

Presenting you the Prospect Farms 'Large Bacon Calm Pet Drops'

WELLNESS IS ROOTED IN TRUST AND AUTHENTICITY

A Comprehensive Guide to Certificates of Analysis (COAs)

TABLE OF CONTENTS

Prospect Farms: Seed-to-Store Process	Page 3
Lab Analysis: A Comprehensive Summary	Page 4
Lab Analysis COA: Flower	Page 5
Lab Analysis COA: Full-Spectrum Hemp Extract	Page 9
Lab Analysis COA: Product	Page 14

Our Seed to Store Promise: Transparent Lab Analysis

Prospect Farms' commitment to traceability and sustainable agriculture practices ensures every facet of the process, from farming to manufacturing, is done with the utmost care and transparency. From seed-to-store, everything happens right here on our farm in Prospect, Maine.

HEMP FLOWER	
Cannabinoid Profile & Potency	PASS
Pathogenic Bacterial Contaminants	PASS
Mycotoxin Testing	PASS
Terpenes Profile	PASS
HEMP EXTRACT	
Cannabinoid Profile & Potency	PASS
Heavy Metal Analysis	PASS
Microbiological Contaminants	PASS
Pathogenic Bacterial Contaminants	PASS
Mycotoxin Testing	PASS
Pesticide Analysis	PASS
Terpenes Profile	PASS
Analysis of Volatile Organic Compounds	PASS
FINAL PRODUCT	
Cannabinoid Profile & Potency	PASS
Terpenes Profile (if applicable)	PASS

A HOLISTIC APPROACH TO WELLNESS

At Prospect Farms we believe wellness is rooted in trust and authenticity, so from our farming practices to the ingredients included in each of our products, we have nothing to hide. Quality Full-Spectrum CBD starts as a seed not on the shelf. That is why we genetically select each and every seed that goes into our nutrient-rich soil in Prospect, Maine. We follow strict organic farming practices including the use of regenerative cover crops to ensure a healthy, natural environment for each and every hemp plant. We hand-harvest, slow dry, and carefully process the hemp plants all on our farm to ensure the quality preservation of true fullspectrum CBD. Transparency isn't a buzz word, it's an ideology we live by daily.

TESTED, TRUSTED & TRANSPARENT

Rigorous quality control is required in every aspect of the supply chain. We are the farm. We are the processor. We are the manufacturing support to bring to market truly clean, green skincare. Because of this, we are among the few who are able to meticulously validate each and every step from Seed to Store. Through peer-leading, 3rd party, ISO-accredited labs, we use leading-edge technology to test each and every batch to ensure your products are receiving the highest standard of care and validation.

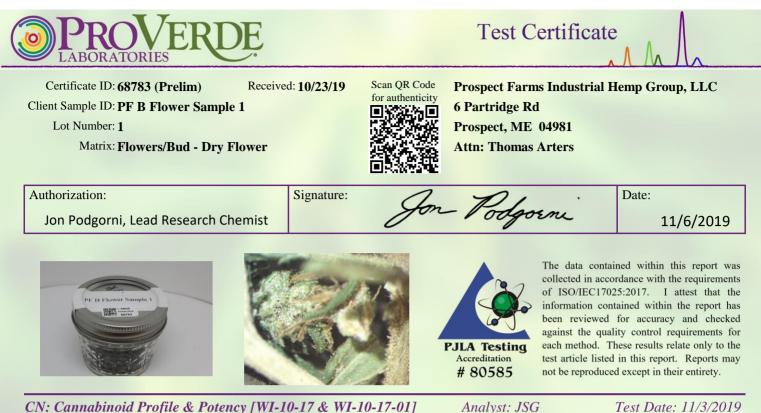
LAB ANALYSIS

TRULY transparent means we test upwards of <u>14 times</u> across a broad spectrum of lab analysis to support TRUE quality. We ensure your product is free from mycotoxins, heavy metals, microbiological contaminants, bacterial contaminants, pesticides, and residual solvents (volatile organic compounds). Truly clean means non-detectable and transcends industry norms to establish a new quality standard for the industry.

