG instruction.

"@Ini"
writes a key=value combination from the tpa.ini file. The parameter identifier is the name of
the key to add in tpa.ini at section [Tpa]. To write in a specific section, the name of the section
in square brackets ("[Section]Key") must be added to the name of the key
The parameter information can be a string or numeric variable, a string or a numeric
constant.

"@ShellExecute"
asks the operating system to open a file using the program associated to the file extension. It is
also possible to launch an executable program. The parameter identifier is the name of the file
to open or the name of the program to launch. The name of the file can be declared with a
complete path; if not, it is charged in the current folder of Albatros. The name of the file is also
searched among those that are defined through "@FileName".

"@StartProg"
executes the program defined in the parameter identifier. It is not possible to pass any
arguments to the program to launch. The name of the program must contain the whole path; if
not, it is searched in the current folder of Albatros. The name of the program is searched also
among those that are defined with "@FileName".

"@TermProg"
ends the program defined in the parameter identifier and launched through "@StartProg" . The
name of the program must contain the whole path; if not, it is charged in the current folder of
Albatros. The name of the program is searched also among those that are defined through
"@FileName".

"@DialogFile"
allows you to set some parameters related to the dialog box of File Open or File Save.
The values allowed for the parameter identifier are:
“Extension” if the user does not enter an extension, the extension defined in

theinformation parameter is used (variable or string constant)
“Filter” sets the filter on the file types to be used. The information parameter can be

a string variable or a string constant; in this case the text in the string, an
integer variable or an integer numerical value is used as a filter and in this
case the text defined in the DEFMSG instruction is used as a filter.

 “Flags” set the initialisation flags. For the list of the values to be set in the
information field (variable or integer constant), please make reference to the
official Microsoft documentation concerning the Flags member of the
OPENFILENAME structure.

“InitalDir” set the initial folder, defined in the information field (variable or string
constant)
“Title” sets the box name. The information parameter can be a string variable or a

string constant; in this case the text in the string, an integer variable or an
integer numerical value is used as a filter and in this case the text defined in
the DEFMSG instruction is used as a filter.

; Example of send file instruction with name created during execution.
: Suppose that the date of instruction execution be 31-01-2000

; in GPL
 SEND "@File", "%Log%", 0, "Start execution"
 SEND "@File", "%Log%", 0 ; add a "wordwrap"
; in tpa.ini at section [TPA]
Log=c:\Albatros\report\%y\Rep%m%d.txt

; The name of final file is:
c:\Albatros\report\2000\Rep0131.txt

Albatros169

Manufacturer's manual

; Example of send Vars instruction
; we define a Var_SendVars variable as double in the file of the global
; variables
; in the technological Parameters Var_SendVars is entered in the field
; Matrix Name
; in GPL
 SETVAL 100.0,Var_SendVars
; sends the 100.0 value to the parameter of the technological Parameters
; associated to the Var_SendVars variable
 SEND "@Vars", "Var_SendVars", 0

; Example of send INI instruction
; in tpa.ini the Radix key is entered in the [Albatros] section to set
; a numerical basis of decimal number view
 SEND "@INI", "[Albatros]Radix", 0;1

; Example of setting up an association between GPL constant string
; and name of a file.

; declaration of a string variable
nomefile as string
; composition of the file name
setstring C:\ALBATROS\MOD.0\CONFIG),filename
; association
 SEND "@File", "LOG",0,filename
; all the writing operations from now are
; performed in the file defined by the filename variable
 SEND "@File", "LOG",0, "Writing in the LOG file"

SENDIPC

Syntax
SENDIPC IPCname, wait [, varname1 [, varnameN, ...]]
SENDIPC IPCname, wait , matrix[row]
SENDIPC IPCname, wait , vector
SENDIPC IPCname, wait , matrix

Arguments
IPCname string constant. Name of the IPC
wait predefined constant. Wait mode of command read

Possible values are:
WAIT waits for the command to be read
NOWAIT does not wait for the command to be read

varname1[...varnam
eN]

constant or variable. Names of variables 1÷N

matrix[row] constant or integer variable. Matrix row number
vector name of vector
matrix name of matrix

Description
It sends an IPC command to the "IPCname" shared memory.
When the SENDIPC instruction is executed for the first time the shared memory is allocated; the
memory's dimension is calculated on the basis of the size of sent data. The maximum shared memory
dimension is 64 Kb. Up to 48 shared memories can be defined with 48 distinct names.
A semaphore is connected to the memory to allow synchronisation of the tasks accessing it. The task
writing the data enables the semaphore when it finishes writing, the task reading the data disables it
when it finishes reading.
If WAIT was indicated as wait parameter, the task sending the data will wait for them to be read
(disabled semaphore) before continuing execution.
A SENDIPC without data simply synchronises the tasks. In this case no shared memory is allocated.

IPC intermodule
Two remote modules can exchange data through IPCs. These IPCs are called IPC intermodule. To
define an IPC intermodule you need to write the IPCname according to the following formalism:
Number of source module, "->", number of the recipient module, ":", and hereafter the other
character of the IPC name.
For example, "0->1:Base Parameters".

GPL Language 170

Manufacturer's manual

See also WAITIPC and TESTIPC.

WAITIPC

Syntax
WAITIPC IPCname [, varname1 [, varnameN, ...]]
WAITIPC IPCname, matrix[row]
WAITIPC IPCname, vector
WAITIPC IPCname, matrix

Arguments
IPCname string constant. Name of IPC
varname1[...varnameN] constant or variable. Names of variables 1÷N
matrix[row] constant or integer variable. Matrix row number
vector name of vector
matrix name of matrix

Description
It receives an IPC command from the "IPCname" shared memory.
When the SENDIPC instruction is executed for the first time the shared memory is allocated; the
memory's dimension is calculated on the basis of the size of sent data. The maximum shared memory
dimension is 64 Kb. Up to 48 shared memories can be defined with 48 distinct names.
A semaphore is connected to the memory to allow you to synchronise the execution of the tasks
accessing it. The task reading the data waits for the semaphore to be enabled by the task writing the
data, it reads the data and then disables the semaphore.

A WAITIPC without data simply synchronises the tasks. In this case the shared memory is not
allocated.
See also SENDIPC and TESTIPC.

WAITRECEIVE

Syntax
WAITRECEIVE [source,] identifier, flags [, container]

Arguments
source string constant
identifier string constant
flags integer constant
container name of device or variable (numeric or string)

Description
It waits for the requested information (specified by identifier) to arrive, before continuing execution
of the GPL program. For use, consult documentation of the RECEIVE instruction.

Mathematics3.2.10

ABS

Syntax
ABS operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It extracts the absolute value of operand and puts in result. To convert data, according to the type
of declared data, see chapter Data conversion.

Example

SETVAL -10,op ; sets -10 to the op variable

Albatros171

Manufacturer's manual

ABS op,var

;The value set in the var variable is 10

ADD

Syntax
ADD operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description
It sums operand1 to operand2 and puts the result in result. To convert data, according to the
type of declared data, see chapter Data conversion.

Example

SETVAL 5,op1 ; sets 5 to the op1 variable
ADD op1,3,var

;The value set in the var variable is 8

AND

Syntax
AND operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description

It performs a binary AND operation (between two bits, the result is 1 only if both equal 1) between

operand1 and operand2 and puts the result in result. To convert data, according to the type of
declared data, see chapter Data conversion.

Example

;The value set in the var variable is 1
;(Binary notation: 5 = 0101, 3 = 0011, 1 = 0001)

AND 5,3,var

ARCCOS

Syntax
ARCCOS operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It carries out an arc cosine operation on operand and puts the value, in degrees, in result. The

value of the result can range between 0 ÷180 . To convert data, according to the type of declared

data, see chapter Data conversion.

GPL Language 172

Manufacturer's manual

ARCSIN

Syntax
ARCSIN operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It carries out an arc sinus operation on operand and puts the value, in degrees, in result. The

value of the result can range between -90 ÷+90 . To convert data, according to the type of declared

data, see chapter Data conversion.

ARCTAN

Syntax
ARCTAN operand1 [, operand2], result

Arguments
operand1...[operand2] constant or variable or name of device
result variable or name of device

Description
If operand2 is omitted, it carries out an arc tangent operation of operand1 and puts the value, in
degrees, in result.
If operand2 is present, the considered angle is the one whose sinus is given by operand1 and
whose cosine is given by operand2. To convert data, according to the type of declared data, see
chapter Data conversion.

COS

Syntax
COS operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It carries out a cosine operation on operand and puts the value in result.

The argument operand is expressed in degrees with a possible centesimal fractionary part (ex.: 30

15" = 30,25.). To convert data, according to the type of declared data, see chapter Data conversion.

Example

SETVAL 60,op ; sets 60 to the op variable
COS op,var

;The value set in the var variable is 0.5

DIV

Syntax
DIV operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description

Albatros173

Manufacturer's manual

It performs a division between operand1 and operand2 and puts the result in result.
The instruction can generate a system error when operand2 equals 0. To convert data, according
to the type of declared data, see chapter Data conversion.

Example

SETVAL 10,op1 ; sets 10 to the op1 variable
SETVAL 5,op2 ; sets 5 to the op2 variable
DIV op1,op2,var

;The value set in the var variable is 2

EXP

Syntax
EXP operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It calculates the exponential of operand and puts the value in result. To convert data, according to
the type of declared data, see chapter Data conversion.

Example

SETVAL 2.302585093,op ;sets 2.302585093
;in the op variable

EXP op,var

;The value set in the var variable is 10

EXPR

Syntax
EXPR variable = expression

Arguments
variable name of device or variable
expression group of operators

Description
This instruction allows you to resolve mathematical expressions. Factors may be constants, names of
devices or variables. Its syntax provides that between each operator and each operand a spacing
should be entered.
If the operands are not of the same type, an automatic conversion is carried out and the type of the
result of the operation is the same as the greater one, according the following rule:

char <integer
float < double
char or integer < float or double.

After resolving the expression, the result is converted to the variabile type.

The following operators are permitted:

() brackets

- sign change operator

ABS absolute operand value

ROUND unit round up/round down

TRUNC value truncated to whole number

LOG natural logarithm

LOGDEC decimal base logarithm

EXP exponential

SRQ square root operation

GPL Language 174

Manufacturer's manual

SIN sine operation. The operand is expressed in degrees, indicating the

value to two decimal points if applicable (e.g..: 30 15" = 30.25.)

COS cosine function operation. The operand is expressed in degrees,

indicating the value to two decimal points if applicable (e.g..: 30 15"

= 30.25.)

TAN tangent operation, expressed in degrees.

ARCSIN arc sine operation. The result is expressed in degrees, with the

value in a -90 ÷+90 range

ARCCOS arc cosine operation. The result is expressed in degrees, with the

value in a 0 ÷180 range

ARCTAN executes an arc tangent operation. See ARCTAN

ˆ power operator

* multiplication

/ division

% division remainder (module)

+ addition

- subtraction

This instructions allows for GPL code writing to be simplified, when performing mathematical
calculations; the single GPL instructions corresponding to the operators listed in the table are
replaced. These instructions stay available for compatibility purposes.

Example

; calculation of the distance between two points

EXPR dist = SQR ((Xb - Xa) ^ 2 + (Yb - Ya) ^ 2)

LOG

Syntax
LOG operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It calculates the natural logarithm of operand and puts the result in result. To convert data,
according to the type of declared data, see chapter Data conversion.

Example

SETVAL 10,op ; sets 10 to the op variable
LOG op,var

;The value set in the var variable is 2.302585093

LOGDEC

Syntax
LOGDEC operand, result

Arguments

Albatros175

Manufacturer's manual

operand constant or variable or name of device
result variable or name of device

Description
It calculates the base 10 logarithm of operand and puts the value in result. To convert data,
according to the type of declared data, see chapter Data conversion.

Example

SETVAL 10,op ; sets 10 to the op variable
LOGDEC op,var

;The value set in the var variable is 1

MOD

Syntax
MOD operand1, operand2, result

Arguments
operand1 constant or integer variable or name of device
operand2 constant or integer variable or name of device
result integer variable or name of device

Description
It performs a module operation between operand1 and operand2 and puts the result in result.
The module is the remainder resulting from the division between the first and the second operand.
The instruction can generate a system error when operand2 equals 0. To convert data, according to
the type of declared data, see chapter Data conversion.

Example

SETVAL 20,op1 ; sets 20 to the op1 variable
SETVAL 3,op2 ; sets 3 to the op2 variable
MOD op1,op2,var

;The value set in the var variable is 2

MUL

Syntax
MUL operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description
It performs a multiplication operation between operand1 and operand2 and puts the result in
result. To convert data, according to the type of declared data, see chapter Conversion data.

Example

SETVAL 5,op1 ; sets 5 to the op1 variable
SETVAL 2,op2 ; sets 2 to the op2 variable
MUL op1,op2,var

;The value set in the var variable is 10

GPL Language 176

Manufacturer's manual

NOT

Syntax
NOT operand

Arguments
operand variable or name of device

Description

It performs a binary NOT operation (the single bits are inverted) on the value expressed by

operand. The result is stored in operand.

Example

SETVAL 5,var ; sets a value of 5 to "var"
NOT var

; The result is var = -6
; Binary notation: 5 = 0000 0101,
; Binary notation:10 = 0000 1010
; Hexadeciaml notation 5 = 0000 0000 0000 0005
; Hexadeciaml notation 10 = 0000 0000 0000 000A
; by executing a NOT on value 5 the result is 0xFFFF FFFF FFFF FFFA = -6

OR

Syntax
OR operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description

It carries out a binary OR operation (between two bits, the result is 1 if at least one equals1)

between operand1 and operand2 and puts the result in result. To convert data, according to the
type of declared data, see chapter Data conversion.

Example

;The values set in the var variable is 7
;(Binary notation: 5 = 0101, 3 = 0011, 7 = 0111)

OR 5,3,var

RANDOM

Syntax
RANDOM min, max, result

Arguments
min constant or variable
max constant or variable
result variable or name of device

Description
It send to result a pseudocasual number included between min and max (extremes included).
By executing the instruction repeatedly you obtain a sequence of pseudocasual numbers. To convert
data, according to the type of declared data, see chapter Data conversion.

Example

SETVAL 2,op1 ; sets 2 in the op1 variable

Albatros177

Manufacturer's manual

SETVAL 100,op2 ; sets 100 in the op2 variable
RANDOM op1,op2,var

;The value set in the var variable is a random number
;included between 2 and 100

RESETBIT

Syntax
RESETBIT mask, nbit

Arguments
mask constant or integer variable or countername or portname. It indicates

the value to be modified (max 32 bit)
nbit constant or integer variable or countername. Number of bit to be

modified

Description
It sets a single bit of the passed bit mask, specified by nbit, to 0. The argument mask must
correspond to an integer value with a maximum of 32 bit. The number of bits, nbit, ranges between
1 and 32.

Example

State of the port before executing the code

State of the port after executing the code

;--
; Example to disable the line of a flag port:
;--

SETVAL 2,nbit
RESETBIT FlagPort,nbit

; disables line 2 of the flag port

ROUND

Syntax
ROUND operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It performs a rounding operation on the operand and puts the value in result. To convert data,
according to the type of declared data, see chapter Conversion data.

Example

SETVAL 5.7,op ;sets 5.7 in the op variable
ROUND op,var

;The value set in the var variable is 6

SETVAL 5.2,op ;sets 5.2 in the op variable
ROUND op,var

GPL Language 178

Manufacturer's manual

;The value set in the var variable is 5

SETBIT

Syntax
SETBIT mask, nbit

Arguments
mask constant or integer variable or countername or portname. Value to be

modified (max 32 bit)
nbit constant or integer variable or countername. Number of the bit to be

modified (1÷32)
Description

It sets a single bit of the passed bit mask, specified by nbit, to 1. The argument mask must
correspond to an integer value with a maximum of 32 bit. The number of bits, nbit, ranges between
1 and 32.

Example

State of the port before code execution

State of the port after code execution

;---
; Example to enable a line of the flag port:
;
;---

SetVal 2,nbit
Setbit FlagPort,nbit

; it enables line 2 of the flag port

SHIFTL

Syntax
SHIFTL operand 1 [, operand2]

Arguments
operand1 variable (integer or char) or name of device
operand2 variable (integer or char) or name of device

Description
 If operand2 is not specified, this instruction performs a left hand shift operation of the bits that

make up the operand1. If also the second operand is specified, a rotation is performed between
operand2, used as 0-value or not equal to 0 and the bits of operand1. In this case, at the end of
the operation, operand2, will contain the carry of the operation and the bit of lower weight of
operand1 will become 0 or 1 according to the initial value of operand2, (0 or not equal to zero).

Example

Rotation (left hand shift with carry)

Albatros179

Manufacturer's manual

Example of left hand shift without carry

SHIFTR

Syntax
SHIFTR operand1 [, operand2]

Arguments
operand1 variable (integer or char) or name of device
operand2 variable or name of device

Description

If operand2 is not specified, this instruction performs a left - hand scrolling operation of the bits

that make up the operand1. If also the second operand is specified, a rotation between
operand2, used as 0-value or not equal to 0 and the bits of operand1, is performed. In this case, at
the end of the operation operand2 will contain the carry of the operation; the bit of lower weight of
operand1 will become 0 or 1 according to the initial value of operand2 (0 or not equal to
zero).

Example

Rotation (right-hand shift with carry)

GPL Language 180

Manufacturer's manual

 Right hand shift (Right-hand shift without carry)

SIN

Syntax
SIN operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It carries out a sinus operation on operand and puts the result in result.

The argument operand is expressed in degrees with a possible centesimal fractionary part (ex.: 30

15" = 30,25.). To convert data, according to the type of declared data, see chapter Data conversion.

Example

SetVal 30,op ;sets 30 in the op variable
Sin op,var

;The value set in the var variable is 0.5

SQR

Syntax
SQR operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Albatros181

Manufacturer's manual

Description
It extracts the square root of operand and puts the value in result.
Only positive values are admitted in the operand parameter. To convert data, according to the type
of declared data, see chapter Data conversion.

Example

SetVal 81,op ;sets 81 in op variable
Sqr op,var

;The value set in the var variable is 9

SUB

Syntax
SUB operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
results variable or name of device

Description
It performs a subtraction operation between operand1 and operand2 and puts the result in result.
To convert data, according to the type of declared data, see chapter Data conversion.

Example

SetVal 10,op1 ; sets 10 in the op1 variable
SetVal 4,op2 ; sets 4 in the op2 variable
Sub op1,op2,var

;The values et in the var variable is 6

TAN

Syntax
TAN operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

Description
It performs a tangent operation in operand and puts the result in result.
The operand argument is expressed in degrees. To convert data, according to the type of declared
data, see chapter Data conversion.

Example

SetVal 45,op ;sets 45 in the op variable
Tan op,var

;The value set in the var variable is 1

TRUNC

Syntax
TRUNC operand, result

Arguments
operand constant or variable or name of device
result variable or name of device

GPL Language 182

Manufacturer's manual

Description
It truncates to integer the value of operand and puts the result in result. (the decimal part goes
lost). To convert data, according to the type of declared data, see chapter Data conversion.

