HITACHI
 Inspire the Next

Economical inverter with simple operation

N

 Series

 AWARNING- Mat of metrik mod.

nete miel
(@) Hitachi Industrial Equipment Systems Co.,Ltd.

Whats "NDS"

ext\&New

NEXT generation inverter opens the door to NEW market segments

Ecological\& Economical ECOLOGICAL - saves energy ECONOMICAL - simple to install and easy to use

Space Saving

Among the smallest form-factors in their category: -43% smaller than equivalent X200 (0.2 kW) -Side-by-side installation to save panel space

No space
between

* Side-by-side installation: derating for carrier frequency and output current required

Simple Operation

Run/Stop/Reset is integrated in one button for simple operation.
Full-function attachable operator available as an option. (refer to p.15)

Global Standards

- Conformity to global standards Conforms to CE/UL/c-UL/c-Tick
- Compatible to both sink and source logic as standard
Logic input is compatible with both sink and source logic.

5 Optional Customization

Customization for specific applications is available. (contact Hitachi)

\triangle For Network

[^0]
Small\&Simple

 SIMPLE functions in a SMALL package
Inherent Functions to achieve energy savings

Automatic energy saving function is implemented to minimize energy consumption.

- Arithmetic and Delay Functions

Arithmetic operation, delay functions and simplify external hardware.

- Keypad / Terminal Switching

Source of frequency and run commands can be selected via intelligent terminal.

- 2nd Motor Function

Settings for 1st and 2nd motor can be selected via intelligent input.

- Three-wire Operation Function

Momentary contact for RUN and STOP can be utilized.

- Analog Input Disconnection Detect Function

Upon the loss of analog signal, a preconfigured signal can be activated.
*Parameter change and setting by keypad etc.

7 Application

Optimal performance for energy saving applications such as fans and pumps

[^1]

Food Processing Machines - slicers •mixers -confectionery machines -Fruit Sorters

Model Configuration

Applicable motor kW(HP)	$0.2(1 / 4)$	$0.4(1 / 2)$	$0.75(1)$	$1.5(2)$	$2.2(3)$	
Three Phase 200V	LB					
Single Phase 200V	SB					
Three Phase 400V	HB					

CONTENTS

Features 1-2
Standard Specifications 3
Dimensions 4
Operation and Programming 5
Model Name Indication
NES1-002 S B
Series Name

Applicable Motor Capacity 002: 0.2kW(1/4HP) -022: 2.2kW(3HP)

B : Without keypad Power Source S: 1-phase 200 V class L: 3-phase 200V class H: 3-phase 400 V class
Operation / Terminal Functions 6
Function List 7-10
Protective Functions 11
Connecting Diagram 12-13
Wiring and Accessories 14-15
Torque characteristics/Derating Curves 16
For Correct Operation 17-18

Standard Specifications

1-/3-phase 200 V class

General Specifications

Item		
Control	Control method	
	Output frequency range *5	
	Frequency accuracy *6	
	Frequency setting resolution	
	Voltage/Frequency Characteristic	
	Acceleration/deceleration time	
	Starting torque *7	
	Carrier frequency range	
	Protective functions	
Input terminal	Specification	
	Functions	
Output signal	Intelligent output terminal	Specification
		Function
	Moniter output terminal	Function
Operator	Operation key	
	Status LED Interface	
Operation	Frequency setting	Operator keypad(Option) External signal *8
		Serial port
	FW/RV Run	Operator Keypad(Option)
		External signal
		Serial port
Environment	Operating temperature	
	Storage temperature	
	Humidity	
	Vibration	
	Location	
Other functions		
Options		

Note 1: The applicable motor refers to Hitachi standard 3-phase motor (4-pole). When using other motors, care must be taken to prevent the rated motor current $(50 / 60 \mathrm{~Hz})$ from exceeding the rated output current of the inverter.
Note 2: The output voltage decreases as the main supply voltage decreases (except when using the AVR function). In any case, the output voltage cannot exceed the input power supply voltage.
Note 3: The braking torque via capacitive feedback is the average deceleration torque at the shortest deceleration (stopping from $50 / 60 \mathrm{~Hz}$ as indicated). It is not continuous regenerative braking torque. The average decel torque varies with motor loss. This value decreases when operating beyond 50 Hz . Note 4: The protection method conforms to JIS C 0920(IEC60529).

General Specifications
Line-to-line sine wave pulse-width modulation (PWM) control
0.01 to 400 Hz

Digital command $: \pm 0.01 \%$, Analog command $\pm 0.4 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$
Digital: 0.01 Hz , Analog: (max frequency)/1000
V/f control,V/f variable (constant torque, reduced torque)
0.00 to 3000 sec. (linear, sigmoid), two-stage accel./decel.
$100 \% / 6 \mathrm{~Hz}$
2.0 to 15 kHz

Over-current, Over-voltage, Under-voltage, Overload, Overheat, Ground fault at power-on, Input over-voltage, External trip, Memory error, CPU error, USP error, Driver error, Output phase loss protection
10kohm input impedance, sink/source logic selectable
FW(Forward), RV(Reverse), CF1-CF3(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel./decel.), FRS(Free-run stop), EXT(External trip), USP(Unattended start protection), SFT(Software lock), AT(Analog input selection), RS(Reset), STA(3-wire start), STP(3-wire stop),
F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), UP/DWN(Remote-controlled accel./decel.) , UDC(Remote-controlled data clearing), OPE(Operator control), SF1-SF3(multispeed bit), OLR(overload restriction selection), LAC(LAD cancellation, ADD(ADD frequency enable), F-TM(force terminal mode), KHC(cumulative power clearance), AHD(analog command holding), HLD(retain output frequency), ROK(permission of run command), DISP (display limitation), NO(Not selected) 27V DC 50mA max open collector output, 1 terminals 1c output relay (AL0, AL1, AL2 terminals)
RUN(run signal), FA1(Frequency arrival type 1 - constant speed), FA2(Frequency arrival type 2 - over-frequency), OL(overload advance notice signal), OD(Output deviation for PID control), AL(alarm signal), DC(Wire brake detect on analog input), FBV(PID Second Stage Output), NDC(ModBus Network Detection Signal), LOG(Logic Output Function), ODC(analog voltage input disconnection), LOC(Low load), FA3(Set frequency reached), UV(Under voltage),
RNT(Operation time over), ONT(Plug-in time over), THM(Thermal alarm signal), ZS(0 Hz detection signal),
IRDY(Inverter ready), FWR(Forward rotation),RVR(Reverse rotation), MJA(Major failure)
PWM output; Select analog output frequency monitor, analog output current monitor or digital output frequency monitor 1 unified key for RUN/STOP/RESET
ON : this key has function of "RUN"(regardless run command source setting (A002/A201).)
OFF : this key has function of "STOP/RESET
When optional operator is connected, operation from key is disabled.
Control power supply LED (Red),LED during operation (yellow-green), Operation button operation LED (yellow-green),LED during tripping (Red), 4LED in total
Up and Down keys / Value settings or analog setting via potentiometer on operator keypad
0 to 10 V DC or 4 to 20 mA
RS485 interface (Modbus RTU)
Run key / Stop key (change FW/RV by function command)
FW Run/Stop (NO contact), RV set by terminal assignment (NC/NO), 3-wire input available
RS485 interface (Modbus RTU)
-10 to $50^{\circ} \mathrm{C}$ (carrier derating required for aambient temperature higher than $40^{\circ} \mathrm{C}\left(022\right.$ SB:temperature higher than $\left.30^{\circ} \mathrm{C}\right)$), no freezing
When attach option FFM, in 015/022SB the derating becomes needless
-20 to $60^{\circ} \mathrm{C}$
20 to 90% RH
$5.9 \mathrm{~mm} / \mathrm{s}^{2}(0.6 \mathrm{G}) 10$ to 55 Hz
Altitude $1,000 \mathrm{~m}$ or less, indoors (no corrosive gasses or dust)
AVR (Automatic Voltage Regulation), V/f characteristic selection, accel./decel. curve selection, frequency upper/lower limit, 8 stage multispeed, PID control, frequency jump, external frequency input bias start/end, jogging, trip history etc. Remote operator with copy function (WOP), Remote operator (OPE-SRmini, OPE-SR), Operator (NES1-OP), Remote operator with copy function (WOP), Remote operator (OPE-SRmini, OPE-SR), Operator
input/output reactors, DC reactors, radio noise filters, LCR filter, communication cables (ICS-1, 3)

Note 5: To operate the motor beyond $50 / 60 \mathrm{~Hz}$, consult the motor manufacturer for the maximum allowable rotation speed.
Note 6: The output frequency may exceed the maximum frequency setting (A004 or A204) for automatic stabilization control.
Note 7: At the rated voltage when using a Hitachi standard 3-phase, 4pole motor Note 8: DC 4 to 20 mA Input, need parameter setting by Keypad etc. Analog input voltage or current can be switched by switch as individually and not use them in the same time.

