### Replace with logo

# **Measurement of Heat Transfer in Six Mattresses**

Mark Gaides<sup>1</sup>, PhD and Avner Goren<sup>2</sup>, MD Pulmonary Laboratory<sup>1</sup>; Safra Children's Hospital<sup>2</sup>, Tel Hashomer, Israel Replace with logo

# Background

•Sudden infant death syndrome (SIDS) is still a leading cause of death for infants aged one month to one year in developed countries.

•Thermal stress has been indentified as a risk factor for SIDS in a number of studies.

•Heavy wrapping and excessive room heating independently increased the risk of SIDS, especially in infants greater than 70 days.

•Heat loss in infants sleeping in the prone position is 60% less effective than for infants lying in the non-prone position with the same clothing and bedding.

•Avoiding overheating is a recommendation of most proffessional authoraties to decrease the risk of SIDS

### Objective

To evaluate the thermal resistance of six mattresses

### Methods

•An electric blanket with the approximate dimensions of a newborn (43x35x7 cm) was placed on the mattress surface.

•Temperature was measured between the mattress and a blanket which covered the heating element for 65 minutes every 5 minutes using two digital thermometers.

•Temperature measurement was begun immediately after covering the heating element with a blanket, after reaching a stable temperature between the heating element and the mattress. •A prior experiment showed that more than 90% of the rise in temperature was measured during the first 60 minutes.

•Room temperature was kept at approximately 26°C±2°C by using standard heating and cooling techniques.

#### **Mattresses**

A – Airnettress – Meshed polyesther netting with an open area of approximately 50%

B - Aminach air – Polyurethane with a 5 m"m honeycomb upper surface

C – Aerosleep - 5 m<sup>°</sup>m polyesther honeycomb surface placed on standard mattress

D-Airflow – "Egg carton" like polyurethene surface covered with polyesther.

E- Baby Shilav 3000 – Three layered polyurethene surface with polyesther coating

F – Pang - Standard infant mattress polyurethene with polyesther coating.

# Methods (cont.)



# Results

 Table 1. CO<sub>2</sub> elimination - static diffusion

 (average in seconds)

|    |     | Mattress | Mattress<br>+<br>NetSheet | Mattress<br>Cotton<br>Sheet | Standard<br>Mattresses |
|----|-----|----------|---------------------------|-----------------------------|------------------------|
| Me | ean | 62.8     | 70.1                      | 91.1                        | 198-673                |
| ±S | D   | 0.06     | 2.1                       | 0.6                         |                        |



| Results                        | (cont.)                      |     |
|--------------------------------|------------------------------|-----|
| Table 2. CO <sub>2</sub> accum | ulation during infai         | nt  |
| breathing simulation           | n (max CO <sub>2</sub> conc% | (م/ |

|                | Closed<br>Headbox<br>+<br>Imperme- | Mattress | Mattress+<br>Net<br>Sheet | Mattress<br>+ Cotton<br>Sheet |
|----------------|------------------------------------|----------|---------------------------|-------------------------------|
| Max            | able sheet<br>4.75                 | 0.70     | 0.77                      | 1.23                          |
| CO2            |                                    |          |                           |                               |
| Conc.          |                                    |          |                           |                               |
| % of<br>Contr. |                                    | 14.8%    | 16.2%                     | 25.9%                         |

#### Table 3. Resistance to air flow (cmH2O/I/sec)

|      | Mattress | Mattress<br>Net<br>Sheet | Mattress +<br>Cotton<br>Sheet | Contrl* |
|------|----------|--------------------------|-------------------------------|---------|
| Mean | 0.058    | 0.152                    | 2.298                         | 2.19    |
| ± SD | 0.023    | 0.019                    | 0.030                         | 0.02    |

\*control = resistance of measuring apparatus

### Conclusions

The new mattress has the following qualities:

- A fast rate of CO<sub>2</sub> elimination
- The ability to clear away any CO<sub>2</sub> accumulation, keeping the maximal attainable CO<sub>2</sub> level below 1%
- · An insignificant resistance to air flow