Example

SetVal 5.7,op ;sets 5.7 to the op variable
Trunc op,var

;The value set in the var variable is 5

XOR

Syntax
XOR operand1, operand2, result

Arguments
operand1 constant or variable or name of device
operand2 constant or variable or name of device
result variable or name of device

Description
It performs a binary XOR operation (between two bits, the result is one if only one of the two equals
one) between operand1 and operand2 and puts the result in result. To convert data, according to
the type of declared data, see chapter Data conversion.

Example

Xor 5,3,var

;The value set in the var variable is 6
;(Binary notation: 5 = 0101, 3 = 0011, 6 = 0110)

Multitasking3.2.11

ENDMAIL

Syntax
ENDMAIL mail

Arguments
mail constant or integer variable. Number of post box (1÷256)

Description
It indicates the end of execution of a command associated to a message taken from the mail post
box.
The task that sent the message (using the SENDMAIL instruction) and was waiting for command
execution (wait arguments WAITACK) can now carry on with its own execution. This instruction is
effective only when executed within task that previously received the message (with the
WAITMAIL or TESTMAIL instruction).

See also instructions SENDMAIL, WAITMAIL and TESTMAIL

Example

Axis movement server

Albatros183

Manufacturer's manual

ENDREALTIMETASK

Syntax
ENDREALTIMETASK functionname

Arguments
functionname name of function

Description
It stops the execution of a real time task. See also STARTREALTIMETASK.

ENDTASK

Syntax
ENDTASK [taskname]

Arguments
taskname name of task

Description
It interrupts the execution of a task together with all the tasks activated by it (child tasks).
This instruction also interrupts axis movement, cancels pending RECEIVEs and closes any
connections with the serial ports.
If the taskname variable is omitted, it ends the execution of the current task.

GETPRIORITYLEVEL

Syntax
GETPRIORITYLEVEL level[,functionname]

Arguments
level variable. Execution priority level
functionname name of function

Description
It returns the priority value of the task indicated by functionname to the level variable. This value
is a number included between 1 and 255, where 1 indicates the highest priority level and 255 the
lowest. If functionname is not specified, the priority value returned is the value of the current task,
that is the function in which the GETPRIORITYLEVEL instruction is executed
See also SETPRIORITYLEVEL.

GETREALTIME

Syntax
GETREALTIME varname

Arguments
varname integer variable

Description
It returns to the varname variable the amount of time elapsed since the beginning of the last real-
time axis handling. Time is expressed in microseconds. See also GETREALTIMECOUNT.

GETREALTIMECOUNT

Syntax
GETREALTIMECOUNT varname

Arguments
varname integer variable

Description
It returns to the varname variable the number of real-time axis-handlings executed since the last

GPL Language 184

Manufacturer's manual

numeric control initialization. See also GETREALTIME.

HOLDTASK

Syntax
HOLDTASK [nametask]

Arguments
nametask name of task

Description
It interrupts the execution of the task defined in nametask. This instruction does not stop axis
movement, which has to be interrupted through the STOP instruction.
If nametask is omitted, it interrupts the task in progress.

RESUMETASK

Syntax
RESUMETASK [nametask]

Arguments
nametask name of task

Description
It reactivates the execution of the task specified in nametask. If nametask is omitted, it
reactivates the execution of the current task. If the task was interrupted using the STOPTASK
instruction, axis movement is resumed as well.

SENDMAIL

Syntax
SENDMAIL mail, wait [, varname1 [,..varnameN]]
SENDMAIL mail, wait, matrix[row]

Arguments
mail constant or integer variable. Mailbox number (1÷256)
wait predefined constant. Command read or command execution wait mode.

The values that can be attributed to the wait constant are:
WAIT waits for the command to be read
NOWAIT does not wait for the command to be read
WAITACK waits for command execution

varname1[...varname
N]

constant or integer variable. Names of variables 1÷20

matrix[row] constant or integer variable. Matrix row number

Description
It sends a message (or command) to the mail box. The messages can be used to synchronise and
exchange information between two or more tasks.
If the mail box does not exist, meaning that no WAITMAIL or TESTMAIL instruction has been
executed, the instruction is simply ignored.
If the receiver task is not waiting for a message (WAITMAIL instruction) or is engaged, the data sent

from the instruction is saved in a queue. In this case:
1.if the wait argument is NOWAIT, execution carries on with the following instruction;
2.if the wait argument is WAIT, execution waits for the message to be read by the receiver task;
3.if the wait argument is WAITACK, execution waits for the message to be read and the execution of

the command to be confirmed by the receiver task (through the same instruction or a new
WAITMAIL).

It is very important that the number of the variables and their type coincide with those used to
create the mail box with the WAITMAIL instruction. The control does not allow using different types
and does not use automatic type conversion (cast) as usually happens.
A SENDMAIL without optional parameters (data) functions simply as a task synchronisation
mechanism.

Example

Albatros185

Manufacturer's manual

Axis movement server

SETPRIORITYLEVEL

Syntax
SETPRIORITYLEVEL level [, functionname]

Arguments
level constant or variable. Execution priority level.
functionname name of function

Description
It sets in the level variable, the priority value of the task defined in functionname. This value is a
number included between 0 and 255, where 0 indicates the highest priority level and 255 the lowest.
If the name of the task is not specified in the functionname variable, it modifies the value of the
current task, that is the execution level of the function in which the instruction is executed.

See also GETPRIORITYLEVEL.

STARTTASK

Syntax
STARTTASK taskname [, parameters]

Arguments
taskname name of task
parameters any parameters needed during task execution

Description
It activates the execution of the task defined in the tasknamevariable.
Any parameters needed during execution can be passed to the task. The number and type of the
parameters must match the ones declared in the function implementing the task. If the task is
already in execution the instruction does not have any effect.

Example

Parallel/Sequential execution

STARTREALTIMETASK

Syntax
STARTREALTIMETASK functionname

Arguments
functionname name of function

Description
It activates the execution of a real time task. This kind of task is executed with the same frequency as
the axis control real time. Unlike normal GPL tasks, every real time is executed entirely, from the first
function instruction to the first FRET instruction. See also ENDREALTIMETASK.

Note:

The local variables declared in the realtime task are initialized only by the start of the task and then

they maintain the value of the last run.

STOPTASK

Syntax
STOPTASK taskname

Arguments
taskname name of task

GPL Language 186

Manufacturer's manual

Description
It stops the execution of a task and of all the tasks executed by it (child tasks), interrupting axis
movement (if in progress).
If taskname is omitted, it stops execution of the current task. Task execution and axis movement
can be reactivated through the RESUMETASK instruction.

WAITMAIL

Syntax
WAITMAIL mail [, varname1 [,..varnameN]]
WAITMAIL mail, matrix[row]

Arguments
mail constant or integer variable. Mailbox number (1÷256)
varname1[...varnameN] constant or integer variable. Names of variables 1÷20
matrix[row] constant or integer variable. Matrix row number

Description
It receives a message from the mail mail box. The message may come with attached data.
The data received with the message is memorised in the indicated varname variables (1÷20) or in
the matrix row specified by matrix[row].
If no other messages are waiting to be read when the WAITMAIL instruction is executed, the task is
put in HOLD state, which is terminated only when another task sends a message to the box with the
SENDMAIL instruction.
The congruence between the old data and the data expected by the instruction, is checked during
instruction execution.
A WAITMAIL without optional parameters is reduced to a simple synchronisation mechanism between
tasks.
See also instructions SENDMAIL, ENDMAIL and TESTMAIL

Example

Axis movement server

WAITTASK

Syntax
WAITTASK taskname

Arguments
taskname name of task

Description
It waits for the taskname task to end execution.

Example

Sequential/Parallel execution

Flux management3.2.12

CALL

Syntax
CALL subprogramname

Arguments
subprogramname name of subprogram, label

Description
It executes the subprogram specified by the subprogramname label.
Each subprogram, to return to the next CALL instruction, must end in the exit point with the
instruction: RET.

Note

Albatros187

Manufacturer's manual

Together with RET, this instruction is a typical source of programming errors. We recommend taking
great care when using it, in particular we suggest positioning the subprocedures at the end of the
body of the function (after the FRET instruction) so as to avoid accidental execution of the
subprocedure, as if it were an integral part of the main code. This situation, in the best of hypothesis,
generates a system error; in other cases it causes anomalous behaviour of the machine whose origin
is difficult to recognise.

FCALL

Syntax

[FCALL] functionname [, parameters]
functionname [parameters]

Arguments
functionname name of the function to be called
parameters any parameters passed to the function

Description
It calls a function, meaning that the functionname function is executed.
Any necessary parameters are passed to the function. These must match in number and type the
parameters declared in the call function.
Execution of the caller function (the one where the FCALL is executed) restarts at the end of the call
function (the one specified in the functionname parameter).

Note the difference from the STARTTASK instruction, which sends another function in execution in
parallel with the caller function (it is used to have more tasks in execution at the same time).

Example

Sequential/Parallel execution

DELONFLAG

Syntax
DELONFLAG flagname

Arguments
flagname name of flag device

Description
It disables the software interruption management on the state of a flag bit or flag switch which was
previously enabled with the ONFLAG instruction.

DELONINPUT

Syntax
DELONINPUT nameinput

Arguments
nameinput name of input

Description
It disables the software interruption management on the state of an input which was previously
enabled with the ONINPUT instruction.

FOR/NEXT

Syntax
FOR index, begin, end [, step]

instruction
instruction
...

NEXT

GPL Language 188

Manufacturer's manual

Arguments
index variable or countername
begin constant or variable or countername. Beginning value
end constant or variable or countername. End value
step constant or variable or countername. Increase or decrease step

Description
It repeats cyclically the execution of the instructions included between the FOR instruction and the
NEXT instruction.
During the first cycle the index variable is set on the value of the begin variable. In the second
cycle the value of the index variable will equal (begin+step), and so on until the index variable is
greater (or smaller, if the step variable is a negative value), than the end variable. If the step
variable is omitted, a default value equal to +1 is set.
The instructions included between FOR and NEXT can modify the number of repetitions by modifying
index.
When the repetitions end, it executes the instruction after NEXT.

Example

Function Loop
 local i As integer
 local vector[10] as integer

 For i,1,10
Setval i, vector[i] ; it fills in the elements

; of the vector
; with numbers 1,2, 10

 Next
 Fret

Function loop2
 local j As integer
 local vector[10] as integer

 For j,1,10,2

Setval 27, vector[j] ; sets the value 27 in the following
; element of the vector: 1,3,5,7,9

 Next
 Fret

FRET

Syntax
FRET

Arguments
no argument

Description
Return from a function. It causes the interruption of the execution of a function and the release of
the memory allocated for the local variables. If the function was sent in execution with an FCALL,
caller function execution restarts from the next instruction.
If any WAITASKS were executed previously with the current function (the one in which the FRET is
executed) as argument, the waiting tasks are released.

Albatros189

Manufacturer's manual

GOTO

Syntax
GOTO label

Arguments
label label

Description
It makes an inconditional jump to the label specified in the label parameter.
A label is defined by a keyword followed immediately by the character ":".
The label must be contained in the body of the function in which the GOTO instruction is executed.

Note
The body of a function is the part included between the FUNCTION instruction, which declares the
name of the function, and the instruction defining the following function (or the end of the file). It is
clear, then, that it is possible to jump from the main body of the function to any existing

subprocedures (see CALL and RET instructions). We highly discourage this programming style as it

generates numerous errors which are difficult to identify.

Example

; Function to make a flag flash
; (for ex. a warning light on a synoptic panel)

Function Loop

loop:
Setflag alarm ; enables the flag
delay 1
resetflag alarm ; disables the flag
delay 1
goto loop
Next
Fret

IF/IFVALUE/IFTHENELSE

Syntax
IF varname, comparison operator, value, GOTO label
IF varname, comparison operator, value, CALL subprogramname
IF varname,comparison operator, value, functionname

IF varname, comparison operator, value THEN
instruction
instruction
...

ENDIF

IF varname, comparison operator, value THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
varname constant or variable or devicename
comparison
operator

the symbols used for comparison are:
< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or devicename

GPL Language 190

Manufacturer's manual

label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
The IF and IFVALUE instructions are synonimus. We suggest using the short version.
The instruction allows you to make a comparison between varname and value and, according to
the result, to execute an action.
In the first three forms, if the comparison is positive, it can jump to label (GOTO), call a subprogram
(CALL) or call a function (functionname). When the execution of the function or subprogram ends, it
carries on from the following line. If the comparison is negative, the execution of the program
continues. The IF...THEN construction allows to carry out one or more instructions conditionally. The
instructions included between the keywords THEN and ENDIF are executed if the comparison
between varname and value is positive.
The IF...THEN...ELSE construction allows you to define two blocks of instructions, of which only one
will be executed. If the comparison between varname and value is positive, the instructions
included between the keywords THEN and ELSE will be executed, if it's negative it will execute the
instructions included between the words ELSE and ENDIF. In both cases the execution then continues
with the instruction following ENDIF.

Note
IFVALUE is kept for compatibility with earlier GPL versions.

IFACC

Syntax
IFACC axis, GOTO label
IFACC axis, CALL subprogramname
IFACC axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks whether the axis specified in the axis variable is in acceleration.
If it is, it jumps to label or calls subprogramname or functionname.

IFAND

Syntax
IFAND operand1, operand2, testvalue, GOTO label
IFAND operand1, operand2, testvalue, CALL subprogramname
IFAND operand1, operand2, testvalue, functionname

IFAND operand1, operand2, testvalue THEN
instruction
instruction
...

ENDIF

IFAND operand1, operand2, testvalue THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
operand1 constant or variable or devicename

Albatros191

Manufacturer's manual

operand2 constant or variable or devicename
testvalue constant. Value used to check the result of the operation. Possible values

are:
TRUE 1
FALSE 0

label name of the label to jump to
subprogramnam
e

name of the subprogram

functionname name of the function

Description
Two comparisons are performed, the first between operand1 and operand2, the second between
the result of the first comparison and testvalue.
The first comparison consists of a binary AND between operand1 and operand2. The two
operands are interpreted as bit masks. If in the result of the binary AND at least one bit is not equal
to 0, the result of the first comparison is TRUE. This will then be compared with testvalue. If the two
values coincide, a jump to label or a call function or call subprogram is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFBIT

Syntax
IFBIT mask, nbit, state, GOTO label
IFBIT mask, nbit, state, CALL subprogramname
IFBIT mask, nbit, state, functionname

IFBIT mask, nbit, state THEN
instruction
instruction
...

ENDIF

IFBIT mask, nbit, state THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
mask constant or integer variable or countername or nameport. Value to be

verified
nbit constant or integer variable or countername. Number of the bit (1÷32)
state predefined constant. State to be verified on mask.

Acceptable values are:
ON chosen bit to 1
OFF chosen bit to 0

label jump label (GOTO)
subprogramname call subprogram (CALL)
functionname name of function

Description
Test on a single bit of the passed bit mask. The mask argument must correspond to an integer
value with a maximum of 32 bits. The number assigned to the nbit variable to identify the bit to be
tested must be included between 1 and 32. If the condition indicated in state is satisfied, it jumps to
label or calls subprogramname or functionname.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

GPL Language 192

Manufacturer's manual

IFBLACKBOX

Syntax
IFBLACKBOX GOTO label
IFBLACKBOX CALL subprogramname
IFBLACKBOX functionname

Arguments
label name of the label to jump to
subprogramname subprogram name
functionname function name

Description
If the record is active, it jumps to label or it calls subprogramname or functionname. See
also STARTBLACKBOX, PAUSEBLACKBOX and ENDBLACKBOX.

IFCHANGEVEL

Syntax
IFCHANGEVEL axis [, state], GOTO label
IFCHANGEVEL axis [, state], CALL subprogramname
IFCHANGEVEL axis [, state], functionname

Arguments
axis name of axis device
state type of variation. Acceptable values are:

POSITIVE
NEGATIVE

label name of label to jump to
subprogramna
me

name of subprogram

functionname name of function

Description
It tests if axis speed has varied.
If the axis specified in the axis variable is subject to speed variation during movement, a jump to
label or a call to subprogramname of functionname is peformed.
The state parameter specifies if speed has increased (POSITIVE) or decreased (NEGATIVE).

IFCOUNTER

Syntax
IFCOUNTER countername, comparison operator, value, GOTO label
IFCOUNTER countername, comparison operator, value, CALL

subprogramname
IFCOUNTER countername, comparison operator, value, functionname

IFCOUNTER countername, comparison operator, value THEN
instruction
instruction
...

ENDIF

IFCOUNTER countername, comparison operator, value THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
countername name of the counter
comparison operator the symbols used for comparison are:

Albatros193

Manufacturer's manual

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername

label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
This instruction tests the counter.
If the content of the counter defined in the countername variable satisfies the condition specified
by the comparison operator, with the value expressed in the value variable, it jumps to the label
specified in label or calls the subprogram defined in subprogramname or the function defined in
functionname.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFDEC

Syntax
IFDEC axis, GOTO label
IFDEC axis, CALL subprogramname
IFDEC axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks if the axis defined in the axis variable is decelerating.
If the condition is confirmed, it jumps to label or calls subprogramname or functionname.

IFDIR

Syntax
IFDIR axis, direction, GOTO label
IFDIR axis, direction, CALL subprogramname
IFDIR axis, direction, functionname

IFDIR axis, direction THEN
instruction
instruction
...

ENDIF

IFDIR axis, direction THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
axis name of axis device
direction axis direction. Acceptable values are:

POSITIVE positive axis direction
NEGATIVE negative axis direction

label name of label to jump to
subprogramna
me

name of subprogram

functionname name of function

GPL Language 194

Manufacturer's manual

Description
It tests the current direction of an axis.
If the axis is moving in the direction specified in the direction variable, a jump to label or a call to
subprogramname or functionname is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFERRAN

Syntax
IFERRAN axis, comparison operator, value, GOTO label
IFERRAN axis, comparison operator, value, CALL subprogramname
IFERRAN axis, comparison operator, value, functionname

IFERRAN axis, comparison operator, value THEN
instruction
instruction
...

ENDIF

IFERRAN axis, comparison operator, value THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
axis name of axis device
comparison
operator

the symbols used for comparison are:
< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername
label name of the label to jump to
subprogramnam
e

name of subprogram

functionname name of function

Description
It checks the value of the tracking error (loop error) of the axis defined in the axis variable.
If the axis loop error confirms the condition expressed by the comparison operator with the value
expressed by value, it jumps to label or calls subprogramname or functionname.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFERROR

Syntax
IFERROR number, IDposiz, GOTO label
IFERROR number, IDposiz, CALL label
IFERROR number, IDposiz, functionname
IFERROR devicename, state,IDposiz, GOTO label
IFERROR devicename, state,IDposiz, CALL label
IFERROR devicename, state,IDposiz, functionname

Arguments
number DEFMSG or constant or integer variable
devicename name of device
state predefined constant. State to be verified

Acceptable values are:
ON
OFF

Albatros195

Manufacturer's manual

IDposiz constant or variable. A numeric value used in synoptics.
label name of label to jump to
functionname name of function

Description
It tests if cycle error is enabled.
If cycle error, identified by number and IDposiz or by devicename, state and IDposiz, is
enabled it can jump to label or call function functionname.
Parameter number can identify an error of module cycle (therefore an entire numeric value) or of
group (in this case a DEFMSG is used).
Parameter devicename is the name of a device and the parameter state represents the state ON/
OFF in which the device is located, when the error is generated.
Parameter number can identify an error of module cycle (therefore an entire numeric value) or of
group (in this case a DEFMSG is used).
Parameter devicename is the name of a device and the parameter state represents the ON/OFF
state in which the device should be found, when the error is generated.
Parameter IDposiz is an optional parameter, specifying the numeric value used in the synoptics to
sort out cicle errors in different cells. It must match the specified value in the synoptics creator for
that particular display cell. If there is no need to point out a specific cell, the predefined NOPLACE
constant must be assigned. The range of the values that can be set is included between 0
(NOPLACE) and 1023.
If the instruction is used without enabling the alarms management to status conditions, an error
system is generated.
See also instruction ERROR.