Dimensions

NES1-002SB, 004SB, 002LB, 004LB, 007LB

Model	D
002LB, 002SB	$76(2.99)$
004LB, 004SB	$91(3.58)$
007LB	$115(4.53)$

NES1-007SB, 15SB, 022SB, 015LB, 022LB, 004HB, 007HB, 015HB, 022HB

*007SB/004HB:without cooling fan.

Operation and Programming

The NE-S1 series can be easily operated with the digital operator provided as standard. Change and setting parameter by Keypad (NES1-OP). The digital operator can also be detached and used for remote-control. An operator with copy function is also available as an option.

<NE-S1 Standard Operator Panel>

<Option Operator Panel>
7-segment LED
Shows each parameter, monitors
etc.
RUN key
Makes inverter run.
Escape key
Go to the top of next function
group,when function mode is
displayed.

OKeypad Navigation Map Single-Digit Edit Mode (At the time of operator use.)

Operation / Terminal Functions

Terminal Description

Terminal Symbol

Terminal Symbol	Terminal Name
$\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~N} / \mathrm{L} 3$	Main power supply input terminals
$\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3$	Inverter output terminals
$\mathbf{+ 1 , +}$	DC reactor connection terminals
$\boldsymbol{\beta}$	Ground connection terminal

Screw Diameter and Terminal Width

Model	Screw diameter (mm)	Terminal width $\mathrm{W}(\mathrm{mm})$	
$002-004 \mathrm{SB}$	M3.5	7.1	
$002-007 \mathrm{LB}$			
$007-022 \mathrm{SB}$			
$015-022 \mathrm{LB}$	M4		
$004-022 \mathrm{HB}$			

Control Circuit Terminals Terminal Arrangement

Short bar:default position (Source logic)

Terminal Function

Function List

The parameter tables in this chapter have a column titled＂Run Mode Edit．＂An Ex mark x means the parameter cannot be edited；a Check mark \checkmark means the parameter can be edited．The table example to the right contains two adjacent marks＂x \checkmark＂．These two marks（that can also be ＂xx＂or＂$\checkmark \vee$＂）correspond to low－access or high－access levels to Run Mode edits（note Lo and Hi in column heading）．Parameter shown in case＂b037＂is＂00＂（Full display）．
Monitoring and Main Profile Parameters
\checkmark ：Allowed
X：Not allowed

Function Code		Name	Range	Default	Unit	Run mode edit		
		Lo				Hi		
Monitor	d001		Output frequency monitoring	0.00 to 99．99／100．0 to 400.0	－	Hz	\checkmark	\checkmark
	d002	Output current monitor	0.0 to 6553.5	－	A	－	－	
	d003	Rotation direction monitor	F（Forward）／o（Stop）／r（Reverse）	－	－	－	－	
	d004	PID feedback monitoring	0.00 to 99.99 in steps of 0.01 ／ 100.0 to 999.9 in steps of 0.1 1000．to 9999．in steps of 1 1000 to 9999 in steps of $10 /\lceil 100$ to 「999 in units of 1000	－	－	－	－	
	d005	Intelligent input terminal status	＝	－	－	－	－	
	d006	Intelligent output terminal status	＝－ON e．g．：11 ：ON	－	－	－	－	
	d007	Scaled output frequency monitoring	0.00 to 99．99／100．0 to 999．9／1000．to 9999．／1000 to 3999	－	－	\checkmark	\checkmark	
	d013	Output voltage monitor	0.0 to 600.0	－	V	－	－	
	d014	Power monitoring	0 to 999.9	－	kW	－	－	
	d015	Cumulative power monitoring	0.0 to 999.9 in steps of $1 \mathrm{~kW} / \mathrm{h}$ ，or the unit set for function＂b079＂ 1000 to 9999 in units of $10 \mathrm{~kW} / \mathrm{h}$ ，or the unit set for function＂b079＂ 「100 to 「999 in units of $1000 \mathrm{~kW} / \mathrm{h}$ ，or the unit set for function＂b079＂	－	－	－	－	
	d016	Cumulative operation RUN time monitoring	0 ．to 9999 ．in units of 1 hour 1000 to 9999 in units of 10 hours 「 100 to 「 999 in units of 1,000 hours	－	hr	－	－	
	d017	Cumulative power－on time monitoring	0 ．to 9999 ．in units of 1 hour 1000 to 9999 in units of 10 hours $\Gamma 100$ to 「 $\ulcorner 99$ in units of 1,000 hours	－	hr	－	－	
	d018	Heat sink temperature monitoring	－020．to 120.0	－	C	－	－	
	d050	Dual Monitoring	display the monitoring data selected by b160，b161	－	－	－	－	
	d080	Trip counter	0 ．to 9999．in units of 1 trip 1000 to 6553 in units of 10 trips	－	time	－	－	
	d081	Trip monitor 1	Displays trip event information	－	－	－	－	
	d082	Trip monitor 2		－	－	－	－	
	d083	Trip monitor 3		－	－	－	－	
	d084	Trip monitor 4		－	－	－	－	
	d085	Trip monitor 5		－	－	－	－	
	d086	Trip monitor 6		－	－	－	－	
	d090	Warning monitoring	Warning code	－	－	X	X	
	d102	DC voltage monitoring	0.0 to 999．9／1000．	－	V	\times	\times	
	d104	Electronic thermal overload monitoring	0.0 to 100.0	－	\％	\times	\times	
Main Profile Parameters	F001	Output frequency setting	0．0，start frequency to Maximum frequency（1st／2st） 0.0 to 100．0（\％）（PID function on time ）	0.00	Hz	\checkmark	\checkmark	
	F002	Acceleration time（1）	0.00 to 99．99／100．0 to 999．9／1000．to 3600 ．	10.00	s	\checkmark	\checkmark	
	F202	Acceleration time（1），2nd motor		10.00	S	\checkmark	\checkmark	
	F003	Deceleration time（1）	0.00 to 99．99／100．0 to 999．9／1000．to 3600.	10.00	S	\checkmark	\checkmark	
	F203	Deceleration time（1），2nd motor		10.00	S	\checkmark	\checkmark	
	F004	Keypad Run key routing	00（Forward）／01（Reverse）	00	－	X	X	

