HITACHI
 Inspire the Next

VARIABLE FREQUENCY DRIVE

SJ700\&SJ700B series

Powerful Inverter

 with Sensorless Vector Control

(0) Hitachi Industrial Equipment Systems Co., Ltd.

New
 SJ700D ${ }_{\text {series }}$
 (Models: $3-\mathrm{ph}, 200 \mathrm{~V}$ class 0.4 to $55 \mathrm{~kW}, 3-\mathrm{ph}, 400 \mathrm{~V}$ class 0.75 to 132 kW)

1 Dual rating

- SJ700D can be used for both heavy and normal duty.
- One-frame-size smaller SJ700D may be applicable for variable torque applications.

2 EzSQ improvement (1 task/2ms $\Rightarrow 5$ tasks/2ms)

- By separating codes to be repeated as loops in different tasks, overall execution can be faster.

3 RS485 (Modbus-RTU) communication speed is improved (Max19.2kbps $\Rightarrow 115.2 \mathrm{kbps}$ speed is improved)

- Approx. 6 times faster communication in comparison with the prior model is now supported. Additionally, more communication commands are available.

4

LCD operator (Optional:WOP) upgrade

- 5-line LCD operator
- Real time clock built in
- 4 sets of user parameter configurations can be saved and transferred.
- Two color backlight that distinguish trip status
- User selectable content for display.

5 Versatile functions

- Phase loss input protection : covers not only the input but output as well.
- Automatic return to the initial display (b164):

Without operating for 10 minutes, the display returns to the initial display automatically.

SJ700\&5J700B

The Hitachi SJ700D-3 series succeed the SJ700-2 series with the additional and enhanced features

6 Induction motor \& permanent magnetic motor control with one inverter (PM motor control : ordering production)

- The SJ700D series inverter can drive both induction motors (IM) and permanent magnetic motors (PM).

Details of enhancement (Comparison between SJ700-2 and SJ700D-3)

No.		item		nced function, added parameters, etc.	Remarks
1	Model	SJ700D-004 to 550LFF3/LFEF3/LFUF3 SJ700D-007 to 1320HFF3/HFEF3/1500HFUF3			
2	Added function	Constant torque/ Variable torque (CT/VT) selection	Constant torque / Variable torque mode selectable (b049)	Newly added parameter b049 to switch between Constant torque mode and Variable torque mode.	In case of driving light load application, you can choose one power size smaller inverter or one frame size smaller inverter.
3		PM motor control [ordering production]	Control mode (A044)	PM motor control (06) is added to the selection in A044	PM motor control is only available in Variable torque mode. (note) The model supporting PM motor control is ordering production.
4			PM motor control parameters (H101~H134)	Parameters related to PM motor control are newly added (same as WJ200 series)	
5		Automatic return to the initial display	Automatic return to the initial display (b164)	Without operating for 10 minutes, the display returns to the initial display automatically.	
6		Data read and write	Data Read/Write selection (b166)	Selection of enabling or disabling data Read / Write from the copy unit WOP for parameter setting protection and security	
7		Inverter mode	Inverter mode monitor (d060)	Displays currently selected inverter mode, IM motor (induction motor) or PM motor mode.(IM mode or PM mode.)	
8		Phase loss protection	Phase loss output protection (b141,b142)	The inverter detects motor output phase loss	
9	Improvement function	EzSQ	Improvement	Parallel processing of 5 tasks	
10				EzSQ starting trigger terminal: changed from FW terminal to PRG terminal which can be assigned any of input terminals.	
11			Additional function	Always running mode is added to selection of starting method for EzSQ.	
12				Command to store changed data into EEPROM (eepwrt command)	
13				Command to obtain clock data from WOP (rtcset command)	
14				Part of EzSQ program variables (P129 (U29) to P131 (U31)) are automatically stored at power down (only when A017 is other than 00)	
15		WOP operator [Option]	Full compatibility with the copy unit WOP(5 line display)		
16			Real time clock function is	vailable.	
17		RS485	Communication speed is improved.	2400/4800/9600/19.2k/ $38.4 \mathrm{k} / 57.6 \mathrm{k} / 76.8 \mathrm{k} / 115.2 \mathrm{k} \mathrm{bps}$	
18			Modbus RTU	Maximum data length is expanded. 03h (Read holding register) 10h (Write in holding resisters)	4 registers (8 byte) to 16 registers (32 byte)
19				Command to write into/read from multiple holding registers is added (17h: Write/Read multiple holding registers)	Read and Write 16 registers (32 byte)
20				Broadcast communication function is added.	
21				EEPROM storing mode is added.	
22		Initializing	Initializing method	Parameter setting (b180=01) triggers initialization	Initialization method of SJ700-2 is also valid.
23			Initializing of EzSQ	Parameter b084 range is expanded.	
24			Initial value	b037=00 (Full access)	
25		Selection of initial display	Selection of initial display is expanded (all monitoring parameters, frequency command F001 (WOP monitor B)		
26	Others	Warnings	Warnings are organized.		47 warnings to 31 warnings
27		Run command in case of warnings	At occurrence of warning, the inverter does not accept Run command.		

I

High starting torque,
 Powerful drive and easy setting

High starting torque

Improved sensorless vector control and auto tuning produce high starting torque of 200% or more at 0.3 Hz .* Easy setup of motor constants
Ideal for applications which need high torque, such as cranes, extruders and lifts.

Possible with SJ700 series

Hitachi exclusive OHz domain sensorless vector control ${ }^{*)}$

Develops 150\% (SJ700B:120\%)*2 torque at 0 Hz speed reference Ideal for cranes and other applications that require high torque upon starting.
*2 when inverter is one frame size larger than motor.

Position control function*)

The SJ700D/SJ700/SJ700B, with optional feedback board installed, together with an encoder-equipped motor can perform position control.
For many applications, suitable performance can be achieved at a lower cost than servo systems.
Based on your four motion parameters (position command, speed command, acceleration time and deceleration time), the SJ700D/SJ700/SJ700B will move an object from original position A to target position B.
After the movement, the inverter keeps hold motor position.
hold motor position.

Trip avoidance function

Over current \& voltage suppress function

Higher internal calculation speed improves current control performance.
Over-current suppress and Over-voltage suppress functions avoid inverter trips during acceleration and deceleration.

DC bus AVR function during deceleration

The SJ700D/SJ700/SJ700B controls deceleration time so that the DC bus voltage does not exceed the over-voltage trip level, providing trip-less operation during deceleration.

SJ700\&SJ700B

High performance, powerful functions, yet user friendly.

Programming [EzSQ: easy sequence] function

Inverter control by built-in programming functions

Custom operation is realized by downloading to an inverter a user program created with ProDriveNext, Hitachi inverter configuration software.
Tailor inverter operation to meet changing process requirements, and replace separate PLCs in some cases. By simplifying or eliminating external hardware, signficant cost savings can be achieved.
Password function is incorporated to provide security for proprietary program data against loss or unauthorized modification.

Item		Description		
	Language type	BASIC Like		
	Supported Device	Windows (DOS/V)OS:WindowsVista, Windows7)		
	Memory area	1,024 steps or 6k byte (Smaller of these)Program is stored in internal of inverter.		
	Programming environment	Editor (Windows), Display (Windows)		
		Syntax check (Windows)		
		Program download/upload, All clear		
	Executable format	Interpreter 2.0ms/command (Sub routine supported. 8 nested)		
$\begin{aligned} & \text { 들 } \\ & \text { S } \\ & \text { So } \end{aligned}$	External input	External digital contact input	Contact signal/Open collector signal input (Internal DC24V power supply available)	
			Program RUN command	SJ700D:PRG terminal SJ700/SJ700B:FW terminal
			General-purpose input	Maximum of 8 point (X(00)-X (07))
		External analog input	XA (0) : 0-10V (O terminal)	
			XA (1) : 4-20mA (Ol terminal)	
			XA (2) : 0-10V (O2 terminal)	
	External output	General-purpose output terminal	Maximum of 6 point ($\mathrm{Y}(00)-\mathrm{Y}(05)$)	
		External analog output	YA (0) : Setup for FM terminal is possible.	
			YA (1) : Setup for AM terminal is possible.	
			YA (2) : Setup for AMI terminal is possible.	
	Command	Programmable flow control <Loop, Unconditional jump, conditional jump, Time control, Sub routine, Others>		
		Operation command <+,,,,,*, , substitution, mod, abs>		
		I/O control (Bit input, Word input, Bit output, Word output)		
		Timer control <on delay, off delay>		
		Inverter parameter setting		
	Variable	User	$\mathrm{U}(00)-\mathrm{U}(31) / 32$ point	
		Timer	UL (00)-UL (07)/8 point	
		Set frequency	SET-Freq	
		Acceleration time	ACCEL	
		Deceleration time	DECEL	
		Monitor	Output frequency, Output current, Rotation direction, PID feedback, Converted frequency, Output torque, Output voltage, Power, Cumulative RUN time, Cumulative power-on time, trip	
		General-purpose input contact	$\mathrm{X}(00)-\mathrm{X}(07) / 8$ point	
		General-purpose output contact	$Y(00)-Y$ (05)/6 point (1 point is relay output)	
		Internal user	UB (00)-UB (07)/8 point	
		Internal timer contact	TD (0)-TD (7)/8 point	
		Inverter input and output	In a remote operator display code.	

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation.U.S.A and other countries.

EMC Filter \& brake circuit integrated as standard

Built-in EMC filter up to 150kW*

Cost and space reduction compared with external EMC filter.
Reduces electromagnetic noise.Meets EN61800-3 2nd-Environment

* SJ700: European Version and Japanese Version does not have 150 kW

SJ700B: All models (5.5 kW is without EMC Filter)

Built-in brake resistor circuit up to 22 kW *

Cost and space reduction compared with external braking controller.

* SJ700B: Up to 30 kW

Ease of maintenance

Easy-removable construction for maintenance

Field replacement of cooling fan (s) and DC bus capacitors can be accomplished in a fraction of the time.
Using Logic terminal move to SJ700D/SJ700 without wiring change.
Read SJ300 Parameter by WOP remote operator and write them in to SJ700D/SJ700

Easy-removable Cooling Fan

Easy-removable DC bus Capacitors (SJ700D/SJ700: above 15kW SJ700B: above 18.5 kW)
 (Move to SJ700D/SJ700 without rewiring)
*1 Control circuit terminals comparison table

Series	Input terminals	Output terminals
SJ700D/SJ700	9 terminals SJ700B	5 terminals (Intelligent 8terminals,FW)
(Open collector outputs)		

Long lifetime components \& Lifetime warning function

Long lifetime components

Design lifetime 10 Years or more for DC bus capacitors \& Cooling Fan. Cooling Fan ON/OFF control function for longer fan life.
*Condition for lifetime calculation -
Ambient temperature: 40 deg C (SJ700B: 30 deg C)
Ambient condition: No corrosive gas, oil mist nor dust
10 years is a design lifetime base on calculation, and not guaranteed

Lifetime warning function

Lifetime warning function helps to perform preventive maintenance before a failure occurrence.
DC bus capacitor, cooling fan, heat sink temperature and motor temperature can be monitored in order to replace components prior to failure.

Easy operation

User selection of displayed parameters

Data comparison display mode

Displays only parameters changed from factory default

User-define parameter display mode

Displays only user defined parameters
(up to 12 parameters, U001 to U012)

Basic parameter display mode

Displays only pre-defined basic parameters which are used commonly

Other functions

Direct digit edit mode for quicker selection of parameter. Returning to output frequency monitor display (d001) by holding the FUNC key for 3 seconds regardless of the current content.

Network compatibility

The Modbus-RTU communication is embedded as standard along with a dedicated terminal.
Other fieldbus communications such DeviceNet and PROFIBUS-DP are supported with optional fieldbus modules.
-DeviceNet is a trade mark of Open DeviceNet Vender Association, Inc. -PROFIBUS-DP is a registered trade mark of PROFIBUS Nutzer Organization

> Simple \& Low cost wiring, ease of installation and replacement using feildbus commuincation

Global standards

Conformity to global standards

CE, UL, c-UL, C-Tick approvals.

Logic input \& output terminal apply sink \& source logic

Wide Input power voltage range

Input voltage 240 V for 200 V class and 480 V for 400 V class as standard.

Environmental friendliness

Micro surge voltage suppress function

Hitachi original PWM control method limits motor terminal voltage to less than two times of inverter DC bus voltage. Lower than Hitachi motor Max. insulation voltage (1,250V) (During regeneration, the motor terminal voltage may exceed the motor maximum insulation voltage $(1,250 \mathrm{~V})$)

Motor terminal voltage

$\mathrm{E}=650 \mathrm{~V}$, cable $=100 \mathrm{~m}$

EU RoHS compliant
 EU RoHS compliant (except solder in power module)

Improvement of environmental tolerance
Varnish coating of internal PC board \& plating of main circuit copper bus bar are standard.

Versatile functions

Instantaneous power failure disregard function

The SJ700D/SJ700/SJ700B overrides instantaneous power failure when power fluctuation happens frequently, as long as DC bus voltage remains higher than under-voltage trip level.

Emergency stop

Shuts down the inverter by hardware, bypassing the CPU, to achieve a reliable, emergency stop function.
Intelligent input terminal and output terminal ON/OFF delay function
Helps simplify external circuits.

Active frequency matching function

Motor frequency match restart function operates effectively even without motor residual voltage.
Controlled deceleration and stop on power loss
Analog input disconnection detection function
The SJ700D/SJ700/SJ700B outputs a disconnection signal when frequency command through analog input is lost.

Acceleration/Deceleration curve functions

The curve shape (five types, such as S-curve, etc.) can be chosen according to the application requirements.

Analog command holding function (AHD)

Output frequency can be changed with UP/DOWN Function, or with an analog signal as reference value. The set frequency at power shutdown can be saved, too.

Pulse train input function

Pulse train input for Frequency reference or PID feed back signal, with SJ-FB (speed feed back card option).
Integrated input electric power monitor
Input electric power (kW) and Integrated input electric power for monitoring energy saving.
Automatic carrier frequency adjustment function
The SJ700D/SJ700/SJ700B detects motor current and automatically reduces carrier frequency according to the current.

The resolution of analog outputs (voltage, current) is improved to 10 bits.

STANDARD SPECIFICATIONS SJ700D/SJ700 Series

3-phase 200V class

Model SJ700D-		US Version		004LFUF3	007LFUF3	015LFUF3	022LFUF3	037LFUF3	055LFUF3	075LFUF3	110LFUF3	150LFUF3	185LFUF3	220LFUF3	300LFUF3	370LFUF3	450LFUF3	550LFUF3
		JP Ve		004LFF3	007LFF3	015LFF3	022LFF3	037LFF3	055LFF3	075LFF3	110LFF3	150LFF3	185LFF3	220LFF3	300LFF3	370LFF3	450LFF3	550LFF3
Enclosure (*1)				IP20														
Applicable motor (4-pole, kW(HP)) (*2)			CT	0.4(1/2)	0.75(1)	1.5(2)	2.2 (3)	3.7(5)	5.5(7.5)	7.5(10)	11(15)	15(20)	18.5(25)	22(30)	30(40)	37(50)	45(60)	55(75)
			VT	0.75(1)	1.1(1.5)	2.2 (3)	3.0(4)	5.5(7.5)	7.5(10)	11(15)	15(20)	18.5(25)	22(30)	30(40)	37(50)	45(60)	55(75)	75(100)
Output Ratings	Rated capacity (kVA)	200 V	CT	1.0	1.7	2.5	3.6	5.7	8.3	11.0	15.9	22.1	26.3	32.9	41.9	50.2	63.0	76.2
			VT	1.2	2.1	3.2	4.1	6.7	10.3	15.2	20.0	25.2	29.4	39.1	48.4	58.5	72.7	93.5
		240 V	CT	1.2	2.0	3.1	4.3	6.8	9.9	13.3	19.1	26.6	31.5	39.4	50.2	60.2	75.6	91.4
			VT	1.5	2.6	3.9	4.9	8.1	12.4	18.2	24.1	30.3	35.3	46.9	58.1	70.2	87.2	112.2
	Rated output current (A)		CT	3.0	5.0	7.5	10.5	16.5	24	32	46	64	76	95	121	145	182	220
			VT	3.7	6.3	9.4	12	19.6	30	44	58	73	85	113	140	169	210	270
	Overload capacity(output current)			CT:150\%,60sec., $200 \%, 3 \mathrm{sec}$. VT:120\%,60sec., 150\%,5sec.														
	Rated output vo	(*3)		3 -phase (3-wire) 200 to 240 V (corresponding to input voltage)														
Input Rating	Rated input voltage (V)			3 -phase 200 to $240 \mathrm{~V}+10 \%,-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$														
	Rated input current (A)		CT	3.3	5.5	8.3	12	18	26	35	51	70	84	105	133	160	200	242
			VT	3.9	7.2	10.8	13.9	23	37	48	64	80	94	120	150	186	240	280
Braking	Dynamic braking (Short-ime) (*4)			Built-in BRD circuit (optional resistor)											External dynamic braking unit (option)			
	Minimum value of resistor (Ω)			50	50	35	35	35	16	10	10	7.5	7.5	5	-			
Vibration (*5)				$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10-55 \mathrm{~Hz}$											$2.9 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10-55 \mathrm{~Hz}$			
EMC filter				Built-in (EN61800-3 category C3)														
Zero-phase Reactor				Built-in														
Weight [kg] (lbs.)				3.5(7.7)	3.5(7.7)	3.5(7.7)	3.5(7.7)	3.5(7.7)	6(13.2)	6(13.2)	6(13.2)	14(30.8)	14(30.8)	14(30.8)	22(48.4)	30(66)	30(66)	43(94.6)

3-phase 400 V class

STANDARD SPECIFICATIONS SJ700B Series

3-phase 200 V class

Model SJ700B-		US Version	110LFUF	150LFUF	185LFUF	220LFUF	300LFUF	370LFUF	450LFUF	550LFUF	750LFUF
Enclosure (*1)			IP20								
Applicable motor (4-pole, kW (HP)) (*2)			11(15)	15(20)	18.5(25)	22(30)	30(40)	37(50)	45(60)	55(75)	75(100)
Output Ratings	Rated capacity (kVA)	200 V	15.2	20.0	25.2	29.4	39.1	48.4	58.5	72.7	93.5
		240 V	18.2	24.1	30.3	35.3	46.9	58.1	70.2	87.2	112.2
	Rated output current (A)		44	58	73	85	113	140	169	210	270
	Overload capacity (output current)		120\%,60sec								
	Rated output voltage (*3)		3 -phase (3-wire) 200 to 240 V (corresponding to input voltage)								
Input Rating	Rated input voltage (V)		3 -phase 200 to $240 \mathrm{~V}+10 \%,-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$								
	Rated input current (A)		48	64	80	94	120	150	186	240	280
Braking	Dynamic braking (Shorr-time) (*4)		Built-in BRD circuit (optional resistor)					External dynamic braking unit (option)			
	Minimum value of resistor (Ω)		10	10	7.5	7.5	7.5	-			
Vibration (*5)			$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10-55 \mathrm{~Hz}$					$2.9 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10-55 \mathrm{~Hz}$			
EMC filter			Built-in (EN61800-3 category C3)								
Zero-phase Reactor			Built-in								
Weight (lbs.)			6(13.2)	6(13.2)	14(30.8)	14(30.8)	14(30.8)	22(48.4)	30(66)	30(66)	43(94.6)

3-phase 400V class

Model SJ700B-		Asia Version	055HF	075HFF	110HFF	150HFF	185HFF	220HFF	300HFF	370HFF	450HFF	550HFF	750HFF	900HFF	1100HFF	1320HFF	1600HFF
		US Version	055HFU	075HFUF	110HFUF	150HFUF	185HFUF	220HFUF	300HFUF	370HFUF	450HFUF	550HFUF	750HFUF	900HFUF	1100HFUF	1320HFUF	1600HFUF
Enclosure (*1)			IP20											IP00			
Applicable motor (4-pole, kW(HP)) (*2)			5.5(75)	7.5(10)	11(15)	15(20)	18.5(25)	22(30)	30(40)	37(50)	45(60)	55(75)	75(100)	90(125)	110(150)	132(150)	160(220)
Output Ratings	Rated capacity (kVA)	400 V	9.7	11	15.2	20.0	25.6	29.7	39.4	48.4	58.8	72.7	93.5	110.8	135.1	159.3	200.9
		480 V	11.6	13.3	18.2	24.1	30.7	35.7	47.3	58.1	70.6	87.2	112.2	133	162.1	191.2	241.1
	Rated output current (A)		14	16	22	29	37	43	57	70	85	105	135	160	195	230	290
	Overload capacity (output current)		120\%,60sec														
	Rated output voltage (*3)		3 -phase (3-wire) 380 to 480 V (corresponding to input voltage)														
Input Rating	Rated input voltage (V)		3-phase 380 to $480 \mathrm{~V}+10 \%,-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$														
	Rated input current (A)		17	18	24	32	41	47	63	77	94	116	149	176	199	253	300
Braking	Dynamic braking (Short-time) (*4)		Built-in BRD circuit (optional resistor)							External dynamic braking unit (option)							
	Minimum value of resistor (Ω)		70	70	35	35	24	24	20	-							
Vibration (*5)			$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10-55 \mathrm{~Hz}$							$2.9 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10-55 \mathrm{~Hz}$							
EMC filter			-	Built-in (EN61800-3 category C3)													
Zero-phase Reactor			-	Built-in													
Weight (lbs.)			3.5(7.7)	6(13.2)	6(13.2)	6(13.2)	14(30.8)	14(30.8)	14(30.8)	22(48.4)	30(66)	30(66)	30(66)	55(121)	55(121)	70(154)	70(154)

*1: The protection method conforms to JIS C 0920 (IEC60529)
*2: The applicable motor refers to Hitachi standard 3-phase motor (4-pole).To use other motors, be sure to prevent the rated motor current (50 Hz) from exceeding the rated output current of the inverter.
*3: The output voltage decreases as the main power supply voltage decreases except for the use of AVR function.
*4: Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large braking torque is required
*5: Conforms to the test method specified in JIS C 60068-2-6:2010 (IEC 60068-2-6:2007).
*6: To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed.
*7: Storage temperature refers to the temperature in transportation.