IFFLAG

Syntax
IFFLAG flagname, state, GOTO label
IFFLAG flagname, state, CALL subprogramname
IFFLAG flagname, state, functionname

IFFLAG flagname, state THEN
instruction
instruction
...

ENDIF

IFFLAG flagname, state THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
flagname name of flag device
state predefined constant. State to be tested. Possible values are:

ON enabled
OFF disabled

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the logical state of a flag.
If the flag defined in the flagname variable satisfies the indicated state, it jumps to label or calls
subprogramname or functionname.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

GPL Language 196

Manufacturer's manual

IFOR

Syntax
IFOR operand1, operand2, testvalue, GOTO label
IFOR operand1, operand2, testvalue, CALL subprogramname
IFOR operand1, operand2, testvalue, functionname

IFOR operand1, operand2, testvalue THEN
instruction
instruction
...

ENDIF

IFOR operand1, operand2, testvalue THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
operand1 constant or variable or devicename

operand2 constant or variable or devicename
testvalue constant. Value used to check the result of the operation.

Possible values are:
TRUE 1
FALSE 0

label name of the label to jump to
subprogramname name of the subprogram
functionname name of the function

Description
Two comparisons are performed, the first between operand1 and operand2, the second between
the result of the first comparison and testvalue.
The first comparison consists of a binary OR between operand1 and operand2. The two operands
are interpreted as bit masks. If in the result of the binary OR at least one bit is not equal to 0, the
result of the first comparison is TRUE. This will then be compared to testvalue. If the two values
coincide, a jump to label or a call function or call subprogram is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFINPUT

Syntax
IFINPUT inputname, state, GOTO label
IFINPUT inputname, state, CALL subprogramname
IFINPUT inputname, state, functionname

IFINPUT inputname, state THEN
instruction
instruction
...

ENDIF

IFINPUT inputname, state THEN
instruction
instruction
...

ELSE
instruction
instruction
...

Albatros197

Manufacturer's manual

ENDIF

Arguments
inputname name of input
state predefined constant. State to be verified

Acceptable values are:
ON enabled
OFF disabled

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the analog state of an input.
If the input specified in the inputname variable is in the indicated state, a jump to label or a
subprogramname or functionname call is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFMESSAGE

Syntax
IFMESSAGE number, IDposiz, GOTO label
IFMESSAGE number, IDposiz, CALL label
IFMESSAGE number, IDposiz, functionname

Arguments
number DEFMSG or constant or integer variable
IDposiz constant or variable. A numeric value used in synoptics.
label name of label to jump to
functionname name of function

Description

It tests if message is enabled.
If message, identified by number and IDposiz is enabled it can jump to label or call function
functionname,
Parameter IDposiz is an optional parameter specifying the numeric value used in synoptics to sort
out cycle errors in different cells. It must correspond with the specified value in the synoptics
creator for that particular display cell. If there is no need to point out a specific cell, the predefined
NOPLACE constant must be assigned. The range of the values, that can be set is included between
0 (NOPLACE) and 1023.
If the instruction is used without enabling the alarms management to status conditions, an error
system is generated.
See also instruction MESSAGE.

IFOUTPUT

Syntax
IFOUTPUT outputname, state, GOTO label
IFOUTPUT outputname, state, CALL subprogramname
IFOUTPUT outputname, state, functionname

IFOUTPUT outputname, state THEN
instruction
instruction
...

ENDIF

IFOUTPUT outputname, state THEN
instruction
instruction
...

ELSE
instruction
instruction

GPL Language 198

Manufacturer's manual

...
ENDIF

Arguments
outputname name of output
state predefined constant. State to be verified on output

Acceptable values are:
ON enabled
OFF disabled

label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the analog state of an output.
If the input specified in the outputname variable is in the indicated state, a jump to label or a
subprogramname or functionname call is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFQUOTER

Syntax
IFQUOTER axis, comparison operator, value, GOTO label
IFQUOTER axis, comparison operator, value, CALL subprogramname
IFQUOTER axis, comparison operator, value, functionname

IFQUOTER axis, comparison operator, value THEN
instruction
instruction
...

ENDIF

IFQUOTER axis, comparison operator, value THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
axis name of axis device
comparison
operator

the symbols used for comparison are:
< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests the real position specified by the axis variable.
If the value of the axis variable complies with the condition expressed in the comparison operator
with the value specified by value, it jumps to label or calls subprogramname or functionname.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFQUOTET

Syntax
IFQUOTET axis, comparison operator, value, GOTO label
IFQUOTET axis, comparison operator, value, CALL subprogramname

Albatros199

Manufacturer's manual

IFQUOTET axis, comparison operator, value, functionname

IFQUOTET axis, comparison operator, value THEN
instruction
instruction
...

ENDIF

IFQUOTET axis, comparison operator, value THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
axis name of axis device
comparison
operator

the symbols used for comparison are:
< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or countername
label name of the label to jump to
subprogramnam
e

name of subprogram

functionname name of function

Description
It tests the theoretical position specified by the axis variable.
If the value of the axis variable complies with the condition expressed in the comparison
operator with the value specified by value, it jumps to label or calls subprogramname or
functionname.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFRECEIVED

Syntax
IFRECEIVED [source,] identifier, GOTO label
IFRECEIVED [source,] identifier, CALL subprogramname
IFRECEIVED [source,] identifier, functionname

Arguments
source string constant
identifier string constant
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if a RECEIVE instruction has been satisfied.
If a specified former RECEIVE was satisfied, it jumps to label or calls subprogramname or
functionname.
See also instructions RECEIVE, WAITRECEIVE, SEND.

IFREG

Syntax
IFREG axis, GOTO label
IFREG axis, CALL subprogramname
IFREG axis, functionname

Arguments

GPL Language 200

Manufacturer's manual

axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks that the axis specified in the axis variable is in regime state.
If the condition is confirmed, it jumps to label or calls subprogramname or functionname.

IFSAME

Syntax
IFSAME operand1, operand2, GOTO label
IFSAME operand1, operand2, CALL subprogramname
IFSAME operand1, operand2, functionname

Arguments
operand1 variable or devicename
operand2 variable or devicename
label name of the label to jump to
subprogramname name of the subprogram
functionname name of the function

Description
Test between two operands.
It verifies if the value defined in operand1 and operand2 refer either to the same device or the
same memory area.
If the test between the two operands is confirmed, it jumps to label or calls subprogramname or
functionname.

IFSTILL

Syntax
IFSTILL axis, GOTO label
IFSTILL axis, CALL subprogramname
IFSTILL axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if the axis defined in the axis variable is really still, that is if it is "in position".
If the condition is confirmed, it jumps to label or calls subprogramname or functionname.
See also IFTARGET and IFWIN.

IFSTR

Syntax
IFSTR string1, comparison operator, string2, GOTO label
IFSTR string1, comparison operator, string2, CALL subprogramname
IFSTR string1, comparison operator, string2, functionname

IFSTR string1, comparison operator, string2 THEN
instruction
instruction
...

ENDIF

IFSTR string1, comparison operator, string2 THEN
instruction
instruction
...

Albatros201

Manufacturer's manual

ELSE
instruction
instruction
...

ENDIF

Arguments
string1 string variable. The first ASCII string
comparison
operator

the symbols used for comparison are:
< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

string2 string variable. The second ASCII string
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
Test on ASCII strings.
If the string defined in string1 confirms the condition expressed by the comparison operator with
the string in string2, a jump to label or a subprogramname or functionname call is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFTARGET

Syntax
IFTARGET axis, GOTO label
IFTARGET axis, CALL subprogramname
IFTARGET axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks if the axis defined in the axis variable has reached the final programmed position. Even if
it has reached the final target position, this does not necessarily mean that it has stopped, as it
usually has to recover the loop error. If the condition is confirmed, it jumps to label or calls
subprogramname or functionname.
See also IFSTILL and IFWIN.

IFTASKHOLD

Syntax
IFTASKHOLD nametask, GOTO label
IFTASKHOLD nametask, CALL subprogramname
IFTASKHOLD nametask, functionname

Arguments
nametask name of parallel task
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks whether the task has been interrupted (hold state).
If the nametask is in hold, a jump to label or a subprogramname or functionname call is
performed.

GPL Language 202

Manufacturer's manual

IFTASKRUN

Syntax
IFTASKRUN nametask, GOTO label
IFTASKRUN nametask, CALL subprogramname
IFTASKRUN nametask, functionname

Arguments
nametask name of parallel task
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It checks if the task is in execution.
If the task defined in nametask is in execution, it jumps to label or calls subprogramname or
functionname.

IFTIMER

Syntax
IFTIMER nametimer, comparison operator, value, GOTO label
IFTIMER nametimer, comparison operator, value, CALL

subprogramname
IFTIMER nametimer, comparison operator, value, functionname

IFTIMER nametimer, comparison operator, value THEN
instruction
instruction
...

ENDIF

IFTIMER nametimer, comparison operator, value THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
nametimer name of timer device
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or variable or nametimer. The comparison value.
label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
Timer test.
If the content of the nametimer timer satisfies the condition expressed in the comparison
operator with the value expressed in value, a jump to label or a subprogramname or
functionname call is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFVEL

Syntax
IFVEL axis, comparison operator, value, GOTO label
IFVEL axis, comparison operator, value, CALL subprogramname

Albatros203

Manufacturer's manual

IFVEL axis, comparison operator, value, functionname

IFVEL axis, comparison operator, value THEN
instruction
instruction
...

ENDIF

IFVEL axis, comparison operator, value THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
axis name of axis device
comparison
operator

the symbols used for comparison are:
< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

label name of the label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests current speed of an axis.
If the speed of the axis confirms the condition expressed in the comparison operator with the
value expressed in value, a jump to label or a subprogramname or functionname call is
performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

IFWIN

Syntax
IFWIN axis, GOTO label
IFWIN axis, CALL subprogramname
IFWIN axis, functionname

Arguments
axis name of axis device
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests if the axis specified in the axis variable has entered the arrival position window (see
Glossary).
If the condition is confirmed, it jumps to label or calls subprogramname or functionname.
See also IFTARGET and IFSTILL.

IFXOR

Syntax
IFXOR operand1, operand2, testvalue, GOTO label
IFXOR operand1, operand2, testvalue, CALL subprogramname
IFXOR operand1, operand2, testvalue, functionname

IFXOR operand1, operand2, testvalue THEN
instruction

GPL Language 204

Manufacturer's manual

instruction
...

ENDIF

IFXOR operand1, operand2, testvalue THEN
instruction
instruction
...

ELSE
instruction
instruction
...

ENDIF

Arguments
operand1 constant or variable or devicename
operand2 constant or variable or devicename
testvalue constant. Value used to verify the result of the operation.

Possible values are:
TRUE 1
FALSE 0

label name of the label to jump to
subprogramnam
e

name of the subprogram

functionname name of the function

Description
Two comparisons are performed, the first between operand1 and operand2, the second between
the result of the first comparison and testvalue.
The first comparison consists in a binary XOR between operand1 and operand2. The two
operands are interpreted as bit masks. If in the result of the binary XOR at least one bit is not equal
to 0, the result of the first comparison is TRUE. This will then be compared to testvalue. If the two
values coincide, a jump to label or a call function or call subprogram is performed.
For more details on the IF-THEN-ELSE construct, see IF / IFVALUE / IF-THEN-ELSE.

ONERRSYS

Syntax
ONERRSYS functionname

Arguments
functionname name of function

Description
It enables system error management. The normal behaviour of the control, when a system error
occurs, is to interrupt all the tasks. The system error management allows you to avoid closing down
the tasks for which it has been enabled.
When a system error occurs the functionname function is sent in execution. The function's task is
to analyse the system error and carry out the necessary actions to secure the machine.

The functionname function has two limitations:
First of all, it has to accept the following parameters:

the number of the system error, as Integer number.
the task where the error took place, as Function
the device which generated the error, as device.

Secondly, it can not contain certain GPL instructions. See List of instructions which can not be used
with interrupt.

In the case of multiple System Errors, the function is called once for each error generated, in
sequence. If the function itself generates a System Error, all tasks are interrupted.

During function execution, the task for which the error management has been enabled stops, and it
only restarts at the end of the first function called by the ONERRSYS instruction.

Example

Main Cycle with error management

Albatros205

Manufacturer's manual

ONFLAG

Syntax
ONFLAG flagname, [state,] functionname[,arguments]

Arguments
flagname name of flag device
state predefined constant. State to be tested.

Possible values are:
ON enabled
OFF disabled

functionname name of function
arguments any arguments of the function

Description
It enables software interruption of the task in which it is executed, according to the state of the flag
specified. When the flag switches to the indicated state (interrupt), task execution is interrupted and
the function specified in functionname is executed. At the end of this execution the task restarts
from where it was interrupted. The function executed after the interrupt has certain limitations.
Namely, not all GPL instructions can appear in the body of the function. This limitation is necessary to
avoid critical interruptions of the GPL code or long waits. See List of instructions which can not be
used with interrupt.
If the state argument is omitted, the function is called each time the state of the flag changes.
The test on the flag state is executed every 5ms, which means that maximum latency time, between
flag variation and execution of the function, is 5 ms.
Only one ONFLAG can be defined on the same flag.
Vectors or local matrixes can not be arguments of the function defined in functionname.
See also instructions DELONFLAG, ONINPUT, DELONINPUT.

ONINPUT

Syntax
ONINPUT nameinput, [state,] functionname [,arguments]

Arguments
nameinput name of input
state predefined constant. State to be tested.

Possible values are:
ON enabled
OFF disabled

functionname name of function
arguments any arguments of the function

Description
It enables software interruption of the task in which it is executed, according to the state of the input
specified. When the input switches to the indicated state (interrupt), task execution is interrupted and
the function specified in functionname is executed. At the end of this execution the task restarts
from where it was interrupted. The function executed after the interrupt has certain limitations.
Namely, not all GPL instructions can appear in the body of the function. This limitation is necessary to
avoid critical interruptions of the GPL code or long waits. See List of instructions which can not be
used with interrupt.
If the state argument is omitted, the function is called each time the state of the input changes.
The test on the input state is executed every 5ms, to which 4ms of anti-rebound filter on input
management must be added. This means that latency time can reach 9 ms, before launching the
function.
Only one ONINPUT can be defined on the same input.
See also instructions DELONINPUT, ONFLAG and DELONFLAG.

REPEAT/ENDREP

Syntax
REPEAT value

instruction
instruction

GPL Language 206

Manufacturer's manual

...
ENDREP

Arguments
value constant or variable or countername. Number of repetitions.

Description
It repeats the execution of the instructions enclosed between the REPEAT instruction and the ENDREP
instruction as many times as indicated in the value variable.
When the program reaches the ENDREP instruction, the counter of the number of repetition
decreases and, if its value is not less or equal to zero, the block of instructions is reexecuted
starting from the instruction after REPEAT. This means that the instructions are executed at least
once (even if the value parameter is naught or negative from the beginning).
When the repetitions are concluded, the instruction following ENDREP is executed.
See also instruction FOR/NEXT.

Example

; example of cycle moving an axis
; between two positions for 10 times
Function Cycleo

Repeat 10
MovAbs axis,100
waitinput switch,ON
Movabs axis,-100
Waitinput switch, OFF

EndRep
Fret

RET

Syntax
RET

Arguments
no arguments

Description
It ends the execution of a subprogram and returns to the instruction immediately after the call CALL.
See also the instruction CALL.

Note
This instruction, together with CALL, is a typical source of programming errors. We recommend
taking great care when using it, in particular we suggest positioning the subprocedures at the end of
the body of the function (after the FRET instruction) so as to avoid accidental execution of the
subprocedure, as if it were an integral part of the main code. This situation, in the best of hypothesis,
generates a system error; in other cases it causes anomalous behaviour of the machine whose origin
is difficult to recognise.

SELECT

Syntax
SELECT varname

CASE value
GOTO label

CASE value1 TO value2
CALL subprogramname

CASE IS < = > value
[FCALL] functionname [parameter1,...parameterN]

CASE ELSE
GOTO label

Albatros207

Manufacturer's manual

ENDSELECT

Arguments
varname constant or integer variable or countername
value, value1, value2 integer constants
label name of label to jump to
subprogramname name of subprogram
functionname name of function
parameter1...parameterN parameter passed to the call function

Description
Multiple selection with jump to label, call to subprogramname or functionname according to the
value of the varname variable.
Each CASE (optional) can have only one GOTO, CALL or FCALL instruction.
At least one case must be included between SELECT and ENDSELECT. The latter indicates the end of
the SELECT instruction.
After each CALL or FCALL the execution of the function continues with the instruction following
ENDSELECT.
The CASE-ELSE branch is executed if no previous CASE is satisfied.

Example
Axis movement server

TESTIPC

Syntax
TESTIPC IPCname, [, varname1 [, varnameN, ...]], GOTO label
TESTIPC IPCname, [, varname1 [, varnameN, ...]], CALL

subprogramname
TESTIPC IPCname, [, varname1 [, varnameN, ...]], functionname

TESTIPC IPCname, matrix[row], GOTO label
TESTIPC IPCname, matrix[row], CALL subprogramname
TESTIPC IPCname, matrix[row], functionname

TESTIPC IPCname, vector, GOTO label
TESTIPC IPCname, vector, CALL subprogramname
TESTIPC IPCname, vector, functionname

Arguments
IPCname string constant. Name of IPC
varname1[...varnameN] constant or variable. Names ranging from1÷N
matrix[row] constant or integer variable. Row number of matrix
vector name of vector
matrix name of matrix
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests and receives IPC commands.
When the TESTIPC instruction is executed for the first time the shared memory is allocated; the
memory's dimension is calculated on the basis of the size of sent data. The maximum shared memory
dimension is 64 Kb.
A semaphore is connected to the memory to allow the synchronisation of the tasks accessing it. The
task accessing it checks if an active semaphore is present, it reads the data of the shared memory
and disables the semaphore. Immediately after, a jump to label instruction, or the function or the
program described as last parameter of the TESTIPC instruction, is executed.
See also SENDIPC and WAITIPC.