<i>))))</i>	Р
7777	F

	Certificate of Analysis Summary						
	Laboratory Certificate: ProVerde Laboratories						
-	Manufacturing Date: 3/21	Expiration Date: 3/23	Lab Analysis Date: 4/21				
	Manufacturer Country: USA	Hemp License State: Maine	UPC: 850014532468				
	All results collected in accordance with the requirements of ISO/IEC 17025:2017.						

Brand	Prospect Farms		
Size	Large		
Diet	Bacon		
Need	Calm		
Volume	30 ML / 1.0 FL OZ		


Cannabinoid Analysis	STATUS
Total THC*	PASS
Total CBD	PASS

*Less than 0.3% in Dry weight basis measurement for Federal Compliancy

HEMP FLOWER	STATUS
Cannabinoid Profile & Potency	PASS
Pathogenic Bacterial Contaminants	PASS
Mycotoxin Testing	PASS
Terpenes Profile	PASS

HEMP EXTRACT	STATUS
Cannabinoid Profile & Potency	PASS
Heavy Metal Analysis	PASS
Microbiological Contaminants	PASS
Pathogenic Bacterial Contaminants	PASS
Mycotoxin Testing	PASS
Pesticide Analysis	PASS
Terpenes Profile	PASS
Analysis of Volatile Organic Compounds	PASS

FINAL PRODUCT	STATUS
Cannabinoid Profile & Potency	PASS
Terpenes Profile (if applicable)	PASS

CN: Cannabinoid Profile & Potency [WI-10-17 & WI-10-17-01] Analyst: JSG Test Date: 11/3/2019 The client sample was analyzed for plant-based cannabinoids by Liquid Chromatography (LC). The collected data was compared to data collected

The client sample was analyzed for plant-based cannabinoids by Liquid Chromatography (LC). The collected data was compared to data collected for certified reference standards at known concentrations.

68783-CN

Weight %	Concentration (mg/g)			
0.03	0.27			
ND	ND			
0.25	2.52	-		
ND	ND			
ND	ND			
0.02	0.20			
ND	ND			
0.17	1.65	•		
5.84	58.39			
0.10	1.00			
ND	ND			
ND	ND			
6.40	64.04	0%	Cannabinoids (wt%)	5.8%
0.17	1.72			
5.37	53.74			
	0.03 ND 0.25 ND ND 0.02 ND 0.17 5.84 0.10 ND ND ND 6.40 0.17	0.03 0.27 ND ND 0.25 2.52 ND ND ND ND 0.02 0.20 ND ND 0.02 0.20 ND ND 0.17 1.65 5.84 58.39 0.10 1.00 ND ND ND ND 0.10 1.00 ND ND 0.17 1.72	0.03 0.27 ND ND 0.25 2.52 ND ND ND ND 0.02 0.20 ND ND 0.02 0.20 ND ND 0.17 1.65 5.84 58.39 0.10 1.00 ND ND ND ND 0.10 1.00 ND ND 0.10 1.00 ND ND 0.10 1.00 ND ND 0.10 1.00 ND ND ND ND 0.17 1.72	0.03 0.27 ND ND 0.25 2.52 ND ND ND ND 0.02 0.20 ND ND 0.02 0.20 ND ND 0.17 1.65 5.84 58.39 0.10 1.00 ND ND ND ND 0.10 1.00 ND ND 0.10 1.00 ND ND 0.17 1.72