* 8 : The frequency command is the maximum frequency at 9.8 V for input voltage 0 to 10 VDC , or at 19.8 mA for input current 4 to 20 mA .

If this characteristic is not satisfactory for your application,contact your Hitachi representative.

Model Name Indication

*1 Available only for Asia version and US Version. without EMC Filter

SPECIFICATIONS

General Specifications

Items				General Specifications
Control	Control method			Line to line sine wave pulse-width modulation (PWM) control
	Output frequency range (*6)			0.1-400.0Hz(400kW:0.1-120Hz)
	Frequency accuracy			Digital: $\pm 0.01 \%$ of the maximum frequency, Analog: $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$
	Frequency resolution			Digital setting: 0.01 Hz , Analog setting: (Maximum frequency) 4,000 (O terminal: 12bit 0-10V, 02 terminal: $12 \mathrm{bit}-10-+10 \mathrm{~V}$)
	V/f characteristics			SJ700D:IM : V/f optionally variable ($30-400 \mathrm{~Hz}$ of base frequency), V/f control (constant torque, reduced torque), sensorless vector control, OHz ranged sensorless vector control (only CT), vector with sensor (SJ-FB card option, only CT) [ordering production] PM : sensorless vector control (only VT) SJ700/SJ700B:IM : V/f optionally variable ($30-400 \mathrm{~Hz}$ of base frequency), V/f control (constant torque, reduced torque), sensorless vector control OHz ranged sensorless vector control, vector with sensor (SJ-FB card option)
	Speed fluctuation			$\pm 0.5 \%$ (sensorless vector control)
	Acceleration/deceleration time			0.01-3,600sec. (Linear/curve, accel./decel. selection), Two-stage accel./decel.
	Starting Torque	SLV		SJ700/SJ700D (CT) $200 \% / 0.3 \mathrm{~Hz}$, (VT) $150 \% / 0.5 \mathrm{~Hz}$, 75 kW to 150 kW (CT) $180 \% / 0.3 \mathrm{~Hz}$, (VT) $120 \% / 0.5 \mathrm{~Hz}, 185 \mathrm{~kW}$ and over $150 \% / 0.3 \mathrm{~Hz}$. SJ700B : $150 \% / 0.5 \mathrm{~Hz}, 90 \mathrm{~kW}$ and over: : $120 \% / 0.5 \mathrm{~Hz}$,
		OHz-SLV		SJ700/SJ700D (CT) (0 Hz domain with motor one frame size down) 150% at around $0 \mathrm{~Hz}, 75 \mathrm{~kW}$ and over: 130% at around 0 Hz . SJ700B : 120\% at around 0Hz,SJ700D (VT):Disable.
		PM-SLV[dering production]	SJ700D (0.4 to 132kW) : 50\% (at 10\% of motor constant speed) [ordering production] (only SJ700D (VT))
	Carrier frequency range			SJ700/SJ700D (CT) 0.5 to 15 kHz , (VT) 0.5 to $12 \mathrm{kHz}, 75 \mathrm{~kW}$ to 150 kW (CT) 0.5 to 10 kHz , (VT) 0.5 to $8 \mathrm{kHz}, 185 \mathrm{~kW}$ and over : 0.5 to 3.0 kHz SJ700B : 0.5 to 12.0 kHz (90 kW and over : 0.5 to 8.0 kHz)
	DC braking			Performs at start: under set frequency at deceleration, via an external input (braking force, time, and operating frequency).
Input signal	Frequency setting		Operator	Up and Down keys
			External signal(8)	DC 0-10V, $-10-+10 \mathrm{~V}$ (input impedance 10k Ω), 4-20mA (input impedance 100 ${ }^{\text {) }}$
			External port	Setting via RS 485 communication
	Forward /reverse Start /stop		Operator	Start/stop commands (forward/reverse switching by parameter setting)
			External signal	Forward-operation start/stop commands (reverse-operation start/stop possible when relevant commands are assigned to intelligent input terminals) 3 -wire input possible (when relevant commands are assigned to control circuit terminals)
			External port	Setting via RS485 communication
	Intelligent input terminals		Terminals	8 terminals, NO/NC switchable, sink logic/source logic switchable
			Functions	Reverse operation (RV), Multi-speed 1 setting (CF1), Multi-speed 2 setting (CF2), Multi-speed 3 setting (CF3), Multi-speed 4 setting (CF4), Jogging (JG), external DC braking (DB), 2nd motor control (SET), 2 -stage acceleration/deceleration (2CH), free-run stop (FRS), external trip (EXT), unattended start protection (USP), commercial power supply switching (CS), software lock (SFT), analog input switching (AT), 3rd motor control (SET3), reset (RS), starting by 3 -wire input (STA), stopping by 3 -wire input (STP), forward/reverse switching by 3 -wire input (F/R), PID disable (PID), PID integration reset (PIDC), control gain switching (CAS), acceleration by remote control (UP), deceleration by remote control (DWN), data clearance by remote control (UDC), forcible operation (OPE), Multi-speed bit 1 (SF1), Mult-speed bit 2 (SF2), Multi-speed bit 3 (SF3), Multi-speed bit 4 (SF4), Multi-speed bit 5 (SF5), Multi-speed bit 6 (SF6), Multi-speed bit 7 (SF7), overload restriction selection (OLR), torque limit selection (enabling/disabling) (TL), torque limit 1 (TRQ1), torque limit 2 (TRQ2), P/PI switching (PPI), braking confirmation (BOK), orientation (ORT), LAD cancellation (LAC), clearance of position deviation (PCLR), permission of 90° shift phase (STAT), trigger for frequency addition (A145) (ADD), forcible-terminal operation (F-TM), permission of torque command input (ATR), cumulative power clearance (KHC), servo-on (SON), pre-excitation (FOC), general-purpose input 1 (M11), general-purpose input 2 (M12), general-purpose input 3 (M13), general-purpose input 4 (M14), general-purpose input 5 (M15), general-purpose input 6 (MI6), general-purpose input 7 (MI77), general-purpose input 8 (M18), analog command holding (AHD), Multistage position settings selection 1 (CP1), Multistage position settings selection 2 (CP2), Multistage position settings selection 3 (CP3), Zero-return limit function (ORL), Zero-return trigger function (ORG), Forward drive stop (FOT), reverse drive stop (ROT), Speed / position switching (SPD), Pulse counter (PCNT), Pulse counter clear (PCC), Emergency stop (EMR), EzSQ PRG-Run(PRG)(*12), no assignment (no)
	Thermistor input			1 terminal (PTC characteristics)
Output signal	Intelligent output terminals		Terminals	5 open-collector output terminals, NO/NC switchable, sink logic/source logic switchable 1 relay (1c-contact) output terminal: NO/NC switchable
			Functions	Running (RUN), constant-speed reached (FA1), set frequency overreached (FA2), overload notice advance signal (1) (OL), output deviation for PID control (OD), alarm signal (AL), set frequency reached (FA3), over-torque (OTQ), instantaneous power failure (IP), undervoltage (UV), torque limited (TRQ), operation time over (RNT), plug-in time over (ONT), thermal alarm signal (THM), brake release (BRK), braking error (BER), OHz detection signal (ZS), speed deviation maximum (DSE), positioning completed (POK), set frequency overreached 2 (FA4), set frequency reached 2 (FA5), overload notice advance signal (2) (OL2), PID feedback comparison (FBV), communication line disconnection (NDc), logical operation result 1 (LOG1), logical operation result 2 (LOG2), logical operation result 3 (LOG3), logical operation result 4 (LOG4), logical operation result 5 (LOG5), logical operation result 6 (LOG6), capacitor life warning (WAC)(*11), cooling-fan speed drop (WAF), starting contact signal (FR), heat sink overheat warning (OHF), low-current indication signal (LOC), general-purpose output 1 (M01), general-purpose output 2 (MO2), general-purpose output 3 (MO3), general-purpose output 4 (MO4), general-purpose output 5 (M05), general-purpose output 6 (M06), inverter ready (IRDY), forward rotation (FWR), reverse rotation (RVR), major failure (MJA), window comparator $\mathrm{O}(\mathrm{WCO})$, window comparator Ol (WCOI), window comparator O 2 (WCO2), alarm code 0 to 3 (AC0 to AC3)
			Monitor output terminals	Analog voltage output, analog current output, pulse-string output (e.g., A-F, D-F [n-fold, pulse output only], A, T, V, P)
Monitoring on display				Output frequency, output current, output torque, frequency conversion data, trip history, input/output terminal status, electric power, and others
Other functions				Free V/f setting (7 breakpoints), frequency upperlower limit, jump (center) frequency, acceleration/deceleration according to characteristic curve, manual torque boost level/breakpoint, energy-saving operation, analog meter adjustment, start frequency setting, carrie frequency adjustment, electronic thermal function (available also for free setting), external start/end frequency/frequency rate, analog input selection, retry after trip, restart after instantaneous power failure, output of various signals, starting with reduced voltage, overload restriction, initial-value setting, automatic deceleration at power failure, AVR function, fuzzy acceleration/deceleration, online/offline auto-tuning, high-torque multi-motor operation (*11) (sensorless vector control of two motors by one inverter)
Protective functions				Overcurrent protection, overvoltage protection, undervoltage protection, electronic thermal protection, temperature error protection, instantaneous power failure protection, phase loss input protection, braking-resistor overload protection, ground-fault current detection at power-on, USP error, external trip, emergency stop trip, CT error, communication error, option board error, and others
Environmental conditions	Ambient operating/storage temperature (*7)/ humidity			$-10-50^{\circ} \mathrm{C}$ (*9) / -20-65 ${ }^{\circ} \mathrm{C} / 20-90 \% \mathrm{RH}$ (No condensation)
	Location			Altitude 1,000m or less, indoors (no corrosive gases or dust)
Options	Digital input expansion card			SJJDG (4digits BCD, 16bits binary)
	Feedback expansion card			SJ-FB (vector control loop speed sensor)
	Network interface card			SJ-DN2 (DeviceNet (TM)) (*13), SJ-PB (T)2 (PROFIBUS) (*13)
	Others			EMI filters, input/output reactors, radio noize filters, braking resistors, braking units, LCR filter, communication cables

*1 : The protection method conforms to JIS C 0920 (IEC60529)
$*_{*}^{*}$: The applicable motor refers to Hitachi standard 3 -phase motor (4 -pole). To use other motors, be sure to prevent the rated motor current $(50 \mathrm{~Hz}$) from exceeding the rated output current of the inverter.
*3 :The output voltage decreases as the main power supply voltage decreases except for the use of AVR function.
*4 : Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large braking torque is required.
: Conforms to the test method specified in JIS C 60068-2-6:2010 (IEC 60068-2-6:2007).
: To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed.
: Storage temperature refers to the temperature in transportation.
: The frequency command is the maximum frequency at 9.8 V for input voltage 0 to 10 VDC , or at 19.8 mA for input current 4 to 20 mA . If this characteristic is not satisfactory for your application,contact your Hitachi representative. : SJ700B series is -10 to $45^{\circ} \mathrm{C}$. SJ700D (VT):-10 to $40^{\circ} \mathrm{C}$.
: Please be sure to connect DC reactor attached to $1850 \mathrm{HF}, 2200 \mathrm{HF}, 3150 \mathrm{HF}$ and 4000 HF . ($1850 \mathrm{HF}, 2200 \mathrm{HF}$ and 3150 HF of US/JP Version:The DC reactor is not attached.)
: $1850 \mathrm{HF}, 2200 \mathrm{HF}, 3150 \mathrm{HF}$ and 4000 HF :The function is not provided.
: SJ700D-3 only.
*13 : The option cannot access new parameters in SJ700D-3.
-SJ700D-004~037LFUF3,LFF3
-SJ700D-007~040HFEF3,HFUF3,007~037HFF3 -SJ700B-055HF,055HFU

-SJ700D-150~220LFUF3,LFF3,HFEF3,HFUF3,HFF3 -SJ700B-185~300HFF,HFUF,LFUF

-SJ700D-370,450LFUF3,LFF3
-SJ700D-370~550HFEF3,HFUF3,HFF3
-SJ700B-450~750HFF,HFUF,450,550LFUF

-SJ700D-055~110LFUF3,LFF3,HFEF3,HFUF3,HFF3 -SJ700B-075~150HFF,HFUF,LFUF

-SJ700D-300LFUF3,LFF3,HFEF3,HFUF3,HFF3 -SJ700B-370HFF,HFUF,LFUF

-SJ700D-550LFUF3,LFF3
-SJ700B-750LFUF

DIMENSIONS

-SJ700D-750,900HFEF3,HFUF3,HFF3
 -SJ700B-900,1100HFF,HFUF

-SJ700D-1100HFEF3,HFUF3,HFF3,1320HFEF3,HFF3,1500HFUF3

 -SJ700B-1320,1600HFF,HFUF

DIMENSIONS

-SJ700-1850,2200HFE2,HFU2*2, HF2 ${ }^{* 2}$

-SJ700-3150HFE2,HFU2*2,HF2*2
Attachment DC reactor (DCL-H-315-H-R)

-SJ700-4000HFE2,HFU2,HF2

Attachment DC reactor (DCL-H-400-H-R)

Unit : mm(inch)]
Inches for reference only.

OPERATION and PROGRAMMING

SJ700/SJ700D and SJ700B Series can be easily operated with the digital operator provided as standard. The digital operator can also be detached and can be used for remote mounted control. Operator with copy function (WOP) and digital operator with potentiometer are also available as options.
Parameter Display
Displays frequency, motor current,
rotational speed of the motor, and
an alarm code.
Monitor LEDs
Shows drive status.
RUN key enable LED
Lights up when the inverter
is ready to respond to the
RUN key.

RUN Key

Press to run the motor.

STOP/RESET Key

Press to stop the drive or
reset an alarm.

Function Key

Press to set or monitor a
parameter value.

- Setting the output frequency

The contents of a basic mode display.
If a desired parameter is not displayed, check the setting of function "b037" (function code display restriction). To display all parameters, specify "00" for "b037".

No.	Display code	Item
1	d001 to d104	Monitor display
2	F001	Output frequency setting
3	F002	Acceleration (1) time setting
4	F003	Deceleration (1) time setting
5	F004	Operation direction setting
6	A001	Frequency source setting
7	A002	Run command source setting
8	A003	Base frequency setting
9	A004	Maximum frequency setting
10	A005	[AT] selection
11	A020	Multi-speed frequency setting
12	A021	Multi-speed 1 setting
13	A022	Multi-speed 2 setting
14	A023	Multi-speed 3 setting
15	A044	1st control method
16	A045	V/f gain setting
17	A085	Operation mode selection
18	b001	Selection of restart mode
19	b002	Allowable under-voltage power failure time
20	b008	Retry-after-trip selection
21	b011	Retry wait time after trip
22	b037	Function code display restriction
23	b083	Carrier frequency setting
24	b084	Initialization mode selection
25	b130	Selection of overvoltage suppression function
26	b131	Setting of overvoltage suppression level
27	C021	Setting of intelligent output terminal 11
28	C022	Setting of intelligent output terminal 12
29	C036	Alarm relay active state

FUNCTION LIST

MONITORING FUNCTIONS and MAIN PROFILE PARAMETERS
$[\mathrm{O}=$ Allowed $\mathrm{X}=$ Not permitted $]$