TESTMAIL

Syntax
TESTMAIL mail, [varname1 [,..varnameN]], GOTO label
TESTMAIL mail, [varname1 [,..varnameN]], CALL label

GPL Language 208

Manufacturer's manual

TESTMAIL mail, [varname1 [,..varnameN]], functionname
TESTMAIL mail, matrix[row], GOTO label
TESTMAIL mail, matrix[row], CALL subprogramname
TESTMAIL mail, matrix[row], functionname

Arguments
mail constant or integer variable (1÷256). Number of mailbox
varname1[...varnameN] integer variable. Names ranging from1÷20
matrix[row] constant or integer variable. Row number of matrix
label name of label to jump to
subprogramname name of subprogram
functionname name of function

Description
It tests and receives messages.
The first TESTMAIL in the mail mailbox creates the mailbox.
If the message is in the mail mailbox, the data sent with the message is saved either in the
varname variables (1÷20), if they are are indicated, or in the row of the matrix indicated by
matrix[row]; moreover it jumps to label or calls subprogramname or functionname.
During execution, congruence between passed data and expected date is verified.
See also instructions SENDMAIL, WAITMAIL and ENDMAIL.

Various3.2.13

CLEARERRORS

Syntax
CLEARERRORS [IDposiz]

Arguments
IDposiz constant or variable. A numeric value used by synoptics

Description
It tells the supervisor PC to delete all the cycle errors concerning the module which is executing the
instruction, previously sent by the ERROR instruction. The IDposiz parameter is an optional
parameter that specifies the numeric value used in synoptics to sort cycle errors in different cells. It
must match the value specified in the synoptic creator for that specific display cell. Albatros uses this
identifier to manage cycle errors in separate queues. A new queue is created for each IDposiz. The
range of the values that can be set is included between 0 (NOPLACE) and 1023. If the IDposiz
parameter is not specified, all the cycle errors both in the default queue and in the possible other
queues are deleted.
See also instructions ERROR and DELERROR

CLEARMESSAGES

Syntax
CLEARMESSAGES [IDposiz]

Arguments
IDposiz constant or variable. A numeric value used by synoptics

Description
It tells the supervisor PC to delete all the messages concerning the module which is executing the
instruction, previously sent by the MESSAGE instruction. The IDposiz parameter is an optional
parameter that specifies the numeric value used in synoptics to sort messages in different cells. It
must match the value specified in the synoptic creator for that specific display cell. Albatros uses this
identifier to manage messages in separate queues. A new queue is created for each IDposiz.The
range of the values that can be set is included between 0 (NOPLACE) and 1023. If the IDposiz
parameter is not specified, all the messages both in the default queue and in the possible other
queues are deleted.
See also instructions MESSAGE and DELMESSAGE.

Albatros209

Manufacturer's manual

DEFMSG

Syntax
DEFMSG label [, languageprefix1], "messagestring"

, ... ,

[, languageprefixN, "messagestring"]

Arguments
label mnemonic name of message to be displayed
languageprefix predefined constant. Language in which the message is written

Allowed values are:
ITA Italian
ENG English
FRA French
ESP Spanish
DEU German

messagestring message to be displayed. It must be written in inverted commas ("")

Description
It assigns a label to a message. The DEFMSG instruction must be declared before implementing the
functions. The definition of the message can only be used inside the file (or group) in which it is
declared. It is possible to insert messages in various languages by using the predefined constant
languageprefix. In this case the MESSAGE instruction will display the message in the language
currently used by Albatros. A message that no prefix is associated with is used when the language
currently in use does not match any of the existing prefixes. A maximum of six messages can be
defined per label: five with language prefix plus one with no language prefix.
All the labels of different languages can be written on the same line or on more lines, beginning a
new paragraph each time by pressing the character "-" preceded by one space.
DEFMSG instruction can be passed as parameter to a function. In this way the function that recives it
can use it as one of the three arguments of ERROR an MESSAGE. (See example 2).
See also instructions MESSAGE, DELMESSAGE, ERROR, DELERROR.

Example 1

;assigning a message string to a label without language selection
DEFMSG MSG_GRU_1 "Message group 1"

;using the definition
MESSAGE MSG_GRU_1 ;display: "Message group 1"

;assigning a message string to a label with language selection
DEFMSG MSG_GRU_1 ITA "Messaggio gruppo 1"

ENG "Message group 1"

;using the definition when Albatros is set on ENG
MESSAGE MSG_GRU_1 ;display: "Message group 1"

Example 2:
Into a group:
DEFMSG MSG_TEST "Execution error"

FUNCTION ChiamaTest
 Test MSG_TEST
FRET

 Into a library:
 DEFMSG MSG_BASE "Error signal: $1"
 ...
FUNCTION Test Public
 PARAM codice AS integer
 ERROR MSG_BASE NOPLACE NOSTORE codice
FRET
Visualized cycle error is: Error signal: Execution error

GPL Language 210

Manufacturer's manual

DELAY

Syntax
DELAY value

Arguments
value constant or variable. Delay expressed in seconds.

Description
It waits as long as indicated in value. When time is up, the following instruction is executed. The
programmable minimum value is 4 msec. (0,004 seconds)

DELERROR

Syntax
DELERROR devicename [,state [, IDposiz [STORE]]
DELERROR number [, IDposiz [STORE]]

Arguments
devicename devicename
number DEFMSG or constant or variable
IDposiz constant or variable. A numeric value used in synoptics
state predefined constant

Possible values are:
ON
OFF

STORE predefined numeric constant which, if enabled, allows you to save the cycle
error in the current month's error report file

Description
It tells the supervisor PC to supervise the deletion of a cycle error previously sent by the ERROR
instruction.
If the name of a device is specified, instead of the number, it sends the PC the type and logic
address of the device. For the clearance to be effective, all the values set in the parameters must
coincide with those used to generate the error. The STORE parameter, however, behaves
anomalously. Errors saved on the report file are not eliminated from the file, but only from the error
window, while a new registration of the error deletion is added to the file (the size of the file
increases!).
Parameter IDposiz is an optional parameter, specifying the numeric value used in the synoptics to
sort out cicle errors in different cells. It must match the specified value in the synoptics creator for
that particular display cell. If there is no need to point out a specific cell, the predefined NOPLACE
constant must be assigned. The range of the values that can be set is included between 0 (NOPLACE)
and 1023.
If cycle errors are managed like warning signals, all cancel requests are sent. If alarms are
managed like statuses, cycle error cancelling is only sent if cycle error is active, otherwise
DELERROR instruction is ignored. See also instructions ERROR, CLEARERRORS.

DELMESSAGE

Syntax
DELMESSAGE number [, IDposiz]

Arguments
number DEFMSG or constant or variable
IDposiz constant or variable. Numeric value used in synoptics

Description
It sends to the PC a request to delete a message previously sent with a MESSAGE instruction. If
messages are managed like warning signals, all corresponding messages are cancelled. If messages
are managed like statuses, message cancelling is only sent if its status was active, otherwise
DELMESSAGE instruction is ignored.
Parameter IDposiz is an optional parameter, specifying the numeric value used in the synoptics to
sort out cicle errors in different cells. It must match the specified value in the synoptics creator for
that particular display cell. If there is no need to point out a specific cell, the predefined NOPLACE
constant must be assigned. The range of the values that can be set is included between 0
(NOPLACE) and 1023.

Albatros211

Manufacturer's manual

See also instruction MESSAGE.

ERROR

Syntax
ERROR devicename [,state [, IDposiz [, log]]]
ERROR number [, IDposiz [, log [, arg1, ..., arg3]]]

Arguments
devicename name of device
number DEFMSG or constant or variable
IDposiz constant or variable. A numeric value used in synoptics.
state predefined constant

Possible values are:
ON
OFF

log predefined numeric constant
Possible values are:
STORE error saved to file
NOSTORE error not saved to file

arg1, ..., arg3 constant or device or variable.

Description
It generates a cycle error. The error is identified by the number parameter or by the name of the
device. The parameter number can identify a module cycle error (i.e. a whole number) or group
cycle error (in this case, DEFMSG applies).
If the name of a device is specified, instead of the number, it sends the PC the type and logic
address of the device. The cycle error is sent to the supervisor PC and displayed on the Albatros
error bar.
The IDposiz parameter is used in synoptic views to sort cycle errors in different cells. It must match
the value specified in the synoptic creator for that specific display cell. Albatros uses this identifier to
manage cycle errors in separate queues. A new queue is created for each IDposiz. If the IDposiz
parameter is not specified or when the predefined constant NOPLACE is used, the cycle error is
located in the default queue with the value IDposiz=0.The range of the values that can be set is
included between 0 (NOPLACE) and 1023.
Setting log parameter to STORE causes the cycle error to be saved in the error report file of the
current month. A high number of generated or cleared errors may put the performance level of the
remote modules at risks. In fact, the PC supervisor must control all the errors sent (and they
possible clearance). This may slow down the sending of important data to the control, particularly the
processing programs.
The optional arg1, ..., arg3 parameters are used to define parameter error messages. The error
message's definition string will feature markers that will be replaced - when the error is generated -
with the value or name of the device or variable passed as a parameter. Markers to be inserted in
the string are as follows:

$1, ... $2 replaced with the name of the device or variable ($1 stands for arg1 etc.)

$(1), ..., $(3) replaced with the value of the device or variable.

Types of data valid for the arg1, ..., arg3 parameters are as follows:

CHAR

INTEGER

FLOAT

DOUBLE (though it is automatically converted into FLOAT)

message number (or DEFMSG label)

device

global or local variable

function parameter. It can be used as function parameter the label defined by the DEFMSG

instruction.
Strings, matrices and vectors cannot be used as parameters (although individual vector or matrix
elements are valid). For local variables, only the value can be decoded, not the name.
For the purpose of deleting a message with the DELERROR instruction, the arg1, ...arg3 parameters
are disregarded.

Two error management modes are defined and established by manufacturer of the machine:
Alarms managed like warning signals: all cycle errors are sent. Albatros keeps a queue of the
last 10 errors of the specified queue and the last 100 errors of the default queue.
Alarms managed like statuses: error is considered active or inactive. If active, any further

GPL Language 212

Manufacturer's manual

sending of the same cycle error (by ERROR instruction) is ignored.
See also instructions DELERROR, CLEARERRORScannot be used.

Example 1
DEFMSG ERR_TOOL "Tool missing"
DEFMSG ERR_TOOL_P "Load tool $(1) in slot $(2)"

; tag for synoptic views
CONST TOOLCHANGE = 5

; error shown in the Errors Bar or in not tagged sinoptic views' cells
ERROR ERR_TOOL

; error saved in report file and shown in synoptic views' cells tagged
; with code 5
ERROR ERR_TOOL, TOOLCHANGE, STORE

; error saved in report file but not dispatched to tagged synoptic
; views'cell
ERROR ERR_TOOL, NOPLACE, STORE

; error with parameters
ERROR ERR_TOOL_P, NOPLACE, NOSTORE, MxTools[3].Cod, 5

Example 2
 ; defined in a group

DEFMSG MSG_ERR_CARICO "Error on loading tool"

Function ShowError
 MsgTool MSG_ERR_CARICO MxUtensili[3].Cod
fret

; defined in a library
DEFMSG MSG_ERR_TOOL "Error tool: $1 $(2)"

Function MsgTool public
PARAM parameter1 as integer
PARAM parameter2 as integer

 MESSAGE MSG_ERR_TOOL NOPLACE parameter1 parameter2
fret

IFDEF/ELSEDEF/ENDDEF

Syntax
IFDEF constant

instruction
...

ENDDEF

IFDEF constant, comparison operator, value
instruction
...

ENDDEF

IFDEF EXIST, namegroup
instruction
...

ENDDEF

Albatros213

Manufacturer's manual

IFDEF LINKED, devicename
instruction
...

ENDDEF

IFDEF UNLINKED, devicename
instruction
...

ENDDEF

IFDEF constant, comparison operator, value
instruction
...

ELSEDEF
instruction
...

ENDDEF

Arguments
constant integer, char, double, string constant
varname integer, char, double or string constant
comparison operator the symbols used for comparison are:

< (smaller) = (equal)
> (greater) =< (minor or equal)
>= (greater or equal) <> (different)

value constant or name of device
namegroup name constant or name of group
devicename string constant or device name

Description
The conditional compilation allows you to check which parts of a GPL function file must be compiled
and executed. The compiler verifies that the condition requested as argument of the IFDEF instruction
is satisfied. In this case it compiles the code included between the IFDEF instruction and the ENDDEF
or ELSEDEF instruction. If an ELSEDEF instruction exists, and the condition is not satisfied, it will
compile the code included between the ELSEDEF instruction and the ENDDEF instruction.
The compilation condition can be expressed in some different ways:

a constant is specified after the IFDEF instruction. In this case the condition is satisfied if a global
constant or a constant of the existing group with the specified name exists.
A relation between two operators and an operand is specified after the IFDEF instruction. The first
operand must be a constant. In this case the condition is satisfied if the relation is true (for ex.
MAX_TOOLS = 100).
The keywords EXIST or NOTEXIST, followed by the name of a machine group or by a string
containing the name of a machine group or the name of a library, are specified after the IFDEF
instruction. In this case the condition is satisfied if a group with the same name exists or doesn't
exist in the Machine Configuration.
After the IFDEF instruction LINKED or UNLINKED key word followed by the name of a device is
specified. In this case the condition is verified, if the device is connected (LINKED) or not
connected (UNLINKED) in virtual-physical. The device name can be expressed under this form:
Group_Name.Subgroup_Name.Device_Name or Group_Name.Device_Name or
Subgroup_Name_DeviceName or Device_Name. If the device does not exist in the configuration a
compilation error appears.

It is possible to set more IFDEF instructions, remembering that each IFDEF instruction must
correspond to an ENDEF instruction.

Example 1
; GPL code execution changes if the FRESA group is present in
the machine
Const FresaGroup = "Fresa"
IFDEF Exist FresaGroup
instruction
instruction

ELSEDEF
instruction
instruction

ENDDEF

GPL Language 214

Manufacturer's manual

Example 2
; GPL code execution changes according to the module
IFDEF _ID_MODULE = 1 ; compile instruction for module 1
instruction
instruction

ELSEDEF ; compile instruction for the other modules
instruction
instruction

ENDDEF

; compile code for the 2.4.10 version of Albatros
IFDEF _VER_MAJOR = 2
IFDEF _VER_MINOR = 4

IFDEF _VER_REVISION = 10
instruction
instruction

ENDDEF
ENDDEF

ENDDEF

; compile code for the service pack 10 version of Albatros
IFDEF _VER_SP = "Service Pack 10"
instruction

ENDDEF

; compile code only if the system is configured for a Clipper
module
IFDEF _REMOTE_MODULE = 1 ; 1 = Clipper, otherwise 0
instruction

ENDDEF

; compile code for the 2.4 version service pack 10 Albatros
IFDEF _VER_FULL = $0002040AH
instruction

ENDDEF

Example 3
; the execution of the GPL code changes
; if the device is connected in virtual-physical
IFDEF LINKED out1 ; if Out1 is connected, the code is executed

istruction

instruction

instruction
ENDIF

MESSAGE

Syntax
MESSAGE number [, IDposiz [, arg1, ..., arg3]]

Arguments
number constant or variable
IDposiz constant or variable. Numeric value used in synoptics.
arg1, ..., arg3 constant or device or variable.

Description
It generates a message for the operator.
It generates a message for the operator. The parameter number can identify a module cycle error
(i.e. a whole number) or group cycle error (in this case, DEFMSG applies. An argument, indicated
by IDposiz, can also be passed if required. It indicates in which synoptic window the message
should be displayed. It must correspond to the value specified in the synoptic creator for that specific

Albatros215

Manufacturer's manual

display cell. Albatros uses this identifier to handle messages in separate queues. A new queue is
created for each IDposiz. If the IDposiz parameter is not specified, the message is set in the default
queue with the value IDposiz=0. The range of the values that can be set is included between 0
(NOPLACE) and 1023. Albatros keeps a queue of the last 10 messages of the specified queue and of
the last 100 messages of the default queue. When the messages queue is full, the latest message is
overwritten. If the previous message of the queue is the same as the one that is going to be sent,
the message is not sent (same task, same number, same argument).
The optional arg1, ..., arg3 parameters are used to define parameter messages. The message's
definition string will feature markers that will be replaced - when the message is generated - with the
value or name of the device or variable passed as a parameter. Markers to be inserted in the string
are as follows:

$1, ... $2 replaced with the name of the device or variable ($1 stands for arg1 etc.)

$(1), ..., $(3) replaced with the value of the device or variable.

Types of data valid for the arg1, ..., arg3 parameters are as follows:

CHAR

INTEGER

FLOAT

DOUBLE (though it is automatically converted into FLOAT)

message number (or DEFMSG label)

device

global or local variable

function parameter. It can be used as function parameter the label defined by the DEFMSG

instruction.

Two error management modes are defined and established by manufacturer of the machine:
Messages managed like warning signals: all messages are sent. Albatros keeps a queue of the
last 10 messages of the specified queue and the last 100 errors of the default queue. When the
message queue is full it overwrites the oldest message. If the previous message is identical to the
one to be sent, the message is not sent (same task, same number, same argument).
Messages managed like statuses: message is considered active or inactive. If active, any further
sending of the same message (by MESSAGE instruction) is ignored..

Strings, matrices and vectors cannot be used as parameters (although individual vector or matrix
elements are valid). For local variables, only the value can be decoded, not the name.
For the purpose of deleting a message with the DELMESSAGE instruction, the arg1, ...arg3
parameters are disregarded.
See also instructions DELMESSAGE and CLEARMESSAGES.

Example 1

DEFMSG MSG_TOOL "Change the tool"
DEFMSG MSG_TOOL_P "Tool number $(1) loaded"

; tag for synoptic views
CONST TOOLCHANGE = 7

; message shown in the Errors Bar or in not tagged sinoptic views' cells
MESSAGE MSG_TOOL

; message shown in the Errors Bar and in sinoptic views' cells
; tagged with code 7
MESSAGE MSG_TOOL, TOOLCHANGE

; message with parameters
MESSAGE MSG_TOOL_P, NOPLACE, MxTools[3].Cod

Example 2

 ; defined in a group

DEFMSG MSG_CARICO "loading"

GPL Language 216

Manufacturer's manual

Function ShowMessage
 MsgTool MSG_CARICO MxUtensili[3].Cod
fret

; defined in a library
DEFMSG MSG_TOOL "Tool: $(1) $2"

Function MsgTool public
PARAM parameter1 as integer
PARAM parameter2 as integer

 MESSAGE MSG_TOOL NOPLACE parameter1 parameter2
fret

SYSFAULT

Syntax
SYSFAULT

Arguments
no arguments

Description
It disables the SYSOK signal.
This signal is disabled to indicate that the machine is not secured (for ex. the GPL that manage
emergencies are not in execution).
See also instruction SYSOK.

