
 Connective Peripherals Pte Ltd

178 Paya Lebar Road, #07-03 Singapore 409030

Tel.: +65 67430980 Fax: +65 68416071

E-Mail (Support): support@connectiveperipherals.com Web: www.connectiveperipherals.com/products

Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced

in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are

supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Connective

Peripherals Pte Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory

rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the

failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that

may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of

this document. Connective Peripherals Pte Ltd, 178 Paya Lebar Road, #07-03 Singapore 409030. Registered Number: 201617872E

Copyright © Connective Peripherals Pte Ltd

The USB2-F-7x01 (USB-to CAN) is a replacement product for the Connective Peripherals CANUSB and

it provides a simple method of adapting CANbus devices to USB.

The USB2-F-7001 (USB to CAN) CAN Plus adapter, adds additional features, new advanced
commands and increase performance of the previous products. The USB2-F-7101 has all the same
features of the USB2-F-7001 and includes optical isolation between the CAN transceiver and the CAN
controller.

This programming guide describes the Windows-based API for use with high-level languages.

USB2-F-7x01 Programming Guide

Document Reference No.: CP_000035

Version 1.1

Issue Date: 2019-03-21

mailto:support@connectiveperipherals.com
http://www.connectiveperipherals.com/products

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 2

Table of Contents

1 Introduction .. 3

1.1 Functional Description .. 3

2 Installation ... 4

2.1 DLL Installation .. 4

2.1.1 Windows Desktop and Server .. 4

2.1.2 Mac OS X, Linux, Windows CE ... 4

2.2 High-Level language API ... 5

2.2.1 canplus_getFirstAdapter ... 5

2.2.2 canplus_getNextAdapter .. 6

2.2.3 canplus_Open ... 7

2.2.4 canplus_Close ... 9

2.2.5 canplus_Read ..10

2.2.6 canplus_Write ..11

2.2.7 canplus_Status ..12

2.2.8 canplus_VersionInfo ...13

2.2.9 canplus_Flush ..14

2.2.10 canplus_Reset ..15

2.2.11 canplus_Listen ...16

2.2.12 canplus_SetTimeouts ..17

2.2.13 canplus_setReceiveCallBack ...18

2.2.14 Error Return Codes ...19

3 Example Application .. 20

4 Contact Information .. 27

Appendix A – References ... 28

Appendix B – Revision History ... 29

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 3

1 Introduction

1.1 Functional Description

The USB2-F-7001 is a USB to CANbus adapter which incorporates the FTDI FT245R USB to FIFO interface
in conjunction with the PIC18F2680 to provide a fast, simple way to interface CANbus devices to a host
PC with a USB port. The USB2-F-7101 provides the same functionality as the USB2-F-7001 while

including optical isolation between the CANbus transceiver and the CANbus controller. Throughout this
document references to USB2-F-7001, USB2-F-7101 and USB2-F-7x01 are equivalent.

This document describes the API function calls which work in conjunction with the FTDI D2XX device
drivers. It is assumed that the USB2-F-7001 and related device drivers have been installed at this point.
For instructions on installing the adapter and drivers, please see the USB2-F-7x01 datasheet.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 4

2 Installation

2.1 DLL Installation

2.1.1 Windows Desktop and Server

There is no specific DLL installer. The DLL, LIB and Header files are typically copied to an application
project directory. Different programming languages and compiler configurations require different
locations. Consult your programming environment documentation for the correct locations to place the

files contained within the distribution.

Currently programming with following high-level programming languages VB6, VB6 .NET, C#, VC++ is
supported by the USB2-F-7x01 DLL.

2.1.2 Mac OS X, Linux, Windows CE

This API is not available under Mac OS X, Linux or Windows CE. Access to the USB2-F-7x01 is available

through the Virtual COM Port ASCII commands as described in the USB2-F-7x01 Datasheet.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 5

2.2 High-Level language API

2.2.1 canplus_getFirstAdapter

Summary

Search the system for available USB2-F-7x01 adapters.

Definition

int canplus_getFirstAdapter (char *szAdapter, int size);

Parameters

szAdapter pointer to the serial number of the first USB2-F-7x01 found

size size of the buffer to receive the serial number

Remarks

The serial number is a string consisting of 8-bytes plus null termination. Allocate a 9 byte buffer to obtain
the serial number.

Adapter detection may need to be done on a separate thread or process if it is likely that the USB2-F-

7x01 adapters are installed and/or removed after the device driver has been loaded.

