
SpheroRuler

Calibration beads for super-resolution microscopy

Polymer microparticle

Covalently anchored fluorophores Far-red fluorescence (Excitation peak= 647nm)

1µm-diameter hollow ring structures in 2D SMLM/confocal imaging

SpheroRuler beads will appear as:

1µm-diameter spheres when reconstructed in 3D SMLM microscopy

✓ Ruler*

✓ Demo & training

50 µL suspension in PBS • 7x10⁸ particles per mL

Hydrophilic surface, water-soluble

Compatible imaging modes:

- dSTORM (HILO, TIRF)
 - SRRF-Stream
 - Confocal/Airyscan confocal
- SEM ٠

Key features

fluorophore known for its

excellent blinking capacity in

superresolution microscopy

Stable blinking ✓ Coated with a 647-

✓ Suitable for SMLM

applications

Reliable

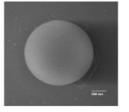
- ✓ Inert object
- ✓ Size thoroughly characterized by SEM (error margin +-0.05µm)
- ✓ Allows to get precise numerical validation

What is it used for?

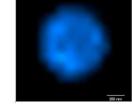
- Calibration tool
 - x-y-z measurement
 - 3D reconstruction fidelity
 - Image quality/resolution •
- Drift correction, position guide*

*The SpheroRuler beads can also be loaded together with biological samples.

Well-defined shape


✓ Sharp hollow ring allowing to check image resolution quality and quickly spot artefacts

Easy to use


- ✓ 1µm size, easy-to-spot
- ✓ Monodispersed
- ✓ High intensity
- ✓ Spherical size: orientation doesn't matter
- ✓ Fast protocol < 20min</p>

Results

SpheroRuler beads observed with different microscopy techniques:

SEM microscopy



E

(a.

SpheroRuler beads observed with SRRF-Stream

Wide field

WF SRRF 0.8 3 0.6 0.4 0.2 0.0.0 0.5 2.0 2.5 3.0 1.0 1.5 L (µm)

dSTORM (2D)

Pictures of SpheroRuler beads acquired in wide-field (C) and SRRF-Stream superresolution (D) imaging. Scale bar = $1\mu m$ (E) Fluorescence intensity distributions along the solid lines in С and D. Image credits: Yao Baoli, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2023