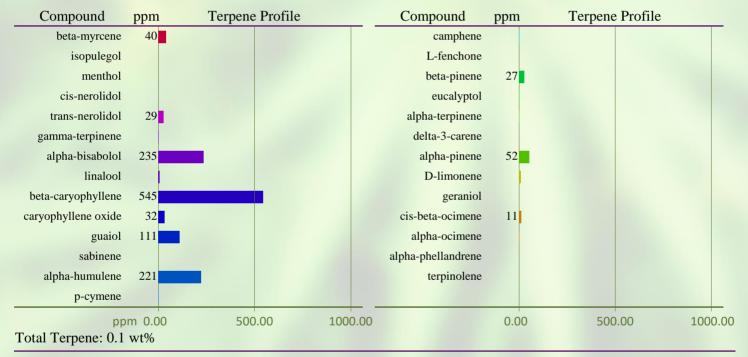
Ratio of Total CBD to THC 31.3:1

Limit of Quantitation (LOQ) = 0.007 wt%

Max THC (and Max CBD) are calculated values for total cannabinoids after heating, assuming complete decarboxylation of the acid to the neutral form. It is calculated based on the weight loss of the acid group during decarboxylation: $Max THC = (0.877 \times THCA) + THC$. This calculation does not include other cannabinoid isomers (eg. D8-THC and exo-THC). ND = None detected above the limits of detection (LOD), which is half of LOQ.

MB2: Pathogenic Bacterial Contaminants [WI-10-10]	Analyst: LabAdmin	Test Date: 10/29/2019			
This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.					

68783-MB2


Test ID	Analysis	Results	Units	Limits*	Status
68783-ECPT	E. coli (O157)	Negative	NA	Non Detected	PASS
68783-SPT	Salmonella	Negative	NA	Non Detected	PASS

Note: All recorded pathogenic bacteria tests passed.

TP: Terpenes Profile [WI-10-27]	Analyst: JR	Test Date: 10/30/2019
---------------------------------	-------------	-----------------------

The client sample was analyzed by Head-Space Gas Chromatography (HS-GC). The collected data was compared to data collected for certified reference standards at known concentrations. All values are semiquantitative estimates based on recorded peak areas relative to terpene calibration data.

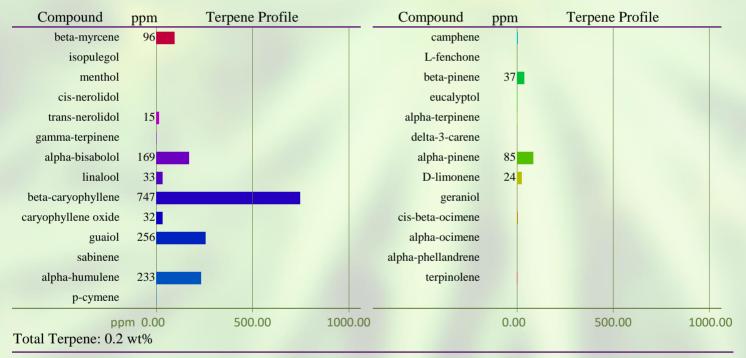
68783-TP

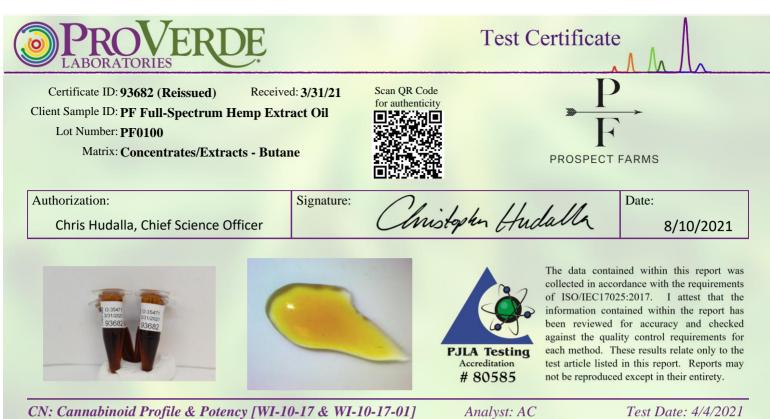
The client sample was analyzed for plant-based cannabinoids by Liquid Chromatography (LC). The collected data was compared to data collected for certified reference standards at known concentrations.

