SEMIVOLATILE ORGANIC COMPOUNDS BY
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS): CAPILLARY COLUMN TECHNIQUE

1.0 SCOPE AND APPLICATION

1.1 Method 8270 is used to determine the concentration of semivolatile organic compounds in extracts prepared from all types of solid waste matrices, soils, and ground water. Direct injection of a sample may be used in limited applications. The following compounds can be determined by this method:

Compounds	Appropriate Preparation Techniques					
	CAS No ${ }^{\text {a }}$	3510	3520	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	3550	3580
Acenaphthene	83-32-9	x	x	x	x	x
Acenaphthene-d ${ }_{10}$ (I.S.)		X	X	X	X	X
Acenaphthylene	208-96-8	X	X	X	X	X
Acetophenone	98-86-2	X	ND	ND	ND	X
2-Acetylaminofluorene	53-96-3	X	ND	ND	ND	X
1-Acetyl-2-thiourea	591-08-2	LR	ND	ND	ND	LR
Aldrin	309-00-2	X	X	X	X	X
2-Aminoanthraquinone	117-79-3	X	ND	ND	ND	X
Aminoazobenzene	60-09-3	X	ND	ND	ND	X
4-Aminobipheny 1	92-67-1	X	ND	ND	ND	X
3-Amino-9-ethylcarbazole	132-32-1	X	X	ND	ND	ND
Anilazine	101-05-3	X	ND	ND	ND	X
Aniline	62-53-3	X	X	ND	X	X
o-Anisidine	90-04-0	X	ND	ND	ND	X
Anthracene	120-12-7	X	X	X	X	X
Aramite	140-57-8	HS(43)	ND	ND	ND	X
Aroclor - 1016	12674-11-2	X	X	X	X	X
Aroclor - 1221	11104-28-2	X	X	X	X	X
Aroclor - 1232	11141-16-5	X	X	X	X	X
Aroclor - 1242	53469-21-9	x	X	X	X	X
Aroclor - 1248	12672-29-6	X	X	X	X	X
Aroclor - 1254	11097-69-1	X	X	X	X	X
Aroclor - 1260	11096-82-5	X	X	X	X	X
Azinphos-methy 1	86-50-0	HS(62)	ND	ND	ND	X
Barban	101-27-9	LR	ND	ND	ND	LR
Benzidine	92-87-5	CP	CP	CP	CP	CP
Benzoic acid	65-85-0	X	X	ND	X	X
Benz(a)anthracene	56-55-3	X	X	X	X	X
Benzo(b)fluoranthene	205-99-2	X	X	X	X	X
Benzo(k)fluoranthene	207-08-9	X	X	X	X	X
Benzo(g, h, i) perylene	191-24-2	X	X	X	X	X
Benzo(a)pyrene	50-32-8	X	X	X	X	X
CD-ROM	8270B	- 1			$\begin{array}{r} \text { Revi } \\ \text { eptembe } \end{array}$	$\begin{aligned} & \text { ision } 2 \\ & \text { er } 1994 \end{aligned}$

Compounds	Appropriate Preparation Techniques					
	CAS No ${ }^{\text {a }}$	3510	3520	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$		
p-Benzoquinone	106-51-4	OE	ND	ND	ND	x
Benzyl alcohol	100-51-6	X	X	ND	X	X
$\alpha-\mathrm{BHC}$	319-84-6	X	X	X	X	X
β-BHC	319-85-7	X	X	X	X	X
$\delta-$ BHC	319-86-8	X	X	X	X	X
Y-BHC (Lindane)	58-89-9	X	X	X	X	X
Bis(2-chloroethoxy)methane	111-91-1	X	X	X	X	X
Bis(2-chloroethyl) ether	111-44-4	X	X	X	X	X
Bis(2-chloroisopropyl) ether	108-60-1	X	X	X	X	X
Bis(2-ethylhexyl) phthalate	117-81-7	X	X	X	X	X
4-Bromophenyl phenyl ether	101-55-3	X	X	x	X	X
Bromoxynil	1689-84-5	X	ND	ND	ND	X
Butyl benzyl phthalate	85-68-7	X	X	X	X	X
2-sec-Buty $-4,6-$ dinitrophenol	88-85-7	X	ND	ND	ND	X
Captafol	2425-06-1	HS(55)	ND	ND	ND	X
Captan	133-06-2	HS (40)	ND	ND	ND	X
Carbaryl	63-25-2	X	ND	ND	ND	X
Carbofuran	1563-66-2	X	ND	ND	ND	X
Carbophenothion	786-19-6	X	ND	ND	ND	X
Chlordane	57-74-9	X	X	X	X	X
Chlorfenvinphos	470-90-6	X	ND	ND	ND	X
4-Chloroaniline	106-47-8	X	ND	ND	ND	X
Chlorobenzilate	510-15-6	X	ND	ND	ND	X
5-Chloro-2-methylaniline	95-79-4	X	ND	ND	ND	X
4-Chloro-3-methylphenol	59-50-7	X	X	X	X	X
3-(Chloromethyl)pyridine hydrochloride	6959-48-4	X	ND	ND	ND	X
1-Chloronaphthalene	90-13-1	X	X	X	X	X
2-Chloronaphthalene	91-58-7	X	X	X	X	X
2-Ch1orophenol	95-57-8	X	X	X	X	X
4-Chloro-1,2-phenylenediamine	95-83-0	X	X	ND	ND	ND
4-Chloro-1,3-phenylenediamine	5131-60-2	X	X	ND	ND	ND
4-Chlorophenyl phenyl ether	7005-72-3	X	X	X	X	X
Chrysene	218-01-9	X	X	X	X	X
Chrysene-d ${ }_{12}$ (I.S.)		X	X	X	X	X
Coumaphos	56-72-4	X	ND	ND	ND	X
p-Cresidine	120-71-8	X	ND	ND	ND	X
Crotoxyphos	7700-17-6	X	ND	ND	ND	X
2-Cyclohexyl-4,6-dinitro-phenol	131-89-5	X	ND	ND	ND	LR
4,4'-DDD	72-54-8	X	X	X	X	X
4, 4'-DDE	72-55-9	X	x	X	X	X
4,4'-DDT	50-29-3	X	X	X	X	X
Demeton-0	298-03-3	HS (68)	ND	ND	ND	X
Demeton-S	126-75-0	X	ND	ND	ND	X
Diallate (cis or trans)	2303-16-4	X	ND	ND	ND	X
2,4-Diaminotoluene	95-80-7	DC, OE(42)	ND	ND	ND	X