Return Codes

>0 Number of USB2-F-7x01 adapters found

<= 0 Error as noted below:

ERROR_CANPLUS_MEMORY_ERROR

If szAdapter buffer size (size variable) is less than 9B

ERROR_CANPLUS_FAIL

Unable to get information about adapters

ERROR_CANPLUS_NO_DEVICE

No devices found

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 6

2.2.2 canplus_getNextAdapter

Summary

Search the system for available USB2-F-7x01 adapters. A call to “canplus_getFirstAdapter” is required
prior to accessing this call. Repeat this call for each adapter.

Definition

int canplus_getNextAdapter (char *szAdapter, int size);

Parameters

szAdapter pointer to the serial number of the next USB2-F-7x01 found
size size of the buffer to receive the serial number

Remarks

The serial number is a string consisting of 8-bytes plus null termination. Allocate a 9 byte buffer to obtain
the serial number.

Adapter detection may need to be done on a separate thread or process if it is likely that the USB2-F-
7x01 adapters are installed and/or removed after the device driver has been loaded.

Return Codes

>0 ERROR_CANPLUS_OK

<= 0 Error as noted below:

ERROR_CANPLUS_MEMORY_ERROR

If szAdapter buffer size (size variable) is less than 9 Bytes

ERROR_CANPLUS_FAIL

canplus_getFirstAdapter was not called.

ERROR_CANPLUS_NO_DEVICE

No devices found

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 7

2.2.3 canplus_Open

Summary

Open a channel to the USB2-F-7x01.

Definition

CANHANDLE canplus_Open(LPCSTR szID, LPCSTR szBitrate, LPCSTR acceptance_code, LPCSTR
acceptance_mask, unsigned long flags);

Parameters

szID USB2-F-7x01 serial number

szBitrate 10 = 10Kbps

 20 = 20Kbps

 50 = 50Kbps
 100 = 100Kbps
 250 = 250Kbps
 500 = 500Kbps
 800 = 800Kbps
 1000 = 1000Kbps

 aabbcc = custom bit rate

aa = BRGCON1 register of Microchip PIC 18F2680
bb = BRGCON2 register of Microchip PIC 18F2680
cc = BRGCON3 register of Microchip PIC 18F2680

The USB2-F-7x01 utilizes a 24MHz clock for the PIC 18F2680. Use this value
when referring to the PIC datasheet if a custom transmission rate different from
the eight pre-defined rates is required.

acceptance_code 11-bit (0x000 to 0x7FF) or 29-bit (0x00000000 to 0x1FFFFFFF) code used in
filtering specific or ranges of CAN messages. Used in conjunction with the

acceptance mask. Note: When referring to the PIC datasheets, Acceptance Code
is synonymous with Acceptance Filter.

acceptance_mask 11-bit (0x000 to 0x7FF) or 29-bit (0x00000000 to 0x1FFFFFFF) code used in
filtering specific or ranges of CAN messages. Used in conjunction with the

acceptance code.
flags CANPLUS_FLAG_TIMESTAMP –

True = The timestamp function will be enabled by the USB2-F-7x01.
False = Timestamps will be determined by the device driver.

Remarks

If multiple USB2-F-7x01 adapters exist in a system, user must call canplus_getFirstAdapter and

canplus_getNextAdapter to get serial numbers of the connected adapters. The serial number must be
passed to canplus_Open in szID to open a specific device. If szID == NULL, the first USB2-F-7x01 device
will be opened.

Only one open command will be successful for a single device. At this point multiple channels to a single

physical device are not supported.

Any argument to this API may be set to NULL to use default value of the field. By default a CAN channel
is opened to accept all standard and extended CAN frames at 1Mbps bit rate.

Default timeouts for the underlying FTDI D2XX FT_Read and FT_Write are set to 1sec.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 8

Return Codes

handle Handle to the device if successful

<= 0 Error as noted below:

ERROR_CANPLUS_FAIL

Unable to open communication to USB2-F-7x01 device

ERROR_CANPLUS_OPEN SUBSYSTEM

Unable to open CAN channel

ERROR_CANPLUS_COMMAND_SUBSYSTEM

Failed in setting other parameters (e.g. setting timestamp, bitrate, acceptance
code or acceptance mask)

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 9

2.2.4 canplus_Close

Summary

Close the CAN channel with handle h.