A Group：Standard Functions

Function Code		Name	Range	Default	Unit	Run mode edit		
		Lo				Hi		
Basic setting	A001		Frequency source setting	00（Keypad potentiometer）／01（control circuit terminal block）／02（digital operator）／03 （Modbus）／10（operation function result）	01	－	\times	\times
	A201	Frequency source setting，2nd motor	01		－	\times	\times	
	A002	Run command source setting	01（control circuit terminal block）／02（digital operator）／03（Modbus）	01	－	\times	\times	
	A202	Run command source setting，2nd motor		01	－	\times	\times	
	A003	Base frequency setting	30.0 to＂maximum frequency（1st）＂	60.0	Hz	\times	\times	
	A203	Base frequency setting，2nd motor	30.0 to＂maximum frequency（2st）＂	60.0	Hz	\times	\times	
	A004	Maximum frequency setting	＂Base frequency（1st）＂to 400.0	60.0	Hz	\times	\times	
	A204	Maximum frequency setting，2nd motor	＂Base frequency（2st）＂to 400.0	60.0	Hz	\times	\times	
Analog input setting	A011	［O／OI］input active range start frequency	0.00 to 99．99／100．0 to 400.0	0.00	Hz	\times	\checkmark	
	A012	［O／OI］input active range end frequency	0.00 to 99．99／100．0 to 400.0	0.00	Hz	\times	\checkmark	
	A013	Aanalog input active range start voltage	0 to 100	0.	\％	\times	\checkmark	
	A014	Aanalog input active range end voltage	0 to 100	100.	\％	\times	\checkmark	
	A015	Aanalog input start frequency enable	00 （use set value）／01（use 0 Hz ）	01	－	\times	\checkmark	
	A016	Analog input filter	1 to 30 or 31 （ 500 ms filter $\pm 0.1 \mathrm{~Hz}$ with hysteresis）	31.	Spl	\times	\checkmark	
Multi－speed and jogging	A019	Multi－speed operation selection	00（Binary mode）／01（Bit mode）	00	－	\times	\times	
	A020	Multi－speed frequency setting（0）	0．0／start freq．to maximum freq．	0.00	Hz	\checkmark	\checkmark	
	A220	Multi－speed frequency（2nd），setting 2nd motor		0.00	Hz	\checkmark	\checkmark	
	A021	Multi－speed frequency setting（1）		60.00	Hz	\checkmark	\checkmark	
	A022	Multi－speed frequency setting（2）		40.00	Hz	\checkmark	\checkmark	
	A023	Multi－speed frequency setting（3）		20.00	Hz	\checkmark	\checkmark	
	A024	Multi－speed frequency setting（4）		0.00	Hz	\checkmark	\checkmark	
	A025	Multi－speed frequency setting（5）		0.00	Hz	\checkmark	\checkmark	
	A026	Multi－speed frequency setting（6）		0.00	Hz	\checkmark	\checkmark	
	A027	Multi－speed frequency setting（7）		0.00	Hz	\checkmark	\checkmark	
	A038	Jog frequency	Start frequency to 9.99	6.00	Hz	\checkmark	\checkmark	
	A039	Jog stop mode	00 （free－running after jogging stops［disabled during operation］）／01（deceleration and stop after jogging stops［disabled during operation］）／02（DC braking after jogging stops ［disabled during operation］）／03（free－running after jogging stops［enabled during operation］／／04（deceleration and stop after jogging stops［enabled during operation］）／05 （DC braking after jogging stops［enabled during operation］）	04	－	X	\checkmark	
V／f Characteristic	A041	Torque boost select	00（Manual）／01（Automatic）	00	－	\times	\times	
	A241	Torque boost select 2nd motor	00（Manual）／01（Automatic）	00	－	\times	\times	
	A042	Manual torque boost value	0.0 to 20.0	1.0	\％	\checkmark	\checkmark	
	A242	Manual torque boost value，2nd motor	0.0 to 20.0	1.0	\％	\checkmark	\checkmark	
	A043	Manual torque boost frequency adjustment	0.0 to 50.0	5.0	\％	\checkmark	\checkmark	
	A243	Manual torque boost frequency adjustment，2nd motor	0.0 to 50.0	5.0	\％	\checkmark	\checkmark	

A Group: Standard Functions

\checkmark : Allowed X : Not allowed

Range	Default	Unit
00(VC)/01(VP)/02(free V/f)	00	-
00(VC)/0(VP)/02(free V/f)	00	-
20. to 100.	100.	\%
	100.	\%
0. to 255.	100.	-
	100.	-
0. to 255.	100.	-
	100.	-
00(Disable)/01(Enable)/02(output freq < [A052])	00	-
0.00 to 60.00	0.50	Hz
0.0 to 5.0	0.00	S
0 to 100	50	\%
0.0 to 10.0	0.5	S
00(Edge)/01(Level)	01	-
0 . to 100.	0.	\%
0.0 to 10.0	0.0	s
2.0 to 15.0	2.0	kHz
0.00/Freq. lower limit setting to maximum freq.	0.00	Hz
0.00/Freq. lower limit setting (2nd) to maximum freq. (2nd)	0.00	Hz
0.00/Start freq. to freq. upper limit setting	0.00	Hz
0.00/Start freq. (2nd) to freq. upper limit setting (2nd)	0.00	Hz
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.00 to 10.00	0.50	Hz
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.00 to 10.00	0.50	Hz
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.00 to 10.00	0.50	Hz
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.0 to 60.0	0.0	S
00(Disable)/01(Enable)/02(Enabling inverted data output)	00	-
0.00 to 25.00	1.00	-
0.0 to 999.9/1000. to 3600 .	1.0	s
0.00 to 99.99/100.0	0.00	s
0.01 to 99.99	1.00	-
01 (Analog1)/02(Modbus)/10 (operation result output)	01	-
00(OFF)/01(ON)	00	-
0.0 to 100.0	0.0	\%
00 (always on)/ 01 (always off)/ 02 (off during deceleration)	02	-
	02	-
200V class: 200/215/220/230/240, 400V class:380/400/415/440/480	200/400	V
	200/400	V
0.000 to 1.000	0.030	s
50. to 200.	100.	\%
00(Normal)/01(Energy-saver)	00	-
0.0 to 100.0	50.0	\%
0.00 to $99.99 / 100.0$ to 999.9/1000. to 3600.	10.00	s
	10.00	S
0.00 to 99.99/100.0 to 999.9/1000. to 3600.	10.00	s
	10.00	s
00 (switching by 2CH terminal)/ 01 (switching by setting)/ 02 (Forward and reverse)	00	-
00 (switching by 2CH terminal)/ 01 (switching by setting)/ 02 (Forward and reverse)	00	-
0.00 to 99.99/100.0 to 400.0	0.00	Hz
	0.00	Hz
0.00 to 99.99/100.0 to 400.0	0.00	Hz
	0.00	Hz
00(Linear)/01(S-curve)/ 02 (U curve)/ 03 (inverted-U curve)	00	-
00(Linear)/01(S-curve)/ 02 (U curve)/ 03 (inverted-U curve)	00	-
1 to 10	2	-
1 to 10	2	-
00(Digital operator)/01(Keypad potentiometer) 02 (input via Analog1)/04 (external communication)	00	-
	02	-
00(A141+A142)/01(A141-A142)/02(A141× A142)	00	-
0.00 to 99.99/100.0 to 400.0	0.00	Hz
00 (frequency command + A145)/ 01 (frequency command - A145)	00	-
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.0 to 60.0	0	S
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.0 to 25.5	0.0	S
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0.00 to 99.99/100.0 to 400.0	0.00	Hz
0 . to [VR] input active range end	0.	\%
[VR] input active range start to 100.	100.	\%
00(A161)/01(0Hz)	01	-

Run mode edit	
Lo	Hi
X	\times
\times	\times
\checkmark	\checkmark
\times	\checkmark
\times	\checkmark
\times	\checkmark
X	\checkmark
\times	\checkmark
\times	\checkmark
X	\checkmark
\times	\checkmark
\checkmark	\checkmark
\times	\checkmark
\times	\checkmark
\checkmark	\checkmark
\checkmark	\checkmark
\checkmark	\checkmark
\times	\checkmark
X	\checkmark
\times	\checkmark
\times	\checkmark
X	\times
\times	\checkmark
\checkmark	\checkmark
\times	\times
\checkmark	\checkmark
\times	\times
x	\times
\times	\checkmark
\checkmark	\checkmark
\times	\checkmark