Code		Function Name	Monitored data or setting	Default Setting					Setting during operation （allowed or not）	Changeduringoperation（allowed or not）	
		SJ700／SJ700D（CTmode）		SJ700B							
		－FE		－FU	－F	－F	－FU				
$\begin{aligned} & \frac{0}{0} \\ & \sum_{i}^{0} \\ & \frac{1}{0} \\ & \frac{1}{0} \end{aligned}$	d001		Output frequency monitor	0.00 to 99．99， 100.0 to $400.0(\mathrm{~Hz})(* 1)$	－	－	－	－	－	\bigcirc	－
	d002		Output current monitor	0.0 to 999．9， 1000 to 9999 （A）	－	－	－	－	－	－	－
	d003	Rotation direction minitoring	F （forward rotation），o（stopped）， r （reverse rotation）	－	－	－	－	－	－	－	
	d004	Process variable（PV），PID feedback monitor	0.00 to $99.99,100.0$ to $999.9,1000$ ．to 9999 ． 1000 to 9999 （10000 to 99990），「100 to 「999（10000 to 999000）	－	－	－	－	－	－	－	
	d005	Intelligent input terminal status		－	－	－	－	－	－	－	
	d006	Intelligent output terminal status		－	－	－	－	－	－	－	
	d007	Scaled output frequency monitoring	0.00 to 99．99，100．0 to 999．9，1000．to 9999．， 1000 to 3996 （10000 to 39960）	－	－	－	－	－	\bigcirc	－	
	d008	Actual－frequency monitoring（＊3）	－400．to－100．，－99．9 to 0.00 to $99.99,100.0$ to 400.0 （Hz）（＊2）	－	－	－	－	－	－	－	
	d009	Torque command monitoring（＊3）	－200．to＋200．（\％）	－	－	－	－	－	－	－	
	d010	Torque bias monitoring（＊3）	－200．to＋200．（\％）	－	－	－	－	－	－	－	
	d012	Torque monitoring	－200．to＋200．（\％）	－	－	－	－	－	－	－	
	d013	Output voltage monitoring	0.0 to 600.0 （V）	－	－	－	－	－	－	－	
	d014	Power monitoring	0.0 to 999.9 （kW）	－	－	－	－	－	－	－	
	d015	Cumulative power monitoring	0.0 to 999．9，1000．to 9999．，1000 to 9999 （10000 to 99990），Г100 to 「999（100000 to 999000）	－	－	－	－	－	－	－	
	d016	Cumulative operation RUN time monitoring	0．to 9999．， 1000 to 9999 （10000 to 99990），Г100 to 「999（10000 to 999000）（hr）	－	－	－	－	－	－	－	
	d017	Cumulative power－on time monitoring	0．to 9999．， 1000 to 9999 （10000 to 99990），Г100 to 「999（10000 to 999000）（hr）	－	－	－	－	－	－	－	
	d018	Heat sink temperature monitoring	－020．to $200.0\left({ }^{\circ} \mathrm{C}\right)$	－	－	－	－	－	－	－	
	d019	Motor temperature monitoring	－020．to $200.0\left({ }^{\circ} \mathrm{C}\right)$	－	－	－	－	－	－	－	
	d022	Life－check monitoring		－	－	－	－	－	－	－	
	d023	Program counter	0 to 1024	－	－	－	－	－	－	－	
	d024	Program number monitoring	0000 to 9999	－	－	－	－	－	－	－	
	d025	User monitor 0	－2147483647 to 2147483647 （upper 4 digits including＂－＂）	－	－	－	－	－	－	－	
	d026	User monitor 1	－2147483647 to 2147483647 （upper 4 digits including＂－＂）	－	－	－	－	－	－	－	
	d027	User monitor 2	－2147483647 to 2147483647 （upper 4 digits including＂－＂）	－	－	－	－	－	－	－	
	d028	Pulse counter	0 to 2147483647 （upper 4 digits）	－	－	－	－	－	－	－	
	d029	Position setting monitor（＊3）	－1073741823 to 1073741823 （upper 4 digits including＂－＂）	－	－	－	－	－	－	－	
	d030	Position feedback monitor（＊3）	－1073741823 to 1073741823 （upper 4 digits including＂－＂）	－	－	－	－	－	－	－	
	d031	Clock monitor（SJ700D only）	＊In case you use WOP（option），this monitor is activated．	－	－	－	\times	\times	－	－	
	d060	Inverter mode monitor（SJ700D only）	I－C（CT）／I－v（VT）	－	－	－	\times	\times	－	－	
	d080	Trip Counter	0．to 9999．， 1000 to 6553 （10000 to 65530）（times）	－	－	－	－	－	－	－	
	$\begin{aligned} & \text { d081 } \\ & \text { d0 } 86 \end{aligned}$	Trip monitoring 1－6	Factor，frequency (Hz) ，current (A) ，voltage across $\mathrm{P}-\mathrm{N}(\mathrm{V})$ ， running time（hours），power－on time（hours）	－	－	－	－	－	－	－	
	d090	Programming error monitoring	Warning code	－	－	－	－	－	－	－	
	d102	DC voltage monitoring	0.0 to 999.9 （V）	－	－	－	－	－	－	－	
	d103	BRD load factor monitoring	0.0 to 100.0 （\％）	－	－	－	－	－	－	－	
	d104	Electronic thermal overload monitoring	0.0 to 100.0 （\％）	－	－	－	－	－	－	－	
	F001	Output frequency setting	0.0 ，＂start frequency＂to＂maximum frequency＂（or maximum frequency， 2nd／3rd motors）（Hz） 0.0 to 100.0 （when PID function is enabled）	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	F002	Acceleration（1）time setting	0.01 to 99．99， 100.0 to $999.9,1000$ ．to 3600 ．（s）	30.00	30.00	30.00	30.00	30.00	\bigcirc	\bigcirc	
	F202	Acceleration（1）time setting，2nd motor	0.01 to 99．99，100．0 to 999．9，1000．to 3600．（s）	30.00	30.00	30.00	30.00	30.00	\bigcirc	\bigcirc	
	F302	Acceleration（1）time setting，3rd motor	0.01 to 99．99，100．0 to 999．9，1000．to 3600．（s）	30.00	30.00	30.00	30.00	30.00	\bigcirc	\bigcirc	
	F003	Deceleration（1）time setting	0.01 to 99．99，100．0 to 999．9，1000．to 3600．（s）	30.00	30.00	30.00	30.00	30.00	\bigcirc	\bigcirc	
	F203	Deceleration time setting，2nd motor	0.01 to 99．99， 100.0 to 999．9，1000．to 3600．（s）	30.00	30.00	30.00	30.00	30.00	\bigcirc	\bigcirc	
	F303	Deceleration time setting，3rd motor	0.01 to 99．99，100．0 to 999．9，1000．to 3600．（s）	30.00	30.00	30.00	30.00	30.00	\bigcirc	\bigcirc	
	F004	Keypad Run key routing	00 （forward rotation）， 01 （reverse rotation）	00	00	00	00	00	\times	\times	
	A－－－	A Group：Standard functions									
	b－－－	b Group：Fine tuning functions									
	C－－－	C Group：Intelligent terminal functions									
	H－－－	H Group：Motor constants functions									
	P－－－	P Group：Expansion card functions									
	U－－－	U Group：User－selectable menu functions									

（＊1） $4000 \mathrm{HF}: 0.00$ to $99.99,100.0$ to $120.0(\mathrm{~Hz})\left({ }^{*} 2\right) 4000 \mathrm{HF}:-120$ ．to $-100 .,-99.9$ to 0.00 to $99.99,100.0$ to $120.0(\mathrm{~Hz})$
（＊3）SJ700D（VT）：Not available（no display）

- A GROUP: STANDARD FUNCTIONS

Code		Function Name	Monitored data or setting	Default Setting					$\begin{gathered} \text { Setting } \\ \text { during } \\ \text { operation } \\ \text { (allowed or not) } \end{gathered}$	$\begin{gathered} \text { Change } \\ \text { during } \\ \text { operation } \\ \text { (allowed or not) } \end{gathered}$	
		SJ700/SU700D(CTmode)		SJ700B							
		-FE		-FU	-F	-	-FU				
	A001		Frequency source setting	00 (keypad potentiometer) (*1), 01 (control circuit terminal block), 02 (digital operator), 03 (RS485), 04 (option 1), 05 (option 2), 06 (pulse-string input), 07 (easy sequence), 10 (operation function result)	01	01	02	01	02	\times	\times
O	A002		Run command source setting	01 (control circuit terminal block), 02 (digital operator), 03 (RS485), 04 (option 1), 05 (option 2)	01	01	02	01	02	\times	\times
\#	A003	Base frequency setting	30. to "maximum frequency " (Hz)	50.	60.	60.	50.	60.	\times	\times	
-	A203	Base frequency setting, 2nd motor	30. to "maximum frequency, 2nd motor" (Hz)	50.	60.	60.	50.	60.	\times	\times	
¢	A303	Base frequency setting, 3rd motor	30. to "maximum frequency, 3rd motor" (Hz)	50.	60.	60.	50.	60.	\times	\times	
	A004	Maximum frequency setting	"base frequency" to 400. (Hz) ('2)	50.	60.	60.	50.	60.	\times	\times	
	A204	Maximum frequency setting, 2nd motor	"base frequency, 2nd motor" to 400. (Hz) (*2)	50.	60.	60.	50.	60.	\times	\times	
	A304	Maximum frequency setting, 3rd motor	"base frequency, 3rd motor" to 400. (Hz) ('2)	50.	60.	60.	50.	60.	\times	\times	
	A005	[AT] selection	00 (switching between O and Ol terminals), 01 (switching between O and O 2 terminals), 02 (switching between O terminal and keypad potentiometer) (${ }^{*} 1$), 03 (switching between OI terminal and keypad potentiometer) (*1), 04 (switching between O 2 and keypad potentiometer) (${ }^{\text {(1) }}$	00	00	00	00	00	\times	\times	
$\begin{aligned} & \frac{\varrho}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}$	A006	[02] selection	00 (single), 01 (auxiliary frequency input via O and Ol terminals) (nonreversible), 02 (auxiliary frequency input via O and OI terminals) (reversible), 03 (disabling O2 terminal)	03	03	03	03	03	\times	\times	
$\underset{\sim}{\mathrm{D}}$	A011	O-L input active range start frequency	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{4}$)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
$\frac{\pi}{\square}$	A012	O-L input active range end frequency	0.00 to 99.99, 100.0 to 400.0 (Hz) (*4)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
$\stackrel{\overline{ }}{\underline{E}}$	A013	O-L input active range start voltabe	0 . to "[O]-[LL] input active range end voltage" (\%)	0.	0.	0.	0.	0.	\times	\bigcirc	
$\frac{0}{0}$	A014	O-L input active range end voltabe	"[O]-[L] input active range start voltage" to 100. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
$\stackrel{\text { co }}{\substack{c}}$	A015	O-L input active range start frequency selection	00 (external start frequency), $01(0 \mathrm{~Hz}$)	01	01	01	01	01	\times	\bigcirc	
	A016	External frequency filter time constant	1. to 30 . or 31 . (500 ms filter $\pm 0.1 \mathrm{~Hz}$ with hysteresis)	31.	31.	31.	31.	31.	\times	\bigcirc	
	A017	Easy sequence function selection	00 (disabling), 01 (enabling) SJ700D: 00 (disabling), 01 (PRG terminal), 02 (always on)	00	00	00	00	00	\times	\times	
	A019	Multispeed operation selection	00 (binary: 16 speeds selectable with 4 terminals, 01 (bit: 8 speeds selectable with 7 terminals)	00	00	00	00	00	\times	\times	
항	A020	Multispeed frequency setting	0.00 or "start frequency" to "maximum frequency" (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
\bigcirc	A220	Multispeed frequency setting, 2nd motor	0.00 or "start frequency" to "maximum frequency, 2nd motor" (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
$\stackrel{\text { ¢ }}{ }$	A320	Multispeed frequency setting, 3rd motor	0.00 or "start frequency" to "maximum frequency, 3rd motor" (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	$\begin{array}{\|l\|l\|} \hline \text { AO21 } \\ \text { AO35 } \\ \hline \end{array}$	Multispeed 1-15 setting	0.00 or "start frequency" to " n -th maximum frequency" (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
흥	A038	Jog frequency setting	"Start frequency" to 9.99 (Hz)	1.00	1.00	1.00	1.00	1.00	\bigcirc	\bigcirc	
	A039	Jog stop mode	00 (free-running after jogging stops [disabled during operation]), 01 (deceleration and stop after jogging stops [disabled during operation]), 02 (DC braking after jogging stops [disabled during operation]), 03 (free-running after jogging stops [enabled during operation]), 04 (deceleration and stop after jogging stops [enabled during operation]), 05 (DC braking after jogging stops [enabled during operation])	00	00	00	00	00	\times	\bigcirc	
	A041	Torque boost method selection	00 (Manual torque boost) / 01 (Automatic torque boost)	00	00	00	00	00	\times	\times	
	A241	Torque boost method selection, 2nd motor	00 (Manual torque boost) / 01 (Automatic torque boost)	00	00	00	00	00	\times	\times	
	A042	Manual torque boost value	0.0 to 20.0 (\%)	1.0	1.0	1.0	1.0	1.0	\bigcirc	\bigcirc	
	A242	Manual torque boost value, 2nd motor	0.0 to 20.0 (\%)	1.0	1.0	1.0	1.0	1.0	\bigcirc	\bigcirc	
	A342	Manual torque boost value, 3rd motor	0.0 to 20.0 (\%)	1.0	1.0	1.0	1.0	1.0	\bigcirc	\bigcirc	
	A043	Manual torque boost frequency adjustment	0.0 to 50.0 (\%)	5.0	5.0	5.0	5.0	5.0	\bigcirc	\bigcirc	
	A243	Manual torque boost frequency adjustment, 2nd motor	0.0 to 50.0 (\%)	5.0	5.0	5.0	5.0	5.0	\bigcirc	\bigcirc	
	A343	Manual torque boost frequency adjustment, 3rd motor	0.0 to 50.0 (\%)	5.0	5.0	5.0	5.0	5.0	\bigcirc	\bigcirc	
	A044	V/F characteristic curve selection, 1st motor (*5)	00 (VC), 01 (VP), 02 (free V/f), 03 (sensorless vector control), 04 (0 Hz -range sensorless vector), 05 (vector with sensor)	00	00	00	00	00	\times	\times	
	A244	V/F characteristic curve selection, 2nd motor (*5)	00 (VC), 01 (VP), 02 (free V/f), 03 (sensorless vector control), 04 (OHz -range sensorless vector)	00	00	00	00	00	\times	\times	
	A344	V/F characteristic curve selection, 3rd motor	00 (VC), 01 (VP)	00	00	00	00	00	\times	\times	
	A045	V/f gain setting	20. to 100. (\%)	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	A046	Voltage compensation gain setting for automatic torque boost. 1st motor	0. to 255 .	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	A246	Voltage compensation gain setting for automatic torque boost, 2nd motor	0. to 255.	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	A047	Slippage compensation gain setting for automatic torque boost, 1st motor	0. to 255 .	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	A247	Slippage compensation gain setting for automatic torque boost, 2nd motor	0. to 255.	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	A051	DC braking enable	00 (disabling), 01 (enabling), 02 (set frequency only)	00	00	00	00	00	\times	\bigcirc	
	A052	DC braking frequency setting	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{4}$)	0.50	0.50	0.50	0.50	0.50	\times	\bigcirc	
	A053	DC braking wait time	0.0 to 5.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	A054	DC braking force during deceleration	SJ700/SJ700D (CT): 0 . to 100 . (\%) <75 to $132 \mathrm{~kW}: 0$. to 80./185kW and over:0. to $35 .>$ SJ700D (VT): 0 . to 70 . (\%) < 75 to 132 kW :0. to $50 .>$ SJ700B: 0. to 70. (\%) <90kW and over:0. to $50 .>$	0	0	0	0	20.0	\times	\bigcirc	
	A055	DC braking time for deceleration	0.0 to 60.0 (s)	0.0	0.0	0.0	0.0	0.5	\times	\bigcirc	
	A056	DC braking/edge or level detection for [DB] input	00 (edge operation), 01 (level operation)	01	01	01	01	01	\times	\bigcirc	
	A057	DC braking force for starting	SJ700/SJ700D (CT): 0 . to 100 . (\%) < 75 to $132 \mathrm{~kW}: 0$. to $80 . / 185 \mathrm{~kW}$ and over:0. to $35 .>$ SJ700D (VT): 0 . to 70 . (\%) <75 to $132 \mathrm{~kW}: 0$. to $50 .>$ SJ700B: 0 . to 70 . (\%) <90kW and over:0. to $50 .>$	0.	0.	0.	0.	0.	\times	\bigcirc	
	A058	DC braking time for starting	0.0 to 60.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	A059	DC braking carrier frequency setting	SJ700/SJ700D (CT): 0.5 to $15.0(\mathrm{kHz}$) < 75 to $132 \mathrm{~kW}: 0.5$ to 10.0/185kW and over:0.5 to 3.0> SJ700D (VT): 0.5 to $12.0(\mathrm{kHz}<75$ to $132 \mathrm{~kW}: 0.5$ to $8.0>$ SJ700B: 0.5 to $12.0(\mathrm{kHz})<90 \mathrm{~kW}$ and over:0.5 to $8.0>$		$\begin{gathered} 5.0 \\ 132 \mathrm{kV} \end{gathered}$	l:3.0>	3.0	3.0	\times	\times	

(*1) This setting is valid only when the OPE-SR is connected. (*2) $4000 \mathrm{HF}: 30$. to 120 . (Hz)
(*3) Derating is applied for SJ700B. Please consult technician at Hitachi or its distributor before use. (*4) 4000HF:0.00 to 99.99,100.0 to 120.0 (Hz)
(*5) SJ700D (VTmode):00 (VC), 01 (VP), 02 (free V/F), 03 (sensorless vector control)

Code		Function Name	Monitored data or setting	Default Setting					Setting during operation (allowed or not)	Changeduringoperation(allowed or not)	
		SJ700/SJ700D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
	A061		Frequency upper limit setting	0.00 or "1st minimum frequency limit" to "maximum frequency" (Hz)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc
	A261		Frequency upper limit setting, 2nd motor	0.00 or "2nd minimum frequency limit" to "maximum frequency, 2nd motor" (Hz)	0.00	0.00	0.00	0.00	0.00	\times	
	A062	Frequency lower limit setting	0.00 or "start frequency" to "maximum frequency limit" (Hz)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A262	Frequency lower limit setting, 2nd motor	0.00 or "start frequency" to "maximum frequency, 2nd motor limit" (Hz)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A063	Jump (center) frequency setting 1	0.00 to 99.99, 100.0 to 400.0 (Hz) (*1)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A064	Jump (hysteresis) frequency width setting 1	0.00 to 10.00 (Hz)	0.50	0.50	0.50	0.50	0.50	\times	\bigcirc	
	A065	Jump (center) frequency setting 2	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{*} 1$)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A066	Jump (hysteresis) frequency width setting 2	0.00 to 10.00 (Hz)	0.50	0.50	0.50	0.50	0.50	\times	\bigcirc	
	A067	Jump (center) frequency setting 3	0.00 to 99.99, 100.0 to 400.0 (Hz) (*1)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A068	Jump (hysteresis) frequency width setting 3	0.00 to 10.00 (Hz)	0.50	0.50	0.50	0.50	0.50	\times	\bigcirc	
	A069	Acceleration stop time frequency setting	0.00 to 99.99, 100.0 to 400.0 (Hz) (*1)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A070	Acceleration stop time frequency setting	0.0 to 60.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	A071	PID function enable	00 (disabling), 01 (enabling), 02 (enabling inverted-data output)	00	00	00	00	00	\times	\bigcirc	
	A072	PID proportional gain	0.2 to 5.0	1.0	1.0	1.0	1.0	1.0	\bigcirc	\bigcirc	
	A073	PID integral time constant	0.0 to 999.9, 1000. to 3600.0 (s)	1.0	1.0	1.0	1.0	1.0	\bigcirc	\bigcirc	
	A074	PID derivative gain	0.00 to 99.99, 100.0 (s)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	A075	PV scale conversion	0.01 to 99.99	1.00	1.00	1.00	1.00	1.00	\times	\bigcirc	
	A076	PV source setting	00 (input via OI), 01 (input via O), 02 (external communication), 03 (pulse-string frequency input), 10 (operation result output)	00	00	00	00	00	\times	\bigcirc	
	A077	Output of inverted PID deviation	00 (OFF), 01 (ON)	00	00	00	00	00	\times	\bigcirc	
	A078	PID variation range	0.0 to 100.0 (\%)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	A079	PID feed forward selection	00 (disabled), 01 (O input), 02 (OI input), 03 (O2 input)	00	00	00	00	00	\times	\bigcirc	
$\stackrel{\Upsilon}{\gtrless}$	A081	AVR function select	00 (always on), 01 (always off), 02 (off during deceleration)	00	00	02	00	02	\times	\times	
	A082	AVR voltage select	200 V class: $200,215,220,230,240$ (V) 400 V class: $380,400,415,440,460,480$ ($)$	400	230/460	200/400	200/400	200/400	\times	\times	
	A085	Operation mode selection	00 (Normal operation)/ 01 (Energy-saving operation)/ 02 (Fuzzy operation) (*3)	00	00	00	00	00	\times	\times	
	A086	Energy saving mode tuning	0.1 to 100.0	50.0	50.0	50.0	50.0	50.0	\bigcirc	\bigcirc	
	A092	Acceleration (2) time setting	0.01 to $99.99,100.0$ to 999.9, 1000. to 3600 . (s)	15.00	15.00	15.00	15.00	15.00	\bigcirc	\bigcirc	
	A292	Acceleration (2) time setting, 2nd motor	0.01 to $99.99,100.0$ to 999.9, 1000. to 3600 . (s)	15.00	15.00	15.00	15.00	15.00	\bigcirc	\bigcirc	
	A392	Acceleration (2) time setting, 3rd motor	0.01 to $99.99,100.0$ to 999.9, 1000. to 3600. (s)	15.00	15.00	15.00	15.00	15.00	\bigcirc	\bigcirc	
	A093	Deceleration (2) time setting	0.01 to $99.99,100.0$ to 999.9, 1000. to 3600 . (s)	15.00	15.00	15.00	15.00	15.00	\bigcirc	\bigcirc	
	A293	Deceleration (2) time setting, 2nd motor	0.01 to 99.99, 100.0 to 999.9, 1000. to 3600 . (s)	15.00	15.00	15.00	15.00	15.00	\bigcirc	\bigcirc	
	A393	Deceleration (2) time setting, 3rd motor	0.01 to 99.99, 100.0 to 999.9, 1000. to 3600. (s)	15.00	15.00	15.00	15.00	15.00	\bigcirc	\bigcirc	
	A094	Select method to switch to Acc2/Dec2 profile	00 (switching by 2CH terminal), 01 (switching by setting), 02 (switching only when rotation is reversed)	00	00	00	00	00	\times	\times	
	A294	Select method to switch to Acc2/Dec2, 2nd motor	00 (switching by 2CH terminal), 01 (switching by setting), 02 (switching only when rotation is reversed)	00	00	00	00	00	\times	\times	
	A095	Acc1 to Acc2 frequency transition point	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{2}$)	0.00	0.00	0.00	0.00	0.00	\times	\times	
	A295	Acc1 to Acc2 frequency transition point, 2nd motor	0.00 to 99.99, 100.0 to 400.0 (Hz) (*2)	0.00	0.00	0.00	0.00	0.00	\times	\times	
	A096	Dec1 to Dec2 frequency transition point	0.00 to $99.99,100.0$ to 400.0 (Hz) (*2)	0.00	0.00	0.00	0.00	0.00	\times	\times	
	A296	Dec1 to Dec2 frequency transition point, 2nd motor	0.00 to 99.99, 100.0 to 400.0 (Hz) (*2)	0.00	0.00	0.00	0.00	0.00	\times	\times	
	A097	Acceleration curve selection	00 (linear), 01 (S curve), 02 (U curve), 03 (inverted-U curve), 04 (EL-S curve)	00	00	00	00	00	\times	\times	
	A098	Deceleration curve selection	00 (linear), 01 (S curve), 02 (U curve), 03 (inverted-U curve), 04 (EL-S curve)	00	00	00	00	00	\times	\times	
	A101	OI-L input active range start frequency	0.00 to 99.99, 100.0 to 400.0 (Hz) (*2)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A102	OI-L input active range end frequency	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{2}$)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A103	OI-L input active range start current	0. to "[OI]-[L] input active range end current" (\%)	20.	20.	20.	20.	20.	\times	\bigcirc	
	A104	OI-L input active range end current	"[OII]-[L] input active range start current" to 100. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
	A105	OI-L input start frequency enable	00 (external start frequency), $1(0 \mathrm{~Hz}$)	00	00	00	00	00	\times	\bigcirc	
	A111	O2-L input active range start frequency	-400. to -100., -99.9 to 0.00 to $99.99,100.0$ to 400.0 (Hz) (*3)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A112	O2-L input active range end frequency	-400. to -100., -99.9 to 0.00 to 99.99, 100.0 to 400.0 (Hz) (*3)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A113	O2-L input active range start voltage	-100. to 02 end-frequency rate (\%)	-100.	-100.	-100.	-100.	-100.	\times	\bigcirc	
	A114	O2-L input active range end voltage	"02 start-frequency rate" to 100. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
	A131	Acceleration curve constants setting	01 (smallest swelling) to 10 (largest swelling)	02	02	02	02	02	\times	\bigcirc	
	A132	Deceleration curve constants setting	01 (smallest swelling) to 10 (largest swelling)	02	02	02	02	02	\times	\bigcirc	
	A141	Operation-target frequency selection 1	00 (digital operator), 01 (keypad potentiometer), 02 (input via O), 03 (input via OI), 04 (external communication), 05 (option 1), 06 (option 2), 07 (pulse-string frequency input)	02	02	02	02	02	\times	\bigcirc	
	A142	Operation-target frequency selection 2	00 (digital operator), 01 (keypad potentiometer), 02 (input via O), 03 (input via OI), 04 (external communication), 05 (option 1), 06 (option 2), 07 (pulse-string frequency input)	03	03	03	03	03	\times	\bigcirc	
	A143	Operator selection	00 (addition: A141 + A142), 01 (subtraction: A141- A142), 02 (multiplication: A141 x A142)	00	00	00	00	00	\times	\bigcirc	
	A145	Frequency to be added	0.00 to 99.99, 100.0 to 400.0 (Hz) (*2)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	A146	Sign of the frequency to be added	00 (frequency command + A145), 01 (frequency command - A145)	00	00	00	00	00	\times	\bigcirc	
	A150	EL-S-curve acceleration ratio 1	0. to 50. (\%)	25.	25.	25.	25.	25.	\times	\times	
	A151	EL-S-curve acceleration ratio 2	0. to 50. (\%)	25.	25.	25.	25.	25.	\times	\times	
	A152	EL-S-curve deceleration ratio 1	0. to 50. (\%)	25.	25.	25.	25.	25.	\times	\times	
	A153	EL-S-curve deceleration ratio 2	0. to 50. (\%)	25.	25.	25.	25.	25.	\times	\times	