Revision 2 September 1994

Compounds	Appropriate Preparation Techniques					
	CAS No ${ }^{\text {a }}$	3510	3520	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	3550	3580
Dibenz(a,j)acridine	224-42-0	x	ND	ND	ND	X
Dibenz(a,h)anthracene	53-70-3	X	X	X	X	X
Dibenzofuran	132-64-9	X	X	ND	X	X
Dibenzo(a, e) pyrene	192-65-4	ND	ND	ND	ND	X
1,2-Dibromo-3-chloropropane	96-12-8	X	X	ND	ND	ND
Di-n-butyl phthalate	84-74-2	X	X	X	X	X
Dichlone	117-80-6	OE	ND	ND	ND	X
1,2-Dichlorobenzene	95-50-1	X	X	X	X	X
1,3-Dichlorobenzene	541-73-1	X	x	x	x	X
1,4-Dichlorobenzene	106-46-7	X	X	X	X	X
1,4-Dichlorobenzene-d (I.S)		X	X	X	X	X
3,3'-Dichlorobenzidine	91-94-1	X	X	X	X	X
2,4-Dichlorophenol	120-83-2	X	X	X	X	X
2,6-Dichlorophenol	87-65-0	X	ND	ND	ND	X
Dichlorovos	62-73-7	x	ND	ND	ND	x
Dicrotophos	141-66-2	X	ND	ND	ND	X
Dieldrin	60-57-1	x	X	x	X	X
Diethyl phthalate	84-66-2	X	X	X	X	X
Diethylstilbestrol	56-53-1	AW, OS (67)) $N D$	ND	ND	X
Diethyl sulfate	64-67-5	LR	ND	ND	ND	LR
Dihydrosaffrole	56312-13-1	ND	ND	ND	ND	ND
Dimethoate	60-51-5	HE, HS (31)) ND	ND	ND	X
3,3'-Dimethoxybenzidine	119-90-4	X	ND	ND	ND	LR
Dimethylaminoazobenzene	60-11-7	X	ND	ND	ND	X
```7,12-Dimethy1benz(a)- anthracene```	57-97-6	CP(45)	ND	ND	ND	CP
3,3'-Dimethylbenzidine	119-93-7	X	ND	ND	ND	$x$
$\alpha, \alpha-$ Dimethylphenethylamine	122-09-8	ND	ND	ND	ND	X
2,4-Dimethylphenol	105-67-9	X	X	X	X	X
Dimethyl phthalate	131-11-3	$x$	X	X	X	X
1,2-Dinitrobenzene	528-29-0	X	ND	ND	ND	X
1,3-Dinitrobenzene	99-65-0	X	ND	ND	ND	X
1,4-Dinitrobenzene	100-25-4	HE(14)	ND	ND	ND	$x$
4,6-Dinitro-2-methylphenol	534-52-1	X	$x$	X	$x$	$x$
2,4-Dinitrophenol	51-28-5	X	X	$x$	X	$x$
2,4-Dinitrotoluene	121-14-2	X	X	X	X	X
2,6-Dinitrotoluene	606-20-2	X	X	X	X	X
Dinocap	39300-45-3	CP, HS(28)	) ND	ND	ND	CP
Dinoseb	88-85-7	X	ND	ND	ND	X
Dioxathion	78-34-2	ND	ND	ND	ND	ND
Diphenylamine	122-39-4	X	X	X	X	$x$
5,5-Diphenylhydantoin	57-41-0	X	ND	ND	ND	$x$
1,2-Diphenylhydrazine	122-66-7	X	X	$x$	X	X
Di-n-octyl phthalate	117-84-0	X	X	X	X	X
Disulfoton	298-04-4	X	ND	ND	ND	X

Revision 2 September 1994

Compounds	Appropriate Preparation Techniques					
	CAS No ${ }^{\text {a }}$	35103	3520	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	3550	3580
Endosulfan I	959-98-8	X	X	X	X	$x$
Endosulfan II	33213-65-9	X	X	X	x	x
Endosulfan sulfate	1031-07-8	X	X	X	x	$x$