Definition

int canplus_Close (CANHANDLE h);

Parameters

h the handle of the CAN channel which will be closed

Remarks

Any data present in the data buffers will be lost, even if not fully transmitted on the CAN channel.
Ensure there is enough time to transmit a full frame prior to closing a channel.

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

CAN channel could not be closed

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 10

2.2.5 canplus_Read

Summary

Read a message from the open channel with handle h. Message is contained within the message
structure.

Definition

int canplus_Read(CANHANDLE h, CANMsg *msg);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01

msg received message frame structure

Remarks

// Message flags

#define CANMSG_EXTENDED 0x80 // Extended CAN id

#define CANMSG_RTR 0x40 // Remote frame

// CAN Frame

typedef struct {

_u32 id; // Message id

_u32 timestamp; // timestamp in milliseconds

_u8 flags; // [extended_id|1][RTR:1][reserver:6]

_u8 len; // Frame size (0.8)

_u8 data[8]; // Databytes 0..7

} CANMsg;

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_NO_MESSAGE

The receive buffer is empty

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 11

2.2.6 canplus_Write

Summary

Write a message to the open channel with handle h. Message is contained within the message structure.

Definition

int canplus_Write(CANHANDLE h, CANMsg *msg);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01

msg transmitted message frame structure

Remarks

// Message flags

#define CANMSG_EXTENDED 0x80 // Extended CAN id

#define CANMSG_RTR 0x40 // Remote frame

// CAN Frame

typedef struct {

_u32 id; // Message id

_u32 timestamp; // timestamp in milliseconds

_u8 flags; // [extended_id|1][RTR:1][reserver:6]

_u8 len; // Frame size (0.8)

_u8 data[8]; // Databytes 0..7

} CANMsg;

Return Codes

>0 ERROR_CANPLUS_OK

Standard/Extended Frame written successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

Standard/Extended Frame write Failure

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 12

2.2.7 canplus_Status

Summary

Retrieve adaptor status for channel with handle h.

Definition

int canplus_Status(CANHANDLE h);

Parameters
h handle returned by canplus_Open for the desired USB2-F-7x01

Remarks

Returns < 0 error codes if failure. Limit use of “canplus_Status” as it may degrade transmission and

reception of valid frames.

Return Codes

>0 Status value with bit values as below

// Status bits
#define CANSTATUS_RECEIVE_FIFO_FULL 0x01

#define CANSTATUS_TRANSMIT_FIFO_FULL 0x02
#define CANSTATUS_ERROR_WARNING 0x04
#define CANSTATUS_DATA_OVERRUN 0x08
#define CANSTATUS_ERROR_PASSIVE 0x20
#define CANSTATUS_ARBITRATION_LOST 0x40
#define CANSTATUS_BUS_ERROR 0x80

<=0 Error as noted below:

 ERROR_CANPLUS_FAIL

Unable to get the status

ERROR_CANPLUS_COMMAND_SUBSYSTEM

Status command returned a failure

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 13

2.2.8 canplus_VersionInfo

Summary

Retrieve adaptor hardware, firmware and driver versions as well as the adapter serial number for channel
with handle h.

Definition

int canplus_VersionInfo(CANHANDLE h, LPSTR verinfo);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01

verinfo Format: "VHhFf-Nxxxx-nnnnn-CCCCCCCCCC"

V, N = Constant
H = Hardware_Major
h = Hardware_Minor
F = Firmware_Major
f = Firmware_Minor
x = CANPLUS serial #

n = Windows device driver version
C = Custom String, Default "EasySync Ltd"

Remarks

Version information is used for informational purposes only.

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

CAN channel version information could not be retrieved

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 14

2.2.9 canplus_Flush

Summary

Clears the transmit buffers for channel with handle h.

Definition

int canplus_Flush(CANHANDLE h);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01

Remarks

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

CAN channel could not be flushed

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 15

2.2.10 canplus_Reset

Summary

Resets the device with handle h. The canplus_Open must be used to open a new handle.

Definition

int canplus_Reset(CANHANDLE h);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01

Remarks

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

CAN channel could not be reset

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 16

2.2.11 canplus_Listen

Summary

Set the USB2-F-7x01 CANPLUS device in the CAN Listen mode. Note that at least three CAN devices must
be on the CAN network for this mode to work successfully.

Definition

int canplus_Listen(CANHANDLE h);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01

Remarks

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

CAN channel could enter listen mode

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 17

2.2.12 canplus_SetTimeouts

Summary

Set blocking timeouts for a channel with handle h.

