How to Figure out Average Wind Direction with a Kestrel 5000 Series Unit

Kestrel customers may ask why they cannot use the Min/ Max/ Avg function on the Direction screen of the Kestrel.

But what about finding out the average directional value, or more commonly how to find out the Average Wind Direction?

Typical averaging is done by summing up the values and dividing by the number of values. This does not work with average wind direction however as you are using polar coordinates.

For example, suppose you had two winds of equal magnitude blowing from the complete opposite directions during a certain time as shown.

Typical averaging would give you an average wind direction of 180 degrees $(270+90) / 2))=180$

This is obviously incorrect as we know the wind never blew from the South during this time.

So how to go about finding the average wind direction then?
The answer is by using a Mean of Circular Quantities which is essentially doing vector mathematics.

NK has developed an Excel Spreadsheet Template that can help users figure out their average wind direction during a specific set of time from the exported CSV file.

The first step would be to upload your data and then export the file as a CSV file through one of our Kestrel LiNK apps.

HEAT - 2169248
CSV File

Locate the Time/ Date, Wind Speed and Direction Columns.

Cut and paste them into the template in the appropriate columns as shown.

Open up the CSV file and the Wind Direction Template.

Kestrel Wind Rose and Wind Average

Kestrel Wind Rose
(Instances of Wind Speed In a Given Direction)
\square

7/12/2017 15:4
$7 / 1212017$ 15:4
$7 / 12 / 201715: 4$
$7 / 12 / 2017$ 15:4
7/12/2017 15:4
7/1212/217175:4
$7 / 1 / 2 / 2017$ 15:4

$7 / 12 / 201715: 4$
$7 / 12 / 201715: 4$
$7 / 12 / 201715: 4$

$7 / 12 / 2017$ 15:
$7 / 12 / 2017$
$7 / 125 / 2017$ 15:4

$7 / 1212017155: 4$
$7 / 12 / 2171$
$15: 4$

$7 / 12 / 201715: 4$
$7 / 712 / 2017515$
$7 / 12 / 2017$ 15:4
$7 / 12 / 2017$ 15:4
$7 / 12 / 2171554$
$7 / 12 / 201715: 4$
$7 / 2121$
$7 / 12 / 2017715: 4$
$7 / 12 / 201715: 4$
$7 / 12 / 201775: 4$
$7 / 12 / 21715154$
$7 / 12 / 201715 \cdot 4$
7/1212/2017 15:4
$7 / 12 / 212171554$
$7 / 12 / 217154$
$7 / 1221217151$
7/1212/2017 15:4
7/12/2017 15:
$7 / 712 / 2017$ 15:
$7 / 12 / 21715:$
7/12/2017 15:

Kestrel Wind Rose

(Instances of Wind Speed In a Given Direction)

Each line represents the amount of times a wind occurred in that direction.

For instance there were 12 direction.

times the wind blew in the ESE

The color of the line represents the intensity of the wind.

However it is very important to note that the wind DID NOT blow 12 times at 4 mph ! The wind blew 9 times in that direction at 2 mph and then an addition 3 more times at 4 mph .

Key
Deg

$$
0
$$ —< $<=18 \mathrm{mph}$

$$
N
$$

45
NNE

67.5	ENE
90	E

112.5 ESE
135 SE
157.5 SSE

180 S
—< $<20 \mathrm{mph}$ —<< 16 mph -<< 14 mph —< $<=12 \mathrm{mph}$ $\ll=10 \mathrm{mp}$
$<=8 \mathrm{mph}$ $—<=6 \mathrm{mph}$ - $0<=2 \mathrm{mph}$
Direction

$$
22.5
$$ = SE

202.5 SSW
225 SW
247.5 WSW
270 W
292.5 WNW

Wind Speed Increment
Note - This graph is currently set up for 20,000 data p
Note - Column A of data log shows True north. If Mag
Kestrel Wind Rose

(Instances of Wind Speed In a Given Direction)

If we want greater precision, we can change the Wind Speed Increment to 1.

Now the lines are broken down by 1 mph increments.

In this case we have in ESE direction:

- 1 instance of a 0-1 mph
- 8 instances of a 1-2 mph wind
- 1 instance of a 2-3 mph wind
- 2 instances of a 3-4 mph wind

$—<=10 \mathrm{mph}$
$—<=9 \mathrm{mph}$
$\square<=8 \mathrm{mph}$
$—<=7 \mathrm{mph}$
——< 6 mph
$—<=5 \mathrm{mph}$
——< 4 mph
$—<=3 \mathrm{mph}$
$—<=2 \mathrm{mph}$ - $0<=1 \mathrm{mph}$

Example showing hourly Wind Speed and direction from Atlantic City, NJ (1/ 1/ 2017 through 7/ 18/ 17)

Kestrel Wind Rose

(Instances of Wind Speed In a Given Direction)

——< 20 mph

- < $<18 \mathrm{mph}$
——< $=16 \mathrm{mph}$
——< $<14 \mathrm{mph}$
- < $<=12 \mathrm{mph}$
—<< 10 mph
—< $<8 \mathrm{mph}$
—<< 6 mph
- < $<4 \mathrm{mph}$
— $0<=2 \mathrm{mph}$

Kestrel Wind Rose and Wind Average

Simple Wind Average

The other calculations show

- Ave Wind Speed (with 0 wind values)
- Ave Wind Speed (w/ o 0 wind values)
- Ave Wind Direction (does not count 0 wind values)

Wind Speed vs Time Of Day