SYSOK

Syntax
SYSOK [nameoutput1 [, … nameoutput8]]

Arguments
nameoutput1 [...nameoutput8] name of digital output device

Description
Indicates to the numerical control which are the outputs are connected to the safaty circuits of the
machine (it can be an output connected to a safety relay, which controls the power supply of the
machine). The outputs are activated when the numeric control has completed machine booting and
has activated all emergency management tasks. At this stage the machine can be considered safe.
Up to a total of 8 digital outputs can be defined. On each remote one output can be enabled. Only
the outputs available on the CN2004 can be enabled and not those available on the remotes
connected to it. The list of the outputs declared in the first use of SYSOK instruction cannot be
changed during the possible next sysok calls, until the control has been initialized. If the instruction
is executed without parameters, the signal of SYSOK is restored.
See also instruction SYSFAULT.

TYPEOF

Syntax
TYPEOF name, result

Arguments
name name of device, constant, functionname, variable, vector, matrix or

matrix row
result integer variable. Type of the first argument

Description
It returns the name type argument to the result variable.

Albatros217

Manufacturer's manual

WATCHDOG

Syntax
WATCHDOG status

Arguments
status predefined constant. Acceptable values are: ON, OFF

Description
This instruction enables the use of the watchdog connected to the TMSWD-Hardware. It allows you to
identify error situations occurring while executing the GPL code.
To enable the use of Watchdog, assign ON to the parameter status.
To upgrade the counter of the board, assign ON to the parameter status. If you do not upgrade, the
watchdog starts and the TMSWD deactivates the emergency exit of the machine.
To finish the use of Watchdog, assign OFF to the parameter status.

This instruction can only be used with TMSbus+, TMSCan+ and TMSCombo+ boards with FPGA 2.0 or
higher and mounted TMSWD hardware module.

Example

Function TestWatchDog autorun

watchdog ON ; enables the watchdog management

loop:

watchdog ON ; upgrades the counter of the board

goto loop

fret

CANopen3.2.14

TMSbus boards with CAN control

GETCNSTATE

Syntax
GETCNSTATE board, node, status

Arguments
board constant or variable integer. Board number
node constant or variable integer. Number of the node
status constant or variable integer.

Description
It returns the status of the NMT protocol for the node of the board CANOpen as shown. For further
information about the meaning of these parameters, make reference directly the documentation
concerning each single CANopen device.

GETSDOERROR

Syntax
GETSDOSERROR board, error

Arguments
board constant or variable integer. Board number (from 1 to 4)
Error variable integer. Error code

Description
It returns the last error occurred, referred to the SDO communication for the board CANOpen as
shown. For further information about the meaning of these parameters, make reference directly the
documentation concerning each single CANopen device.

GPL Language 218

Manufacturer's manual

GETMNSTATE

Syntax
GETMNSTATE board, status

Arguments
board constant or variable integer. Board number (from 1 to 4)
status constant or variable integer.

Description
It returns the status of the NMT protocol for the master node of the CANOpen board as shown. For
further information about the meaning of these parameters, make reference directly the
documentation concerning each single CANopen device.

RECEIVEDPDO

Syntax
RECEIVEPDO board, node, PDOnumber

Arguments
board constant or variable integer. Board number (1 to 4)
node constant or variable integer. Number of the node
PDOnumber constant or variable integer. Number of the PDO

Description
It reads the PDO content specified from PDO number for the mentioned node. This instruction is
used to read asynchronous PDOs (i.e. those PDOs that in the canbus.def file are shown with "ASYNC"
attribute).
The read data are copied in the respective device just as defined in the canbus.def file. (Make
reference to the canbus.def file description).
This instruction can only be used with TMSCan and TMSCan+ boards.

Example
In a CANBUS.DEF file written in this way
....

 CN(1) RPDO=2ASYNC+2+1ASYNC TPDO=2+1ASYNC ;

 ...

VAR

 ...
 TPA.Byte1 AS %IB1.1.4 ;
 ...

END_VAR

To read the content in the third asynchronous PDO, you should enter in the file of the function this line
of code:
RECEIVEPDO1,1,3
according to the description in the CANBUS.DEF file the content of the TPA.Byte1 device is copied

SENDPDO

Syntax
SENDPDO board, node, PDOnumber

Arguments
board constant or variable integer. Number of the card
node constant or variable integer. Number of the node
PDOnumber constant or variable integer. PDO number

Description
It writes the specified PDO content from PDO number for the mentioned node. This instruction is
used to write asynchronous PDOs (i.e. those PDOs that in the canbus.def file are shown with "ASYNC"

Albatros219

Manufacturer's manual

attribute). (Make reference to the canbus.def file description).
This instruction can only be used with TMSCan and TMSCan+ boards.

Example
In a CANBUS.DEF file written in this way
....

 CN(1) RPDO=2ASYNC+2+1ASYNC TPDO=2+1ASYNC ;

 ...

VAR

 ...
 TPA.Byte1 AS %IB1.1.2 ;
 ...

END_VAR

To send to the node the value contained in the TPA.Byte1 device, you should enter in the file of the
function this line of code:
SENDPDO 1,1,2

SETNMTSTATE

Syntax
SETNMTSTATE board, node, status

Arguments
board constant or variable integer. Board number (from 1 to 4)
node constant or variable integer. Number of the node
status constant or variable integer.

Description
It sets the status of the NMT protocol for the node of the board CANOpen shown. If the value of the
node is equal to 0 (zero) or higher than 126, setting is applied to all the existing and configured
nodes on CANOpen channel. For further information about the meaning of these parameters, make
reference directly the documentation concerning each single CANopen device.

Valye Protocol status

1 Operational

128 Pre-Operational

Board CIF30

CANOPENDRIVER

Syntax
CANOPENDRIVER card, reserved, [error]

Arguments
card constant or variable. Number of the card
reserved constant or variable. Reserved
[error] variable. Error code

Description
It opens the communication channel between GPL and the CANopen Card. The second parameter is
reserved for future use. The optional error parameter contains the codes of errors that could be
generated during functioning; if it is not specified, in case of error, a system error occurs. See also
CANCLOSEDRIVER.

GPL Language 220

Manufacturer's manual

CANCLOSEDRIVER

Syntax
CANCLOSEDRIVER card, [error]

Arguments
card constant or variable. Number of the card
[error] variable. Error code

Description
It closes the communication channel between GPL and the CANopen Card. If the channel hadn't been
opened it generates an error. The optional error parameter contains the codes of errors that could be
generated during functioning; if it is not specified, in case of error, a system error occurs. See also
CANOPENDRIVER

CANRESETBOARD

Syntax
CANRESETBOARD card, [error]

Arguments
card constant or variable. Number of the card
[error] variable. Error code

Description
It executes the reset of the indicated CANopen Card. The optional error parameter, if specified,
contains the codes of errors that could be generated during functioning; if it is not specified, in case of
error, a system error is generated.

CANSETOBJECT

Syntax
CANSETOBJECT card, node, index, subindex, data, length, [error]

Arguments
card constant or variable. Number of the card
node constant or variable. Number of the node
index constant or variable. Index of objects folder
subindex constant or variable. Subindex of objects folder
data constant or variable. Data to be written
length constant or variable. Length of data in bytes
[error] variable. Error code

Description
It writes a CANopen object on the indicated card. The parameters node, index and subindex allow
you to address the CANopen device and the location on which the CANopen object must be written.
For further information about the meaning of these parameters, as well as the type and dimension of
the data, consult directly the documentation concerning each single CANopen device.
The optional error parameter, if specified, contains the codes of the errors that could be generated
during functioning; if it is not specified, in case of error a system error is generated. See also
CANGETOBJECT.

CANGETOBJECT

Syntax
CANGETOBJECT card, node, index, subindex, data, length, [error]

Arguments
card constant or variable. Number of the card
node constant or variable. Number of the node
index constant or variable. Index of objects folder
subindex constant or variable. Subindex of objects folder
data variable. Data to be read
length constant or variable. Length of data in bytes
[error] variable. Error code

Albatros221

Manufacturer's manual

Description
It reads a CANopen object from the indicated card. The parameters node, index and subindex
allow you to address the CANopen device and the location from which the CANopen object must be
read. For further information about the meaning of these parameters, as well as the type and
dimension of the data, consult directly the documentation concerning each single CANopen device.
The optional error parameter, if specified, contains the codes of the errors that could be generated
during functioning; if it is not specified, in case of error a system error is generated. See also
CANSETOBJECT.

Mechatrolink II3.2.15

MECCOMMAND

Syntax
MECCOMMAND axis,command,parameters,reply,error

Arguments
axis name of digital axis device
command integer constant.
parameters integer array.
reply integer array
error integer variable. Error code

Description
It sends to indicated axis activation a command and waits for the reply. Necessary data for the
execution of the command are inserted into parameters vector, while returned data from the
execution of the instruction are stored into the reply vector. Parameter and reply vector must
have the same size and the maximum number of elements must be 14. The consider value is the
lowest byte of single integer. The error parameter contains the codes of eventual errors generated
during the operation.
The error codes should be handled by Gpl as cycle errors.
The returned error codes are:
Error
Codes

Message

-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a Mechatrolink II command
-44 Timeout error during the execution of a Mechatrolink II subcommand
-45 Link error of the drive
For the values that must be assigned to parameters command, parameters, reply and error see
Yaskawa Mechatrolink II official documentation, where the values to be allocated to the command are
described in the index 2 up to the index 15. The values to be set to the subcommands are described
in the index 18 up to the index 32.
 Commands can be distinguished in the following way:

command. They have code includes between 0x00 and 0xFF. Because of safety reasons they are

executed only if servo axis is enabled.

subcommand. The commands used as subcommands must add to documented value the code

0x100. For example the command NOP has documented code 0x00, used as subcommand is
0x100.

procedure. The commands used as procedures have command with value starting from 0x200.

Currently those procedures are contemplated:

$201H habilitation procedure for offline parameters (to use with disenabled axis)

This instruction can only be used with Albmech, Dualmech and Dualmech Mono boards. For further
information about the use of this instruction contact T.P.A. S.p.A

Note
This instruction acts on the actions of digital axes and it should be used in controlled
context.

MECGETPARAM

Syntax
MECGETPARAM axis,parameter,dimension,data,error

GPL Language 222

Manufacturer's manual

Arguments
axis name of digital axis device
parameter constant or integer variable.
dimension constant or integer variable.
data integer variable.
error integer variable. Error code

Description
It reads a parameter of the activation of indicated axis and it stores the parameter into data
variable. The error parameter contains the codes of the possible errors generated during the
operation. The error codes should be handled by Gpl as cycle errors.
The returned error codes are:
Error Codes Message
-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a Mechatrolink II command
-44 Timeout error during the execution of a Mechatrolink II subcommand
-45 Link error of the drive
For the values that must be assigned to parameter and dimension variables see Yaskawa
Mechatrolink II official documentation.
This instruction can only be used with Dualmech and Dualmech Mono boards. For further information
about the use of this instruction contact T.P.A. S.p.A

MECGETSTATUS

Sintax
MECGETSTATUS axis,state,inout,error

Arguments
axis name of digital axis device
state constant or integer variable.
inout constant or integer variable.
error integer variable. Error code

Description
It reads and stores into state variable the value of STATUS and ALARM and into inout variable the
value of IO_MON relative to specified axis. For the values of STATUS, ALARM, IO_MON see Yaskawa
Mechatrolink II official documentation.
The error parameter contains the codes of the possible errors generated during the operation. The
error codes should be handled by Gpl as cycle errors.
The returned error codes are:
Error Code Message
-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a Mechatrolink II command
-44 Timeout error during the execution of a Mechatrolink II subcommand
-45 Link error of the drive
A sequence of error categories is defined. The category that represents the value of the highest
nibble of ALARM.
into one of following categories 0x30,0x70,0xD0,0xF0 must be sent a command of CLEAR (0x06).
Alarms that are included into one of following categories 0x00,0x10,0x40,0xB0 can’t be deleted with a
command. It is necessary to solve the problem that creates the alarm, turn out the servodriver and
switch it on again.
The structure of variables state and inout is a mask of bit structured as in the following
representation:

Albatros223

Manufacturer's manual

Meaning of STATUS bits

Bit Command Physical pins that can be connected
in Virtual-Physical

1 ALM (Alarm) Digital input

2 WARNG (Warning) Digital input

3 CMDRDY (Command Ready)

4 SVON (Servo ON) Digital output

5 PON (Main Power ON) Digital input

6 Reserved

7 ZPOINT (Zero Point)

8 PSET (Position Complete)

9 DEN (Command Distribution Completed Flag)

10 T_LIM (Torque Limit)

11 L_CMP (Latch Completed)

12 NEAR (Position Proximity)

13 P-SOT (Forward-direction Software Limit)

14 N-SOT (Reverse-direction Software Limit)

15 Rerserved

16 Reserved

Meaning of IO_MON bits

Bit Command Physical pins that can be connected
in Virtual-Physical

1 P_OT (Forward Over Travel)

2 N_OT (Reverse Over Travel)

3 DEC (Deceleration Limit Switch)

GPL Language 224

Manufacturer's manual

4 PA (Phase A)

5 PB (Phase B)

6 PC (Phase C) Digital input

7 EXT1 (First external latch input) Digital input

8 EXT2 (Second external latch input) Digital input

9 EXT3 (Third external latch input)

10 BRK (Brake output)

11

12

13 IN1 (General-purpose input 1)

14 IN2 (General-purpose input 2)

15 IN3 (General-purpose input 3)

16 IN4 (General-purpose input 4)

This instruction can only be used with Albmech, Dualmech and Dualmec Mono boards. For further
information about the use of this instruction contact T.P.A. S.p.A

MECSETPARAM

Syntax
MECSETPARAM axis,parameter,dimension,data,error

Arguments
axis name of digital axis device
parameter constant or integer variable.
dimension constant or integer variable.
data integer variable.
error integer variable. Error code

Description
It writes a data into the parameter of indicated axis.
For the values that must be assigned to parameter and dimension variables see Yaskawa
Mechatrolink II official documentation. The error parameter contains the codes of the possible errors
generated during the operation. The error codes should be handled by Gpl as cycle errors.
The returned error codes are:
Error
Code

Message

-40 Command not allowed in the current functioning conditions
-41 Timeout error during the execution of a Mechatrolink II command
-44 Timeout error during the execution of a Mechatrolink II subcommand
-45 Link error of the drive
This instruction can only be used with Albmech, Dualmech and Dualmech Mono boards. For further
information about the use of this instruction contact T.P.A. S.p.A

Note
This instruction acts on the actions of digital axes and it should be used in controlled
context. To input data into into the non-volatile memory the instruction MECCOMMAND is
to be used.

PowerlinkII and EtherCAT3.2.16

Instructions to initialize the Powerlink nodes

Syntax

GETCNSTATE board, node, state

Albatros225

Manufacturer's manual

GETMNSTATE board, state

SETNMTSTATE board, node, state

Description
Make reference to the documentation in the chapter TMS boards with CAN control.

AXCONTROL

Syntax
AXCONTROL axis, data

Arguments
axis device name of axis type
data variable or integer constant. it sets the ControlWord

Description
It sets the ControlWord data, in conformity with the functioning operativity, according to "CiA 402
CANopen device profile".

PowerLink and EtherCAT value definition table

Bit Meaning Name in virtual-
physical

1 so=Switch ON CW1

2 ev=Enable voltage EV

3 qs=Quick stop STOP

4 eo=Enable operation SVON

5 oms=Operation mode specific CW5

6 oms=Operation mode specific CW6

7 oms=Operation mode specific CW7

8 fr=Fault reset RESALM

9 h=Halt CW9

10 oms=Operation mode specific CW10

11 r=Reserved CW11

12 ms=Manufacturer specific CW12

13 ms=Manufacturer specific CW13

14 ms=Manufacturer specific CW14

15 ms=Manufacturer specific CW15

16 ms=Manufacturer specific CW16

Table to define the values for S-CAN

GPL Language 226

Manufacturer's manual

Bit Meaning Name in virtual-
physical

1 Ten_cmd=torque enable command
1:torque axis
0:free axis

SVON

2 Ien_cmd=movement enable
command
1:enabled movements
0:axis stall

ENMOVE

3 Stp_cmd=stop command
1:active stop command
0:non-active command stop

STOP

4 Alm_rst= alarm status
1:alarm command reset

RESALM

5 Ltc_rst: reset bit 5 of StatusWord CW5

6 oms=selected mode specific CW6

7 oms=selected mode specific CW7

8 oms=selected mode specific CW8

ACTIVATEMODE

Syntax
ACTIVATEMODE axis, data, err

Arguments
axis device name of axis type
data constant or integer variable. Operating mode
err integer variable. Error code not returned by the servocontrol

Description

Sets the operating mode defined in the data variable according to "CiA 402 CANopen device profile".
The operating mode of the starting axis corresponds to the data value = 9, that is "Synchronous
speed configuration". The instruction returns err= 0 value, if the command succeeded, otherwise it
returns an error code.
Given below, the table of the values to assign to data to choose the operating mode.

Value Definition

+6 Homing mode

+9 Cyclic sync velocity mode

AXSTATUS

Syntax
AXSTATUS axis, value

Arguments
axis device name of axis type
value integer variable

Description
It return the value in the StatusWord in accordance with "CiA 402 CANopen device profile".

PowerLink II and EtherCAT value definition table

Albatros227

Manufacturer's manual

Bit Meaning Name in virtual-
physical

1 rtso=Ready to switch on RTSO

2 so=Switched on SW2

3 oe=Operation enabled OE

4 f=Fault ALM

5 ve=Voltage enable VE

6 qs=Quick stop QS

7 sod=Switch on disabled SOD

8 w=Warning WARNG

9 ms=Manufacturer specific SW9

10 rm=Remote SW10

11 tr=Target reached or reserved SW11

12 ila=Internal limit active SW12

13 oms=Operation mode specific SW13

14 oms=Operation mode specific SW14

15 ms=Manufacturer specific SW15

16 ms=Manufacturer specific SW16

S-CAN value definition table

Bit Meaning Name in virtual-
physical

1 Ten_st=torque enable status
1:torque axis
0:free axis

SW1

2 Ien_st=movements enable status
1:enabled movements

SW2

GPL Language 228

Manufacturer's manual

0:axis stall

3 Stp_st=stop status
1:running stop ramp
0:stop is not activated or ramp finished

SW3

4 Alm_st=alarm status
1:alarmed machine
0:no alarm detected

ALM

5 Ltc_st=Position latch status
1:position latch executed, register ready to read
0:no position latch detected

SW5

6 oms=operation mode specific SW6

7 oms=operation mode specific SW7

8 oms=operation mode specific SW8

CNBYDEVICE

Syntax
CNBYDEVICE device, board,cn

Arguments
device device name
board integer variable. Board number returned
cn integer variable. CN-number returned

Description
Returns the EPL-coordinates of the device defined in the device parameter. This instruction can be
used for instructions without direct connections to devices, as, for instance READDICTIONARY and
WRITEDICTIONARY, that are directly connected to the EPL network.

Note
To further information concerning this instruction, see "CiA 402 CANopen device profile".