(*1) 4000HF:0.00 to $99.99,100.0$ to $120.0(\mathrm{~Hz}) \quad\left({ }^{*} 2\right)-120$. to $-100 .,-99.9$ to 0.00 to $99.99,100.0$ to $120.0(\mathrm{~Hz})$
(*3) SJ700D (VT mode):00 (Normal operation), 01 (Energy saving operation)

B GROUP: FINE TUNING FUNCTIONS
$[\mathrm{O}=$ Allowed $\mathrm{X}=$ Not permitted]

(*1) 4000HF:5.0 (*2) 4000HF:0.00 to 99.99,100.0 to $120.0(\mathrm{~Hz}) \quad$ (*3) 4000HF:0. to 120. (Hz) (*4) SJ700-2:04. (basic display) (*5) SJ700-2:01

Code		Function Name	Monitored data or setting	Default Setting					$\begin{array}{\|c\|} \hline \text { Seting } \\ \text { during } \\ \text { (aporation } \\ \text { galowed or } n \text { not } \end{array}$	\qquad	
		SU700/S.J00D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
	b040		Torque limit selection	00 (quadrant-specific setting), 01 (switching by terminal), 02 (analog input), 03 (option 1),04 (option 2)	00	00	00	00	00	\times	\bigcirc
	b041		Torque limit (1) (Forward-driving in 4-quadrant mode)	SJ700/SJ700D (CT): 0. to 200. (\%), no (disabling torque limitation) < 75 kW and over:0. to $180 .>$ SJ700D (VT)/SJ700B: 0. to 150. (\%), no (disabling torque limitation)	150.	150.	150.	150.	120.	\times	\bigcirc
	b042	Torque limit (2) (Reverse-regenerating in 4-quadrant mode)	SJ700/SJ700D (CT): 0. to 200. (\%), no (disabling torque limitation) < 75 kW and over:0. to 180 .> SJ700D (VT)/SJ700B: 0 . to 150 . (\%), no (disabling torque limitation)	150.	150.	150.	150.	120.	\times	\bigcirc	
	b043	Torque limit (3) (Reverse-driving in 4-quadrant mode)	SJ700/SJ700D (CT): 0. to 200. (\%), no (disabling torque limitation) < 75 kW and over:0. to 180 .> SJ700D (VT)/SJ700B: 0 . to 150 . (\%), no (disabling torque limitation)	150.	150.	150.	150.	120.	\times	\bigcirc	
	b044	Torque limit (4) (Forward-regenerating in 4-quadrant mode)	SJ700/SJ700D (CT): 0. to 200. (\%), no (disabling torque limitation) < 75 kW and over:0. to $180 .>$ SJ700D (VT)/SJ700B: 0. to 150. (\%), no (disabling torque limitation)	150.	150.	150.	150.	120.	\times	\bigcirc	
	b045	Torque limit LADSTOP enable	00 (disabling), 01 (enabling)	00	00	00	00	00	\times	\bigcirc	
	b046	Reverse RUN protection enable	00 (disabling), 01 (enabling)	00	00	00	00	01	\times	\bigcirc	
	b049	CT/VT selection (SJ700D only)	00 (CT : Constant torque), 01 (VT : Variable torque)	00	00	00	\times	\times	\times	\times	
	b050	Controlled deceleration and stop on power loss	00 (disabling), 01 (nonstop deceleration to stop), 02 (DC voltage constant control, with resume), 03 (DC voltage constant control, without resure)	00	00	00	00	00	\times	\times	
흉	b051	DC bus voltage trigger level during power loss	0.0 to 999.9, 1000. (M)	220.0440.0	220.0440.0	220.0440.0	220.0440.0	220.0440.0	\times	\times	
	b052	Over-voltage threshold during power loss	0.0 to 999.9, 1000. (M)	360.0.720.0	360.0720.0	330.0720.0	360.0720.0	360.0720.0	\times	\times	
	b053	Deceleration time setting during power loss	0.01 to 99.99, 100.0 to $999.9,1000$. to 3600 . (s)	1.00	1.00	1.00	1.00	1.00	\times	\times	
	b054	Initial output frequency decrease during power loss	0.00 to 10.00 (Hz)	0.00	0.00	0.00	0.00	0.00	\times	\times	
	b055	Proportional gain setting for nonstop operation at power loss	0.00 to 2.55	0.20	0.20	0.20	0.20	0.20	\bigcirc	\bigcirc	
	b056	Integral time setting for nonstop operation at power loss	0.0 to 9.999 /10.00 to 65.55	0.100	0.100	0.100	0.100	0.100	\bigcirc	\bigcirc	
	b060	Maximum-limit level of window comparators O	0. to 100. (lower limit : b061 + b062*2) (\%)	100	100	100	100	100	\bigcirc	\bigcirc	
	b061	Minimum-limit level of window comparators O	0. to 100. (lower limit : b060-b062*2) (\%)	0	0	0	0	0	\bigcirc	\bigcirc	
	b062	Hysteresis width of window comparators O	0. to 10. (lower limit : b061-b062 /2) (\%)	0	0	0	0	0	\bigcirc	\bigcirc	
$\stackrel{\overline{\mathrm{g}}}{\underline{\mathrm{co}}}$	b063	Maximum-limit level of window comparators OI	0. to 100. (lower limit : b064 + b066*2) (\%)	100	100	100	100	100	\bigcirc	\bigcirc	
	b064	Minimum-limit level of window comparators OI	0. to 100. (lower limit : b063-b066*2) (\%)	0	0	0	0	0	\bigcirc	\bigcirc	
$\stackrel{\rightharpoonup}{\dot{E}_{0}^{\prime}}$	b065	Hysteresis width of window comparators OI	0. to 10. (lower limit : b063-b064 / 2) (\%)	0	0	0	0	0	\bigcirc	\bigcirc	
$\begin{aligned} & 0 \\ & 3 \\ & 3 \end{aligned}$	b066	Maximum-limit level of window comparators OI	-100. to 100. (lower limit : b067 + b068*2) (\%)	100	100	100	100	100	\bigcirc	\bigcirc	
on	b067	Minimum-limit level of window comparators 0/0/02	-100. to 100. (lower limit : b066-b068*2) (\%)	-100	-100	-100	-100	-100	\bigcirc	\bigcirc	
$\stackrel{\check{c}}{\leftrightarrows}$	b068	Hysteresis width of window comparators 0/0//02	0. to 10. (lower limit : b066-b067 / 2) (\%)	0	0	0	0	0	\bigcirc	\bigcirc	
	b070	Operation level at O disconnection	0 to 100 (\%) or "no" (ignore)	255(no)	255(no)	255(no)	255(no)	255(no)	\times	\bigcirc	
	b071	Operation level at OI disconnection	0 to 100 (\%) or "no" (ignore)	255(no)	255(no)	255(no)	255(no)	255(no)	\times	\bigcirc	
	b072	Operation level at O2 disconnection	0 to 100 (\%) or "no" (ignore)	127(no)	127(no)	127(no)	127(no)	127(no)	\times	\bigcirc	
$\begin{aligned} & \frac{\omega}{\Phi} \\ & \stackrel{y}{ \pm} \end{aligned}$	b078	Cumulative input power data clearance	Clearance by setting "01" and pressing the STR key	00	00	00	00	00	\bigcirc	\bigcirc	
	b079	Cumulative input power display gain setting	1. to 1000.	1.	1.	1.	1.	1.	\bigcirc	\bigcirc	
	b082	Start frequency adjustment	0.10 to 9.99 (Hz)	0.50	0.50	0.50	0.50	0.50	\times	\bigcirc	
	b083	Carrier frequency setting	SJ700/SJ700D (CT): 0.5 to 15.0 (kHz) <75 to $132 \mathrm{~kW}: 0.5$ to $10.0 / 185 \mathrm{~kW}$ and over:0.5 to $3.0>$ SJ700D (NT): 0.5 to 12.0 (kHz) <75 to $132 \mathrm{~kW}: 0.5$ to $8.0 .>$ SJ700B: 0.5 to $12.0(\mathrm{kHz})<90 \mathrm{~kW}$ and over: 0.5 to $8.0>$	5.0(*2)	5.0(*2)	5.0**2)	$3.0{ }^{(* 1)}$	3.0 (*1)	\times	\times	
	b084	Initialization mode (parameters or trip history)	SJ700D: 00 (disabling), 01 (cleaning the trip history), 02 (initializing the data), 03 (cleaning the trip history and initializing the data), 04 (cleaning the trip history and initializing the data and EzSQ program) SJ700/SJ700B: 00 (clearing the trip history), 01 (initializing the data), 02 (clearing the trip history and initializing the data)	00	00	00	00	00	\times	\times	
	b085	Country code for initialization	00 (Japan), 01 (EU), 02 (U.S.A.)	01	02	00	01	02	\times	\times	
	b086	Frequency scaling conversion factor	0.1 to 99.9	1.0	1.0	1.0	1.0	1.0	\bigcirc	\bigcirc	
	b087	STOP key enable	00 (enabling), 01 (disabling), 02 (disabling only the function to stop)	00	00	00	00	00	\times	\bigcirc	
	b088	Restart mode after FRS	00 (starting with 0 Hz), 01 (starting with matching frequency), 02 (starting with active matching frequency)	00	00	00	00	00	\times	\bigcirc	
	b089	Automatic carrier frequency reduction	00: invalid, 01: valid	00	00	00	00	00	\times	\times	
	b090	Dynamic braking usage ratio	0.0 to 100.0 (\%)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	b091	Stop mode selection	00 (deceleration until stop), 01 (free-run stop)	00	00	00	00	00	\times	\bigcirc	
	b092	Cooling fan control	00 (always operating the fan), 01 (operating the fan only during inverter operation [including 5 minutes after power-on and power-off])	00	00	00	00	01	\times	\bigcirc	
	b095	Dynamic braking control	00 (disabling), 01 (enabling [disabling while the motor is topped]), 02 (enabling [enabling also while the motor is topped])	00	00	00	00	01	\times	\bigcirc	
	b096	Dynamic braking activation level	330 to 380,660 to 760 (M)	360/720	360/720	360/720	360/720	360/720	\times	\bigcirc	
	b098	Thermistor for thermal protection control	00 (disabling the thermistor), 01 (enabling the thermistor with PTC), 02 (enabling the thermistor with NTC)	00	00	00	00	00	\times	\bigcirc	
	b099	Thermal protection level setting	0. to 9999. (ת)	3000.	3000.	3000.	3000.	3000.	\times	\bigcirc	
	b100	Free-setting V/f frequency (1)	0. to "free-setting V/f frequency (2)" (Hz)	0.	0.	0.	0.	0.	\times	\times	
	b101	Free-setting V/f voltage (1)	0.0 to 800.0 (M	0.0	0.0	0.0	0.0	0.0	\times	\times	
	b102	Free-setting V/f frequency (2)	0. to "free-setting V/f frequency (3)" (Hz)	0.	0.	0.	0.	0.	\times	\times	
	b103	Free-setting V/f voltage (2)	0.0 to 800.0 (M	0.0	0.0	0.0	0.0	0.0	\times	\times	
	b104	Free-setting V/f frequency (3)	0. to "free-setting V/ff frequency (4)" (Hz)	0.	0.	0.	0.	0.	\times	\times	
	b105	Free-setting V/f voltage (3)	0.0 to 800.0 (M	0.0	0.0	0.0	0.0	0.0	\times	\times	
	b106	Free-setting V/f frequency (4)	0. to "free-setting V/f frequency (5)" (Hz)	0.	0.	0.	0.	0.	\times	\times	
	b107	Free-setting V/f voltage (4)	0.0 to 800.0 (M	0.0	0.0	0.0	0.0	0.0	\times	\times	

(*1) "Over current protection" , " Overload restriction", "Over current limiting" and "Electronic thermal protection" might operate from the set value when "Carrier frequency setting" is used with less than 2 kHz by a low value. Please set to 2 kHz or more and use the setting of "Carrier frequency setting" for such a situation.
${ }^{(* 2)}$) 750 HF to 1320HF: 3.01850 HF , 2200HF and 3150HF:2.1, 4000HF:1.9 (*3) 4000HF: 0.0 to 120.0 (Hz)

Code		Function Name	Monitored data or setting	Default Setting						Change during operation (allowed or not) X	
		SJ700/SJ700D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
	b108		Free-setting V/f frequency (5)	0. to "free-setting V/f frequency (6)" (Hz)	0.	0.	0.	0.	0.	\times	\times
	b109		Free-setting V/f voltage (5)	0.0 to 800.0 (V)	0.0	0.0	0.0	0.0	0.0	\times	\times
	b110	Free-setting V/f frequency (6)	0. to "free-setting V/f frequency (7)" (Hz)	0.	0.	0.	0.	0.	\times	\times	
	b111	Free-setting V/f voltage (6)	0.0 to 800.0 (N	0.0	0.0	0.0	0.0	0.0	\times	\times	
	b112	Free-setting V/f frequency (7)	0.0 to $400.0(\mathrm{~Hz})(* 4)$	0.	0.	0.	0.	0.	\times	\times	
	b113	Free-setting V/f voltage (7)	0.0 to 800.0 (V)	0.0	0.0	0.0	0.0	0.0	\times	\times	
$\begin{aligned} & \stackrel{\varrho}{\oplus} \\ & \frac{\oplus}{\square} \end{aligned}$	b120	Brake control enable (*3)	00 (disabling), 01 (enabling)	00	00	00	00	00	\times	\bigcirc	
	b121	Brake wait time for release (*3)	0.00 to 5.00 (s)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	b122	Brake wait time for acceleration (*3)	0.00 to 5.00 (s)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	b123	Brake wait time for stopping (*3)	0.00 to 5.00 (s)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	b124	Brake wait time for confirmation (*3)	0.00 to 5.00 (s)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	b125	Brake release frequency setting (*3)	0.00 to 99.99, 100.0 to 400.0 (Hz) (*1)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	b126	Brake release current setting (*3)	SJ700/SJ700D: 0.0 to $2.00 \times$ "rated current" (A) < 75 kW and over:0.0 to $1.80 \times$ "rated current" (A)> SJ700B: 0.0 to $1.50 \times$ "rated current" (A)	Rated current $\times 1.00$					\times	\bigcirc	
	b127	Braking frequency (*3)	0.00 to 99.99, 100.0 to 400.0 (Hz) (*1)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	b130	Overvoltage suppression enable	00 (disabling the restraint), 01 (decelerating and stagnating), 02 (enabling acceleration with deceleration), 03 (enabling acceleration) (SJ700D only)	00	00	00	00	00	\times	\bigcirc	
	b131	Overvoltage suppression level	330 to 390 (V) (200 V class model), 660 to 780 (V) (400 V class model)	380/760	380/760	380/760	380/760	380/760	\times	\bigcirc	
	b132	Acceleration and deceleration rate at overvoltage suppression	0.10 to 30.00 (s)	1.00	1.00	1.00	1.00	1.00	\times	\bigcirc	
	b133	Overvoltage suppression propotional gain	0.00 to 2.55	0.50	0.50	0.50	0.50	0.50	\bigcirc	\bigcirc	
	b134	Overvoltage suppression Integral time	0.000 to 9.999 / 10.00 to 63.53 (s)	0.060	0.060	0.060	0.060	0.060	\bigcirc	\bigcirc	
	b141	Output loss detection enable (SJ700D only)	00 (disabling), 01 (enabling)	00	00	00	\times	\times	\times	\bigcirc	
	b142	Output loss detection sensibility (SJ700D only)	1.to 100.(\%)	10.	10.	10.	\times	\times	\bigcirc	\bigcirc	
	b164	Automatic return to initial display (SJ700D only)	00 (disabling), 01 (enabling)	00	00	00	\times	\times	\bigcirc	\bigcirc	
	b166	Data Read/Write select (SJ700D only)	00 (Read/Write OK), 01 (Protected)	00	00	00	\times	\times	\times	\bigcirc	
	b180	Initialization trigger (SJ700D only)	00 (Initialization disable), 01 (Perform initialization)	00	00	00	\times	\times	\times	\times	

$\begin{array}{llll}(* 1) & 4000 \mathrm{HF}: ~ \\ 0.00 \text { to } 120.0(\mathrm{~Hz}) & \text { (*2) } 4000 \mathrm{HF}: 0.00 \text { to } 99.99,100.0 \text { to } 120.0(\mathrm{~Hz}) \quad \text { (*3) SJ700D (VT): Not available (no display) }\end{array}$
C GROUP: INTELLIGENT TERMINAL FUNCTIONS
[$O=$ Allowed $X=$ Not permitted]