68782-CN

ID	Weight %	Concentration (mg/g)			
D9-THC	0.06	0.60			
THCV	ND	ND			
CBD	0.57	5.73	•		
CBDV	ND	ND			
CBG	0.11	1.09			
CBC	0.05	0.55			
CBN	ND	ND			
THCA	0.46	4.63	•		
CBDA	14.96	149.61			
CBGA	0.43	4.28			
D8-THC	ND	ND			
exo-THC	ND	ND			
Total	16.65	166.48	0%	Cannabinoids (wt%)	15.0%
Max THC	0.47	4.66			
Max CBD	13.69	136.93			

Ratio of Total CBD to THC 29.4:1


Limit of Quantitation (LOQ) = 0.007 wt%


Max THC (and Max CBD) are calculated values for total cannabinoids after heating, assuming complete decarboxylation of the acid to the neutral form. It is calculated based on the weight loss of the acid group during decarboxylation: Max THC = $(0.877 \times THCA) + THC$. This calculation does not include other cannabinoid isomers (eg. D8-THC and exo-THC). ND = None detected above the limits of detection (LOD), which is half of LOQ.

	•	EC 17025. These resu	lts relate only to the t	est article listed in this
Date	Results	MDL	Limits	Status*
10/31/2019	< MDL	2 ppb	< 20 ppb	PASS
10/31/2019	< MDL	3 ppb	< 20 ppb	PASS
	oduced except in their er Date 10/31/2019	Date Results 10/31/2019 < MDL	DateResultsMDL10/31/2019< MDL	DateResultsMDLLimits10/31/2019< MDL

The client sample was analyzed by Head-Space Gas Chromatography (HS-GC). The collected data was compared to data collected for certified reference standards at known concentrations. All values are semiquantitative estimates based on recorded peak areas relative to terpene calibration data.

68782-TP

The client sample was analyzed for plant-based cannabinoids by Liquid Chromatography (LC). The collected data was compared to data collected

for certified reference standards at known concentrations.

93682-CN

JJ002-CIV					
ID	Weight %	Concentration (mg/g)			
D9-THC	2.58	25.8	•		
THCV	ND	ND			
CBD	71.4	714			
CBDV	0.444	4.44			
CBG	1.28	12.8			
CBC	4.09	40.9			
CBN	ND	ND			
THCA	ND	ND			
CBDA	0.0502	0.502			
CBGA	ND	ND			
D8-THC	ND	ND			
exo-THC	ND	ND			
Total	79.9	799	0%	Cannabinoids (wt%)	71.4%
Max THC	2.58	25.8		Limit of Quantitation (LOQ) =	0.0450 wt%
Max CBD	71.5	715		Limit of Detection (LOD) =	0.0150 wt%

Ratio of Total CBD to THC 27.7:1

Max THC (and Max CBD) are calculated values for total cannabinoids after heating, assuming complete decarboxylation of the acid to the neutral form. It is calculated based on the weight loss of the acid group during decarboxylation: MAX THC = $(0.877 \times THCA) + THC$. This calculation does not include other cannabinoid isomers (eg. D8-THC and exo-THC). ND=None detected above the limits of detection (LOD), which is one third of Limit of Quantification (LOQ). For values reported as "<LOQ", the estimated value is included in the calculated Total.

HM: Heavy Metal Analysis [WI-10-13]	Analyst: CJS	Test Date: 4/13/2021

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

93682-HM				Use Lim	its ² (μ g/kg)	
Symbol	Metal	Conc. ¹ (μ g/kg)	RL	All	Ingestion	Status
As	Arsenic	ND	50.0	200	1,500	PASS
Cd	Cadmium	ND	50.0	200	500	PASS
Hg	Mercury	ND	50.0	100	1,500	PASS
Pb	Lead	ND	50.0	500	1,000	PASS

1) ND = None detected above the indicated Reporting Limit (RL)

2) MA Dept. of Public Health: Protocol for MMJ and MIPS, Exhibit 4(a) for all products.

3) USP exposure limits based on daily oral dosing of 1g of concentrate for a 110 lb person.