GETPDO

Syntax
GETPDO board,node,nPDO,nObj,data,[error]

Arguments
board constant or variable integer. Board number
node constant or variable integer. Position helt by the slave in the EtherCAT chain (from

1 on)
nPDO constant or variable integer. PDO identifier (ex, $1600h) or position of the same in

the list of configured PDO configured in the ECATBIS.DEF file for the node under
consideration (from 1 to 8)

nObj constant or variable integer. Object identifier (ex. $6040h) or position of the same
within the list of object configured in the PDO (from 1 to 8)

data variable integer. It receives the value.
Error variable integer. Error code

Description
It returns in [data] the content of an object exchanged through the PDOs configured for the
EtherCAT node. If the passed arguments are wrong and if the error, parameter has not been set, a
system error is generated. If an error parameter has been set, this will contain the numeric code for
the corresponding system error.

HOMING

Syntax
HOMING axis, data, speed, speed1,offset,err

Arguments
axis device name of axis type

Albatros229

Manufacturer's manual

data constant or integer variable. Kind of homing
speed constant or float or double variable. Search speed of the switch
speed1 constant or float or double variable. Search speed of zero
offset constant or float or double variable. Zero - offset beside the homing

position
err integer variable. Error code returned by the servocontrol

Description
This instruction can be used in Powerlink II configuration only.
It runs the "zero search" according to the DS402 specifications. To know if the kind of data homing is
supported by the servodrive, it is necessary to make reference to the producer's specifications. At the
end of the homing operations, CN is placed into the previous operating mode.

Note

To further information concerning this instruction, see "CiA 402 CANopen device profile".

READDICTIONARY

Syntax
READDICTIONARY board,cn,index,subindex,dimdata,data,err

Arguments
board constant or integer variable. Board number
cn constant or integer variable. CN number
index constant or integer variable. Object's index in the dictionary
subindex constant or integer variable. Object's subindex in the dictionary
dimdata integer variable. Dimension of the read data
data char variable, integer, float,double,string. Variable receiving the data
err integer variable. Error code returned by CN

Description
It reads the content of an objects' dictionary object, contained in CN. The instruction enables to read

by means of the SDO protocol all the objects defined in accordance with "CiA 402 CANopen device
profile" beside all the other objects made available by the manufacturer. To know the measning of

the index, subindex and dimdata parameter, reference is made to "CiA 402 CANopen device
profile" or to the specifications of the CN manufacturer. For the S-CAN devices the sub-index

parameter must always be set to zero.

SETPDO

Syntax
SETPDO board,node,nPDO,nObj,data,[error]

Arguments
board constant or variable integer. Board number)
node constant or variable integer. Position helt by the slave in the EtherCAT chain (from 1

on)
nPDO constant or variable integer. PDO identifier (ex, $1600h) or position of the same in

the list of configured PDO configured in the ECATBIS.DEF file for the node under
consideration (from 1 to 8)

nObj constant or variable integer. Object identifier (ex. $6040h) or position of the same
within the list of object configured in the PDO (from 1 to 8)

data variable integer . Set value
Error variable integer . Error code

Description
It sets the content [data] of an object exchanged through the PDOs configured for the EtherCAT
node. If the passed arguments are wrong and if the error, parameter has not been set, a system
error is generated. If an error parameter has been set, this will contain the numeric code for the
corresponding system error.

GPL Language 230

Manufacturer's manual

WRITEDICTIONARY

Syntax
WRITEDICTIONARY board,cn,index,subindex,dimdata,data,err

Arguments
board constant or integer variable. Board number
cn constant or integer variable. CN number
index constant or integer variable. Object's index in the dictionary
subindex constant or integer variable. Object's subindex in the dictionary
dimdata constant or integer variable. Dimension of the data to write
data char variable, integer,float,double,string. Variable containing the data
err integer variabile. Error code returned by CN

Description
It writes the content of an objects' dictionary object, contained in CN. The instruction enables to read
by means of the SDO protocol all the objects defined in accordance with "CiA 402 CANopen device
profile" beside all the other objects made available by the manufacturer. To know the meaning of the
index, subindex and dimdata parameter, reference is made to "CiA 402 CANopen device profile"
or to the specifications of the CN manufacturer. For the S-CAN devices the sub-index parameter must
always be set to zero.

SLM3.2.17

SLMCOMMAND

Syntax
SLMCommand axis, command [,error]

Arguments
axis name of digital axis device
command integer variable. Code of command to be executed. Possible values

range between 0-255
error integer variable. Error code

Description
It executes an SLM command. Any execution errors can be managed by GPL by means of an "Error"
optional parameter. If the error variable has not been defined, in case of error it generates a
system error.
This instruction can be used only with digital axis cards.
For further information about the use of this instruction contact T.P.A. S.p.A.

SLMEEPROMDISABLE

Syntax
SLMEEPROMDISABLE axis, [,error]

Arguments
axis name of digital axis device
error integer variable. Error code

Description
It executes the write disabling command of an EEPROM memory location. It also returns any possible
protocol errors that may be managed by GPL by means of the optional error parameter. If the
error variable has not been specified, in case of error it generates a system error. This instruction
can be used only with digital axis cards.
For further information about the use of this instruction contact T.P.A. S.p.A.

SLMEEPROMENABLE

Syntax
SLMEEPROMENABLE axis, [,error]

Arguments
axis name of digital axis device
error integer variable. Error code

Albatros231

Manufacturer's manual

Description
It executes the write enabling command of an EEPROM memory location. It also returns any possible
protocol errors that may be managed by GPL by means of the optional error parameter. If the
error parameter has not been specified, in case of error it generates a system error. This instruction
can only be used with digital axis cards.
For further information about the use of this instruction contact T.P.A. S.p.A.

SLMGETEEPROM

Syntax
SLMGetEEPROM axis, address, data [,error]

Arguments
axis name of digital axis device
address integer variable. Location to be read. Possible values range between 0-

128
data integer variable. Data returned from read
error integer variable. Code error

Description
It executes the reading of an EEPROM memory location. Any execution errors can be managed by
GPL by means of the optional "Error" parameter. If the error variable has not been defined, in case
of error it generates a system error.
This instruction can be used only with digital axis cards.
For further information about the use of this instruction contact T.P.A. S.p.A.

SLMGETPARAM

Syntax
SLMGetParam axis, address, data [,error]

Arguments
axis name of digital axis device
address integer variable. Location to be read. Possible values range between 0-

128
data integer variable. Data returned from read
error integer variable. Code error

Description
It executes the reading of an SLM parameter. Any execution errors can be managed by GPL by
means of the optional "Error" parameter.
 This instruction can be used only with digital axis cards.
For further information about the use of this instruction contact T.P.A. S.p.A.

SLMGETREGISTER

Syntax
SLMGetRegister axis, register, data [,error]

Arguments
axis name of digital axis device
register integer variable. Number of SLM register. Possible values range

between 1-16
data integer variable. Data returned from read
error integer variable. Code error

Description

It executes the reading of the specified SLM register. Any execution errors can be managed by GPL
by means of the optional "Error" parameter.
This instruction can be used only with digital axis cards.
For further information about the use of this instruction contact T.P.A. S.p.A.

GPL Language 232

Manufacturer's manual

SLMGETSTATUS

Syntax
SLMGetStatus axis, parameter, data [,error]

Arguments
axis name of digital axis device
parameter integer variable. Read address (for ex. 8000h). Possible values range

between 0-65535
data integer variable. Data returned from read
error integer variable. Code error

Description
It executes the write of the Multiax Read Address and returns the read parameter to the "Drive
Status". It manages automatically a 1ms delay between two operations. Any execution errors can be
managed by GPL through the optional "Error" parameter.
This instruction can be used only with digital axis cards.
For further information concerning the use of this instruction, contact T.P.A. S.p.A.

SLMSETEEPROM

Syntax
SLMSetEEPROM axis, address, data [,error]

Arguments
axis name of digital axis device
address integer variable. Location to be written. Possible values range between

0-128
data integer variable. Data to be written
error integer variable. Code error

Description
It executes the write of an EEPROM memory location. Any execution errors can be managed by GPL
through the optional "Error" parameter.
This instruction can be used only with digital axis cards.
For further information concerning the use of this instruction, contact T.P.A. S.p.A.

SLMSETPARAM

Syntax
SLMSetParam axis, address, data [,error]

Arguments
axis name of digital axis device
address integer variable. Location to be written. Possible values range between

0-128
data integer variable. Data to be written
error integer variable. Code error

Description
It executes the writing of an SLM parameter. Any execution errors can be managed by GPL through
the optional "Error" parameter.
This instruction can be used only with digital axis cards.
For further information concerning the use of this instruction, contact T.P.A. S.p.A.

SLMSETREGISTER

Syntax
SLMSetRegister axis, register, data [,error]

Arguments
axis name of digital axis device
register integer variable. Number of SLM register. Possible values range

between 1-16
data integer variable. Data to be written

Albatros233

Manufacturer's manual

error integer variable. Code error

Description
It executes the writing of the specified SLM. Any execution errors can be managed by GPL through
the optional "Error" parameter.
This instruction can be used only with digital axis cards.
For further information concerning the use of this instruction, contact T.P.A. S.p.A.

Simulation3.2.18

DISABLE

Syntax
DISABLE axis1,[...axis6]

Arguments
axis1...[...axis6] name of axis devices

Description
It disables the specified axes. This allows you to carry out simulations of the machine cyclic without
physically moving the axes. A disabled axis can not read the information coming from the encoder but
simulates a loop error proportionally to current speed. Disabling the axis, however, does not disable
the speed reference, implying that power on the axes connector will not equal zero during simulated
movements. For this reason it is necessary to disconnect the controls from the power supply or from
the axis card during simulated movements, that is when axes are disabled. See also ENABLE.

Note
Step-by-step axes can be used in this instruction only if they are controlled by a TRS-AX remote.

DISABLEFORCEDINPUT

Syntax
DISABLEFORCEDINPUT

Arguments
no arguments

Description
It disables the possibility of using functions to force the inputs. If any inputs have been previously
forced, executing this instruction resets the real state. See also ENABLEFORCEDINPUT,
DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDBCD,
SETFORCEDPORT, SETFORCEDANALOG.

ENABLE

Syntax
ENABLE axis1,[...axis6]

Arguments
axis1...[...axis6] name of axis devices

Description
It enables the specified axes. The axes are always enabled in the initialization phase. This instruction
is only called if the axes were previously disabled by a DISABLE instruction.

Note
Step-by-step axes can be used in this instruction only if they are controlled by a TRS-AX remote.

ENABLEFORCEDINPUT

Syntax
ENABLEFORCEDINPUT

GPL Language 234

Manufacturer's manual

Arguments
no arguments

Description
It enables input forcing. Before using instructions to enable or disable forced input devices, it is
necessary to execute this instruction. Otherwise the input forcing instructions have no effect.
See also DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDBCD,
SETFORCEDPORT, SETFORCEDANALOG.

RESETFORCEDINPUT

Syntax
RESETFORCEDINPUT nameinput

Arguments
nameinput name of digital input

Description
It forces to OFF the input specified in nameinput.
To use this instruction it is necessary to have already enabled input forcing, with the
ENABLEFORCEDINPUT instruction.
See also DISABLEFORCEDINPUT, SETFORCEDINPUT, SETFORCEDBCD, SETFORCEDPORT,
SETFORCEDANALOG.

SETFORCEDANALOG

Syntax
SETFORCEDANALOG analoginput, value

Arguments
analoginput name of analog input device
variable constant or integer or float or double variable

Description
It forces the value of the analog input specified in analoginput.
To use this instruction it is necessary to have first enabled input forcing, using the
ENABLEFORCEDINPUT instruction.
See also, DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDBCD,
SETFORCEDPORT.

SETFORCEDBCD

Syntax
SETFORCEDBCD namedigit1, [namedigit2,...], variable

Arguments
namedigit1,[namedigit2...] name of nibble device
variable constant or integer or char variable

Description
It converts the variable decimal value into a sequence of digits. Each digit is then converted in
binary system and the bit mask thus obtained is forced in the relative input nibble.
The highest weight digit is associated to the first nibble (namedigit1).
To use this instruction it is necessary to have first enabled input forcing, using the
ENABLEFORCEDINPUT instruction.
See also DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDPORT,
SETFORCEDANALOG.

SETFORCEDINPUT

Syntax
SETFORCEDINPUT nameinput

Albatros235

Manufacturer's manual

Arguments
nameinput name of digital input

Description
It forces to ON the input specified in nameinput.
To use this instruction it is necessary to have first enabled input forcing, using the
ENABLEFORCEDINPUT instruction.
See also DISABLEFORCEDINPUT, RESETFORCEDINPUT, SETFORCEDBCD, SETFORCEDPORT,
SETFORCEDANALOG.

SETFORCEDPORT

Syntax
SETFORCEDPORT portname, value

Arguments
portname name of input port device
variable constant or integer or char variable

Description
It forces the value in the input port indicated by portname. The input port is interpreted as a bit mask.
If a bit equals 1 the relative input is forced to "ON".
To use this instruction it is necessary to have already enabled input forcing, with the
ENABLEFORCEDINPUT instruction.
See also DISABLEFORCEDINPUT, SETFORCEDINPUT,RESETFORCEDINPUT, SETFORCEDBCD,
SETFORCEDANALOG.

Blackbox3.2.19

The purpose of the "BlackBox" functionality is to record in a database all the activities of a machine, that

is a local or a remote module. The" activity of a machine" is the variation over time of a subgroup of all

logic devices that can be used in GPL. This is the way to analyse afterwards the behaviour of the

machine, linking the states of the stored devices. The database has a table containing a temporal

information and the state of all devices in that time, one for each column. In the GPL language new

instructions have been introduces to start, and and query for the recording activity and are described

later.

Each file of blackbox is a SQLite database and it contains information concerning one only module. The

file name includes the number of the module, the date and the time of the recording start.

Records are added in the database in a transactional manner. Each transaction contains at the most the

records generated in 1 second. In the event of a power failure the coherence of the file is guaranteed

and the last transaction can be lost. The maximum duration of the transaction can be modified by an

entry in Tpa.ini (for further information, please contact T.P.A. S.p.A).

A limit of 12 hours to the duration of the recording has been inserted. This means that each database will

always contain only the last 12 hours of recording. During the recording the most ancient records are

removed from the database. The maximum duration of the history recorded in the database can be

modified by an entry in Tpa.ini (for further information, please contact T.P.A. S.p.A).

This functionality is available for physical devices on GreenBus, EtherCAT, CAN, S-CAN and Mechatrolink

II buses, connected through TMSbus, TMSbus+, TMScan, TMScan+, DualMech, DualMech Mono and

AlbMech.

ENDBLACKBOX

Syntax
ENDBLACKBOX

Description
It ends the record on file functionality for all the activity of a local and remote module. See also
STARTBLACKBOX and PAUSEBLACKBOX.

GPL Language 236

Manufacturer's manual

PAUSEBLACKBOX

Syntax
PAUSEBLACKBOX

Description
It pauses the file logging functionality of all the activity of a local or remote module. To resume the
recording you need to carry out the instruction STARTBLACKBOX instruction without arguments. See
also ENDBLACKBOX.

STARTBLACKBOX

Syntax
STARTBLACKBOX [value][,error]

Arguments
value constant or variable integer. Recording period
error variable integer. Error code

Description
It activates the file recording functionality of all the activity of a local or remote module. The activity
of a module is the variation over time of the state of the logic devices excluding the flag switch, input
nibble and output nibble devices.
Recording period (value) is expressed in milliseconds. It cannot be less than 10 and it must be a
multiple of the realtime period. Otherwise, the system error no. 4399 (Parameter outside the range)
would be generated.
If the instruction starts a record and the value is omitted, the considered default value is 20.
If the instruction resumes a previously interrupted record, no set value is considered.
If it was not possible to start the recording, error contains a value not equal to 0, otherwise it
contains 0.

Error
code

Description

0 No errors

1 There are some differences between the device configuration in the numeric control and
the device configuration in Albatros

2 The number of the devices to record exceeds the maximum number provided for the
system

3 No devices in the configuration

4 The communication software in the remote module does not support the blackbox
functionality (remote modules only)

5 The numeric control prevents the recording from being started

6 Error in uploading the database management library

7 The number of columns for the table exceeds the maximum number of columns that can
be managed by the database

8 Couldn't open the database on disc

9 Couldn't create in the database the recording table

10 Error in IP address for the communication with the remote module (remote modules only)

11 Couldn't create the communication socket to receive the data (remote modules only)

12 Couldn't associate a local address to the communication socket (remote modules only)

13 Couldn't connect to the remote socket (remote modules only)

14 Couldn't access to the memory region shared with the numeric control

15 The hardware configuration prevents from using the "BlackBox" functionalities

16 The functionality has been disabled in tpa.ini

See also PAUSEBLACKBOX and ENDBLACKBOX.

ISO3.2.20

ISOG0

Syntax
ISOG0 label, axis1 position1, axis2, position2, axis3, position3, axis4,

positiona4,axis5, position5, [value]

Arguments
label constant or variable integer. Label identifying a displacement bloc. N in the ISO

Albatros237

Manufacturer's manual

standard.
axis1 device name of axis type. (X in the ISO standard)
position1 constant or variable Position of axis1 operational space
axis2 device name of axis type. (Y in the ISO standard)
position2 constant or variable Position of axis2 operational space
axis3 device name of axis type. (Z in the ISO standard)
position3 constant or variable Position of axis3 operational space
axis4 device name of axis type. (C in the ISO standard)
position4 constant or variable Position of axis4 joint space
axis5 device name of axis type. (B in the ISO standard)
position5 constant or variable Position of axis5 joint space
value constant or variable double. It represents the feed rate percentage. F in the ISO

standard

Description
It sets the rapid movement. The rapid movement sections are managed as synchronized. The points
defined by the user are the extrema of the single space of displacement covered, so that all the axes
are synchronized to each other. That means that the physical axes move individually, even though
they start and arrive simultaneously, in the same way as in the instructions MULTIABS and
MULTIINC . The tool point does not cover a line in the operational space and its trajectory is not
checked. The parameter label is used in association with the instruction SETLABELINTERP to identify
univocally the displacement bloc. The first three positions identify the position of the point in the
operational space, while the following two positions define the value of the rotating axes in the joint
spaces. The feed rate value defines the percentage of reduction as regards the most possible speed
rate (In ISO: F0 highest speed, F100 FeedRate null, therefore the axes are still).
The instruction generates a system error (4105- Instruction not executable on axis AxisName), if
used on step-to-step axes.
The instruction WAITCOLL cannot be used, because starting from the collision the interpolation link to
the other axes that contribute to the movement and generate a profile other than that expected,
would be get lost.
If used, the system error no. "4101 - Inconsistent axis AxisName management" is generated".