Code		Function Name	Monitored data or setting	Default Setting							
		SJ700/SJ700D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
	C001		Terminal [1] function (*1)	01 (RV: Reverse RUN), 02 (CF1: Multispeed 1 setting), 03 (CF2: Multispeed 2 setting), 04 (CF3: Multispeed 3 setting), 05 (CF4: Multispeed 4 setting), 06 (JG: Jogging), 07 (DB: external DC braking), 08 (SET: Set 2nd motor data), 09 (2 CH : 2-stage acceleration/deceleration), 11 (FRS: free-run stop), 12 (EXT: external trip), 13 (USP: unattended start protection), 14: (CS: commercial power source enable), 15 (SFT: software lock), 16 (AT: analog input voltage/current select), 17 (SET3: 3rd motor control), 18 (RS: reset), 20 (STA: starting by 3 -wire input), 21 (STP: stopping by 3-wire input), 22 (F/R: forward/reverse switching by 3-wire input), 23 (PID: PID disable), 24 (PIDC: PID reset), 26 (CAS: control gain setting), 27 (UP: remote control UP function), 28 (DWN: remote control DOWN function), 29 (DWN: remote control data clearing), 31 (OPE: forcible operation), 32 (SF1: multispeed bit 1), 33 (SF2: multispeed bit 2), 34 (SF3: multispeed bit 3), 35 (SF4: multispeed bit 4), 36 (SF5: multispeed bit 5), 37 (SF6: multispeed bit 6), 38 (SF7: multispeed bit 7), 39 (OLR: overload restriction selection), 40 (TL: torque limit enable), 41 (TRQ1: torque limit selection bit 1), 42 (TRQ2: torque limit selection bit 2), 43 (PPI: P/PI mode selection), 44 (BOK: braking confirmation), 45 (ORT: orientation), 46 (LAC: LAD cancellation), 47 (PCLR: clearance of position deviation), 48 (STAT: pulse train position command input enable), 50 (ADD: trigger for frequency addition [A145]), 51 (F-TM: forcible-terminal operation), 52 (ATR: permission of torque command input), 53 (KHC: cumulative power clearance), 54 (SON: servo-on), 55 (FOC: pre-excitation), 56 (MI1: generalpurpose input 1), 57 (MI2: general-purpose input 2), 58 (MI3: general-purpose input 3), 59 (MI4: general-purpose input 4), 60 (MI5: general-purpose input 5), 61 (MI6: general-purpose input 6), 62 (MI7: general-purpose input 7), 63 (MI8: general-purpose input 8), 64 (EMR: Emergency stop) (*1), 65 (AHD: analog command holding), 66 (CP1: multistage position settings selection 1), 67 (CP2: multistage position settings selection 2), 68 (CP3: multistage position settings selection 3), 69 (ORL: Zero-return limit function), 70 (ORG: Zero-return trigger function), 71 (FOT: forward drive stop), 72 (ROT: reverse drive stop), 73 (SPD: speed / position switching), 74 (PCNT: pulse counter), 75 (PCC: pulse counter clear), 82 (PRG: EzSQ program) (SJ700D only), no (NO: no assignment)	$\begin{gathered} 18 \\ (\mathrm{RS}) \end{gathered}$	$\begin{gathered} 18 \\ (\mathrm{RS}) \end{gathered}$	$\begin{gathered} 18 \\ (\mathrm{RS}) \end{gathered}$	$\begin{gathered} 18 \\ \text { (RS) } \end{gathered}$	$\begin{gathered} 18 \\ \text { (RS) } \end{gathered}$	\times	\bigcirc
	C002		Terminal [2] function		$\begin{gathered} 16 \\ \text { (AT) } \end{gathered}$	$\begin{gathered} 16 \\ (\mathrm{AT}) \end{gathered}$	$\begin{gathered} 16 \\ (\text { AT) } \end{gathered}$	$\begin{gathered} 16 \\ (A T) \end{gathered}$	$\begin{gathered} 16 \\ (\mathrm{AT}) \end{gathered}$	\times	\bigcirc
	C003	Terminal [3] function (*1)	$\begin{gathered} 06 \\ \text { (JG) } \end{gathered}$		$\begin{gathered} 06 \\ (\mathrm{JG}) \end{gathered}$	$\begin{gathered} 06 \\ (\mathrm{JG}) \end{gathered}$	$\begin{gathered} 06 \\ (\mathrm{JG}) \end{gathered}$	$\begin{gathered} 03 \\ \text { (CF2) } \end{gathered}$	\times	\bigcirc	
	C004	Terminal [4] function	$\begin{gathered} 11 \\ (\text { FRS }) \end{gathered}$		$\begin{gathered} 11 \\ \text { (FRS) } \end{gathered}$	$\begin{gathered} 11 \\ \text { (FRS) } \end{gathered}$	$\begin{gathered} 11 \\ \text { (FRS) } \end{gathered}$	$\begin{gathered} 02 \\ (\mathrm{CF} 1) \end{gathered}$	\times	\bigcirc	
	C005	Terminal [5] function	$\begin{gathered} 09 \\ (2 \mathrm{CH}) \end{gathered}$		$\begin{gathered} 09 \\ (2 \mathrm{CH}) \end{gathered}$	$\begin{gathered} 09 \\ (2 \mathrm{CH}) \end{gathered}$	$\begin{gathered} 09 \\ (2 \mathrm{CH}) \end{gathered}$	$\begin{gathered} 01 \\ \text { (RV) } \end{gathered}$	\times	\bigcirc	
	C006	Terminal [6] function	$\begin{aligned} & 03 \\ & \text { (CF2) } \end{aligned}$		$\begin{gathered} 13 \\ (\text { USP) } \end{gathered}$	$\begin{gathered} 03 \\ \text { (CF2) } \end{gathered}$	$\begin{gathered} 03 \\ \text { (CF2) } \end{gathered}$	$\begin{gathered} 06 \\ (\mathrm{JG}) \end{gathered}$	\times	\bigcirc	
	C007	Terminal [7] function	$\begin{gathered} 02 \\ \text { (CF1) } \end{gathered}$		$\begin{gathered} 02 \\ \text { (CF1) } \end{gathered}$	$\begin{gathered} 02 \\ \text { (CF1) } \end{gathered}$	$\begin{gathered} 02 \\ \text { (CF1) } \end{gathered}$	$\begin{gathered} 11 \\ \text { (FRS) } \end{gathered}$	\times	\bigcirc	
	C008	Terminal [8] function	$\begin{gathered} 01 \\ \text { (RV) } \end{gathered}$		$\begin{gathered} 01 \\ \text { (RV) } \end{gathered}$	$\begin{gathered} 01 \\ \text { (RV) } \end{gathered}$	$\begin{gathered} 01 \\ \text { (RV) } \end{gathered}$	$\begin{gathered} 13 \\ \text { (USP) } \end{gathered}$	\times	\bigcirc	
	C011	Terminal (1) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C012	Terminal (2) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C013	Terminal (3) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C014	Terminal (4) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C015	Terminal (5) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C016	Terminal (6) active state	00 (NO) / 01 (NC)	00	01	00	00	00	\times	\bigcirc	
	C017	Terminal (7) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C018	Terminal (8) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C019	Terminal FW active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	

(*1) When the emergency stop function is enabled (SW1 = ON), "18" (RS) and "64" (EMR) are forcibly written to parameters "C001" and "C003"
respectively. (You cannot arbitrarily write "64" to "C001".) If the SW1 signal is turned off and then turned on, "no" (no assignment) is set in parameter "C003".
(*2) $1850 \mathrm{HF}, 2200 \mathrm{HF}, 3150 \mathrm{HF}$ and 4000 HF :The function is not provided

Code		Function Name	Monitored data or setting	Default Setting					$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { during } \\ \text { operation } \\ \text { (allowed or not) } \end{array}$		
		SJ700/SJ700D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
	C021		Terminal (11) function		$\begin{gathered} 01 \\ (\text { FA1) } \end{gathered}$	$\begin{gathered} 01 \\ (\text { (FA1) } \end{gathered}$	$\begin{gathered} 011 \\ (\text { FA1) } \end{gathered}$	$\begin{gathered} 01 \\ \text { (FA1) } \end{gathered}$	$\begin{gathered} 01 \\ \text { (FA1) } \end{gathered}$	\times	\bigcirc
	C022		Terminal (12) function		$\begin{gathered} 00 \\ (R U N) \end{gathered}$	$\begin{gathered} 00 \\ (R U N) \end{gathered}$	$\begin{gathered} 00 \\ (R U N) \end{gathered}$	$\left(\begin{array}{c} 00 \\ (R U N) \end{array}\right.$	$\begin{gathered} 00 \\ (R U N) \end{gathered}$	\times	\bigcirc
	C023	Terminal (13) function	$\begin{gathered} \text { O3 } \\ \text { (OL) } \end{gathered}$		$\begin{gathered} 03 \\ \text { (OL) } \end{gathered}$	$\begin{gathered} 03 \\ \text { (OL) } \end{gathered}$	$\begin{gathered} 03 \\ \text { (OL) } \end{gathered}$	$\begin{gathered} 03 \\ \text { (OL) } \end{gathered}$	\times	\bigcirc	
	C024	Terminal (14) function	$\begin{aligned} & 07 \\ & \text { (OTO) } \end{aligned}$		$\begin{array}{\|l\|l} 07 \\ \text { (OTO) } \end{array}$	$\begin{aligned} & 07 \\ & \text { (OTO) } \end{aligned}$	$\begin{gathered} 07 \\ \text { (OTO) } \end{gathered}$	$\begin{gathered} 07 \\ \text { (OTO) } \end{gathered}$	\times	\bigcirc	
	C025	Terminal (15) function	$\begin{aligned} & 40 \\ & \text { (WAF) } \end{aligned}$		$\begin{gathered} 40 \\ (\text { WAF }) \end{gathered}$	$\begin{gathered} 40 \\ \text { (WAF) } \end{gathered}$	$\begin{gathered} 40 \\ \text { (WAF) } \end{gathered}$	$\begin{aligned} & 40 \\ & \text { (WAF) } \end{aligned}$	\times	\bigcirc	
	C026	Alarm relay terminal function	$\begin{gathered} 05 \\ (\mathrm{AL}) \end{gathered}$		$\begin{gathered} 05 \\ (\mathrm{AL}) \end{gathered}$	\times	\bigcirc				
	C027	FM signal selection	00 (output frequency), 01 (output current), 02 (output torque), 03 (digital output frequency), 04 (output voltage), 05 (input power), 06 (electronic thermal overload), 07 (LAD frequency), 08 (digital current monitoring), 09 (motor temperature), 10 (heat sink temperature), 12 (general-purpose output YAO)	00	00	00	00	00	\times	\bigcirc	
	C028	AM signal selection	00 (output frequency), 01 (output current), 02 (output torque), 04 (output voltage), 05 (input power), 06 (electronic thermal overload), 07 (LAD frequency), 09 (motor temperature), 10 (heat sink temperature), 11 (output torque [signed value]), 13 (general-purpose output YA1)	00	00	00	00	00	\times	\bigcirc	
	C029	AMI signal selection	00 (output frequency), 01 (output current), 02 (output torque), 04 (output voltage), 05 (input power), 06 (electronic thermal overload), 07 (LAD frequency), 09 (motor temperature), 10 (heat sink temperature), 14 (general-purpose output YA2)	00	00	00	00	00	\times	\bigcirc	
	C030	Digital current monitor reference value	SJ700/SJ700D:0.20 x "rated current" to $2.00 \times$ "rated current" (A) / SJ700B:0.20 x "rated current" to $1.50 \times$ "rated current" (A) (Current with digital current monitor output at $1,440 \mathrm{~Hz}$)			d curre rter x			\bigcirc	\bigcirc	
$\stackrel{+}{0}$	C031	Terminal (11) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C032	Terminal (12) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C033	Terminal (13) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C034	Terminal (14) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C035	Terminal (15) active state	00 (NO) / 01 (NC)	00	00	00	00	00	\times	\bigcirc	
	C036	Alarm relay terminal active state	00 (NO) / 01 (NC)	01	01	01	01	01	\times	\bigcirc	
	C038	Low-current indication signal output mode selection	00 (output during acceleration/deceleration and constant-speed operation), 01 (output only during constant-speed operation)	01	01	01	01	01	\times	\bigcirc	
	C039	Low-current indication signal detection level	SJ700/SJ700D (CT):0.0 to $2.00 \times$ "rated current" (A) $<75 \mathrm{~kW}$ and over: 0.0 to $1.80 \times$ "rated current" (A)> SJ700D (VT)/SJ700B:0.0 to $1.50 \times$ "rated current" (A)	Rated current of inverter $\times 1.00$					\bigcirc	\bigcirc	
	C040	Overload signal output mode	00 (output during acceleration/deceleration and constant-speed operation), 01 (output only during constant-speed operation)	01	01	01	01	01	\times	\bigcirc	
	C041	Overload level setting	SJ700/SJ700D (CT):0.0 to $2.00 \times$ "rated current" (A) $<75 \mathrm{~kW}$ and over:0.0 to $1.80 \times$ "rated current" (A)> SJ700D (VT)/SJ700B:0.0 to $1.50 \times$ "rated current" (A)	Rated current of inverter $\times 1.00$					\bigcirc	\bigcirc	
	C042	Frequency arrival setting for accel.	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{+1}$)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	C043	Frequency arrival setting for decel.	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{(1)}$	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	C044	PID deviation level setting	0.0 to 100.0 (\%)	3.0	3.0	3.0	3.0	3.0	\times	\bigcirc	
	C045	Frequency arrival setting for acceleration (2)	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{(1)}$	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	C046	Frequency arrival setting for deceleration (2)	0.00 to 99.99, 100.0 to 400.0 (Hz) (${ }^{(1)}$	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	C052	Maximum PID feedback data	0.0 to 100.0 (\%)	100.0	100.0	100.0	100.0	100.0	\times	\bigcirc	
	C053	Minimum PID feedback data	0.0 to 100.0 (\%)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C055	Over-torque (Forward-driving) level setting	SJ700/SJ700D (CT): 0. to 200. (\%) < 75kW and over:0. to 180.> SJ700D (VT)/SJ700B: 0. to 150. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
	C056	Over-torque (Reverse-regenerating) level setting	SJ700/SJ700D (CT): 0. to 200. (\%) < 75kW and over:0. to 180.> SJ700D (VT)/SJ700B: 0. to 150. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
	C057	Over-torque (Reverse-driving) level setting	SJ700/SJ700D (CT): 0. to 200. (\%) < 75 kW and over:0. to 180.> SJ700D (VT)/SJ700B: 0. to 150. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
	C058	Over-torque (Forward-regenerating) level setting	SJ700/SJ700D (CT): 0. to 200. (\%) < 75kW and over:0. to 180.> SJ700D (VT)/SJ700B: 0. to 150. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
	C061	Electronic thermal warning level setting	0. to 100. (\%)	80.	80.	80.	80.	80.	\times	\bigcirc	
	C062	Alarm code input	00 (Disabled) / 01 (3-bit) / 02 (4-bit)	00	00	00	00	00	\times	\bigcirc	
	C063	Zero speed detection level	0.00 to 99.99, 100.0 (Hz)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	C064	Heat sink overheat warning level	0. to $\left.200.0{ }^{(}{ }^{\circ} \mathrm{C}\right)$	120.	120.	120.	120.	120.	\times	\bigcirc	
	C071	Communication speed selection (*2)	SJ700D: 02 (loopback test), 03 (2,400 bps), 04 (4,800 bps), 05 ($9,600 \mathrm{bps}$), 06 ($19,200 \mathrm{bps}$), 07 ($38,400 \mathrm{bps}$), 08 ($57,600 \mathrm{bps}$), 09 ($76,800 \mathrm{bps}$), $10(115,200 \mathrm{bps}$) SJ700/SJ700B: 02 (loopback test), 03 ($2,400 \mathrm{bps}$), 04 ((4,800 bps), 05 ($9,600 \mathrm{bps}$), 06 (19,200 bps) 06 ($19,200 \mathrm{bps}$)	04	04	04	04	04	\times	\bigcirc	
	C072	Node allocation	SJ700D: 1 to 247, SJ700/SJ700B: 1 to 32	1.	1.	1.	1.	1.	\times	\bigcirc	
	C073	Communication data length selection	7 (7 bits), 8 (8 bits)	7	7	7	7	7	\times	\bigcirc	
	C074	Communication parity selection	00 (no parity), 01 (even parity), 02 (odd parity)	00	00	00	00	00	\times	\bigcirc	
	C075	Communication stop bit selection	1 (1 bit), 2 (2 bits)	1	1	1	1	1	\times	\bigcirc	

(*1) 4000HF:0.00 to $99.99,100.0$ to $120.0(\mathrm{~Hz})$

Code		Function Name	Monitored data or setting	Default Setting					Setting during operation (allowed or not)	Change during operation (allowed or not)	
		SJ700/SJ700D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
	C076		Selection of the operation after communication error	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)	02	02	02	02	02	\times	\bigcirc
	C077		Communication timeout limit before tripping	0.00 to 99.99 (s)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc
	C078	Communication wait time	0. to 1000. (ms)	0.	0.	0.	0.	0.	\times	\bigcirc	
	C079	Communication mode selection	00 (ASCII), 01 (Modbus-RTU)	00	00	00	00	00	\times	\bigcirc	
	C081	O input span calibration	0. to 9999., 1000 to 6553 (10000 to 65530)	Factory set					\bigcirc	\bigcirc	
	C082	Ol input span calibration	0. to 9999., 1000 to 6553 (10000 ~ 65530)						\bigcirc	\bigcirc	
	C083	O2 input span calibration	0. to 9999., 1000 to 6553 ($10000 \sim 65530)$						\bigcirc	\bigcirc	
	C085	Thermistor input tuning	0.0 to 999.9, 1000.						\bigcirc	\bigcirc	
	C091	Debug mode enable	(Do not change this parameter, which is intended for factory adjustment.)	00	00	00	00	00	\bigcirc	\bigcirc	
$\begin{aligned} & \stackrel{\infty}{\Phi} \\ & \stackrel{1}{\square} \end{aligned}$	C101	UP/DOWN memory mode selection	00 (not storing the frequency data), 01 (storing the frequency data)	00	00	00	00	00	\times	\bigcirc	
	C102	Reset mode selection	00 (resetting the trip when RS is on), 01 (resetting the trip when RS is off), 02 (enabling resetting only upon tripping [resetting when RS is on]), 03 (resetting only trip)	00	00	00	00	00	\bigcirc	\bigcirc	
	C103	Restart mode after reset	00 (starting with 0 Hz), 01 (starting with matching frequency), 02 (restarting with active matching frequency)	00	00	00	00	00	\times	\bigcirc	
	C105	FM gain adjustment	50. to 200. (\%)	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	C106	AM gain adjustment	50. to 200. (\%)	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	C107	AMI gain adjustment	50. to 200. (\%)	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	C109	AM bias adjustment	0. to 100. (\%)	0.	0.	0.	0.	0.	\bigcirc	\bigcirc	
	C110	AMI bias adjustment	0. to 100. (\%)	20.	20.	20.	20.	20.	\bigcirc	\bigcirc	
	C111	Overload setting (2)	SJ700/SJ700D (CT):0.0 to $2.00 \times$ "rated current" (A) $<75 \mathrm{~kW}$ and over: 0.0 to $1.80 \times$ "rated current"> SJ700D (VT)/SJ700B:0.0 to $1.50 \times$ "rated current" (A)	Rated current of inverter x 1.00					\bigcirc	\bigcirc	
	C121	O input zero calibration	0. to 9999., 1000 to 6553 (10000 to 65530)	Factory set					\bigcirc	\bigcirc	
	C122	OI input zero calibration	0. to 9999., 1000 to 6553 (10000 to 65530)						\bigcirc	\bigcirc	
	C123	O2 input zero calibration	0. to 9999., 1000 to 6553 (10000 to 65530)						\bigcirc	\bigcirc	
	C130	Output 11 on-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C131	Output 11 off-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C132	Output 12 on-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C133	Output 12 off-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C134	Output 13 on-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C135	Output 13 off-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C136	Output 14 on-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C137	Output 14 off-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C138	Output 15 on-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C139	Output 15 off-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C140	Output RY on-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C141	Output RY off-delay time	0.0 to 100.0 (s)	0.0	0.0	0.0	0.0	0.0	\times	\bigcirc	
	C142	Logical output signal 1 selection 1	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C143	Logical output signal 1 selection 2	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C144	Logical output signal 1 operator selection	00 (AND), 01 (OR), 02 (XOR)	00	00	00	00	00	\times	\bigcirc	
	C145	Logical output signal 2 selection 1	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C146	Logical output signal 2 selection 2	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C147	Logical output signal 2 operator selection	00 (AND), 01 (OR), 02 (XOR)	00	00	00	00	00	\times	\bigcirc	
	C148	Logical output signal 3 selection 1	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C149	Logical output signal 3 selection 2	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C150	Logical output signal 3 operator selection	00 (AND), 01 (OR), 02 (XOR)	00	00	00	00	00	\times	\bigcirc	
	C151	Logical output signal 4 selection 1	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C152	Logical output signal 4 selection 2	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C153	Logical output signal 4 operator selection	00 (AND), 01 (OR), 02 (XOR)	00	00	00	00	00	\times	\bigcirc	
	C154	Logical output signal 5 selection 1	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C155	Logical output signal 5 selection 2	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C156	Logical output signal 5 operator selection	00 (AND), 01 (OR), 02 (XOR)	00	00	00	00	00	\times	\bigcirc	
	C157	Logical output signal 6 selection 1	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C158	Logical output signal 6 selection 2	Same as the settings of C021 to C026 (except those of LOG1 to LOG6)	00	00	00	00	00	\times	\bigcirc	
	C159	Logical output signal 6 operator selection	00 (AND), 01 (OR), 02 (XOR)	00	00	00	00	00	\times	\bigcirc	
	C160	Input terminal response time setting 1	0. to 200. (x2ms)	1	1	1	1	1	\times	\bigcirc	
	C161	Input terminal response time setting 2	0. to 200. ($\times 2 \mathrm{~ms}$)	1	1	1	1	1	\times	\bigcirc	
	C162	Input terminal response time setting 3	0. to 200. (×2ms)	1	1	1	1	1	\times	\bigcirc	
	C163	Input terminal response time setting 4	0. to 200. ($\times 2 \mathrm{~ms}$)	1	1	1	1	1	\times	\bigcirc	
	C164	Input terminal response time setting 5	0. to 200. (×2ms)	1	1	1	1	1	\times	\bigcirc	
	C165	Input terminal response time setting 6	0. to 200. (x2ms)	1	1	1	1	1	\times	\bigcirc	
	C166	Input terminal response time setting 7	0. to 200. ($\times 2 \mathrm{~ms}$)	1	1	1	1	1	\times	\bigcirc	
	C167	Input terminal response time setting 8	0. to 200. ($\times 2 \mathrm{~ms}$)	1	1	1	1	1	\times	\bigcirc	
	C168	Input terminal response time setting FW	0. to 200. ($\times 2 \mathrm{~ms}$)	1	1	1	1	1	\times	\bigcirc	
㐫	C169	Multistage speed/position determination time	0. to 200. ($\times 10 \mathrm{~ms}$)	0	0	0	0	0	\times	\bigcirc	