b Group: Fine-tuning Functions

Function Code		Name	Range	Default	Unit	Run mode edit		
		Lo				Hi		
Restart after instantaneous power failure	b001		Selection of automatic restart mode	00 (tripping)/ 01 (starting with 0 Hz)/ 02 (starting with matching frequency)/ 03 (tripping after deceleration and stopping with matching frequency)	00	-	X	\checkmark
	b002	Allowable under-voltage power failure time	0.3 to 25.0	1.0	S	\times	\checkmark	
	b003	Retry wait time before motor restart	0.3 to 100.0	1.0	S	\times	\checkmark	
	b004	Under-voltage trip alarm enable	00 (OFF)/ 01 (ON)/ 02 (disabling during stopping and decelerating to stop)	00	-	\times	\checkmark	
	b005	Under-voltage trip events	00 (16 times)/ 01 (No limit)	00	-	\times	\checkmark	
	b007	Restart frequency threshold	0.00 to 400.00	0.50	Hz	X	\checkmark	
	b008	Selection of retry after tripping	00 (tripping)/ 01 (starting with 0 Hz)/ 02 (starting with matching frequency)/ 03 (tripping after deceleration and stopping with matching frequency)	00	-	\times	\checkmark	
	b010	Selection of retry count after undervoltage	1 to 3	3	times	\times	\checkmark	
	b011	Start frequency to be used in case of frequency pull-in restart	0.3 to 100.0	1.0	S	\times	\checkmark	

b Group: Fine-tuning Functions
Allowed X: Not allowed

Function Code		Name	Range	Default	Unit	Run mode edit		
		Lo				Hi		
Electronic thermal	b012		Electronic thermal setting	$0.20 \times$ Rated current to $1.00 \times$ Rated current	Rated current	A	\times	\checkmark
	b212	Electronic thermal setting, 2nd motor	Rated current		A	\times	\checkmark	
	b013	Electronic thermal characteristic	00 (reduced-torque characteristic)/ 01 (constant-torque characteristic)/ 02 (free setting)	01	-	\times	\checkmark	
	b213	Electronic thermal characteristic, 2nd motor		01	-	\times	\checkmark	
	b015	Free setting, electronic thermal frequency (1)	0 to Free setting, electronic thermal frequency (2)	0.	Hz	\times	\checkmark	
	b016	Free setting electronic thermal ~current1	0.00 to inverter rated current Amps	0.0	A	\times	\checkmark	
	b017	Free setting, electronic thermal frequency (2)	Free setting, electronic thermal frequency (1) to Free setting, electronic thermal frequency (3)	0.	Hz	X	\checkmark	
	b018	Free setting electronic thermal ~Current2	0.00 to inverter rated current Amps	0.0	A	\times	\checkmark	
	b019	Free setting electronic thermal \sim freq. 3	Free setting, electronic thermal frequency (2) to 400.0	0.	Hz	\times	\checkmark	
	b020	Free setting electronic thermal ~current3	0.00 to inverter rated current Amps	0.0	A	\times	\checkmark	
Overload restriction	b021	Overload restriction operation mode	00(Disable)/01(Enable)/02(Enable for during acceleration)	01	-	\times	\checkmark	
	b221	Overload restriction operation mode, 2nd motor		01	-	\times	\checkmark	
	b022	Overload restriction setting	$0.20 \times$ Rated current to $2.00 \times$ Rated current	150% of Rated current	A	\times	\checkmark	
	b222	Overload restriction setting, 2nd motor			A	X	\checkmark	
	b023	Deceleration rate at overload restriction	0.1 to 999.9/1000. to 3000.	1.0	s	\times	\checkmark	
	b223	Deceleration rate at overload restriction, 2nd motor		1.0	s	X	\checkmark	
	b024	Overload restriction operation mode 2	00 (disabling)/ 01 (enabling during acceleration and constant-speed operation)/ 02 (enabling during constant-speed operation)	01	-	\times	\checkmark	
	b025	Overload restriction level 2 setting	$0.20 \times$ rated current to $2.00 \times$ rated current	15000 P Alado drent	A	\times	\checkmark	
	b026	Deceleration rate 2 at overload restriction	0.1 to 999.9/1000. to 3000.	1.0	s	\times	\checkmark	
	b027	OC suppression selection	00 (OFF)/ 01 (ON)	01	-	\times	\checkmark	
	b028	Current level of active freq. matching restart setting	$0.20 \times$ rated current to $2.00 \times$ rated current	Rated current	A	\times	\checkmark	
	b029	Deceleration rate of active freq. matching	0.1 to 999.9/1000. to 3000.	0.5	s	\times	\checkmark	
	b030	Start freq to be used in case of active freq. Matching restart	00 (frequency at the last shutoff)/ 01 (maximum frequency)/ 02 (set frequency)	00	-	\times	\checkmark	
Lock	b031	Software lock mode selection	00 ([SFT] input blocks all edits)/01([SFT] input blocks edits except F001 and Multispeed parameters/02(No access to edits)/03(No access to edits except F001 and Multi-speed parameters)/10(High-level access,including b031)	01	-	\times	\checkmark	
Others	b034	Run/power ON warning time	0 . (Disabling the signal output) /1. to 9999. in units of 10 hours 1000 to 6553 in units of 100 hours	0.	Hrs	\times	\checkmark	
	b035	Rotation direction restriction	00 (Enable for both dir)/ 01 (Enable for forward only)/ 02 (Enable for reverse only)	00	-	\times	\times	
	b036	Reduced voltage start selection	0 (minimum reduced voltage start time) to 255 (maximum reduced voltage start time)	3	-	\times	\checkmark	
	b037	Function code display restriction	0 (full display), 1 (function-specific display), 3 (data comparison display), 4 (basicdisplay), 5(monitor display)	00	-	\times	\checkmark	
	b038	Initial display selection	000(Func. code that SET key pressed last displayed.) / 001 to 060(d001 to d060 displayed) / 201(F001displayed) / 202(B display of LCD operator (In case of Digital operator, same 000 setting)	001	-	\times	\checkmark	
	b050	Selection of the non stop operation	00 (Disabled)/ 01 (enabling)/ 02 (nonstop operation at momentary power failure (no restoration)//03 (nonstop operation at momentary power failure (restoration to be done))	00	-	\times	\times	
	b051	DC bus voltage trigger level of ctrl. decel.	200 V class 0.0 to $400.0,400 \mathrm{~V}$ class: 0.0 to 800.0	220.01440.0	V	\times	\times	
	b052	Over-voltage threshold of ctrl. decel.	200 V class:0.0 to 400.0, 400 V class: 0.0 to 800.0	360.0720.0	V	\times	\times	
	b053	Deceleration time of ctrr. decel.	0.01 to 300.0	1.00	s	\times	\times	
	b054	Frequency width of quick deceleration setting	0.00 to 10.00	0.00	Hz	\times	\times	
	b060	Maximum-limit level of window comparators	0 to 100	100.	\%	\checkmark	\checkmark	
	b061	Minimum-limit level of window comparators	0 to 100	0.	\%	\checkmark	\checkmark	
	b062	Hysteresis width of window comparators	0 to 10	0.	\%	\checkmark	\checkmark	
	b070	Operation level at O/OI disconnection	0. to 100., or "no" (ignore)	no	-	\times	\checkmark	
	b078	Watt-hour clearance	00(OFF)/01(CLR)(press STR then clear)	00	-	\checkmark	\checkmark	
	b079	Watt-hour display gain	1.to1000.	1.	-	\checkmark	\checkmark	
	b082	Start frequency adjustment	0.01 to 9.99	0.50	Hz	\times	\checkmark	
	b083	Carrier frequency setting	2.0 to 15.0	2.0	kHz	\times	\checkmark	
	b084	Initialization mode (parameters or trip history)	00 (disabling)/ 01 (clearing the trip history)/ 02 (initializing the data)/ 03 (clearing the trip history and initializing the data)	00	-	X	\times	
	b085	Country code for initialization	00 (Mode1)/ 01 (Mode2)	00	-	\times	\times	
	b086	Frequency scaling conversion factor	0.01 to 99.99	1.00	-	\checkmark	\checkmark	
	b087	STOP key enable	00:ON(Enable)/01:OFF(Disable)/02:Only RESET(Disable for stop)	00	-	\times	\checkmark	
	b088	Restart mode after FRS	00 (Restart from 0 Hz)/01(Restart with frequency detection)	00	-	\times	\checkmark	
	b089	Automatic carrier frequency reduction	00 (disabling)/ 01 (enabling(output current controlled))/ 02(enabling(fin temperature controlled))	00	-	\times	\times	
	b091	Stop mode selection	00(Deceleration and stop)/01(Free-run stop)	00	-	\times	\checkmark	
	b094	Initialization target data setting	00(All parameters)/01(All parameters except in/output terminals and communication)	00	-	\times	\times	
	b100	Free-setting V/F freq. (1)	0. to b102	0.	Hz	\times	\times	
	b101	Free-setting V/F volt. (1)	200 V class $: 0.0$ to $300.0,400 \mathrm{~V}$ class: 0.0 to 600.0	0.0	V	\times	\times	
	b102	Free-setting V/F freq. (2)	b100 to b104	0.	Hz	\times	\times	
	b103	Free-setting V/F volt. (2)	200 V class:0.0 to 300.0, 400 V class:0.0 to 600.0	0.0	V	\times	\times	
	b104	Free-setting V/F freq. (3)	b102 to b106	0.	Hz	\times	\times	
	b105	Free-setting V/F volt. (3)	200 V class:0.0 to 300.0, 400 V class: 0.0 to 600.0	0.0	V	\times	\times	
	b106	Free-setting V/F freq. (4)	b104 to b108	0.	Hz	\times	\times	
	b107	Free-setting V/F volt. (4)	200 V class: 0.0 to $300.0,400 \mathrm{~V}$ class: 0.0 to 600.0	0.0	V	\times	\times	
	b108	Free-setting V/F freq. (5)	b106 to b110	0.0	Hz	X	\times	
	b109	Free-setting V/F volt. (5)	200 V class:0.0 to 300.0, 400 V class: 0.0 to 600.0	0	V	\times	\times	
	b110	Free-setting V/F freq. (6)	b108 to b112	0.	Hz	\times	\times	
	b111	Free-setting V/F volt. (6)	200 V class:0.0 to 300.0, 400 V class: 0.0 to 600.0	0.0	V	\times	\times	
	b112	Free-setting V/F freq. (7)	b110 to 400	0.	Hz	\times	\times	
	b113	Free-setting V/F volt. (7)	200 V class 0.0 to $300.0,400 \mathrm{~V}$ class: 0.0 to 600.0	0.0	V	X	\times	
	b130	Over-voltage LADSTOP enable	00 (OFF)/ 01 (V-count)/ 02 (Accel)/ $03(\mathrm{Acc} / \mathrm{Dcc}$)	00	-	\times	\checkmark	
	b131	Decel. overvolt. suppress level	200V class:330. to 390. , 400V class:660. to 780.	360/720	V	X	\checkmark	
	b132	DC bus AVR constant setting	0.10 to 30.00	1.00	s	\times	\checkmark	
	b133	DC bus AVR for decel. Proportional-gain	0.00 to 5.00	0.20	-	\checkmark	\checkmark	
	b134	DC bus AVR for decel. Integral-time	0.0 to 150.0	1.0	s	\checkmark	\checkmark	
	b150	Panel Display selection	001 to 050	001	-	\checkmark	\checkmark	
	b160	1st data of d050	001 to 018	001	-	\checkmark	\checkmark	
	b161	2nd parameter of Double Monitor	001 to 018	002	-	\checkmark	\checkmark	
	b163	Data change mode selection of d001 and d007	00 (OFF)/ 01 (ON)	01	-	\checkmark	\checkmark	
	b164	Automatic return to the initial display	00 (OFF)/ 01 (ON)	00	-	\checkmark	\checkmark	
	b165	Ex. operator com. loss action	00 (trip)/01 (trip after deceleration to a stop)/02 (Ignore)/03 (coasting (FRS))/ 04 (decelerates to a stop)	02	-	\checkmark	\checkmark	
	b166	Data Read/Write select	00 (Read/Write OK)/01 (Protected)	00	-	X	\checkmark	
	b180	Initialization trigger	00 (initialization disable)/01 (perform initialization)	00	-	X	\times	