ISOG1

Syntax
ISOG1 label, axis1, position1,axis2, position2, axis3,

position3,axis4,position4,axis5, position5, [value]

Arguments
 constant or variable integer. Label identifying a displacement bloc. (N in the ISO

standard)
axis1 device name of axis type. (X in the ISO standard)
position 1 constant or variable Position of axis1 operational space
axis2 device name of axis type. (Y in the ISO standard)
position2 constant or variable Position of axis2 operational space
axis3 device name of axis type. (Z in the ISO standard)
position3 constant or variable Position of axis3 operational space
axis4 device name of axis type. (C in the ISO standard)
position4 constant or variable Position of axis4 operational space
axis5 device name of axis type. (B in the ISO standard)
position5 constant or variable Position of axis5 operational space
feed rate constant or variable double. it represents the Feed value. (F in the ISO standard)

Description
It defines the point in the operational space that should reach the tool point at the end of the
interpolation of the current bloc. The parameter label is used in association with the instruction
SETLABELINTERP to identify univocally the displacement bloc. The first three positions identify the
position of the tool point in the operational space, while the following two positions define the value of
the rotating axes in the configuration space. The value Feed defines the feed rate of the tool point as
measure unit (millimeters or grades) per minute (set in the presence of an instruction ISOG94) as
inverse of the execution time (in the presence of the instruction ISOG93). The parameter value is
compulsory for the first instruction ISOG1 of the interpolation movement.
The instruction generates a system error (4105- Instruction not executable on axis AxisName), if
used on step-to-step axes.
The instruction WAITCOLL cannot be used, because starting from the collision, the interpolation link
to the other axes that contribute to the movement and generate a profile other than that expected,
would be get lost.
If used, the system error no. "4101 - Inconsistent axis AxisName management" is generated".

GPL Language 238

Manufacturer's manual

ISOG9

Syntax
ISOG9 axis

Arguments
axis name of device of type axis

Description
It enables the forced stop of the movement. If this instruction is active, the interpolation or the rapid
movement are stopped before jumping to the next bloc. However, it is not a blocked instruction, like
the instruction WAITSTILL . The control is informed about a forced stop and the capture process of the
movement blocs proceeds up to the filling of the lookahead. The parameter axis finds the
interpolation channel with 5 axes to be stop at the end of the bloc calculated before. In this case there
is no difference if an instruction ISOG1 on an instruction ISOG0 is performed.

ISOG90

Syntax
ISOG90 axis

Arguments
axis name of device of type axis

Description
It sets the interpretation of the positions as absolute positions. The parameter axis finds the
interpolation channel with 5 axes, that from this instruction on will interpret the axes positions as
absolute positions (default condition). In this case there is no difference if an instruction ISOG1 on an
instruction ISOG0 is performed.

ISOG91

Syntax
ISOG91 axis

Arguments
axis name of device of type axis

Description
It sets the interpretation of the positions as relative positions The parameter axis finds the
interpolation channel with 5 axes, that from this instruction on will interpret the axes positions as
relative positions. In this case there is no difference if an instruction ISOG1 on an instruction ISOG0 is
performed.

ISOG93

Syntax
ISOG93 axis

Arguments
axis name of device of type axis

Description
It sets the speed interpretation as inverse of the execution time. The parameter axis finds the
interpolation channel with 5 axes, that from this instruction on will interpret the value arisen from the
F-parameters of the instruction. ISOG1 as inverse of the execution time expressed in minutes. Thanks
to this, the control is able to determinate the speed rate to be kept by the tool point in the
interpolation blocs.

Albatros239

Manufacturer's manual

ISOG94

Syntax
ISOG94 axis

Arguments
axis name of device of type axis

Description
It sets the interpretation of the speeds as units of measure per minute. The parameter axis finds the
interpolation channel with 5 axes, that from this instruction on will interprete the speed rates as
measure units per minute (default condition).

ISOG216

Syntax
ISOG216 RotariesMatrixName, ToolHolderMatrixName,

ToolsMatrixName,EnablingMask, axis1,
axis2,axis3,axis4,axis5

Arguments
RotariesMatrixName name of the matrix. It contains the data concerning the rotary

axes.
ToolHolderMatrixName name of the matrix. It contains the data concerning the

toolholders
ToolHoldersMatrixName name of the matrix It contains the data concerning the tools.
EnablingMask variable or integer constant. C and B axes enabling mask
axis1 device name of axis type. (X in the ISO standard)

axis2 device name of axis type. (Y in the ISO standard)
axis3 device name of axis type. (Z in the ISO standard)
axis4 device name of axis type. (C in the ISO standard)
axis5 device name of axis type. (B in the ISO standard)

Description
It identifies the three matrices for the machine parametrisation and the five devices of axis type
composing the same. Such instruction should be performed before every other ISO instruction. The
parameter EnablingMask defines which rotation axes (C and/or B) should be enabled. To set the
values, reference is made to the following table:

EnablingMask Description

31 Desabling C and B axes
23 Enabling the only B axis
15 Enabling the only C axis
7 Desabling C and B axes

Note

The unit of measure, in which the values of the rotary axes are expressed in the configuration, must
be degrees.

The link among the physical axes and the virtual ISO axes, set through this instruction, is brought to
the end through the instruction ISOM2 or when the task, where the instruction is defined, has
finished. Therefore, the axes can be used for classic movement.

ISOG217

Syntax
ISOG217

axis1,axis2,axis3,axis4,axis5,virtualAxis1,virtualAxis2,virtualAxi
s3,virtualAxis4,virtualAxis5.

Arguments
axis1 device name of axis type

GPL Language 240

Manufacturer's manual

axis2 device name of axis type
axis3 device name of axis type
axis4 device name of axis type
axis5 device name of axis type
virtualAxis1 device name of virtual axis type (X in standard ISO)
virtualAxis2 device name of virtual axis type. (Y in the ISO standard)
virtualAxis3 device name of virtual axis type (Z in standard ISO)
virtualAxis4 device name of virtual axis type (C in standard ISO)
virtualAxis5 device name of virtual axis type (B in standard ISO)

Description
It describes the physical axes and the virtual axes, which make up the machine. The virtual axes
describe position and orientation of the tool and must be declared as virtual type in Albatros
configuration. The first five specified axes must be physical and are controlled by the interpolator. The
next five must be virtual axes; they are the axes that are used in the instructions ISOG0 and ISOG1.
This instruction must be be performed before every other ISO instruction.
The formulas of direct and inverse kinematics to switch from a position in the space of the joints
(physical axes) to the operational space (virtual axes) must be specified through the instruction
KINEMATICEXPR for each of the ten axes, defined in the instruction ISOG217.
The instruction generates a system error (4105- Instruction not executable on axis AxisName) if used
on step-to-step axes.

Note
The link between the physical axes and the virtual ISO axes set through this instruction, is loosed
when the task, where the instruction is defined, is brought to an end or when the instruction ISOM2 is
performed. Therefore, the axes can be used for classic movement. The instruction generates a
system error (4105- Instruction not executable on axis AxisName), if used on step-to-step axes

ISOM2

Syntax
ISOM2 axis

Arguments
axis name of device of type axis

Description
It frees the axes free from ISO movement, set through the instruction ISOG216 or the instruction
ISOG217

ISOM6

Syntax
ISOM6 axis, RotaryMatricesRowIndex, ToolHolderMatrixRowIndex,

ToolMatrixRowIndex

Arguments
axis name of the axis device
RotaryMatricesRowIndex constant or variable integer. Row index of the rotary axes matrix
ToolHolderRowMatrixIndex constant or variable integer. Row index of the matrix of the

toolholder
ToolHolderRowMatrix constant or variable integer. Row index of the matrix of the

toolholders

Description
It sets the use of a group of parameters describing the machine's kinematics. The indexes refer to
three matrices whose name is determined by the user. They are declared in the file of the global
variables of Albatros. The axis parameter identifies the corresponding interpolation channel. How the
three matrices in the file of the global variables should be declared, is described in the tables, as
follows:

Matrix field Matrix of rotary axes

X - Offset Offset along X between the pivot point and the control point of the head

Y-Offset Offset along Y between the pivot point and the control point of the head

Albatros241

Manufacturer's manual

Z-Offset Offset along Z between the pivot point and the control point of the head

Out-of-alignment
of X

Deviation in X between rotation and slewing axes (when the position of C-axis = 0)

Out-of-alignment
of Y

Deviation in Y between rotation and slewing axes (when the position of C-axis = 0)

Out-of-alignment
of Z

Nose-pivot point distance

δ - angle δ Angle around Z for the correct placement of the head with respect of zero point
machine.

γ - angle γ Angle between rotation and slewing plane.

Matrix fields Toolholder Matrix

PU X-Offset Offset in X between the toolholder's coupling point to the motor and the tool's c
oupling point to the toolholder (when the position of C-axis = 0 and vertical motor)

PU Y-Offset Offset in Y between the toolholder's coupling point to the motor and the tool's
coupling point to the toolholder (when the position of C-axis = 0 and vertical
motor)

PU Z-Offset Offset in Z between the toolholder's coupling point to the engine and the tool's
coupling point to the toolholder (when the position of C-axis = 0 and vertical motor)

Angle α Phase displacement angle between motor and toolholder axis (with respect to Z)

Angle β Phase displacement angle between motor and toolholder axis (with respect to Y)

Matrix fields Matrix of the toolholders

Length of the tool Length of the tool

ISOSETPARAM

Syntax
ISOSETPARAM ParameterIndexNumber, value

Arguments
ParameterIndexNumber constant or variable integer. It is the number identifying a

parameter
constant value or variable float. It is the value to set.

Description
It sets some parameters ruling the fluidity of the ISO interpolated movement. The meaning of each
ParameterIndexNumber, the values within which the variable should be included and the values
defaults are explained in the table, as follows:

ParameterIndexNumber RANGE
Defa
ult

Meaning

0 0.0-100.0 50.0

Linear axes slowdown percentage in case of
angular point
(0= no slowdown, 100= maximum slowdown
allowed by the interpolator)

1 0.0-100.0 50.0

Rotating axes slowdown percentage in case of
angular point.
(0= no slowdown, 100= maximum slowdown
allowed by the interpolator)

2 0.5-1.0 0.9

Factor of speed reduction on curviliear
abscissa in case of angular point.
(1=no reduction, 100=maximum slowdown
allowed)

3 0.0-100.0 60.0 Slowdown percentage in case of close

GPL Language 242

Manufacturer's manual

discontinuities.
(0=no slowdown, 100=maximum slowdown
allowed by the interpolator)

4 0.0-100.0 10.0 Smooth percentage of the trajectory

5 0.2-1.0 0.2
Minimum dimension of the space to cover with
only linear axes. The value is expressed in
millimeters.

6 0.1-1.0 0.1
Minimum dimension of the space to cover with
only linear axes. The value is expressed in
millimeters.

7 0.0-100.0 100.0

Percentage of the applied minimum smooth
value
(0 = minimum value of invalid smooth, 100 =
maximum percentage of the minimum smooth
value)

KINEMATICEXPR

Syntax
KINEMATICEXPR axis = expression

Arguments
axis name of device of physical or virtual axis type
expression group of operators

Description
It allows you to define single expressions of direct and inverse kinematics. Before performing this
instruction, the instruction ISOG217 describing the physical axes and the virtual axes, that make up
the machine, must be called. For each axis defined in ISOG217 the instruction KINEMATICEXPR.
must be called. The kinematics expression of an axis in the space of the joints (inverse kinematics)
can be a function of

- variables
- constants
- coordinates of the axes in the operational space.

The kinematics expression of an axis in the operational space (direct kinematics) can be a function of
- variables
- constants
- coordinates of the axes in the space of the joints.

The expression syntax is the same as in the instruction EXPR, the only difference being that local
variables cannot be used. Furthermore, axes of the same type as the axis, declared in axis and not
declared in the instruction ISOG217 , cannot be used. E.g, if the kinematics of a virtual axis, already
declared in the instruction ISOG217 is being defined, in the expression only the five physical axes,
that are declared in the ISOG217 , can be used.

Example
ut as double ; tool number
offsety as double ; offset Y nose fulcrum
offsetz as double ; offset Z nose fulcrum

Function ISO5Ax

setval 100,ut
setval 120.0,offsety
setval 60.0,offsetz
; EXPLICIT KINEMATICS
ISOG217 Rx Ry Rz Rc Rb X Y Z C B

; DEFINITION OF THE KINEMATICS EXPRESSIONS
; EXPLICIT INVERSE KINEMATICS Rx physical AXIS
KinematicExpr Rx = X - 135 + ut * sin (B) * cos (C)

; EXPLICIT INVERSE KINEMATICS RY physical AXIS

Albatros243

Manufacturer's manual

KinematicExpr Ry = Y + offsety + ut * sin (B) * sin (C)

; EXPLICIT INVERSE KINEMATICS Rz physical AXIS
KinematicExpr Rz = Z + offsetz + ut * cos (B)

; EXPLICIT INVERSE KINEMATICS Rc physical AXIS
KinematicExpr Rc = C

; EXPLICIT INVERSE KINEMATICS Rb physical AXIS
KinematicExpr Rb = B

Instructions which can not be used with interrupt3.2.21

The following instructions cannot be used in the functions called by ONFLAG, ONINPUT and ONERRSYS.
Their usage is not allowed in realtime tasks too.
instructions.

Instructions which, in turn, call a function on interrupt:
ONFLAG
ONINPUT
ONERRSYS

Instructions which involve a wait:
WAITINPUT
WAITFLAG
WAITACC
WAITCOLL
WAITDEC
WAITREG
WAITTARGET
WAITWIN
WAITSTILL
WAITTASK
WAITRECEIVE
WAITPERSISTINPUT
MULTIWAITFLAG
MULTIWAITINPUT

Communication instructions:
SEND
RECEIVE
CLEARRECEIVE
COMOPEN
COMCLOSE
COMREAD
COMREADSTRING
COMWRITE
COMWRITESTRING
COMGETERROR
COMCLEARRXBUFFER
COMGETRXCOUNT

Following instructions involving axis movement:
MOVINC
MOVABS
LINEARINC
LINEARABS
CIRCLE
CIRCINC
CIRCABS
HELICINC
HELICABS
COORDIN
MULTIABS
MULTINC
SETRIFLOC
SETTOLERANCE

GPL Language 244

Manufacturer's manual

RESRIFLOC
SETPFLY
SETPZERO
SETINDEXINTERP
STARTINTERP
FASTREAD
ENABLE
DISABLE
ENDMOV

ISO instructions:
ISOG0
ISOG1
ISOG9
ISOG90
ISOG91
ISOG93
ISOG94
ISOG216
ISOG217
ISOM2
ISOM6
ISOSETPARAM
KINEMATICEXPR

Following instructions involving Powerlink II management:
HOMING
READDICTIONARY
WRITEDICTIONARY

Digital axis card configuration instructions:
SLMGETPARAM
SLMSETPARAM
SLMCOMMAND
SLMGETSTATUS
SLMGETEEPROM
SLMSETEEPROM
SLMGETREGISTER
SLMSETREGISTER
SLMEEPROMENABLE
SLMEEPROMDISABLE

Instructions involving multitasking:
SENDMAIL
WAITMAIL
ENDMAIL
SENDIPC
WAITIPC
TESTMAIL
TESTIPC

Instructions which imply a long processing time:
SORT
FIND
FINDB
MOVEMAT
CANOPENDRIVER
CANSERETBOARD

Instructions which are no longer available3.2.22

CLEARSTOPDISABLE it clears the field stop disabling counter
STOPDISABLE it disables the field stop
STOPENABLE it enables the field stop
IFSTOPDISABLED test on disabled field stop

SPINDLE it sets the speed of a winding block

Albatros245

Manufacturer's manual

SETPARINV it sets the wireguide inversion parameters for winding
WINDING it stops an axis

BRAKEENABLE it enables break management
BRAKEDISABLE it disables break management

SETPREARN it sets a prestop position for negative direction movement
SETPREARP it sets a prestop position for positive direction movement

LET it calculates arithmetical expressions

SENDRECEIVE it sends data outside with a confirmation request

SEED it sets the seed for a sequence of random numbers.

3.3 Examples

Homing on Interrupt3.3.1

;---
; Example of on the fly homing routine
;
; The function executes the following operations:
;
; 1) It sets the axis by disabling software limits
; and setting position on zero.
; 2) It checks that the sensor is not already on ON state.
; If it is on ON, it moves the axis and waitsfor it to return
; to OFF state. If this does not happen in 30 seconds
; it generates an error message.
; 3) It sets the sensor search speed
; 4) It launches axis movement and enables "on the fly" homing
; for the specified axis. When the interrupt is relesed,
; the axis position is set on zero and movement to a disengage
; position is started automatically.
; 5) It waits for the axis to reach the disengage position.
; 6) It resets axis limits
;
;
; © T.P.A. S.p.A.
;---
Function Fast_Homing

ResLimPos axis ; Axis start-up
ResLimNeg axis
SetQuote axis,0

IfInput FastInput,OFF,Goto Continue ; Test occupied sensor
SetVel axis,5 ; Set disengage speed
MovAbs axis,30 ; Move axis
WaitInput FastInput,OFF,30,Call Error ; Test micro disengage

; Error after TimeOut=30

EndMov axis ; Stop axis
WaitStill axis ; Wait for axis stop

Continue:
SetVel axis,10 ; Homing sensor search speed
MovAbs axis,-1000 ; Sensor search negative movement
SetPFly axis,ON,10,0 ; Interrupt attach

; and set disengage position and speed

GPL Language 246

Manufacturer's manual

WaitStill axis ; Wait for axis Stop

SetLimPos axis ; Reset axis limits
SetLimNeg axis

Fret

; subprocedure to send error messages
Error:

Error ERR_SETP ;Error signalled: impossible to proceed
Ret

Axis movement server3.3.2

;--
; Example of axis movement server:
;
; The server moves the machine's axes
; on behalf of other tasks.
;
; The client tasks send their commands in the form of
; messages (mails) to a postbox.
;
; The server takes the commands from the box and executes them.
;
; The requests are queued in the post box, so that
; if a request arrives while the server is already
; engaged, it is not lost, and will be dealt with as soon as possible.
;
; The server is the only task to move axes. This avoids
; conflicts.
;
; The server is implemented by the Master_axes function.
;
; An example of client is implemented by the Check_flag function.
; This function checks the state of a flag
; periodically and when it finds it on ON it sends the server
; the axis homing execution command.
; The flag will presumably be set on ON manually
; by the operator, using for example the synoptic view.
;
;--

;------------------------------------
; -- MACHINE GLOBAL CONSTANTS --
;------------------------------------
Const MBOX = 101 ; identifies the command post box

Const SETP = 10 ; axis homing
Const CHG = 11 ; change tool
Const FORO = 12 ; execute perforation

;---------------------
; --- AXES GROUP---
;---------------------

; definition of error messages
Defmsg ERR_CMD "Axis group command unknown"

; --- Server ---
Function Master_axes autorun

local cmd as integer ; command

Albatros247

Manufacturer's manual

local position_X as double ; position X perforation
local position_Y as double ; position Y perforation

loop:
waitmail MBOX,cmd,position_X,position_Y ; wait command

; When the command arrives we identify it
; and execute the required action
Select cmd

case SETP
fcall homing_axes ; Axis Homing

case CHG
fcall Change_tool ; Execute tool change

case FORO
fcall Perforation position_X,position_Y ; perforation in

 ; specified position
case else

call error
endselect

endmail MBOX ; command execution notification
goto loop ; wait for new command

fret

; subprocedure for error message sending
error:

error ERR_CMD
ret

;-------------------------
; --- GENERIC GRoUP ---
;-------------------------

; --- Client ---
Function Check_flag

loop:

ifflag Setp_axes,OFF, goto loop ; test flag state

; OK the flag is on ON, send command
sendmail MBOX,WAITTACK,SETP,0.0,0.0

resetflag Setp_axes ; reset flag

goto loop ; back to wait

fret

; NOTICE THAT:
; - after the "SETP"command, the two parameters "position_X"
; and "position_Y" must be specified even if it does not
; make sense for the Homing operation.
; Because the server can not know beforehand which command

GPL Language 248

Manufacturer's manual

; it will receive,we must specify two values
; of the type expected by the server,
; in this case, two DOUBLE. The values to be set are "0.0" and "0.0".
; - the "WAITACK" parameter makes the client wait
; for the server to conclude the command.
; The client can continue its own execution only when the Server
; has executed an ENDMAIL or has started processing a new
; command (WAITMAIL).