H GROUP: MOTOR CONSTANTS FUNCTIONS

Code		Function Name	Monitored data or setting	Default Setting					$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { during } \\ \text { operation } \\ \text { (allowed or not) } \end{array}$		
		SJ700/SJ700D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
$\begin{aligned} & \text { n } \\ & \text { N} \\ & \text { Win } \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	H001		Auto-tuning Setting	00 (disabling auto-tuning), 01 (auto-tuning without rotation), 02 (auto-tuning with rotation)	00	00	00	00	00	\times	\times
	H002		Motor data selection, 1st motor	00 (Hitachi standard data), 01 (auto-tuned data), 02 (auto-tuned data [with online auto-tuning function])	00	00	00	00	00	\times	\times
	H202	Motor data selection, 2nd motor	00 (Hitachi standard data), 01 (auto-tuned data), 02 (auto-tuned data [with online auto-tuning function])	00	00	00	00	00	\times	\times	
	H003	Motor capacity, 1st motor	SJ700/SJ700D:0.20 to 160 (kW), 185kW and over :11.0 to 400 (kW) SJ700B:0.20 to 160(kW)	Factory set					\times	\times	
	H203	Motor capacity, 2nd motor	SJ700/SJ700D:0.20 to $160(\mathrm{~kW}), 185 \mathrm{~kW}$ and over :11.0 to $400(\mathrm{~kW})$ SJ700B:0.20 to 160 (kW)						\times	\times	
	H004	Motor poles setting, 1st motor	2, 4, 6, 8, 10 (poles)	4	4	4	4	4	\times	\times	
	H204	Motor poles setting, 2nd motor	2, 4, 6, 8, 10 (poles)	4	4	4	4	4	\times	\times	
	H005	Motor speed constant, 1st motor	0.001 to $9.999,10.00$ to 80.00 (10.000 to 80.000)	1.590	1.590	1.590	1.590	1.590	\bigcirc	\bigcirc	
	H205	Motor speed constant, 2nd motor	0.001 to $9.999,10.00$ to 80.00 (10.000 to 80.000)	1.590	1.590	1.590	1.590	1.590	\bigcirc	\bigcirc	
	H006	Motor stabilization constant, 1st motor	0. to 255.	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	H206	Motor stabilization constant, 2nd motor	0. to 255.	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	H306	Motor stabilization constant, 3rd motor	0. to 255.	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	
	H020	Motor constant R1, 1st motor	0.001 to $9.999,10.00$ to 65.53 (Ω) (*1)	Depending on motor capacity/poles					\times	\times	
	H220	Motor constant R1, 2nd motor	0.001 to $9.999,10.00$ to 65.53 (ת) (*1)						\times	\times	
	H021	Motor constant R2, 1st motor	0.001 to $9.999,10.00$ to 65.53 (ת) (*1)						\times	\times	
	H221	Motor constant R2, 2nd motor	0.001 to $9.999,10.00$ to 65.53 (ת) (*1)						\times	\times	
	H022	Motor constant L, 1st motor	0.01 to 99.99, 100.0 to 655.3 (mH) (*2)						\times	\times	
	H222	Motor constant L, 2nd motor	0.01 to 99.99, 100.0 to 655.3 (mH) (*2)						\times	\times	
	H023	Motor constant lo	0.01 to 99.99, 100.0 to 655.3 (A) (*3)						\times	\times	
	H223	Motor constant lo, 2nd motor	0.01 to 99.99, 100.0 to 655.3 (A) (*3)						\times	\times	
	H024	Motor constant J	0.001 to 9.999, 10.00 to $99.99,100.0$ to 999.9, 1000. to 9999.						\times	\times	
	H224	Motor constant J, 2nd motor	0.001 to 9.999, 10.00 to $99.99,100.0$ to 999.9, 1000. to 9999 .						\times	\times	
	H030	Auto constant R1, 1st motor	0.001 to $9.999,10.00$ to 65.53 (ת) (*1)						\times	\times	
	H230	Auto constant R1, 2nd motor	0.001 to $9.999,10.00$ to 65.53 (ת) (*1)						\times	\times	
	H031	Auto constant R2, 1st motor	0.001 to $9.999,10.00$ to 65.53 (Ω) (*1)						\times	\times	
	H231	Auto constant R2, 2nd motor	0.001 to $9.999,10.00$ to 65.53 (ת) (*1)						\times	\times	
	H032	Auto constant L, 1st motor	0.01 to 99.99, 100.0 to 655.3 (mH) (*2)						\times	\times	
	H232	Auto constant L, 2nd motor	0.01 to 99.99, 100.0 to 655.3 (mH) (*2)						\times	\times	
	H033	Auto constant lo, 1st motor	0.01 to 99.99, 100.0 to 655.3 (A) (*3)						\times	\times	
	H233	Auto constant lo, 2nd motor	0.01 to $99.99,100.0$ to 655.3 (A) (*3)						\times	\times	
	H034	Auto constant J, 1st motor	0.001 to 9.999, 10.00 to 99.99, 100.0 to 999.9, 1000. to 9999.						\times	\times	
	H234	Auto constant J, 2nd motor	0.001 to 9.999, 10.00 to $99.99,100.0$ to 999.9, 1000. to 9999.						\times	\times	
000000000000	H050	Pl proportional gain for 1st motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H250	PI proportional gain for 2nd motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H051	Pl integral gain for 1st motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H251	Pl integral gain for 2nd motor	0.0 to 999.9, 1000.	100.0	100.0	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H052	P proportional gain setting for 1st motor	0.01 to 10.00	1.00	1.00	1.00	1.00	1.00	\bigcirc	\bigcirc	
	H252	P proportional gain setting for 2nd motor	0.01 to 10.00	1.00	1.00	1.00	1.00	1.00	\bigcirc	\bigcirc	
	H060	Zero LV Imit for 1st motor (*4)	0.0 to 100.0	100.	100.	100.	70.	70.	\bigcirc	\bigcirc	
	H260	Zero LV Imit for 2nd motor (*4)	0.0 to 100.0	100.	100.	100.	70.	70.	\bigcirc	\bigcirc	
	H061	Zero LV starting boost current for 1st motor (*4)	0. to 50. (\%)	50.	50.	50.	50.	50.	\bigcirc	\bigcirc	
	H261	Zero LV starting boozst current for 2nd motor (*4)	0. to 50. (\%)	50.	50.	50.	50.	50.	\bigcirc	\bigcirc	
	H070	Terminal selection PI proportional gain setting	0.0 to 999.9, 1000.	100.0	100.0	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H071	Terminal selection PI integral gain setting	0.0 to 999.9, 1000.	100.0	100.0	100.0	100.0	100.0	\bigcirc	\bigcirc	
	H072	Terminal selection P proportional gain setting	0.00 to 10.00	1.00	1.00	1.00	1.00	1.00	\bigcirc	\bigcirc	
	H073	Gain switching time	0. to 9999. (ms)	100.	100.	100.	100.	100.	\bigcirc	\bigcirc	

(*1) 1850HF,2200HF,3150HF and 4000HF:0.1 to 999.9,1000. to 6553. (m 2)
(*2) 1850HF,2200HF,3150HF and 4000HF:0.001 to $9.999,10.00$. to $65.53(\mathrm{mH})$
(*3) 1850HF,2200HF,3150HF and $4000 \mathrm{HF}: 0.01$ to 0.35 " rated current " (A).
(*4) SJ700D (VT): Not available (no display)

Code		Function Name	Monitored data or setting	Default Setting					Setting during operation (allowed or not)	Change during operation (allowed or not)	
		SJ700/SJ700D(CTmode)		SJ700B							
		-FE		-FU	-F	-F	-FU				
	P001		Operation mode on expansion card 1 error	00 (tripping), 01 (continuing operation)	00	00	00	00	00	\times	\bigcirc
	P002		Operation mode on expansion card 2 error	00 (tripping), 01 (continuing operation)	00	00	00	00	00	\times	\bigcirc
	P011	Encoder pulse-per-revolution (PPR) setting (*1)	128. to 9999., 1000 to 6500 (10000 to 65000) (pulses)	1024	1024	1024	1024	1024	\times	\times	
	P012	Control pulse setting (*1)	00 (ASR), 01 (APR), 02 (APR2), 03 (HAPR)	00	00	00	00	00	\times	\times	
	P013	Pulse input mode setting (*1)	00 (mode 0), 01 (mode 1), 02 (mode 2)	00	00	00	00	00	\times	\times	
	P014	Home search stop position setting (*1)	0. to 4095.	0.	0.	0.	0.	0.	\times	\bigcirc	
	P015	Home search speed setting (*1)	"start frequency" to "maximum frequency" (up to 120.0) (Hz)	5.00	5.00	5.00	5.00	5.00	\times	\bigcirc	
	P016	Home search direction setting (*1)	00 (forward), 01 (reverse)	00	00	00	00	00	\times	\times	
	P017	Home search completion range setting (*1)	0. to 9999., 1000 (10000) (pulses)	5.	5.	5.	5.	5.	\times	\bigcirc	
	P018	Home search completion delay time setting (*1)	0.00 to 9.99 (s)	0.00	0.00	0.00	0.00	0.00	\times	\bigcirc	
	P019	Electronic gear set position selection (*1)	00 (feedback side), 01 (commanding side)	00	00	00	00	00	\times	\bigcirc	
	P020	Electronic gear ratio numerator setting (*1)	0. to 9999.	1.	1.	1.	1.	1.	\bigcirc	\bigcirc	
	P021	Electronic gear ratio denominator setting (*1)	0. to 9999.	1.	1.	1.	1.	1.	\bigcirc	\bigcirc	
	P022	Feed-forward gain setting (*1)	0.00 to $99.99,100.0$ to 655.3	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P023	Position loop gain setting (*1)	0.00 to 99.99, 100.0	0.50	0.50	0.50	0.50	0.50	\bigcirc	\bigcirc	
	P024	Position bias setting (*1)	-204 (-2048.) / -999. to 2048	0.	0.	0.	0.	0.	\bigcirc	\bigcirc	
	P025	Temperature compensation thermistor enable	00 (no compensation), 01 (compensation)	00	00	00	00	00	\times	\bigcirc	
	P026	Over-speed error detection level setting (*1)	0.0 to 150.0 (\%)	135.0	135.0	135.0	135.0	135.0	\times	\bigcirc	
	P027	Speed deviation error detection level setting (*1)	0.00 to 99.99, 100.0 to120.0 (Hz)	7.50	7.50	7.50	7.50	7.50	\times	\bigcirc	
	P028	Numerator of motor gear ratio (*1)	0. to 9999.	1.	1.	1.	1.	1.	\times	\bigcirc	
	P029	Denominator of motor gear ratio (*1)	0. to 9999.	1.	1.	1.	1.	1.	\times	\bigcirc	
	P031	Accel./decel. time input selection	00 (digital operator), 01 (option 1), 02 (option 2), 03 (easy sequence)	00	00	00	00	00	\times	\times	
	P032	Positioning command input selection (*1)	00 (digital operator), 01 (option 1), 02 (option 2)	00	00	00	00	00	\times	\bigcirc	
	P033	Torque command input selection (*1)	00 (O terminal), 01 (OI terminal), 02 (O2 terminal), 03 (digital operator)	00	00	00	00	00	\times	\times	
	P034	Torque command setting (*1)	SJ700/SJ700D: 0. to 200. (\%) < 75kW and over:0. to 180. (\%) > SJ700B: 0. to 180. (\%)	0.	0.	0.	0.	0.	\bigcirc	\bigcirc	
	P035	Polarity selection at the torque command input via O2 terminal (*1)	00 (as indicated by the sign), 01 (depending on the operation direction)	00	00	00	00	00	\times	\times	
	P036	Torque bias mode (*1)	00 (disabling the mode), 01 (digital operator), 02 (input via O 2 terminal)	00	00	00	00	00	\times	\times	
	P037	Torque bias value (*1)	SJ700/SJ700D: -200. to +200. (\%) < 75 kW and over:-180. to $+180 .(\%)>$ SJ700B: -180. to +180. (\%)	0.	0.	0.	0.	0.	\bigcirc	\bigcirc	
	P038	Torque bias polarity selection (*1)	00 (as indicated by the sign), 01 (depending on the operation direction)	00	00	00	00	00	\times	\times	
	P039	Speed limit for torque-controlled operation (forward rotation) (*1)	0.00 to "maximum frequency" (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P040	Speed limit for torque-controlled operation (reverse rotation) (*1)	0.00 to "maximum frequency" (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P044	DeviceNet comm watchdog timer	0.00 to 99.99 (s)	1.00	1.00	1.00	1.00	1.00	\times	\times	
	P045	Inverter action on DeviceNet comm error	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)	01	01	01	01	01	\times	\times	
	P046	DeviceNet polled I/O : Output instance number	20, 21, 100	21	21	21	21	21	\times	\times	
	P047	DeviceNet polled I/O : input instance number	70, 71, 101	71	71	71	71	71	\times	\times	
	P048	Inverter action on DeviceNet idle mode	00 (tripping), 01 (tripping after decelerating and stopping the motor), 02 (ignoring errors), 03 (stopping the motor after free-running), 04 (decelerating and stopping the motor)	01	01	01	01	01	\times	\times	
	P049	DeviceNet motor poles setting for RPM	0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 (poles)	00	00	00	00	00	\times	\times	
	P055	Pulse-string frequency scale	1.0 to 50.0 (kHz)	25.0	25.0	25.0	25.0	25.0	\times	\bigcirc	
	P056	Time constant of pulse-string frequency filter	0.01 to 2.00 (s)	0.10	0.10	0.10	0.10	0.10	\times	\bigcirc	
	P057	Pulse-string frequency bias	-100. to +100. (\%)	0.	0.	0.	0.	0.	\times	\bigcirc	
	P058	Pulse-string frequency limit	0. to 100. (\%)	100.	100.	100.	100.	100.	\times	\bigcirc	
	$\begin{aligned} & \text { P060 } \\ & \text { P067 } \end{aligned}$	Multistage position setting 0-7 (*1)	Position setting range reverse side - forward side (upper 4 digits including "-")	0	0	0	0	0	\bigcirc	\bigcirc	
	P068	Zero-return mode selection (*1)	00(Low) / 01 (Hi1) / 00 (Hi2)	00	00	00	00	00	\bigcirc	\bigcirc	
	P069	Zero-return direction selection (*1)	00 (FW) / 01 (RV)	00	00	00	00	00	\bigcirc	\bigcirc	
	P070	Low-speed zero-return frequency (*1)	$0.00-10.00$ (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P071	High-speed zero-return frequency (*1)	0.00-99.99 / 100.0-Maximum frequency setting, 1st motor (Hz)	0.00	0.00	0.00	0.00	0.00	\bigcirc	\bigcirc	
	P072	Position range specification (forward) (*1)	$0-268435455$ (when P012 = 02) 0-1073741823 (When P012 = 03) (upper 4 digits)	268435455					\bigcirc	\bigcirc	
	P073	Position range specification (reverse) (*1)	$-268435455-0$ (when P012 = 02) $-1073741823-0$ (When P012 = 03) (upper 4 digits)	-268435455					\bigcirc	\bigcirc	
	P074	Teaching selection (*1)	00 (X00) / 01 (X01) / 02 (X02) / 03 (X03) /04 (X04) / 05 (X05) / 06 (X06) / 07 (X07)	00	00	00	00	00	\bigcirc	\bigcirc	
葡	$\begin{aligned} & \text { P100 } \\ & \text { P131 } \end{aligned}$	Easy sequence user parameter $\mathrm{U}(00)-(31)$	0. to 9999., 1000 to 6553 (10000 to 65535)	0.	0.	0.	0.	0.	\bigcirc	\bigcirc	

(*1) SJ700D (VT): Not available (no display)
U GROUP: USER-SELECTABLE MENU FUNCTIONS
$[\mathrm{O}=$ Allowed $\mathrm{X}=$ Not permitted]

Code	Function Name	Monitored data or setting	Default Setting					$\begin{aligned} & \text { Setition } \\ & \text { Sutan } \\ & \text { oupaition } \end{aligned}$$\begin{aligned} & \text { operation } \\ & \text { llowed or not) } \end{aligned}$	
			SU700/SJT00D(CTmode)			SJ700B			
			-FE	-fu	-F	-	-fu		
	User selected functions 1-12	no/d001 to P131	no	no	no	no	no	\bigcirc	\bigcirc