C Group: Intelligent Terminal Functions

Function Code		Name	Range	Default	Unit	Run mode edit		
		Lo				Hi		
Intelligent input terminal	C001		Terminal [1] function	00(FW:Forward), 01(RV:Reverse), 02-04(CF1-CF3:Multispeed command), 06(JG:Jogging), 07(DB:External DC braking), 08(SET:Second motor constants setting), 09(2CH:Second accel./decel.), 11(FRS:Free-run stop), 12(EXT:External trip), 13(USP:Unattended start protection), 15(SFT:Software lock), 18(RS:Reset), 20(STA:3-wire start), 21(STP:3-wire stop), 22(F/R:3-wire fwd./rev.), 23(PID:PID On/Off), 24(PIDC:PID reset), 27(UP:Remote-controlled accel.), 28(DWN:Remote-controlled decel.), 29(UDC:Remote-controlled data clearing), 31(OPE:Operator control), 32 -34(SF1-SF3: multispeed bit1, 39 (OLR: overload restriction selection), 50(ADD: Frequency setpoint), 51(F-TM: Force terminal enable), 53(S-ST: Special-Set (select) 2nd Motor Data), 65 (AHD: analog command holding), 83 (HLD: retain output frequency), 84 (ROK: permission of run command), 86 (DISP: display limitation),255(NO:Not selected),	00	-	\times	\checkmark
	C002	Terminal [2] function	01		-	\times	\checkmark	
	C003	Terminal [3] function	02		-	\times	\checkmark	
	C004	Terminal [4] function	03		-	\times	\checkmark	
	C005	Terminal [5] function	18		-	\times	\checkmark	
	C011-C015	Terminal [1] to [5] active state	00(NO)/01(NC)	00	-	\times	\checkmark	
Intelligent input terminal	C021	Terminal [11] function	00(RUN:run signal), 01(FA1:Frequency arrival type 1 - constant speed), 02(FA2:Frequency arrival type 2 - over-frequency), 03(OL:overload advance notice signal), 04(OD:Output deviation for PID control), 05(AL:alarm signal), 06(DC:Wire brake detect on analog input), 09(LOG: Logic operation result), 11 (RNT: run time expired), 12 (ONT: power ON time expired), 13 (THM: thermal warning), 21 (ZS: OHz detection), 27 (ODc: Analog input disconnect detection),31 (FBV: PID second stage output), 32 (NDc: Network disconnect detection), 33 (LOG1: Logic output function 1), 41 (FR: Starting contact signal), 42 (OHF: Heat sink overheat warning), 50 (IRDY:Inverter ready), 51 (FWR:Forward rotation), 52 (RVR:Reverse rotation), 53 (MJA:Major failure), 54 (WCO: Window comparator), 58(FREF: Frequency command source), 59(REF: Run command source), 60(SETM:Second motor in operation),255(NO: Not selected)	01	-	\times	\checkmark	
	C026	Alarm relay function		05	-	\times	\checkmark	
	C027	FM signal selection (Pulse/PWM output)	00 (output frequency), 01 (output current), 03 (digital output frequency), 04 (output voltage), 05 (input power), 06 (electronic thermal overload), 07 (LAD frequency), 08 (digital current monitoring), 10 (heat sink temperature)	07	-	\times	\checkmark	
	C030	Digital current monitor reference value	$0.20 \times$ rated current to $2.00 \times$ rated current	Rated current	A	\checkmark	\checkmark	
	C031	Terminal [11] active state	00(NO)/01(NC)	00	-	\times	\checkmark	
	C036	Alarm relay active state	00(NO)/01(NC)	01	-	\times	\checkmark	
	C038	Output mode of low load detection signal	00 (output during acceleration/deceleration and constant-speed operation)/ 01 (output only during constant-speed operation)	01	-	\times	\checkmark	
	C039	Low load detection level	0.00 to $2.00 \times$ Rated current to $2.00 \times$ rated current	Rated current	A	\checkmark	\checkmark	
	C040	Output mode of overload warning	00 (output during acceleration/deceleration and constant-speed operation)/ 01 (output only during constant-speed operation)	01	_	\times	\checkmark	
	C041	Overload level setting		115\% of		\checkmark	\checkmark	
	C241	Overload level setting, 2nd motor	$0.00 \times$ Rated current to $2.00 \times$ Rated current	Rated current	A	\checkmark	\checkmark	
	C042	Frequency arrival setting for acceleration	0.00 to 99.99/100.0 to 400.0	0.00	Hz	\times	\checkmark	
	C043	Frequency arrival setting for deceleration	0.00 to 99.99/100.0 to 400.0	0.00	Hz	\times	\checkmark	
	C044	PID deviation level setting	0.0 to 100.0	3.0	\%	\times	\checkmark	
	C052	Feedback comparison upper level	0.0 to 100.0	100.0	\%	\times	\checkmark	
	C053	Feedback comparison lower level	0.0 to 100.0	0.0	\%	\times	\checkmark	
	C061	Electronic thermal warning level	0 . to 100.	90.	\%	\times	\checkmark	
	C063	Zero speed detection level	0.00 to 99.99/100.0	0.00	Hz	\times	\checkmark	
	C064	Heat sink overheat warning	0. to 110 .	100.	${ }^{\circ} \mathrm{C}$	\times	\checkmark	
Serial communication	C070	SELECTION OF OPE/MODBUS	00(OPE)/01(Modbus)	00	-	\times	\checkmark	
	C071	Communication speed	04(4800bps)/ 05(9600bps)/ 06(19.2kbps)/07(38.4kbps)	05	bps	\times	\checkmark	
	C072	Node allocation	1 to 247	1.	-	\times	\checkmark	
	C074	Communication parity selection	00(No parity)/01(Even parity)/02(Odd parity)	00	-	\times	\checkmark	
	C075	Communication stop bit selection	01(1-bit)/02(2-bit)	01	bit	\times	\checkmark	
	C076	Communication error mode	00 (Trip)/01(Tripping after decelerating and stopping the motor)/02(Disable)/ 03(FRS)/04(Deceleration stop)	02	-	\times	\checkmark	
	C077	Communication error time-out	0.00(disabled)/0.01 to 99.99	0.00	s	\times	\checkmark	
	C078	Communication wait time	0. to 1000 .	0.	ms	\times	\checkmark	
Analog meter setting	C081	O/OI input span calibration	0.0 to 200.0	100.0	\%	\checkmark	\checkmark	
Others	C091	Debug mode enable	00(MD0)/01(MD1)	00	-	-	-	
	C101	Up/Down memory mode selection	00 (not storing the frequency data)/ 01 (storing the frequency data)	00	-	\times	\checkmark	
	C102	Reset mode selection	00(Cancel trip state at input signal ON transition)/ 01(Cancel trip state at signal OFF transition)/02(Cancel trip state at input signal ON transition)	00	-	\checkmark	\checkmark	
	C103	Restart mode after reset	00 (starting with 0 Hz)/ 01 (restarting with active matching frequency)	00	-	\times	\checkmark	