MB1: Microbiological Contaminants [WI-10-09]	Analyst: MM	Test Date: 4/6/2021
--	-------------	---------------------

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

93682-MB1

Symbol	Analysis	Results	Units	Limits*	Status
AC	Total Aerobic Bacterial Count	<100	CFU/g	10,000 CFU/g	PASS
CC	Total Coliform Bacterial Count	<100	CFU/g	100 CFU/g	PASS
EB	Total Bile Tolerant Gram Negative Count	<100	CFU/g	100 CFU/g	PASS
YM	Total Yeast & Mold	<100	CFU/g	1,000 CFU/g	PASS

Recommended limits established by the American Herbal Pharmacopoeia (AHP) monograph for Cannabis Inflorescence [2013], for consumable botanical products, including processed and unprocessed cannabis materials, and solvent-based extracts. Note: All recorded Microbiological tests are within the established limits.

MD2. I anogenic Daciental Contaminants [WI-10-10] Analysi. WIM Test Date. 4/7/20	MB2: Pathogenic Bacterial Contaminants [WI-10-10]	Analyst: MM	Test Date: 4/7/202
---	---	-------------	--------------------

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

93682-MB2

Test ID	Analysis	Results	Units	Limits*	Status
93682-ECPT	E. coli (O157)	Negative	NA	Non Detected	PASS
93682-SPT	Salmonella	Negative	NA	Non Detected	PASS

Note: All recorded pathogenic bacteria tests passed.

MY: Mycotoxin Testing [WI-10-05]	Analyst: SLC	Test Date: 4/13/2021

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

93682-MY

Test ID	Date	Results	MDL	Limits	Status*	
Total Aflatoxin	4/13/2021	< MDL	2 ppb	< 20 ppb	PASS	
Total Ochratoxin	4/13/2021	< MDL	3 ppb	< 20 ppb	PASS	

PST: Pesticide Analysis [WI-10-11]	Analyst: CJS	Test Date: 4/28/2021

The client sample was analyzed for pesticides using Liquid Chromatography with Mass Spectrometric detection (LC/MS/MS). The method used for sample prep was based on the European method for pesticide analysis (EN 15662).

93682-PST

Analyte	CAS	Result	Units	LLD	Limits (ppb)	Status
Abamectin	71751-41-2	ND	ppb	0.20	10	PASS
Spinosad	168316-95-8	ND	ppb	0.10	10	PASS
Pyrethrin	8003-34-7	ND	ppb	0.10	10	PASS
Trifloxystrobin	141517-21-7	ND	ppb	0.10	100	PASS
Spirotetramat	203313-25-1	ND	ppb	0.10	100	PASS
Spiromesifen	283594-90-1	ND	ppb	0.10	100	PASS
Piperonyl butoxide	51-03-6	ND	ppb	0.10	3000	PASS
Paclobutrazol	76738-62-0	ND	ppb	0.10	10	PASS
Myclobutanil	88671-89-0	ND	ppb	0.10	100	PASS
Imidacloprid	138261-41-3	ND	ppb	0.10	5000	PASS
Imazalil	35554-44-0	ND	ppb	0.10	10	PASS
Fenoxycarb	72490-01-8	ND	ppb	0.10	10	PASS
Etoxazole	153233-91-1	ND	ppb	0.10	100	PASS
Dichlorvos	62-73-7	ND	ppb	3.00	10	PASS
Cyfluthrin	68359-37-5	ND	ppb	0.50	2000	PASS
Bifenthrin	82657-04-3	ND	ppb	0.20	3000	PASS
Bifenazate	149877-41-8	ND	ppb	0.10	100	PASS
Azoxystrobin	131860-33-8	ND	ppb	0.10	100	PASS

* Testing limits established by the Massachusetts Department of Public Health, Protocol for Sampling and Analysis of Finished Medical Marijuana Products and Marijuana-Infused Products for Massachusetts Registered Medical Marijuana Dispensaries, Exhibit 5. ND indicates "none detected" above the lower limit of detection (LLD). Analytes marked with (*) indicate analytes for which no recovery was observed for a pre-spiked matrix sample due to matrix interference.