PROTECTIVE FUNCTIONS

Name	Cause（s）		Display on digital operator	Display on remote operator／copy unit ERR1＊＊＊＊
Over－current protection	The inverter output was short－circuited，or the motor shaft is locked or has a heavy load．These conditions cause excessive current for the inverter，so the inverter output is turned off．	While at constant speed	ERi	OC．Drive
		During deceleration	EnI	OC．Decel
		During acceleration	EП3	OC．Accel
		Others	［04	Over．C
Overload protection（＊1）	When a motor overload is detected by the electronic thermal function，the inverter trips and turns off its output．		E\％5	Over．L
Braking resistor overload protection	When the regenerative braking resistor exceeds the usage time allowance or an over－voltage caused by the stop of the BRD function is detected，the inverter trips and turns off its output．		EDE	OL．BRD
Over－voltage protection	When the DC bus voltage exceeds a threshold，due to regenerative energy from the motor，the inverter trips and turns off its output．		$E \square$	Over．V
EEPROM error（＊2）	When the built－in EEPROM memory has problems due to noise or excessive temperature，the inverter trips and turns off its output．		E日B	EEPROM
Under－voltage error	A decrease of internal DC bus voltage below a threshold results in a control circuit fault．This condition can also generate excessive motor heat or cause low torque．The inverter trips and turns off its output．		E\％9	Under．V
CT（Current transformer）error	If a strong source of electrical interference is close to the inverter or abnormal operations occur in the built－in CT，the inverter trips and turns off its output．		E 1 0	CT
CPU error	When a malfunction in the built－in CPU has occurred，the inverter trips and turns off its output．		E 11	CPU
External trip	When a signal to an intelligent input terminal configured as EXT has occurred，the inverter trips and turns off its output．		E 12］	EXTERNAL
USP error	An error occurs when power is cycled while the inverter is in RUN mode if the Unattended Start Protection （USP）is enabled．The inverter trips and does not go into RUN mode until the error is cleared．		E 13	USP
Ground fault	The inverter is protected by the detection of ground faults between the inverter output and the motor during power－up tests．This feature protects the inverter only．		E 14	GND．FIt．
Input over－voltage protection	When the input voltage is higher than the specified value，it is detected 60 seconds after power－up and the inverter trips and turns of its output．		E 15	OV．SRC
Instantaneous power failure	When power is cut for more than 15 ms ，the inverter trips and turns off its output．If power failure continues， the error will be cleared．The inverter restarts if it is in RUN mode when power is cycled．		E15	Inst．P－F
Temperature error due to low cooling－fan speed	The inverter will display the error code shown on the right if the lowering of cooling－fan speed is detected at the occurrence of the temperature error described below．		E20	OH．stFAN
Inverter thermal trip	When the inverter internal temperature is higher than the specified value，the thermal sensor in the inverter module detects the higher temperature of the power devices and trips，turning off the inverter output．		Eこ	OH FIN
Gate array error	Communication error has occurred between CPU and gate array．		－ココ	GA．COM
Phase loss input protection	One of three lines of 3－phase power supply is missing．		E24	PH．Fail
Main circuit error（＊3）	The inverter will trip if the gate array cannot confirm the on／off state of IGBT because of a malfunction due to noise or damage to the main circuit element．		Eこら	Main．Cir
Cooling－fan speed drop signal	If the rotation speed of the internal cooling fan decreases so that the cooling effect decreases，inverter output turns OFF for protection．（available only for SJ700 1850－4000）		Eこコ	Fan．Slow
IGBT error	When an instantaneous over－current has occurred，the inverter trips and turns off its output to protect main circuit element．		E30	IGBT
Phase loss output protection （SJ700D only）	When the phase loss output protection has been enabled（b141＝01），the inverter will trip to avoid damage if a phase loss output is detected．		E34	O．PH．Fail
Thermistor error	When the thermistor inside the motor detects temperature higher than the specified value，the inverter trips and turns off its output．		E35	TH
Braking error	The inverter turns off its output when it can not detect whether the braking is ON or OFF within waiting time set at b024 after it has released the brake．（When braking is enabled at b120）		E35	BRAKE
Emergency stop（＊4）	If the EMR signal（on three terminals）is turned on when the slide switch（SW1）on the logic board is set to ON，the inverter hardware will shut off the inverter output and display the error code shown on the right．		E37	EMR
Low－speed overload protection	If overload occurs during the motor operation at a very low speed at 0.2 Hz or less，the circuit in the inverter will detect the overload and shut off the inverter output．（2nd electron （Note that a high frequency may be recorded as the error history data．）	electronic thermal protection nic thermal control）	E3B	OL－LowSP
Modbus communication error	If timeout occurs because of line disconnection during the communication in Mod will display the error code shown on the right．（The inverter will trip according to the	us－RTU mode，the inverter setting of＂C076＂．）	E4i	NET．ERR
Out of operation due to under－voltage	Due to insufficient voltage，the inverter has turned off its output and been trying restart．If it fails to restart，it goes into the under－voltage error．		－－－－	UV．WAIT
Easy sequence function Error	Error indications by protective functions with the easy sequence function used．		［43］	PRG．CMD
			E44	PRG．NST
			E45	PRG．ERR1
Expansion card 1 connection error	An error has been detected in an expansion card or at its connecting terminals．		E5G－E59	OP1－0～OP1－9
Expansion card 2 connection error			E7，$E 79$	OP2－0～OP2－9

（＊1）：Reset operation is acceptable 10 seconds after the trip．（ 185 kW and over ：90 seconds）（＊2）：Check the parameters when EEPROM error occurs．（＊3）：The inverter will not accept reset commands input via the RS terminal俍

〈Status Display〉

Code	0	1	2	3	4	5	6	7	8	8
Description	Reset	Stop	Deceleration	Constant Speed	Acceleration	fo Stop	Starting	DB	Overload Restriction	Forcible or servo－on

〈How to access the details about the present fault〉

省スペース化をはかるため，表組の組み方を変えました。

TERMINALS

Main Circuit Terminals

- Terminal Description

Terminal Symbol	Terminal Name	Terminal Symbol	Terminal Name
$R(L 1), S(L 2), T(L 3)$	Main power supply input terminals	$P(+), N(-)$	External braking unit connection terminals
$U(T 1), V(T 2), \mathrm{W}(T 3)$	Inverter output terminals	$\Theta(G)$	Ground connection terminal
$P D(+1), P(+)$	DC reactor connection terminals	$R_{0}\left(\mathrm{R}_{0}\right), \mathrm{T}_{0}\left(\mathrm{~T}_{0}\right)$	Control power supply input terminals
$\mathrm{P}(+), \mathrm{RB}(\mathrm{RB})$	External braking resistor connection terminals		

-Screw Diameter and Terminal Width

Sodel
SJ00/SJ700D
004~037LFF3,LFUF3/007~037HFF3,HFEF3,HFUF3
055,075LFF3,LFUF3/HFF3,HFEF3,HFUF3
110LFF3,LFUF3/HFF3,HFEF3,HFUF3
150,185LFF3,LFUF3/150-300HFF3,HFEF3,HFUF3
220,300LFF3,LFUF3
370,450LFF3,LFUF3/370-550HFF3,HFEF3,HFUF3
550LFF3,LFUF3
750,900HFF3,HFEF3,HFUF3
1100HFF3,HFEF3,HFUF3/1320HFF3,HFEF3/1500HFUF3
1850,2200HF2,HFE2,HFU2
3150HF2,HFE2,HFU2
4000HF2,HFE2,HFU2
RoT0 terminals (All models)

SJ700B	Screw diameter	Ground Screw diameter	Terminal width (mm)
055HF	M4	M4	13
075,110HFF/ HFUF,110LFUF	M5	M5	18
150HFF/ HFUF/ LFUF	M6	M6	18
185-370HFF/HFUF,185,220LFUF	M6	M6	23
300,370LFUF	M8	M6	23
450-750HFF/ HFUF,450,550LFUF	M8	M8	29
750LFUF	M10	M8	40
900,1100HFF/ HFUF	M10	M8	29
1320,1600HFF/ HFUF	M10	M8	40
-	M16	M12	51
-	M16	M12	45
-	M12	M12	50
	M4	-	9

- Terminal Arrangement

SJ700D-004-037LFUF3,LFF3,007-037HFEF3,HFUF3,HFF3 SJ700B-055HF,HFU

		$\begin{array}{\|c} R \\ (L 1) \end{array}$	$\underset{\text { (L2) }}{\mathbf{S}}$	$\begin{gathered} \mathrm{T} \\ \text { (L3) } \end{gathered}$	$\underset{(\mathrm{T} 1)}{\mathrm{U}}$	$\begin{gathered} \hline \mathbf{V} \\ (\mathrm{T} 2) \end{gathered}$	$\begin{gathered} \mathbf{W} \\ (\mathrm{T} 3) \end{gathered}$
Ro	To						
		$\begin{array}{\|l\|} \hline P D \\ (+1) \end{array}$	$\underset{(+)}{\mathbf{P}}$	$\begin{gathered} \mathrm{N} \\ (-) \end{gathered}$	$\begin{aligned} & \hline \mathrm{RB} \\ & \text { (RB) } \\ & \hline \end{aligned}$	\ominus (G)	Θ (G)

SJ700D-055-220LFUF3,LFF3,HFEF3,HFUF3,HFF3
SJ700B-075-300HFF,HFUF,110-300LFUF

$\begin{array}{c}\text { RB } \\ \text { (RB) }\end{array}$	$\begin{array}{c}\text { Ro } \\ \text { Ro }\end{array}$	$\begin{array}{c}\text { T0 } \\ \text { (To }\end{array}$

$\begin{gathered} R \\ (\mathrm{~L} 1) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \text { (L2) } \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{~L} 3) \end{gathered}$	$\begin{aligned} & \hline \text { PD } \\ & (+1) \end{aligned}$	$\begin{gathered} \mathbf{P} \\ (+) \end{gathered}$	$\underset{(-)}{\mathbf{N}}$	$\underset{(\mathbf{T} 1)}{\mathbf{U}}$	$\begin{gathered} \underset{(T 2)}{V} \end{gathered}$	$\begin{gathered} \mathbf{W} \\ \text { (T3) } \end{gathered}$
\oplus (G)								$\stackrel{(1)}{(G)}$

SJ700D-300-370LFUF3,LFF3,300-550HFEF3,HFUF3,HFF3
SJ700B-370-750HFF,HFUF,370-450LFUF
Ro To
(Ro) (To)

SJ700-1850,2200HFE2,HFU2,HF2

SJ700-3150HFE2,HFU2,HF2

SJ700-4000HFE2,HFU2,HF2

SJ700D-450-550LFUF3,LFF3,750-1100HFEF3,HFUF3,HFF3 1320HFEF3,HFF3,1500HFUF3 SJ700B-900-1600HFF,HFUF, 550-750LFUF

Ro	
(Ro)	T0
(To)	

$\left(\Theta_{\bar{\prime}}\right)$
(G)

$\stackrel{(}{\square}$
(G)

TERMINALS

Control Circuit Terminals

Terminal Description

			Symbol	Name	Explanation of Terminals	Ratings
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & \stackrel{\pi}{4} \end{aligned}$	Power Supply		L	Common Terminal for Analog Power Source	Common terminal for H, O, O2, OI, AM, and AMI. Do not ground.	-
			H	Power Source for Frequency Setting	Power supply for frequency command input	DC 10V, 20 mA max.
	Frequency Setting		0	Frequency Command Terminal	Maximum frequency is attained at DC 10 V in DC $0-10 \mathrm{~V}$ range. Set the voltage at A014 to command maximum frequency below DC 10V.	Input impedance: 10k Ω, Allowable input voltage range: DC $-0.3-+12 \mathrm{~V}$
			O2	Frequency Command Extra Terminal	O 2 signal is added to the frequency command of O or Ol in $\mathrm{DC} 0- \pm 10 \mathrm{~V}$ range. By changing configuration, frequency command can be input also at O 2 terminal.	Input impedance:10k Ω, Allowable input voltage range: DC $0- \pm 12 \mathrm{~V}$
			Ol	Frequency Command Terminal	Maximum frequency is attained at DC 20 mA in DC $4-20 \mathrm{~mA}$ range. When the intelligent terminal configured as AT is on, OI signal is enabled.	Input impedance: 100Ω, Allowable input voltage range: DC $0-24 \mathrm{~mA}$
	Monitor Output		AM	Analog Output Monitor (Voltage)	Selection of one function from: Output frequency, output current, torque, output voltage, input power, electronic thermal load ratio, and LAD frequency.	DC 0-10V, 2mA max.
			AMI	Analog Output Monitor (Current)		DC 4-20mA, 250Ω max.
$\begin{aligned} & \overline{\widetilde{0}} \\ & \mathbf{0} \\ & \overline{0} \end{aligned}$	Monitor Out		FM	Digital Monitor (Voltage)	[DCO-10V output (PWM output)] Selection of one function from: Output frequency, output current, torque, output voltage, input power, electronic thermal load ratio, and LAD frequency. [Digital pulse output (Pulse voltage DC $0 / 10 \mathrm{~V}$)] Outputs the value of output frequency as digital pulse (duty 50%)	Digital output frequency range: $0-3.6 \mathrm{kHz}, 1.2 \mathrm{~mA}$ max.
	Power Supply		P24	Power Terminal for Interface	Internal power supply for input terminals. In the case of source type logic, common terminal for contact input terminals.	DC 24V, 100mA max.
			CM1	Common Terminal for Interface	Common terminal for P24, TH, and FM. In the case of sink type logic, common terminal for contact input terminals. Do not ground.	-
	Contact Input	Run Command	FW	Forward Command Input	The motor runs forward when FW terminal is ON, and stops when FW is OFF.	[Input ON condition] Voltage between each terminal and PLC: DC 18 V min. [Input OFF condition] Voltage between each terminal and PLC: DC 3V max. Input impedance between each terminal and PLC: 4.7Ω Allowable maximum voltage between each terminal and PLC: DC 27V
		Functions	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	Intelligent Input Terminals	Assign 8 functions to terminals. (Refer to the standard specifications for the functions.)	
		Common Terminal	PLC	Common Terminal for Intelligent Input Terminals, Common Terminal for External Power Supply for PLCs, etc.	Select sink or source logic with the short-circuit bar on the control terminals. Sink logic: Short P24 to PLC / Source logic: Short CM1 to PLC. When applying external power source, remove the short-circuit bar and connect PLC terminal to the external device.	
	Open Collector Output	State	11 12 13 14 15	Intelligent Output Terminals	Assign 5 functions to open collector outputs. When the alarm code is selected at C062, terminal 11-13 or 11-14 are reserved for error codes of inverter trip. (Refer to the standard specifications for the functions.) Both sink and source logic are always applicable between each terminal and CM1.	Decrease in voltage between each terminal and CM2: 4 V max. during ON Allowable maximum voltage: DC 27 V Allowable maximum current: 50 mA
			CM2	Common Terminal for Intelligent Output Terminals	Common terminal for intelligent output terminal 11-15.	
家	Analog Input	Sensor	TH	Thermistor Input Terminals	The inverter trips when the external thermistor detects abnormal temperature. Common terminal is CM1. [Recommended thermistor characteristics] Allowable rated power: 100 mW or over. Impedance in the case of abnormal temperature: $3 \mathrm{k} \Omega$ Note: Thermal protection level can be set between 0 and 9999Ω.	Allowable input voltage range
或	Relay Output	State/ Alarm	ALO AL1 AL2	Alarm Output Terminals	In default setting, an alarm is activated when inverter output is turned off by a protective function.	Maximum capacity of relays AL1-ALO:AC 250V, 2A (R load)/0.2A (L load) DC 30V, 8 A (R load)/0.6A (L load) AL2-ALO:AC 250V, 1A (R load)/0.2A (L load) DC 30V, 1 A (R load)/0.2A (L load) Minimum capacity of relays AL1-ALO, AL2-ALO: AC100V, 10mA DC5V, 100mA

Terminal Arrangement

Relay Output PCB (L300PTM)

L300PTM is available in case a relay output function is necessary.

	Terminal Symbol	Specifications		
		Contacting Maximum Rate	AC250V	5 A
	11 C			1 A
	11 C		DC30A	5 A
	12A			1A
	12 C	Contacting Minimum Rate	DC1V	1 mA

CONNECTING DIAGRAM

- Source type logic

CONNECTING DIAGRAM

- Sink type logic

CONNECTING TO PLC

Connection with Input Terminals

1.Using Internal Power Supply of The Inverter

(1) Sink type logic

Hitachi EH-150 series PLC Inverter Output Module EH-YT16

2.Using External Power Supply

Hitachi EH-150 series PLC
Output Module
EH-YT16
between P24 and PLC)
(2) Source type logic

(2) Source type logic

Hitachi EH-150 series PLC
Output Module (Note: Remove short-circuit
EH-YTP16
bar between P24 and PLC)

Connection with Output Terminals

WIRING and ACCESSORIES

OPERATOR

Operator, Cable
-Operator

Model	Potentiometer	Remote Control	Copy function	Applied Cable	Applied Model for Built-in
OPE-SR mini	\bigcirc	\bigcirc		-ICS-1 (1m) -ICS-3 (3m)	SJ200
OPE-SBK		\bigcirc			Standard for SJ700/SJ700D,SJ700B
OPE-SR	\bigcirc	\bigcirc			SJ700/SJ700D,SJ700B
WOP		\bigcirc	\bigcirc		SJ700/SJ700D,SJ700B,SJ300,L300P
SRW-OEX ${ }^{11}$		\bigcirc	\bigcirc		SJ300,L300P

*1) Production has been stopped.

Cable

Cable <ICS-1,3>

Operator

4X-KITmini (For installation with OPE-SR mini)

<OPE-SBK (SR)>

<SRW-0J, SRW-0EX> <WOP>

Additional operation using optional operator WOP
 Main Features for WOP (SJ700D only)

-Large 5-line LCD screen
-Real time clock
-Copy function: Storing 4 sets of parameter settings
-Selectable display mode
-Dimentions (Unit:mm (inch) Inches for reference only)

EXPANSION CARD

Digital Input Expansion Card SJ-DG

Output frequency, acceleration time, deceleration time, torque limit, and orientation position ${ }^{* 1}$ can be set by a digital output device such as PLC, etc. (Binary or BCD)

-Standard Specifications

Item		
Input	Data setting signal	
	Strobe signal	
Output	Sequence error signal (Data input error signal)	
Power supply	Power supply for interface	
Specification		
Input	NO contact input	D0,D1, \ldots between D15 and PLCB
	(sink/ source compatible)	Between STRB and PLCB
Output	Open collector output (sink/ source compatible)	DC+27V 50 mA max., between SEQ and CMB
Power supply	DC+24V 90mA max., between P24B and CM1	

-Connecting Diagram

Data Bit Configuration

Item	Mode1	Mode2
D15	Data classification code	Setting data
D14		
D13		
D12		
D11		
D10		
D9	Data can be set by either 16-bit binary or 4-digit BCD.	Data can be set by either
D8		
D7		
D6		16-bit binary or 4-digit BCD
D5	$\left[\begin{array}{l}\text { Input data is divided } \\ \text { into upper 8-bit } \\ \text { and lower 8-bit. }\end{array}\right]$	
D3		
D2		
D1		
D0		

Feedback Expansion Card SJ-FB

Detects motor speed with an encoder and receives the feedback speed fluctuation to realize high-precision operation. Positioning control and orientation with pulse-train input are also possible.

- Application Examples

High-precision operation for the main motor of coil winding machine, wire drawing machine, truck, extruder, etc.

Connecting Diagram (Example)

-General Specifications

Item		Specification	
Speed control	Encoder feedback	Standard: 1024-pulse/r Maximum input pulse: 100k-pulse/s	
	Speed control method	Proportional-Integral (PI) / Proportional (P) control	
Position control	Positioning command	A-, B-phase, 90 -degree phase difference input (By A-, B-, and Z-phase encoder), Maximum input pulse: 100k-pulse/s	
	Electronic gear	Pulse ratio A/B (A, B: Setting range of 1-9999) $1 / 50 \leq$ A/B ≤ 20	
Orientation	Stop position	4096 splitting per motor's single revolution (When using standard encoder)	
	Protective functions		Orientation speed and rotational direction can be set
Speed		Encoder cable disconnection protection, Over-speed protection, Positioning error	

DeviceNet ${ }^{\text {TM }}$ EXPANSION CARD SJ-DN2

With fieldbus option module SJ-DN2, the inverter provides network compatibility with DeviceNet communication as a slave, allowing inverter operation and monitoring from a master device via fieldbus. Expensive hard-wiring can be eliminated for space saving and cost reduction, and installation/replacement within the system can be easily done.