	C104	UP/DWN clear: terminal input mode selection	$00(0 \mathrm{~Hz}) / 01$ (Flash data when power supply is turned on)	00	-	\times	\checkmark	
	C105	FM gain adjustment	50. to 200.	100.	\%	\checkmark	\checkmark	
	C130	Output 11 on-delay time	0.0 to 100.0	0.0	s	\times	\checkmark	
	C131	Output 11 off-delay time	0.0 to 100.0	0.0	S	\times	\checkmark	
	C140	Output RY on-delay time	0.0 to 100.0	0.0	s	\times	\checkmark	
	C141	Output RY off-delay time	0.0 to 100.0	0.0	s	\times	\checkmark	
	C142	Logical output signal 1 selection 1	Same as the settings of C021 to C026 (except those of LOG1 to LOG3 \& OPO , no)	00	-	\times	\times	
	C143	Logical output signal 1 selection 2	Same as the settings of C021 to C026 (except those of LOG1 to LOG3 \& OPO , no)	00	-	\times	\times	
	C144	Logical output signal 1 operator selection	00(AND)/01(OR)/02(XOR)	00	-	\times	\checkmark	
	C151	Button sensitivity selection	0 to 250 / no	10	-	\times	\checkmark	
	C152	Scroll sensitivity selection	1 to 20	10	-	\times	\checkmark	
	C155	Ground fault set	00(OFF) / 01(ON)	01	-	\times	\checkmark	
	C157	Out phase-loss set	00(OFF) / 01(ON)	00	-	\times	\checkmark	
	C160	Response time of intelligent input terminal 1	0. to 200. ($\times 2 \mathrm{~ms}$)	1.	-	\times	\checkmark	
	C161	Response time of intelligent input terminal 2	0. to 200. ($\times 2 \mathrm{~ms}$)	1.	-	\times	\checkmark	
	C162	Response time of intelligent input terminal 3	0. to 200. ($\times 2 \mathrm{~ms}$)	1.	-	\times	\checkmark	
	C163	Response time of intelligent input terminal 4	0. to 200. ($\times 2 \mathrm{~ms}$)	1.	-	\times	\checkmark	
	C164	Response time of intelligent input terminal 5	0. to 200. ($\times 2 \mathrm{~ms}$)	1.	-	\times	\checkmark	
	C169	Multistage speed determination time	0. to 200. ($\times 10 \mathrm{~ms}$)	0.	ms	\checkmark	\checkmark	

H Group: Motor Constants Functions

Function Code		Name	Range	Default	Unit	Run mode edit		
		Lo				Hi		
Motor constants and gain	H003		Motor capacity, 1st motor	0.1/0.2/0.4/0.55/0.75/1.1/1.5/2.2/3.0/3.7/4.0/5.5	Factory set	kW	\times	\times
	H203	Motor capacity, 2nd motor	kW			\times	\times	
	H004	Motor poles setting, 1st motor	2/4/6/8	4	poles	\times	\times	
	H204	Motor poles setting, 2nd motor		4	poles	\times	\times	
	H006	Motor stabilization constant	0. to 255 .	100.	-	\checkmark	\checkmark	
	H206	Motor stabilization constant, 2nd motor		100.	-	\checkmark	\checkmark	

Error Codes（Standard）

Over Load Trip

Major Failures＊1

（Light Out \＆Lighting）
－run －ALM

Other Failures

（Light Out \＆Blink（1sec））
－RUN
－ALM
＊1 The Major fault：When a memory error，CPU error and Ground fault．
Error Codes（Operator）

Name	Cause（s）		Display on digital operator
Over current	The inverter output was short－circuited，or the motor shaft is locked or has a heavy load．These conditions cause excessive current for the inverter，so the inverter output is turned OFF．	While at constant speed	ETi．
		During deceleration	EMこ
		During acceleration	EM3．
		Others	ETH
Overload protection＊1	When a motor overload is detected by the electronic thermal function，the inverter trips and turns OFF its output．		EGE
Over voltage protection	When the DC bus voltage exceeds a threshold，due to regenerative energy from the motor．		EIT
Memory error＊2，3	When the built－in memory has problems due to noise or excessive temperature， the inverter trips and turns OFF its output to the motor．		EGB．
Under－voltage error	A decrease of internal DC bus voltage below a threshold results in a control circuit fault．This condition can also generate excessive motor heat or cause low torque．The inverter trips and turns OFF its output．		ETG
Current detection error	If an error occurs in the internal current detection system，the inverter will shut off its output and display the error code．		E 110
CPU error	A malfunction in the built－in CPU has occurred，so the inverter trips and turns OFF its output to the motor．		E1 1
External trip	A signal on an intelligent input terminal configured as EXT has occurred．The inverter trips and turns OFF the output to the motor．		E 12，
USP＊4	When the Unattended Start Protection（USP）is enabled，an error occurred when power is applied while a Run signal is present．The inverter trips and does not go into Run Mode until the error is cleared．		E13．
Ground fault＊5	The inverter is protected by the detection of ground faults between the inverter output and the motor during powerup tests．This feature protects the inverter，and does not protect humans．		E 14，
Input over－voltage	When the input voltage is higher than the specified value，it is detected 100 seconds after powerup and the inverter trips and turns OFF its output．		E 15，
Inverter thermal detection system error	When the cooling fin thermal sensor in the inverter detect disconnection etc，inverter trips．		E19
Inverter thermal trip	When the inverter internal temperature is above the threshold，the thermal sensor in the inverter module detects the excessive temperature of the power devices and trips，turning the inverter output OFF．		E®
Driver error	An internal inverter error has occurred at the safety protection circuit between the CPU and main driver unit． Excessive electrical noise may be the cause．The inverter has turned OFF the IGBT module output．		E3IM，
Output phase loss protection	Output Phase Loss Logic Detection（There are undetectable terms of use．）		Eヨㄴ．
Low－speed overload protection	If overload occurs during the motor operation at a very low speed，the inverter will detect the overload and shut off the inverter output．		E $\because \boxed{\square}$
Operator connection failure	When the connection between inverter and operator keypad failed，inverter trips and displays the error code．		E－4
Communications error	The inverter＇s watchdog timer for the communications network has timed out．		E－1