TP: Terpenes Profile [WI-10-27]Analyst: LCTest Date: 4/17/2021

Client sample analysis was performed using full evaporative technique (FET) headspace sample delivery and gas chromatographic (GC) compound separation. A combination of flame ionization detection (FID) and/or mass spectrometric (MS) detection with mass spectral confirmation against the National Institute of Standards and Technology (NIST) Mass Spectral Database, Revision 2017 were used. Chromatographic and/or mass spectral data were processed by quantitatively comparing the analytical peak areas against calibration curves prepared from certified reference standards.

93682-TP

Compound	CAS	Conc. (wt%)	Conc. (ppm)	Qualitative Profile
alpha-pinene	80-56-8	0.304	3,040	
camphene	79-92-5	0.0105	105	
sabinene*	3387-41-5	ND	ND	
beta-myrcene	123-35-3	0.308	3,080	
beta-pinene	127-91-3	0.0798	798	
alpha-phellandrene	99-83-2	ND	ND	
delta-3-carene	13466-78-9	0.0014	14.4	
alpha-terpinene	99-86-5	0.0019	18.6	
alpha-ocimene	502-99-8	0.0014	13.6	
D-limonene	138-86-3	0.0743	743	
p-cymene	99-87-6	ND	ND	
cis-beta-ocimene	3338-55-4	0.0070	69.5	
eucalyptol	470-82-6	0.0139	139	
gamma-terpinene	99-85-4	0.0030	29.9	
terpinolene	586-62-9	0.0019	19.3	
linalool	78-70-6	0.0434	434	
L-fenchone*	7787-20-4	0.0052	52.3	
isopulegol	89-79-2	ND	ND	
menthol*	89-78-1	<rl< th=""><th><rl< th=""><th></th></rl<></th></rl<>	<rl< th=""><th></th></rl<>	
geraniol	106-24-1	ND	ND	
beta-caryophyllene	87-44-5	0.551	5,510	
alpha-humulene	6753-98-6	0.122	1,220	
cis-nerolidol	3790-78-1	ND	ND	
trans-nerolidol	40716-66-3	ND	ND	
guaiol	489-86-1	0.0279	279	
caryophyllene oxide	1139-30-6	0.0060	60.3	
alpha-bisabolol	23089-26-1	0.0288	288	
Total Terpene: 1.6 y	v+0/		wt% 0	.00 0.50 1.00

Total Terpene: 1.6 wt%

* Certified reference standard not available for this compound. Concentration is estimated using the response factor from alpha-pinene. ND = None Detected. RL = Reporting Limit of 5 ppm.

VC: Analysis of Volatile Organic Compounds [WI-10-28]	Analyst: CJS	Test Date: 8/6/2021

The client sample was analyzed by Head-Space Gas Chromatography (HS-GC). The collected data was compared to data collected for certified reference standards at known concentrations. Certificate has been re-issued with results from retesting of residual solvents.

93682-VC (retest)

Compound	CAS	Amount ¹	Limit ²	RL	Status
Propane	74-98-6	ND	1,000 ppm	100	PASS
Isobutane	75-28-5	ND	1,000 ppm	100	PASS
Butane	106-97-8	ND	1,000 ppm	100	PASS
Methanol	67-56-1	ND	3,000 ppm	100	PASS
Pentane	109-66-0	ND	5,000 ppm	100	PASS
Ethanol	64-17-5	ND	5,000 ppm	100	PASS
Acetone	67-64-1	ND	5,000 ppm	100	PASS
Isopropanol	67-63-0	ND	5,000 ppm	100	PASS
Acetonitrile	75-05-8	ND	410 ppm	100	PASS
Hexane	110-54-3	ND	290 ppm	100	PASS
Heptane	142-82-5	ND	5,000 ppm	100	PASS

1) ND = Not detected at a level greater than the Reporting Limit (RL).

2) In ppm, based on USP recommended limits for residual solvents, adopted by the Massachusetts Department of Public Health for cannabis concentrates and extracts on 3/31/16. Butane/Propane limits are based on limits established for state of Colorado.

(*) For ethanol, as many formulations contain flavorings based on ethanol extracts of natural products, no status has been assigned.

The client sample was analyzed for plant-based cannabinoids by Liquid Chromatography (LC). The collected data was compared to data collected for certified reference standards at known concentrations.