General data	Applicable DeviceNet specification	CIP Volume I-Release3. 4 CIP Volume III-Release1. 5 DeviceNet Adaptation
	Vendor name	Hitachi Industrial Equipment Systems Co_{0}, Ltd. Vendor ID=1112
Physical conformance data	Device profile name	Slave AC Drive \quad Profile No=2
	Product revision	2.1
	Network consumption current	50 mA
	Connector type	Open connector
	Isolation of physical layer	Yes
	Support LED	Module status / network status
	MAC ID setting	set at DipSW
	Default MAC ID	00
	Transmission baud rate setting	set at DipSW
	Support transmission baud rate	125k/250k/500k
Communication data	Pre-defined master/slave connection set	Group 2 only server
	UCMM Support	None
	Support connection	Explicit message connection, Polled I/O connection
	Explicit message fragmentation	Yes

-Dimensional drawings [Unit:mm]

TORQUE CHARACTORISTIC

SJ700D (CT) Series / Maximum Torque with Short - Time Rating

SJ700B Series / Maximum Torque with Short - Time Rating

TORQUE CHARACTORISTIC

SJ700D (CT)/SJ700B Series / Torque Under Continous Operation

DERATING DATA

DIFFERENCE and COMPATIBILITY of SJ300 series and SJ700/SJ700D series

Items				SJ300 series	SJ700/SJ700D series
Copying the parameter settings				You can copy the parameter settings from the SJ300 series into the SJ700 series. (You cannot copy the parameter settings from the SJ700 series to the SJ300 series because the SJ700 series has many new functions and additional parameters.)	
Parameter display mode.				No display mode selection. (full display)	Basic display mode/Data comparison function addition. Note:basic display mode. To display all parameters, specify " 00 " for "b037".
Retry or trip parameter				Instantaneous power failure/under-voltage/ overvoltage/overcurrent:It sets up by b001.	Instantaneous power failure/under-voltage:It sets up by b001. overvoltage/overcurrent:It sets up by b008.
Change function		d001: Output frequency monitoring d007: Scaled output frequency monitoring		You can not change the output frequency setting by using the \triangle and/or ∇ key.	You can not change the output frequency setting by using the \triangle and/or ∇ key.
		A016:External frequency filter time const.		Default:8	Default:31 Note 1
		A038:Jog frequency setting		Setting range:0 to 999Hz	Setting range: 0.01 to 999 Hz (0 Hz setup is impossible)
		A105:[OI]-[L] input start frequency enable		Default:01 (external start frequency)	Default:00 (0Hz)
		b012, b212, b312: Electronic thermal function		Setting upper limit:120\%	Setting upper limit:100\%
		C025:Terminal [15] function		Default:08 (instantaneous power failure)	Default:40 (cooling-fan speed drop)
Terminal	Control Circuit	Removable		Removable	Removable (You can mount the SJ300 series into the SJ700/SJ700D series.)
		Position		Other model:same position. 055L/H:5mm upper part from SJ300. 300L/H:97mm upper part from SJ300.	
	Main Circuit	Screw diameter	110L/H	M6 (Ground Screw)	M5 (Ground Screw)
			300L	M8 (Ground Screw)	M6 (Ground Screw)
			450L	M10	M8
			370 H	M6	M8
		Position		055 to 110L/H:10mm upper part from SJ300. 300L:77mm upper part from SJ300. $300 \mathrm{H}: 72 \mathrm{~mm}$ upper part from SJ300. 150 to 185L/220H:29mm upper part from SJ300. 220L:18mm upper part from SJ300. 550L:25mm upper part from SJ300. Other model:same position.	
		Arrangement		055 to 110L/H:Two steps, 150 to 550L/H:One step	055 to 550L/H:One step
		Others		150 to 220L/H:RB there is not a terminal.	150 to 220L/H:RB there is a terminal.
Easy-removable Dc bus Capacitor				All the models are possible.	15 kW or more is possible.
Dynamic Brake circuit				up to 11 kW	up to 22kW
Minimum value of resistor (Ω)		055L		17	16
		075L		17	10
		110L		17	10
		055H		50	35
		075H		50	35
Dimensions		Installation		055L/H: SJ700/SJ700D is in next larger enclosure vs. SJ300. All other models are the same enclosure size.	
		External radiating fin		055L/H:Those with no compatibility. 075 to 550L/H:Those with compatibility. Note 2	
Digital operator position				055L/H:5mm upper part from SJ300. 300L/H:97mm upper part from SJ300. Other model:same position.	
Option boards		SJ-DG		Those with compatibility.	
		SJ-FB			
		SJ-DN / SJ-DN2		Those with compatibility. Note:Since the SJ700 series has many new functions and additional parameters, some functions of the SJ-DN, SJ-LW, and SJ-PB/PBT (option boards conforming to the open network specifications) cannot be implemented on the SJ700 series. SJ-DN2, SJ-PB2/PBT2 has compatibility to SJ700-2. SJ-DN2, SJ-PB2/PBT2 cannot access new paramaters is SJ700D-3.	
		SJ-PB/PBT, SJ-PB2/PBT2			
		SJ-LW		available	not available
		Option position		Other model:same position. 055L/H:5mm upper part from SJ300. 300L/H:97mm upper part from SJ300.	

Note1: As analog response follows the V/F curve, selection of SLV may require this setting to be reduced.
Note2: 370, 450L/H and 550H:Metal fittings differ.

DIFFERENCE and COMPATIBILITY of L300P series and SJ700B series

Items				L300P series	SJ700B series
Copying the parameter settings				You can copy the parameter settings from the L300P series into the SJ700B series. (You cannot copy the parameter settings from the SJ700B series to the L300P series because the SJ700B series has many new functions and additional parameters.)	
Parameter display mode.				No display mode selection. (full display)	Basic display mode/Data comparison function addition. Note:basic display mode [factory setting] To display all parameters, specify "00" for "b037".
Retry or trip parameter				Instantaneous power failure/under-voltage/ overvoltage/overcurrent:It sets up by b001.	Instantaneous power failure/under-voltage:It sets up by b001. overvoltage/overcurrent:It sets up by b008.
Change function		d001:Output frequency monitoring d007:Scaled output frequency monitoring		You can not change the output frequency setting by using the up and or down key.	You can not change the output frequency setting by using the up and or down key.
		A001: Frequency source setting		Default:00 (Keypad potentiometer on digital operator)	$\begin{aligned} & \text { Default:02 } \\ & \text { (Digital operator) } \end{aligned}$
		A016: External frequency filter time const.		Default:8	Default:31 Note 1
		A038:Jog frequency setting		Setting range:0 to 999Hz	Setting range: 0.01 to 999 Hz (0 Hz setup is impossible)
		A105: [OI]-[L] input start frequency enable		Default:01 (external start frequency)	Default:00 (0Hz)
		b012, b212, b312: Electronic thermal function		Setting upper limit:120\%	Setting upper limit:100\%
		b013, b213, b313: Electronic thermal characteristic		Default:00 (reduced-torque characteristic)	Default:01 (constant-torque characteristic)
		b092:Cooling fan control		Default:00 (always operating the fan)	Default:01 (operating the fan only during inverter operation [including 5 minutes after power-on and power-off])
		b095:Dynamic braking control		Default:00 (disabling)	Default:01 (enabling [disabling while the motor is topped])
Terminal	Control circuit	Removable		Removable	Removable (You can mount the L300P into the SJ700B .)
		Intelligent input terminals		5 terminals	8 terminals
		Intelligent output terminals		2 terminals (Relay)	5 terminals (Open collector)
		Position		370L/H:97mm upper part from L300P. Other model:same position.	
	Main circuit	Screw diameter	150L/H	M6 (Ground Screw)	M5 (Ground Screw)
			370L	M8 (Ground Screw)	M6 (Ground Screw)
			550L	M10	M8
			450H	M6	M8
		Position		110,150LF/HF:10mm upper part from L300P. 185 to 220L/300H:29mm upper part from L300P. 300L:18mm upper part from L300P. 370L:77mm upper part from L300P. 370H:72mm upper part from L300P. 750L:25mm upper part from L300P. Other model:same position.	
		Others		185 to 300L/H:RB there is not a terminal.	185 to 300 H :RB there is a terminal.
Easy-removable Dc bus Capacitor				All the models are possible.	18.5 kW or more is possible.
Dynamic Brake circuit				Up to 15kW	Up to 30kW
Minimum value of resistor (Ω)		110L		17	10
		150L		17	10
		110H		50	35
		150H		50	35
Dimensions		Installation		All models are the same enclosure size.	
		External radiating fin		Those with compatibility. Note 2	
Digital operator position				300L/H:97mm upper part from L300P. Other model:same position.	
Keypad potentiometer on digital operator				Yes.	No. (Option)
Option boards		SJ-DG		Those with compatibility.	
		SJ-DN / SJ-DN2		Those with compatibility. Note:Since the SJ700B series has many new functions and additional parameters,some functions of the SJ-DN, and SJ-PB/PBT (option boards conforming to the open network specifications)cannot be implemented on the SJ700B series.	
		SJ-PB/PBT, SJ-PB2/PBT2			
		SJ-LW		available	not available
		Option position		370L/H:97mm upper part from L300P. Other model:same position.	

Note1: Since a response falls the V/F characteristic curve selection SLV should make this setup small.
Note2: 450, 550L/H and 750H:Metal fittings differ.

Application to Motors

Application to general-purpose motors

Operating frequency	For operation at higher than 60 Hz , it is required to examine the allowable torque of the motor, useful life of bearings, noise, vibration, etc. In this case, be sure to consult the motor manufacturer as the maximum allowable rpm differs depending on the motor capacity, etc.
Torque characteristics	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial power (starting torque decreases in particular). Carefully check the load torque characteristic of a connected machine and the driving torque characteristic of the motor.
Motor loss and temperature increase	An inverter-driven general-purpose motor heats up quickly at lower speeds. Consequently, the continuous torque level (output) will decrease at lower motor speeds. Carefully check the torque characteristics vs speed range requirements.
Noise	When run by an inverter, a general-purpose motor audible slightly greater than with commercial power.
Vibration	When run by an inverter at variable speeds, the motor may generate vibration, especially because of (a) unbalance of the rotor including a connected machine, or (b) resonance caused by the natural vibration frequency of a mechanical system. Particularly, be careful of (b) when operating at variable speeds a machine previously fitted with a constant speed motor. Vibration can be minimized by (1) avoiding resonance points using the frequency jump function of the inverter, (2) using a tireshaped coupling, or (3) placing a rubber shock absorber beneath the motor base.
Power transmission	Under continued, low-speed operation, oil lubrication can deteriorate in a power transmission mechanism with an oilltype gear box mechanism
(gear motor) or reducer. Check with the motor manufacturer for the permissible range of continuous speed. To operate at more than	
60 mz, confirm the machine's ability to withstand the centrifugal force generated.	

Application to special motors
Gear motor \quad The allowable rotation range of continuous drive varies depending on the lubrication method or motor manufacturer.
Brake-equipped motor
Pole-change motor

Submersible motor

Explosion-proof motor (Particularly in case of oil lubrication, pay attention to the low frequency range.)
For use of a brake-equipped motor, be sure to connect the braking power supply from the primary side of the inverter.
There are different kinds of pole-change motors (constant output characteristic type, constant torque characteristic type, etc.), with different rated current values. In motor selection, check the maximum allowable current for each motor of a different pole count. At the time of pole changing, be sure to stop the motor. Also see: Application to the 400 V -class motor.
The rated current of a submersible motor is significantly larger than that of the general-purpose motor. In inverter selection, be sure to check the rated current of the motor.
Inverter drive is not suitable for a safety-enhanced explosion-proof type motor. The inverter should be used in combination with a pressure-proof explosion-proof type of motor.
*Explosion-proof verification is not available for SJ700/SJ700D/SJ700B Series.
Synchronous (MS) motor
High-speed (HFM) motor
Single-phase motor
In most cases, the synchronous (MS) motor and the high-speed (HFM) motor are designed and manufactured to meet the specifications suitable for a connected machine. As to proper inverter selection, consult the manufacturer.

A single-phase motor is not suitable for variable-speed operation by an inverter drive. Therefore, use a three-phase motor.

Application to the 400V-class motor

A system applying a voltage-type PWM inverter with IGBT may have surge voltage at the motor terminals resulting from the cable constants including the cable length and the cable laying method. Depending on the surge current magnification, the motor coil insulation may be degraded. In particular, when a 400 V -class motor is used, a longer cable is used, and critical loss can occur, take any of the following countermeasures:
(1) install the LCR filter between the inverter and the motor,
(2) install the AC reactor between the inverter and the motor, or
(3) enhance the insulation of the motor coil.

Notes on Use

Drive

Run/Stop

Emergency motor stop

High-frequency run

Run or stop of the inverter must be done with the keys on the operator panel or through the control circuit terminal. Do not operate by installing a electromagnetic contactor (MC) in the main circuit.
When the protective function is operating or the power supply stops, the motor enters the free run stop state. When an emergency stop is required or when the motor should be kept stopped, use of a mechanical brake should be considered.
A max. 400 Hz can be selected on the SJ700/SJ700D/SJ700B Series. However, a two-pole motor can attain up to approx. 24,000 rpm , which is extremely dangerous. Therefore, carefully make selection and settings by checking the mechanical strength of the motor and connected machines. Consult the motor manufacturer when it is necessary to drive a standard (general-purpose) motor above 60 Hz . A full line of high-speed motors is available from Hitachi.

Repetitive operation on starting or plugging

About frequent repetition use (crane, elevator, press, washing machine), a power semiconductor (IGBT, a rectification diode, thyristor) in the inverter may come to remarkably have a short life by thermal fatigue.
The life can be prolonged by lower a load electric current. Lengthen acceleration / deceleration time. Lower carrier frequency. or increasing capacity of the inverter.

Operation use in highlands beyond $1,000 \mathrm{~m}$ above sea level

Due to the air density decreasing, whenever standard inverters are used for altitudes above 1000 m , the following conditions are additionally required for proper operation. In application for operation over 2500 m , kindly contact your nearest sales office for assistance.

1. Reduction of inverter rated current

Current rating has to be reduced 1% for every 100 m that exceeds from an altitude of 1000 m .
For example, for inverters placed at an altitude of 2000 m , the rated current has to be reduced 10% (Rated current x 0.9) from its original amount.
$\left\{(2000 \mathrm{~m}-1000 \mathrm{~m}) / 100 \mathrm{~m}^{*}-1 \%=-10 \%\right\}$
2. Reduction of breakdown voltage

Whenever an inverter is used at altitudes beyond 1000 m , the breakdown voltage decreases as follows:
1000 m or less: $1.00 / 1500 \mathrm{~m}: 0.92 / 2000 \mathrm{~m}: 0.90 / 2500 \mathrm{~m}: 0.85$. As mentioned in the instruction manual, please avoid any pressure test.

Installation location and operating environment

Avoid installation in areas of high temperature, excessive humidity, or where moisture can easily collect, as well as areas that are dusty, subject to corrosive gasses, mist of liquid for grinding, or salt. Install the inverter away from direct sunlight in a well-ventilated room that is free of vibration. The inverter can be operated in the ambient temperature range from SJ700/SJ700D (CT): -10 to $50^{\circ} \mathrm{C}, \mathrm{SJ700D}$ (VT): -10 to $40^{\circ} \mathrm{C}, \mathrm{SJ700B}$: -10 to $45^{\circ} \mathrm{C}$. (Carrier frequency and output current must be reduced in the range of 40 to $50^{\circ} \mathrm{C}$.)

Main power supply

Installation of an
AC reactor on the input side

Using a private power generator

In the following examples involving a general-purpose inverter, a large peak current flows on the main power supply side, and is able to destroy the converter module. Where such situations are foreseen or the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where influence of indirect lightning strike is possible, install a lightning conductor.
(A) The unbalance factor of the power supply is 3% or higher. (Note)
(B) The power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more)
(C) Abrupt power supply changes are expected.

Examples:
(1) Several inverters are interconnected with a short bus.
(2) A thyristor converter and an inverter are interconnected with a short bus.
(3) An installed phase advance capacitor opens and closes.

In cases $(A),(B)$ and (C), it is recommended to install an $A C$ reactor on the main power supply side.
Note: Example calculation with $\mathrm{V}_{\mathrm{RS}}=205 \mathrm{~V}, \mathrm{~V}_{\mathrm{st}}=201 \mathrm{~V}, \mathrm{~V}_{\mathrm{TR}}=200 \mathrm{~V}$
$\mathrm{V}_{\text {RS }}$: $\mathrm{R}-\mathrm{S}$ line voltage, $\mathrm{V}_{\text {st }}$: $\mathrm{S}-\mathrm{T}$ line voltage, $\mathrm{V}_{\text {тR }}$: T-R line voltage
Unbalance factor of voltage $=\frac{\text { Max. line voltage (min.) }- \text { Mean line voltage }}{\text { Mean line voltage }} \times 100$

$$
=\frac{V_{\mathrm{RS}}-\left(\mathrm{V}_{\mathrm{RS}}+\mathrm{V}_{\mathrm{ST}}+\mathrm{V}_{\mathrm{TR}}\right) / 3}{\left(\mathrm{~V}_{\mathrm{RS}}+\mathrm{V}_{\mathrm{ST}}+\mathrm{V}_{\mathrm{TR}}\right) / 3} \times 100=\frac{205-202}{202} \times 100=1.5(\%)
$$

An inverter run by a private power generator may overheat the generator or suffer from a deformed output voltage waveform of the generator. Generally, the generator capacity should be five times that of the inverter (kVA) in a PWM control system, or six times greater in a PAM control system.

Notes on Peripheral Equipment Selection

Wiring connections
(1) Be sure to connect main power wires with $R(L 1), S(L 2)$, and $T(L 3)$ terminals (input) and motor wires to U (T1), V (T2), and W (T3) terminals (output). (Incorrect connection will cause an immediate failure.)
2) Be sure to provide a grounding connection with the ground terminal (Θ).

When an electromagnetic contactor is installed between the inverter and the motor, do not perform on-off switching during running operation.
When used with standard applicable output motors (standard three-phase squirrel-cage four-pole motors), the SJ700/SJ700D/ SJ700B Series does not need a thermal relay for motor protection due to the internal electronic protective circuit. A thermal relay, however, should be used:

- during continuous running outside a range of 30 to 60 Hz .
- for motors exceeding the range of electronic thermal adjustment (rated current).
- when several motors are driven by the same inverter; install a thermal relay for each motor
- The RC value of the thermal relay should be more than 1.1 times the rated current of the motor. If the wiring length is 10 m or more, the thermal relay tends to turn off readily. In this case, provide an AC reactor on the output side or use a current sensor.

Install a circuit breaker on the main power input side to protect inverter wiring and ensure personal safety. Choose an invertercompatible circuit breaker. The conventional type may malfunction due to harmonics from the inverter. For more information, consult the circuit breaker manufacturer.
The wiring distance between the inverter and the remote operator panel should be 20 meters or less. Shielded cable should be used on thewiring. Beware of voltage drops on main circuit wires. (A large voltage drop reduces torque.)
If the earth leakage relay (or earth leakage breaker) is used, it should have a sensitivity level of 15 mA or more (per inverter).
Do not use a capacitor for power factor improvement between the inverter and the motor because the high-frequency components of the inverter output may overheat or damage the capacitor.

High-frequency Noise and Leakage Current

(1) High-frequency components are included in the input/output of the inverter main circuit, and they may cause interference in a transmitter, radio, or sensor if used near the inverter. The interference can be minimized by attaching noise filters (option) in the inverter circuitry.
(2) The switching action of an inverter causes an increase in leakage current. Be sure to ground the inverter and the motor.

Lifetime of Primary Parts

Because a DC bus capacitor deteriorates as it undergoes internal chemical reaction, it should normally be replaced every five years. Be aware, however, that its life expectancy is considerably shorter when the inverter is subjected to such adverse factors as high temperatures or heavy loads exceeding the rated current of the inverter. The approximate lifetime of the capacitor is as shown in the figure at the right when it is used 12 hours daily (according to the " Instructions for Periodic Inspection of General-Purpose Inverter " (JEMA).) Also, such moving parts as a cooling fan should be replaced. Maintenance inspection and parts replacement must beperformed by only specified trained personnel. Please plan to replace new inverter depends on the load, ambient condition in advance.

Precaution for Correct Usage

- Before use, be sure to read through the Instruction Manual to insure proper use of the inverter
- Note that the inverter requires electrical wiring; a trained specialist should carry out the wiring.
- The inverter in this catalog is designed for general industrial applications. For special applications in fields such as aircraft, outer space, nuclear power, electrical power, transport vehicles, clinics, and underwater equipment, please consult with us in advance.
- For application in a facility where human life is involved or serious injury may occur, make sure to provide safety devices to avoid any accident.
- The inverter is intended for use with a three-phase AC motor. For use with a load other than this, please consult with us.

Printed in Japan (T) SM-E000 0614