Note 1：Reset operations acceptable 10 seconds after the trip．Note 2：If an memory error（E08）occurs，be sure to confirm the parameter data values are still correct．
Note 3：Memory error may occer at power－on after shutting down the power while copying data with remote operator or initializing data．Shut down the power after completing copy or initialization．
Note 4：USP error occures at reseting trip after under－voltage error（E09）if USP is enabled．Reset once more to recover．
Note 5：Ground fault error（E14）cannot be released with resetting．Shut the power and check wiring．
Note 6：When error E08 error，it may be required to perform initialization．
How to access the details about the present fault

I］Power up or initial processing	J：Constant speed	E：Starting
1：Stop	나：Acceleration	7 ：DC braking
こ：Deceleration	$5: \mathrm{OHz}$ command and RUN	G：Overload restriction

（1）（2）
Output current
（1）（2）
DC bus voltage
（1）（2）
$\frac{\text { Elapsed RUN time }}{\frac{\text { II }}{2} \text { ．}}$

Note：Indicated inverter status could be different from actual inverter behavior．（e．g．When PID operation or frequency given by analog signal，although it seems constant speed， acceleration and deceleration could be repeated in very short cycle．）

Connecting Diagram

Source type logic

Note 1: Common terminals are depend on logic.

Terminal	$1,2,3,4,5$	$\mathrm{H}, \mathrm{O} / \mathrm{OI}$	11
Common	P24	L	CM 2

Note 2: Please choose proper inverter input voltage rating.
Note 3: Voltage input: 0 to 10 V and current input: 0 to 20 mA (change parameter to move 4 to 20 mA current input).
O and Ol is common input terminal (O / Ol terminal) change voltage / current input by switch.

Connecting Diagram

Sink type logic (default)

Note 1: Common terminals are depend on logic.

Terminal	$1,2,3,4,5, \mathrm{H}, \mathrm{O} / \mathrm{OI}$	11
Common	L	CM 2

Note 2: Please choose proper inverter input voltage rating.
Note 3: Voltage input: 0 to 10 V and current input: 0 to 20 mA (change parameter to move 4 to 20 mA current input) O and Ol is common input terminal (O / Ol terminal) change voltage / current input by switch.

Wiring and Accessories

Operator, Cable
-Operator

Model	Potentiometer	Remote Control	Copy function
NES1-OP	\bigcirc		
OPE-SR mini	\bigcirc	\bigcirc	
OPE-SBK		\bigcirc	
OPE-SR	\bigcirc	\bigcirc	
WOP		\bigcirc	\bigcirc

-Cable

Cable <lCS-1, 3>

Model	Cable Length
ICS-1	$1 \mathrm{~m}(3.3 \mathrm{ft})$
ICS-3	$3 \mathrm{~m}(9.8 \mathrm{ft})$

4X-KITmini (For installation with OPE-SR mini)

You can mount the keypad with the potentiometer for a NEMA1 rated installation. The kit also provides for removing the potentiometer knob to meet NEMA 4X requirements, as shown (part no.4X-KITmini).

Operator

<NES1-OP>

<OPE-SR mini>

<OPE-SBK (SR) >

<WOP>

Torque characteristics

Torque characteristics

ISO 14001 EC97J1095	Hitachi variable frequency drives (inverters) in this brochure are produced at the factory registered under the ISO 14001 standard for environmental manegement system and the ISO 9001 standard for inverter quality management system.
ISO 9001 JQA-1153	

For Correct Operation

Application to Motors

Application to general-purpose motors

Operating frequency	The overspeed endurance of a general-purpose motor is 120% of the rated speed for 2 minutes (JIS C4,004). For operation at higher than 60 Hz , it is required to examine the allowable torque of the motor, useful life of bearings, noise, vibration, etc. In this case, be sure to consult the motor manufacturer as the maximum allowable rpm differs depending on the motor capacity, etc.
Torque characteristics	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial power (starting torque decreases in particular). Carefully check the load torque characteristic of a connected machine and the driving torque characteristic of the motor.
Motor loss and temperature increase	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commercial power
Noise	When run by an inverter, a general-purpose motor generates noise slightly greater than with commercial power.
Vibration	When run by an inverter at variable speeds, the motor may generate vibration, especially because of (a) unbalance of the rotor including a connected machine, or (b) resonance caused by the natural vibration frequency of a mechanical system. Particularly, be careful of (b) when operating at variable speeds a machine previously fitted with a constant speed motor. Vibration can be minimized by (1) avoiding resonance points using the frequency jump function of the inverter, (2) using a tireshaped coupling, or (3) placing a rubber shock absorber beneath the motor base.
Power transmission mechanism	Under continued, low-speed operation, oil lubrication can deteriorate in a power transmission mechanism with an oil-type gear box (gear motor) or reducer. Check with the motor manufacturer for the permissible range of continuous speed. To operate at more than 60 Hz , confirm the machine's ability to withstand the centrifugal force generated.

Application to special motors

Gear motor	The allowable rotation range of continuous drive varies depending on the lubrication method or motor manufacturer. (Particularly in case of oil lubrication, pay attention to the low frequency range.)
Brake-equipped motor	For use of a brake-equipped motor, be sure to connect the braking power supply from the primary side of the inverter.
Pole-change motor	There are different kinds of pole-change motors (constant output characteristic type, constant torque characteristic type, etc.), with different rated current values. In motor selection, check the maximum allowable current for each motor of a different pole count. At the time of pole changing, be sure to stop the motor. Also see: Application to the 400V-class motor.
Submersible motor	The rated current of a submersible motor is significantly larger than that of the general-purpose motor. In inverter selection, be sure to check the rated current of the motor.
Explosion-proof motor	Inverter drive is not suitable for a safety-enhanced explosion-proof type motor. The inverter should be used in combination with a pressure-proof explosion-proof type of motor. *Explosion-proof verification is not available for NE-S1 Series.
Synchronous (MS) motor High-speed (HFM) motor Single-phase motor	In most cases, the synchronous (MS) motor and the high-speed (HFM) motor are designed and manufactured to meet the specifications suitable for a connected machine. As to proper inverter selection, consult the manufacturer.

Application to the 400 V -class motor

A system applying a voltage-type PWM inverter with IGBT may have surge voltage at the motor terminals resulting from the cable constants including the cable length and the cable laying method. Depending on the surge current magnification, the motor coil insulation may be degraded. In particular, when a 400 V -class motor is used, a longer cable is used, and critical loss can occur, take the following countermeasures:
(1) install the LCR filter between the inverter and the motor,
(2) install the AC reactor between the inverter and the motor, or
(3) enhance the insulation of the motor coil.

Notes on Use

Drive

Run/Stop	Run or stop of the inverter must be done with the keys on the operator panel or through the control circuit terminal. Do not operate by installing a electromagnetic contactor (MC) in the main circuit.
Emergency motor stop	When the protective function is operating or the power supply stops, the motor enters the free run stop state. When an emergency stop is required or when the motor should be kept stopped, use of a mechanical brake should be considered.
High-frequency run	A max. 400 Hz can be selected on the NE-S1 Series. However, a two-pole motor can attain up to approx. 24,000 rpm, which is extremely dangerous. Therefore, carefully make selection and settings by checking the mechanical strength of the motor and connected machines. Consult the motor manufacturer when it is necessary to drive a standard (general-purpose) motor above 60Hz. A full line of high-speed motors is available from Hitachi.