Definition

int canplus_SetTimeouts(CANHANDLE h, _u32 receiveTimeout, _u32 transmitTimeout);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01

receiveTimeout number of milliseconds to release receive blocks

transmitTimeout number of milliseconds to release transmit blocks

Remarks

Default blocking is 1sec. This command provides a mechanism to wait for different durations.

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

CAN channel timeouts could not be configured

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 18

2.2.13 canplus_setReceiveCallBack

Summary

Define a function that will receive a callback on all incoming messages. This is a blocking call and must
be called on a separate thread. To deregister this callback function, the canplus_setReceiveCallback can
be called with cbfn equal to NULL.

Definition

int canplus_setReceiveCallBack(CANHANDLE h, LPFNDLL_RECEIVE_CALLBACK cbfn);

Parameters

h handle returned by canplus_Open for the desired USB2-F-7x01
cbfn The callback function should be defined as

void fn(CANMsg *pMsg);

Remarks

Note that the channel has to be open to be able to set a callback function.

Return Codes

>0 ERROR_CANPLUS_OK

CAN channel is closed successfully

<=0 Error as noted below:

ERROR_CANPLUS_FAIL

CAN channel could enter listen mode

Sample code

void cbFunc(CANMsg *pMsg)
{
 // callback function
}
void RegisterCB(LPFNDLL_RECEIVE_CALLBACK cbFunc)
{

 int status;

 if (ERROR_CANPLUS_OK == (status = canplus_setReceiveCallBack(hnd, cbFunc)))
 printf("canplus_setCallBack successful!\n");
 }

DWORD ThreadId;
 HANDLE hThreadCB;

 if (NULL == (hThreadCB = CreateThread(NULL,
 0, (LPTHREAD_START_ROUTINE) RegisterCB,
 cbFunc, 0, &ThreadId)))

{
 // Failure
 }

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 19

2.2.14 Error Return Codes

Summary

The commands listed in the above sections have the following error codes in common. Not all commands
will return all codes:

Definition

#define ERROR_CANPLUS_OK 1

#define ERROR_CANPLUS_FAIL -1

#define ERROR_CANPLUS_OPEN_SUBSYSTEM -2

#define ERROR_CANPLUS_COMMAND_SUBSYSTEM -3

#define ERROR_CANPLUS_NOT_OPEN -4

#define ERROR_CANPLUS_TX_FIFO_FULL -5

#define ERROR_CANPLUS_INVALID_PARAM -6

#define ERROR_CANPLUS_NO_MESSAGE -7

#define ERROR_CANPLUS_MEMORY_ERROR -8

#define ERROR_CANPLUS_NO_DEVICE -9

#define ERROR_CANPLUS_TIMEOUT -10

#define ERROR_CANPLUS_INVALID_HARDWARE -11

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 20

3 Example Application

The DLL Demo Usage Application is a C-language example that provides a quick test of the API
commands defined in this Programming Guide. The application source code can be obtained through
Connective Peripherals Support. Contact information is available at the end of this Guide.

DLL Demo usage instructions

1. Extract all the files from ZIP file to your PC. The DLL demo executable file is located in the

following folder (DLLDemo.exe)

..\DLLDemo\release\DLLDemo.exe
2. Connect the USBCANPlus (USB2-F-7x01) on a operational CAN network

3. Run the DLLDemo.exe the following APIs under test will start running

a) API: canplus_getFirstAdapter

Type in small letter “ y “ and <Enter>, it will execute the API

If the API is executed successfully it will show how many adapters are connected and serial

number of first adapter.

b) API: canplus_getNextAdapter:

Then it will prompt to run canplus_getNextAdapter API. Since for simple testing we have

connected only one adapter this API will not return anything if you run it. So type in ‘y’ [small

letter] and <ENTER> it will go to next API test.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 21

c) API: canplus_Open:

Type in ‘y’ and <ENTER>, It will run the canplus_Open API and return the USB handle

number operating with the device. At this point CAN Open command is executed with the

Supplied CAN bit rates, time stamp flags. So the Green LED on the device will be solid

“green”. In the demo code the time stamp is turned ON, and CAN bit rate is 1 mbps.

d) API: canplus_Write:

At this point the demo code get into testing canplus_Write API. First Standard frame will be

transmitted with ID : 123, 8 bytes data, Data: A1B2C3D4E5F61234

Type ‘y’ and <ENTER>

Then you can monitor the standard CAN frame transmitted on CAN network.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 22

Next demo is to use API canplus_Write for transmitting extended frame. Demo code is
written with extended ID: 12345678, DataBytes: 8, Data: 5656565656565656

Type ’y’ and press <ENTER>

e) API: canplus_Read:
Next API demo is canplus_Read. You can send multiple bytes on CAN network and the API
will read the received CAN messages.