Main Cycle with error management3.3.3

;--
; Hypothetical main function
; start machine and execute test cycle
;--
Function Main

OnErrSys GestErrSys ; enable error management

StartTask Emergencies ; start
StartTask Processor
Enableaxes

loop:
IfFlag Flag,OFF, ResetEmergencies
.........
Goto loop

Fret

;-----------------------------------
; error management function
;-----------------------------------
Function GestErrSys

Param nerror as integer
Param task as function
Param typedevice as device

EndTask task ; End Processor task
If nerror, >, 5, goto noerraxis ; The first 5 errors

; concern
; axes

ResetFlag Flag
Disableaxes

noerraxis:
Fret

Operations on strings3.3.4

;---
; Example of string manipulation
;---
Function example

Local string1 as string
Local string2 as string
Local string3 as string
Local length as integer
Local position as integer

SetString "String of",string1 ; string1 now contains
; "String of"

SetString " test",string2

Albatros249

Manufacturer's manual

AddString string1,string2,string3 ; stringa3 contains
; "Test string"

Search string3,'t',position ; position equals 2
Search string3,'Z',position ; position equals -1

Left string3,7,string1 ; string1
; contains "String"

Right string3,2,string2 ; string2
; contains "va"

Mid string3,9,2,string3 ; string3
; contains "of"

ControlChar 65,string1 ; string1
; contains "A"

Len string3,length ; length equals 2

Str length,string3 ; string3
; contains "2"

Val position,string1 ; string1
; contains "-1"

AddString "The result is",string1,string2

; string2 contains "The result is -1"

Fret

Sequential / Parallel Execution3.3.5

;--
; Example of a routine testing the Homing
; of a 3 axes machine to avoid any
; mechanical interference.
;
; The Homing of the single axes is implemented
; by functions whose text has been omitted.
; See example "Homing Routine".
;
; The Homing of the z axis is carried
; out first(as theoretically it can not be
; done with the others),
; When this is concluded, the X and Y axis Homing
; is executed simultaneously.
;--

; message for the operator (translated in set language)
DefMsg MSG_SETP ITA "Homing assi in corso ..."

ENG "Homing in progress ..."

Function Homing

Message MSG_SETP ; inform operator

Fcall HomingAxisZ ; Homing of Z axis

; OK Z axis Homing is concluded

GPL Language 250

Manufacturer's manual

StartTask HomingAxisX ; launch homing X and Y
StartTask HomingAxisY

WaitTask HomingAxisX ; wait for task end
WaitTask HomingAxisY

DelMessage MSG_SETP ; delete message
; for the operator

Fret

Homing Routine3.3.6

;---
; Example of axis setpoint routine
;
; The function executes the following operations:
; 1) it disables the software axis limits
; 2) it sets the switch search speed
; 3) it moves the axis to an incremental position that
; guarantees reaching the switch
; 4) it waits for the axis to release the switch
; 5) it stops the axis and waits for movement to end
; 6) it sets the speed (low) of the disengage switch
; 7) it makes the axis move backwards the sufficient space
; to disengage the switch
; 8) it waits for switch disengage
; 9) it sets the new position for the axis
; 10) it resets default speed and software limits
;
; © T.P.A. S.p.A.
;---

Function Homing

ResLimPos axis ; disable software limits
ResLimNeg axis

SetVel axis,10 ; set speed

MovInc axis,10000 ; move the axis

WaitInput Switch,ON ; wait for switch

EndMov axis ; stop axis
waitStill axis ; wait for axis stop

SetVel axis, 0.1 ; set disengage speed

MovInc axis,-100 ; move axis

WaitInput Switch,OFF ; wait for switch disengage

SetQuote axis,0 ; assign new position

SetVel axis ; reset speed
SetLimpos axis ; reset software limits
SetLimneg axis

Fret

Albatros251

Manufacturer's manual

Synchronized movement3.3.7

;---
; Example of synchronized movement
;
; A profile is generated using the instruction SYNCRO
; profile is then executed using the instruction COORDIN.
;
; © T.P.A. S.p.A.
;---

const CH1 = 1 ; synchronized movement channel
const CAD = 4 ; frequency of generation/execution of the positions
(4 ms)

pMat[5000] as double:Qx double:Qy integer:index
pVar as integer

Function Sincro
 local ini as integer

 ; profile generation
SyncroOpen CH1, CAD, pMat, pVar, ON

SyncroSetVel CH1, X, 20, 20
SyncroSetVel CH1, Y, 20, 20

SyncroMove CH1, X, 100, Y, 100
SyncroMove CH1, X, 110, Y, 120
SyncroMove CH1, X, 140, Y, 130

SyncroSetVel CH1, X, 10, 10 ; change speed axis X

SyncroMove CH1, X, 150, Y, 160
SyncroMove CH1, X, 200, Y, 180

SyncroStartMove CH1
SyncroClose CH1

; profile execution
setval 1,ini
Coordin pMat, CAD, UP, ini, pVar, $11b, X, 1, Y, 2

WaitStill X, Y

Fret

Iso movements3.3.8

; Example of ISO movement
;
; A profile is generated using the instruction ISOG0 and ISOG1
;
; © T.P.A. S.p.A.

;---*

; Declaration of ISO matrices
Matrix of rotary axes
MxRot[5] as double:off_X double:off_Y double:off_Z double:dis_X
double:dis_Y double:dis_Z double:delta double:gamma
; Toolholder matrix

GPL Language 252

Manufacturer's manual

MxPorta[1] as double:off_X double:off_Y double:off_Z double:alpha
double:beta
; Tools matrix
MxTools[10] as double:ut double

Function ISOInterpolation

; setting of standard values of machine parametrisation
setval 90.0 MxRot[5].gamma
setval 260.3 MxTools[10].ut
setval MxTools[10].ut ut

; setting of parameters of algorithm
IsosetParam 0 50
IsosetParam 1 50
IsosetParam 2 0.9
IsosetParam 3 60
IsosetParam 4 30

; machine settings: declares the three matrices used for
; the machine parametrisation
; and the physical axes used in the ISO movements.
isoG216 MxRot MxTool MxHolder 31 X Y Z C B ; IMPLICIT KINEMATICS

; setting of group of parameters describing the machine's kinematics.
isoM6 X 5 1 10 ; IMPLICIT KINEMATICS

; setting of the starting value
setquote x 500
setquote y 300
setquote z 0
setquote c 0
setquote b 0
setvel x
setvel y
setvel z
setvel c
setvel b
setveli x y z c b

; profile execution
isoG0 1001,X 998.0,Y 600.0,Z 0.0,C 90.0,B 45.0,50.0
isoG1 1001,X 998.0,Y 600.0,Z 0.0,C 90.0,B 45.0,10000.0
isoG1 1003,X 996.0,Y 600.0,Z 0.0,C 90.0,B 45.0,10000.0
isoG1 1002,X 600.0,Y 600.0,Z 0.0,C 90.0,B 45.0,10000.0
isoG1 1004,X 599.131759111665,Y 599.924038765061,Z 0,C 100,B
45.0,10000.0
isoG1 1006,X 598.289899283372,Y 599.69846310393,Z 0,C 110,B 45.0,10000.0
isoG1 1005,X 597.5,Y 599.330127018922,Z 0,C 120,B 45.0,10000.0
isoG1 1003,X 596.786061951567,Y 598.830222215595,Z 0,C 130,B
45.0,10000.0
isoG1 1002,X 596.169777784405,Y 598.213938048433,Z 0,C 140,B
45.0,10000.0
isoG1 1012,X 595.669872981078,Y 597.5,Z 0,C 150,B 45.0,10000.0
isoG1 1011,X 595.301536896071,Y 596.710100716628,Z 0,C 160,B
45.0,10000.0
isoG1 1031,X 595.075961234939,Y 595.868240888335,Z 0,C 170,B
45.0,10000.0
isoG1 1102,X 595.0,Y 0.0,Z 0.0,C 180.0,B 45.0,10000.0
waitstill X Y Z C B

fret

Tecnologie e Prodotti per l 'Automazione s.p.a

Via Carducci 221
I - 20099 Sesto S.Giovanni (MI)
Tel. +39 02.36527550
Fax. +39 02.2481008
www.tpaspa.it

	System Configuration
	Introduction
	Devices Configuration
	Introduction
	Generic Device
	Digital output
	Analog input
	Axis
	Base Data
	Movement parameters
	Interpolation parameters
	Other parameters
	Reference parameters
	Access levels
	Axes chaining
	Screw linearity correction

	Logical Configuration
	Plant configuration
	Groups Configuration
	Machine configuration

	Physical Configuration
	System Configuration
	Hardware Configuration
	How to write CANBUS.DEF. file
	How to write CANBUS.DEF file for S-CAN devices per dispositivi S-CAN
	Characteristics of the EtherCat Management in Albatros
	Foreword
	ECATBUS.DEF file
	EtherCAT Hardware configuration
	Description of a PDO
	Example of EtherCAT hardware configuration
	Configuration of the virtual-physical EtherCAT links
	Virtual-physical links in the TRS-CAT
	Example of virtual-physical link

	How to write EPLBUS.def file

	Virtual physical Configuration
	Cabling maps
	List of navigation keys to navigate through a tree structure

	Development tools
	Editor GPL
	GPL Editor functions
	Avalaible keyboard shortcut list
	Insert Message
	Cryptography

	Libraries
	Create and modify

	Debug
	The debugger
	Task in execution
	All tasks
	Show call stack
	Breakpoints
	Variable content
	Available keyboard shortcut list

	Control initialization
	Network Connections
	Hardware Diagnostic

	Test
	Print global on disk
	Start single function
	Message Import and Export

	Tools
	Customise...

	Browser
	The browser
	Identifier Search
	Available keyboard shortcut list

	GPL Language
	Basic Feature
	Conventions and terminology
	Introduction to GPL language
	Variables
	Type of data
	Data conversion
	Declaration and Visibility of the variables
	Modifiers
	Assigning a RANGE
	Writing and Reading Rights
	Constants

	Predefined constants
	Keywords
	Functions
	Device parameters
	Multitasking
	Communication
	Variables used in programming
	Axes
	Message handling in different languages
	System Error Management
	Special functions
	Axis movement customization
	Standard calibration and movement functions
	Function OnUIEnd
	Function OnUIPlugged#
	Function OnUIUnplugged#

	Instructions
	Conventions
	Types of instructions in the GPL language
	Input/Output
	GETFEED
	GETVF
	INPANALOG
	INPBCD
	INPFLAGPORT
	INPPORT
	MULTIINPPORT
	MULTIOUTPORT
	MULTIRESETFLAG
	MULTIRESETOUT
	MULTISETFLAG
	MULTISETOUT
	MULTIWAITFLAG
	MULTIWAITINPUT
	OUTANALOG
	OUTBCD
	OUTFLAGPORT
	OUTPORT
	RESETFLAG
	RESETOUT
	SETFLAG
	SETOUT
	WAITFLAG
	WAITINPUT
	WAITPERSISTINPUT

	Axes
	CHAIN
	CIRCABS
	CIRCINC
	CIRCLE
	COORDIN
	DISABLECORRECTION
	EMERGENCYSTOP

	ENDMOV
	ENABLECORRECTION
	FASTREAD
	FREE
	HELICABS
	HELICINC
	JERKCONTROL
	JERKSMOOTH
	LINEARABS
	LINEARINC
	MOVABS
	MOVINC
	MULTIABS
	MULTINC
	NORMAL
	RESRIFLOC
	SETINDEXINTERP
	SETLABELINTERP
	SETPFLY
	SETPFLYCHAINSTRAT
	SETPZERO
	SETQUOTECHAINSTRAT
	SETPZEROCHAINSTRAT
	SETQUOTE
	SETRIFLOC
	SETTOLERANCE
	START
	STARTINTERP
	STOP
	SWITCHENC
	SYNCROOPEN
	SYNCROCLOSE
	SYNCROMOVE
	SYNCROSETACC
	SYNCROSETDEC
	SYNCROSETVEL
	SYNCROSETFEED
	SYNCROSTARTMOVE
	WAITCOLL
	WAITDEC
	WAITREG
	WAITSTILL
	WAITTARGET
	WAITWIN
	WAITACC
	Axis Parameter
	Reading/Writing
	DEVICEID
	GETAXIS

	Point-to-point Movement
	SETACC
	SETDEC
	SETDERIV
	SETFEED
	SETFEEDF
	SETFEEDFA
	SETINTEG
	SETMULTIFEED
	SETPROP
	SETVEL

	Interpolated Movement
	LOOKAHEAD
	SETACCI
	SETACCLIMIT
	SETACCSTRATEGY
	SETAXPARTYPE
	SETCONTORNATURE
	SETDECI
	SETDERIVI
	SETFEEDFAI
	SETFEEDI
	SETFEEDFI
	SETINTEGI
	SETPROPI
	SETSLOWPARAM
	SETVELI
	SETVELILIMIT

	Coordinated Movement
	SETFEEDCOORD
	SETOFFSET

	Chained Movement
	RATIO
	SETDYNRATIO

	Generic Parameters
	DYNLIMIT
	ENABLESTARTCONTROL
	NOTCHFILTER
	RESLIMNEG
	RESLIMPOS
	SETADJUST
	SETBACKLASH
	SETBIGWINFACTOR
	SETDEADBAND
	SETENCLIMIT
	SETINDEXEN
	SETINTEGTIME
	SETIRMPP
	SETLIMNEG
	SETLIMPOS
	SETMAXER
	SETMAXERNEG
	SETMAXERPOS
	SETPHASESINV
	SETMAXERTYPE
	SETREFINV
	SETRESOLUTION

	Counter
	DECOUNTER
	INCOUNTER
	SETCOUNTER

	Timer
	HOLDTIMER
	SETTIMER
	STARTTIMER

	Variables, Vectors and Matrixes
	CLEAR
	FIND
	FINDB
	LASTELEM
	LOCAL
	MOVEMAT
	PARAM
	SETVAL
	SORT

	Strings
	ADDSTRING
	CONTROLCHAR
	LEFT
	LEN
	MID
	RIGHT
	SEARCH
	SETSTRING
	STR
	VAL

	Communications
	CLEARRECEIVE
	COMCLEARRXBUFFER
	COMCLOSE
	COMGETERROR
	COMGETRXCOUNT
	COMOPEN
	COMREAD
	COMREADSTRING
	COMWRITE
	COMWRITESTRING
	RECEIVE
	SEND
	SENDIPC
	WAITIPC
	WAITRECEIVE

	Mathematics
	ABS
	ADD
	AND
	ARCCOS
	ARCSIN
	ARCTAN
	COS
	DIV
	EXP
	EXPR
	LOG
	LOGDEC
	MOD
	MUL
	NOT
	OR
	RANDOM
	RESETBIT
	ROUND
	SETBIT
	SHIFTL
	SHIFTR
	SIN
	SQR
	SUB
	TAN
	TRUNC
	XOR

	Multitasking
	ENDMAIL
	ENDREALTIMETASK
	ENDTASK
	GETPRIORITYLEVEL
	GETREALTIME
	GETREALTIMECOUNT
	HOLDTASK
	RESUMETASK
	SENDMAIL
	SETPRIORITYLEVEL
	STARTTASK
	STARTREALTIMETASK
	STOPTASK
	WAITMAIL
	WAITTASK

	Flux management
	CALL
	FCALL
	DELONFLAG
	DELONINPUT
	FOR/NEXT
	FRET
	GOTO
	IF/IFVALUE/IFTHENELSE
	IFACC
	IFAND
	IFBIT
	IFBLACKBOX
	IFCHANGEVEL
	IFCOUNTER
	IFDEC
	IFDIR
	IFERRAN
	IFERROR
	IFFLAG
	IFOR
	IFINPUT
	IFMESSAGE
	IFOUTPUT
	IFQUOTER
	IFQUOTET
	IFRECEIVED
	IFREG
	IFSAME
	IFSTILL
	IFSTR
	IFTARGET
	IFTASKHOLD
	IFTASKRUN
	IFTIMER
	IFVEL
	IFWIN
	IFXOR
	ONERRSYS
	ONFLAG
	ONINPUT
	REPEAT/ENDREP
	RET
	SELECT
	TESTIPC
	TESTMAIL

	Various
	CLEARERRORS
	CLEARMESSAGES
	DEFMSG
	DELAY
	DELERROR
	DELMESSAGE
	ERROR
	IFDEF/ELSEDEF/ENDDEF
	MESSAGE
	SYSFAULT
	SYSOK
	TYPEOF
	WATCHDOG

	CANopen
	TMSbus boards with CAN control
	GETCNSTATE
	GETSDOERROR
	GETMNSTATE
	RECEIVEDPDO
	SENDPDO
	SETNMTSTATE

	Board CIF30
	CANOPENDRIVER
	CANCLOSEDRIVER
	CANRESETBOARD
	CANSETOBJECT
	CANGETOBJECT

	Mechatrolink II
	MECCOMMAND
	MECGETPARAM
	MECGETSTATUS
	MECSETPARAM

	PowerlinkII and EtherCAT
	Instructions to initialize the Powerlink nodes
	AXCONTROL
	ACTIVATEMODE
	AXSTATUS
	CNBYDEVICE
	GETPDO
	HOMING
	READDICTIONARY
	SETPDO
	WRITEDICTIONARY

	SLM
	SLMCOMMAND
	SLMEEPROMDISABLE
	SLMEEPROMENABLE
	SLMGETEEPROM
	SLMGETPARAM
	SLMGETREGISTER
	SLMGETSTATUS
	SLMSETEEPROM
	SLMSETPARAM
	SLMSETREGISTER

	Simulation
	DISABLE
	DISABLEFORCEDINPUT
	ENABLE
	ENABLEFORCEDINPUT
	RESETFORCEDINPUT
	SETFORCEDANALOG
	SETFORCEDBCD
	SETFORCEDINPUT
	SETFORCEDPORT

	Blackbox
	ENDBLACKBOX
	PAUSEBLACKBOX
	STARTBLACKBOX

	ISO
	ISOG0
	ISOG1
	ISOG9
	ISOG90
	ISOG91
	ISOG93
	ISOG94
	ISOG216
	ISOG217
	ISOM2
	ISOM6
	ISOSETPARAM
	KINEMATICEXPR

	Instructions which can not be used with interrupt
	Instructions which are no longer available

	Examples
	Homing on Interrupt
	Axis movement server
	Main Cycle with error management
	Operations on strings
	Sequential / Parallel Execution
	Homing Routine
	Synchronized movement
	Iso movements