About the load of a frequent repetition use

About frequent repetition use (crane, elevator, press, washing machine), a power semiconductor (IGBT, a rectification diode, thyristor) in the inverter may come to remarkably have a short life by thermal fatigue.
The life can be prolonged by lower a load electric current. Lengthen acceleration / deceleration time. Lower carrier frequency. or increasing capacity of the inverter.

About the use in highlands beyond $1,000 \mathrm{~m}$ above sea level

Due to the air density decreasing, whenever standard inverters are used for altitudes above $1,000 \mathrm{~m}$, the following conditions are additionally required for proper operation. In application for operation over $2,500 \mathrm{~m}$, kindly contact your nearest sales office for assistance.

1. Reduction of inverter rated current

Current rating has to be reduced 1% for every 100 m that exceeds from an altitude of $1,000 \mathrm{~m}$.
For example, for inverters placed at an altitude of $2,000 \mathrm{~m}$, the rated current has to be reduced 10% (Rated current $x 0.9$) from its original amount. $\left\{(2,000 \mathrm{~m}-1,000 \mathrm{~m}) / 100 \mathrm{~m}^{*}-1 \%=-10 \%\right\}$
2. Reduction of breakdown voltage

Whenever an inverter is used at altitudes beyond $1,000 \mathrm{~m}$, the breakdown voltage decreases as follows:
$1,000 \mathrm{~m}$ or less: 1.00 / 1,500m: 0.95 / 2,000m: $0.90 / 2,500 \mathrm{~m}: 0.85$.
As mentioned in the instruction manual, please avoid any pressure test.

Installation location and operating environment

Avoid installation in areas of high temperature, excessive humidity, or where moisture can easily collect, as well as areas that are dusty, subject to corrosive gasses, mist of liquid for grinding, or salt. Install the inverter away from direct sunlight in a well-ventilated room that is free of vibration. The inverter can be operated in the ambient temperature range from -10 to $50^{\circ} \mathrm{C}$. (Carrier frequency and output current must be reduced in the range of 40 to $50^{\circ} \mathrm{C}$.)

Main power supply

Installation of an
AC reactor on the input side

In the following examples involving a general-purpose inverter, a large peak current flows on the main power supply side, and is able to destroy the converter module. Where such situations are foreseen or the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where influence of indirect lightning strike is possible,
install a lightning conductor.
(A) The unbalance factor of the power supply is 3% or higher. (Note)
(B) The power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more).
(C) Abrupt power supply changes are expected.

Examples:
(1) Several inverters are interconnected with a short bus.
(2) A thyristor converter and an inverter are interconnected with a short bus.
(3) An installed phase advance capacitor opens and closes.

In cases (A), (B) and (C), it is recommended to install an $A C$ reactor on the main power supply side.
Note: Example calculation with $\mathrm{V}_{\text {RS }}=205 \mathrm{~V}$, $\mathrm{V}_{\text {St }}=201 \mathrm{~V}, \mathrm{~V}_{\text {тв }}=200 \mathrm{~V}$
$\mathrm{V}_{\text {RS }}$: R-S line voltage, $\mathrm{V}_{\text {St }}$: S-T line voltage, $\mathrm{V}_{\text {tr }}$: T-R line voltage
Unbalance factor of voltage $=$ Max. line voltage (min.) - Mean line voltage
Mean line voltage
$\times 100$
$=\frac{V_{\text {RS }}-\left(V_{\text {RS }}+V_{S T}+V_{T R}\right) / 3}{\left(V_{\text {RS }}+V_{\text {ST }}+V_{T R}\right) / 3} \times 100=\frac{205-202}{202} \times 100=1.5(\%)$
An inverter run by a private power generator may overheat the generator or suffer from a deformed output voltage waveform of the generator. Generally, the generator capacity should be five times that of the inverter (kVA) in a PWM control system, or six times greater in a PAM control system.

Notes on Peripheral Equipment Selection

Wiring connections	
	Electromagnetic contactor
Wiring between inverter and motor	Thermal relay

Installing a circuit breaker

Wiring distance
Earth leakage relay
Phase advance capacitor
(1) Be sure to connect main power wires with $R(L 1), S(L 2)$, and $T(L 3)$ terminals (input) and motor wires to $U(T 1), \mathrm{V}(\mathrm{T} 2)$, and $\mathrm{W}(\mathrm{T} 3)$ terminals (output). (Incorrect connection will cause an immediate failure.)
(2) Be sure to provide a grounding connection with the ground terminal (\mathcal{F}).

When an electromagnetic contactor is installed between the inverter and the motor, do not perform on-off switching during running operation.

When used with standard applicable output motors (standard three-phase squirrel-cage four-pole motors), the NE-S1 Series does not need a thermal relay for motor protection due to the internal electronic protective circuit. A thermal relay, however, should be used:

- during continuous running outside a range of 30 to 60 Hz .
- for motors exceeding the range of electronic thermal adjustment (rated current).
- when several motors are driven by the same inverter; install a thermal relay for each motor.
- The RC value of the thermal relay should be more than 1.1 times the rated current of the motor. Where the wiring length is 10 m or more, the thermal relay tends to turn off readily. In this case, provide an AC reactor on the output side or use a current sensor.

Install a circuit breaker on the main power input side to protect inverter wiring and ensure personal safety. Choose an invertercompatible circuit breaker. The conventional type may malfunction due to harmonics from the inverter. For more information, consult the circuit breaker manufacturer.
The wiring distance between the inverter and the remote operator panel should be 20 meters or less. Shielded cable should be used on thewiring. Beware of voltage drops on main circuit wires. (A large voltage drop reduces torque.)
If the earth leakage relay (or earth leakage breaker) is used, it should have a sensitivity level of 15 mA or more (per inverter).
Do not use a capacitor for power factor improvement between the inverter and the motor because the high-frequency components of the inverter output may overheat or damage the capacitor.

High-frequency Noise and Leakage Current

(1) High-frequency components are included in the input/output of the inverter main circuit, and they may cause interference in a transmitter, radio, or sensor if used near the inverter. The interference can be minimized by attaching noise filters (option) in the inverter circuitry.
(2) The switching action of an inverter causes an increase in leakage current. Be sure to ground the inverter and the motor.

Lifetime of Primary Parts

Because a DC bus capacitor deteriorates as it undergoes internal chemical reaction, it should normally be replaced every five years. Be aware, however, that its life expectancy is considerably shorter when the inverter is subjected to such adverse factors as high temperatures or heavy loads exceeding the rated current of the inverter. The approximate lifetime of the capacitor is as shown in the figure at the right when it is used 12 hours daily (according to the " Instructions for Periodic Inspection of General-Purpose Inverter " (JEMA).) Also, such moving parts as a cooling fan should be replaced. Maintenance inspection and parts replacement must beperformed by only specified trained personnel. Please plan to replace new INV depends on the load, ambient condition in advance.

Precaution for Correct Usage

- Before use, be sure to read through the Instruction Manual and QRG(http://www.hitachi-ies.co.jp/english/products/inv/nes1/index.htm) to insure proper use of the inverter.
- Note that the inverter requires electrical wiring; a trained specialist should carry out the wiring.
- The inverter in this catalog is designed for general industrial applications. For special applications in fields such as aircraft, outer space, nuclear power, electrical power, transport vehicles, clinics, and underwater equipment, please consult with us in advance.
- For application in a facility where human life is involved or serious losses may occur, make sure to provide safety devices to avoid a serious accident. - The inverter is intended for use with a three-phase AC motor. For use with a load other than this, please consult with us.

Information in this brochure is subject to change without notice.

[^0]: - RS485 Modbus-RTU Communication port is standard

[^1]: Fan and air conditioners -air conditioning systems
 -fans and blowers -clean rooms