Type ’y’ and <ENTER>

The API canplus_Read, reads the received message and we have a buffer to store 1024
standard/extended frames in DLL. This API will return the number of bytes received, with

details on can message like ID, data length, DATA payload and timestamp info…

Now type ‘n’ to exit reading the CAN messages.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 23

f) API: canplus_Status:
Next API in the demo code is canplus_Status. It will return the status of CAN communication
bus. Type ‘y’ and <ENTER> If there are no errors on CAN bus statusFlags value ‘0’ will be
returned

g) API: canplus_getVersionInfo:
Next API is canplus_getVersionInfo. This will return CAN device serial number, HW/SW

version and driver version. Type ‘y’ and <ENTER>

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 24

h) API: canplus_Flus:
Next API is canplus_Flush. This will flush the CAN TX and RX buffers. Type’y’ and <ENTER>

i) API: canplusListen:

Next API is canplus_Listen. This API will place the USB2-F-7x01 into Listen mode. The green

LED will start blinking. Type ’y’ and <ENTER>

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 25

j) API: canplus_Reset:
Next API is canplus_Reset. This API will reset the PIC on the USB2-F-7x01. Type ’y’ and
<Enter>

Wait till you see the Green LED blinking status.

k) API: canplus_Close:

Next API is canplus_Close. This API will close the CAN channel and USB handle.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 26

Observe the CAN Close Green LED blink status. At this point you can run the test sequence
again by typing ‘y’ or exit the DLLDemo application by typing ‘n’ or ‘q’.

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 27

4 Contact Information

Global Headquarters – Singapore

Connective Peripherals Pte Ltd
178 Paya Lebar Road
#07-03
Singapore 409030

Tel: +65 67430980
Fax: +65 68416071

E-Mail (Sales) sales@connectiveperipherals.com
E-Mail (Support) support@connectiveperipherals.com
Web Site URL http://www.connectiveperipherals.com

Web Shop URL http://www.connectiveperipherals.com

mailto:sales@connectiveperipherals.com
mailto:support@connectiveperipherals.com
http://www.connectiveperipherals.com/
http://www.connectiveperipherals.com/

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 28

Appendix A – References

Bosch CAN Specification, Version 2.0:

http://www.semiconductors.bosch.de/pdf/can2spec.pdf

CAN in Automation (CiA):

www.can-cia.org

Future Technology Devices International Ltd. (FTDI)

www.ftdichip.com

Microchip

www.microchip.com

http://www.semiconductors.bosch.de/pdf/can2spec.pdf
http://www.can-cia.org/
http://www.ftdichip.com/
http://www.microchip.com/

 USB2-F-7x01 Programming Guide

Version 1.1

Document Reference No.: CP_000035 Clearance No.: CP#025

Copyright © Connective Peripherals Pte Ltd 29

Appendix B – Revision History

Revision Changes Date

1.0 Initial release 2009-02-20

1.01
Changed references from USB2-F-7001 to USB2-f-

7x01 to accommodate isolated adapter
2009-02-25

1.1

Re-branding to reflect the migration of the product to
Connective Peripherals name – logo change,
copyright changed, contact information Changed, all
internal hyperlinks changed.

2019-03-21

	1 Introduction
	1.1 Functional Description

	2 Installation
	2.1 DLL Installation
	2.1.1 Windows Desktop and Server
	2.1.2 Mac OS X, Linux, Windows CE

	2.2 High-Level language API
	2.2.1 canplus_getFirstAdapter
	2.2.2 canplus_getNextAdapter
	2.2.3 canplus_Open
	2.2.4 canplus_Close
	2.2.5 canplus_Read
	2.2.6 canplus_Write
	2.2.7 canplus_Status
	2.2.8 canplus_VersionInfo
	2.2.9 canplus_Flush
	2.2.10 canplus_Reset
	2.2.11 canplus_Listen
	2.2.12 canplus_SetTimeouts
	2.2.13 canplus_setReceiveCallBack
	2.2.14 Error Return Codes

	3 Example Application
	4 Contact Information
	Appendix A – References
	Appendix B – Revision History