93680-CN		
ID	Weight %	Concentration (mg/mL)
D9-THC	0.0502	0.479
THCV	ND	ND
CBD	1.36	13.0
CBDV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBG	0.0266	0.254
CBC	0.0860	0.820
CBN	ND	ND
THCA	ND	ND
CBDA	ND	ND
CBGA	ND	ND
D8-THC	ND	ND
exo-THC	ND	ND

1.53

0.0502

1.36

Ratio of Total CBD to THC 27.1:1

Max THC (and Max CBD) are calculated values for total cannabinoids after heating, assuming complete decarboxylation of the acid to the neutral form. It is calculated based on the weight loss of the acid group during decarboxylation: Max THC = $(0.877 \times THCA) + THC$. This calculation does not include other cannabinoid isomers (eg. D8-THC and exo-THC). ND = None detected above the limits of detection (LOD), which is one third of LOQ.

14.6

0.479

13.0

0%

Total Max THC

Max CBD

1.4%

Cannabinoids (wt%)

Limit of Quantitation (LOQ) = 0.0110 wt%

Limit of Detection (LOD) = 0.0037 wt%

Test Date: 4/17/2021

TP: Terpenes Profile [WI-10-27]

Client sample analysis was performed using full evaporative technique (FET) headspace sample delivery and gas chromatographic (GC) compound separation. A combination of flame ionization detection (FID) and/or mass spectrometric (MS) detection with mass spectral confirmation against the National Institute of Standards and Technology (NIST) Mass Spectral Database, Revision 2017 were used. Chromatographic and/or mass spectral data were processed by quantitatively comparing the analytical peak areas against calibration curves prepared from certified reference standards.

Analyst: LC

93680-TP

Compound	CAS	Conc. (wt%)	Conc. (ppm)	Qualitative Profile
alpha-pinene	80-56-8	0.164	1,640	
camphene	79-92-5	0.0057	57.1	
sabinene*	3387-41-5	ND	ND	
beta-myrcene	123-35-3	0.527	5,270	
beta-pinene	127-91-3	0.166	1,660	
alpha-phellandrene	99-83-2	ND	ND	
delta-3-carene	13466-78-9	ND	ND	
alpha-terpinene	99-86-5	ND	ND	
alpha-ocimene	502-99-8	<rl< th=""><th><rl< th=""><th></th></rl<></th></rl<>	<rl< th=""><th></th></rl<>	
D-limonene	138-86-3	0.280	2,800	
p-cymene	99-87-6	ND	ND	
cis-beta-ocimene	3338-55-4	0.0027	27.2	
eucalyptol	470-82-6	<rl< th=""><th><rl< th=""><th></th></rl<></th></rl<>	<rl< th=""><th></th></rl<>	
gamma-terpinene	99-85-4	<rl< th=""><th><rl< th=""><th></th></rl<></th></rl<>	<rl< th=""><th></th></rl<>	
terpinolene	586-62-9	<rl< th=""><th><rl< th=""><th></th></rl<></th></rl<>	<rl< th=""><th></th></rl<>	
linalool	78-70-6	0.558	5,580	
L-fenchone*	7787-20-4	ND	ND	
isopulegol	89-79-2	ND	ND	
menthol*	89-78-1	ND	ND	
geraniol	106-24-1	0.0727	727	
beta-caryophyllene	87-44-5	0.215	2,150	
alpha-humulene	6753-98-6	0.0302	302	
cis-nerolidol	3790-78-1	ND	ND	
trans-nerolidol	40716-66-3	ND	ND	
guaiol	489-86-1	0.0008	7.92	
caryophyllene oxide	1139-30-6	0.0015	15.1	
alpha-bisabolol	23089-26-1	0.0006	5.88	
Total Terpana: 2.0 y			wt% 0	.00 0.50 1.00

Total Terpene: 2.0 wt%

* Certified reference standard not available for this compound. Concentration is estimated using the response factor from alpha-pinene. ND = None Detected. RL = Reporting Limit of 5 ppm.