

Enhancing the baculovirus expression system with VANKYRIN technology

Kendra Steele, Ph.D.

Insect cells

- Can express mammalian proteins
- Similarities with mammalian cells
 - Eukaryotic systems
 - How protein are produced
 - Protein folding
 - Protein trafficking
 - Simple post-translational modifications
 - Cell size
 - Growth rate

Advantages of using insect cell systems

- Produce high levels of recombinant proteins
- Have cellular advantages
 - Can grow in monolayers and suspension
 - Capable of indefinite replication
 - Do not require CO₂
 - Physical dislodgements of cells is easier
 - Preserved well by cryopreservation

Insect-baculovirus expression system

- Baculovirus
 - Insect larva virus
 - Biphasic lifecycle
 - Occluded formtransmitted between insects hosts
 - Stable in environment
 - Budded formtransmitted between insect cells
 - Used in baculovirus expression system

Baculovirus infection cycle

Baculovirus Expression System

method for producing high amounts of recombinant proteins

1. Cloning

2. Construct recombinant baculovirus

Homologous Recombination between transfer vector and baculovirus DNA

Infect insect Sf9 cells with ligated baculovirus (P0 stock)

Amplify virus (P1 stock)

Titer P1 stock

3. Infection

- Infect insect Sf9 cells with a specific MOI of recombinant baculovirus for 3-5 days
- Collect supernatant or cell pellet (Analyze by Western blot)

4. Purify protein using a his-tag column

Baculovirus Expression System

Advantages

- Produces high levels of recombinant protein
- Efficiently cleaves signal peptides
- Simultaneous expresses multiple genes
- Can contain large DNA inserts

Disadvantages

- Lytic
- Limits on posttranslational processing

Baculovirus infection stimulates host cell lysis

Day 2 post-infection

Day 5 post-infection

Vankyrin protein inhibits apoptosis

Insect Molecular Biology (2009) 18(4), 497-506

The *Campoletis sonorensis* ichnovirus vankyrin protein P-vank-1 inhibits apoptosis in insect Sf9 cells

A. Fath-Goodin*†, J. A. Kroemer† and B. A. Webb*†

- Campoletis sonorensis ichnovirus produces 7 vankyrin proteins.
- P-vank-1 disrupts the apoptotic pathway when expressed in Sf9 insect cells (VE-CL cells)
 - Nuclear fragmentation is inhibited
 - Internucleosomal degradation is inhibited
 - Apoptotic protein Caspase-3 activity was upregulated
 22x in infected Sf9 but only 5x in infected VE-CL cells.

Model of Vankyrin inhibition

-- ankyrin repeats

- □ Homology to I-κB, a NF-κB inhibitor
 - Both have ankyrin repeats
- Possibly, Vankyrin binds and inhibits an apoptotic protein such as NF-kB

First Question

Can we produce more recombinant protein by co-expressing it with the Vankyrin protein?

Created two new base transfer vectors

Current therapeutic proteins

Erythropoietin (EPO)

- A hormone that regulates red blood cell production
- Currently used to treat anemia from kidney failure
- Presently made in mammalian CHO cells

Secreted alkaline phosphatase (SEAP)

- Dephosphorylates and detoxifies LPS
- Currently used to treat
 - Endotoxin-induced systemic inflammation
 - Acute renal failure
 - Sepsis
 - Ulcerative colitis
- Enzymatic assay

Inserted two recombinant genes into the base transfer vectors

SEAP-pAcVE.02

SEAP-pAc.02 (-VE)

Higher level of SEAP activity is detected when using a Vankyrin-enhanced baculovirus

Higher levels of rEPO are produced using a Vankyrin-enhanced baculovirus

Summary of question 1

- The Vankyrin protein delays apoptosis of infected Sf9 insect cells
- Increased levels of recombinant EPO and SEAP proteins are produced using a vankyrinenhanced baculovirus compared to current baculovirus technology
- Current yields from a 50 ml culture are > 6 mg

Baculovirus Expression System

Advantages

- Produces high levels of recombinant protein
- Efficiently cleaves signal peptides
- Simultaneous expresses multiple genes

Disadvantages

- Lytic
- Limits on posttranslational processing

Glycosylation

- The addition of carbohydrates to a protein
- A post-translational modification
- Important for
 - Protein folding
 - Stability
 - Cell-to-cell adhesion
 - Enzyme activity
 - Receptor binding

Last accessed 4-3-14 . Modified from https://www.neb.com/applications/glycobiology.

Importance of glycosylation

- Over 50% of all proteins are glycosylated
- Glycoprotein and carbohydrate therapeutics represent a \$20 billion market

N-Glycosylation is limited in the baculovirus expression system

Adapted from Shi and Jarvis, Curr. Drug Targets 2007. Vol 8.

- Significant
 differences in the
 branching and
 elongation steps
- Insect N-glycans
 - Simpler
 - Non-sialylated

StSW 14: a transgenic insect cell line capable of *N*-glycan

processing

- Donald L. Jarvis' lab
- Expresses 6 mammalian glycosylation enzymes

Second Question

Can we use the vankyrin technology to enhance production of glycosylated mammalian proteins?

Created vankyrin-producing insect cells

seap-BV → SfSWT4

seap-BV → VE-SWT

Vankyrin-enhanced SfSWT4 cells also increase recombinant protein production

Summary of question 2

- The engineered insect cell line, SfSWT4, can properly glycosylate mammalian recombinant proteins
- SfSWT4 was further enhanced with the addition of the vankryin gene: VE-SWT
- Recombinant protein production is enhanced in VE-SWT insect cells

Toxic proteins

The Vankyrin technology enhances production of hard to express or toxic proteins.

NADPH oxidase

NADPH oxidase

- Generates superoxides in response to pathogen binding to phagocytic cells
- Oxidative stress: O₂⁻¹
 and H₂O₂
- Five subunits and a small GTPase Rac
 - Catalytic core comprises flavocytochrome b₅₅₈: gp91^{phox} and p22^{phox}

Gardiner et al. Front. Immunol. 2013. 4: Art. 295

Problem

The production of gp91^{phox} and p22^{phox} were killing the insect cells.

Only 10% of insect cells were viable at 40 hr post-infection

Al Jesaitis. Montana State University, Department of Microbiology.

Methods

Cultures were stained with trypan blue to determine percent viability.

Remaining cells were collected and analyzed by Western blot.

Vankyrin-enhanced Sf9 cells have increased viability

Vankyrin-enhanced Sf9 cells produce higher levels of gp91^{phox}

Conclusions

- The Vankyrin protein delays apoptosis of infected Sf9 insect cells
- Many recombinant proteins are produced at higher levels using a...
 - Vankyrin-enhanced baculovirus
 - Vankyrin-enhanced insect cells
 - VE-CL02 (Sf9)
 - VE-SWT (SfSWT4)
- Includes for toxic proteins such as flavocytochrome b₅₅₈

Acknowledgements kendrasteele@paratechs.com