Endrin	72-20-8	X	X	,	x	X
Endrin aldehyde	7421-93-4	X	X	X	X	X
Endrin ketone	53494-70-5	X	X	ND	X	x
EPN	2104-64-5	X	ND	ND	ND	x
Ethion	563-12-2	X	ND	ND	ND	X
Ethyl carbamate	51-79-6	DC(28)	ND	ND	ND	x
Ethyl methanesulfonate	62-50-0	X	ND	ND	ND	$x$
Ethyl parathion	56-38-2	X	X	ND	ND	ND
Famphur	52-85-7	X	ND	ND	ND	X
Fensulfothion	115-90-2	X	ND	ND	ND	X
Fenthion	55-38-9	X	ND	ND	ND	X
Fluchloralin	33245-39-5	X	ND	ND	ND	x
Fluoranthene	206-44-0	X	X	X	X	X
Fluorene	86-73-7	X	X	X	X	x
2-Fluorobiphenyl (surr.)	321-60-8	X	X	X	x	x
2-Fluorophenol (surr.)	367-12-4	X	X	X	X	x
Heptachlor	76-44-8	X	X	X	x	X
Heptachlor epoxide	1024-57-3	X	X	X	X	x
Hexachlorobenzene	118-74-1	X	X	X	X	$x$
Hexachlorobutadiene	87-68-3	X	X	X	x	x
Hexachlorocyclopentadiene	77-47-4	$x$	X	X	x	$x$
Hexachloroethane	67-72-1	$X$	X	X	X	X
Hexachlorophene	70-30-4	AW, CP(62)	) ND	ND	ND	CP
Hexachloropropene	1888-71-7	X	ND	ND	ND	X
Hexamethylphosphoramide	680-31-9	X	ND	ND	ND	x
Hydroquinone	123-31-9	ND	ND	ND	ND	$x$
Indeno(1,2,3-cd)pyrene	193-39-5	X	X	X	X	x
Isodrin	465-73-6	$x$	ND	ND	ND	x
Isophorone	78-59-1	X	X	X	X	x
Isosafrole	120-58-1	DC(46)	ND	ND	ND	X
Kepone	143-50-0	X	ND	ND	ND	X
Leptophos	21609-90-5	X	ND	ND	ND	X
Malathion	121-75-5	HS (5)	ND	ND	ND	x
Maleic anhydride	108-31-6	HE	ND	ND	ND	X
Mestranol	72-33-3	X	ND	ND	ND	x
Methapyrilene	91-80-5	X	ND	ND	ND	X
Methoxychlor	72-43-5	$x$	ND	ND	ND	x
3-Methylcholanthrene	56-49-5	X	ND	ND	ND	$x$
4,4'-Methylenebis   (2-chloroaniline)	101-14-4	OE, OS (0)	ND	ND	ND	LR
4,4'-Methylenebis   (N,N-dimethylaniline)	101-61-1	x	x	ND	ND	ND
CD-ROM	8270B				Revis tember	$\begin{array}{r} \text { ion } 2 \\ 1994 \end{array}$


Compounds	Appropriate Preparation Techniques					
	CAS No ${ }^{\text {a }}$	3510	3520	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	3550	3580
Methyl methanesulfonate	66-27-3	$x$	ND	ND	ND	$x$
2-Methylnaphthalene	91-57-6	X	X	ND	X	X
2-Methyl-5-nitroaniline	99-55-8	X	X	ND	ND	ND
Methyl parathion	298-00-0	X	ND	ND	ND	X
2-Methylphenol	95-48-7	X	ND	ND	ND	X
3-Methylphenol	108-39-4	X	ND	ND	ND	X
4-Methylphenol	106-44-5	X	ND	ND	ND	x
2-Methylpyridine	109-06-8	X	X	ND	ND	ND
Mevinphos	7786-34-7	X	ND	ND	ND	X
Mexacarbate	315-18-4	HE, HS (68)	ND	ND	ND	X
Mirex	2385-85-5	X	ND	ND	ND	x
Monocrotophos	6923-22-4	HE	ND	ND	ND	X
Naled	300-76-5	X	ND	ND	ND	x
Naphthalene	91-20-3	X	X	X	X	X
Naphthalene-d88 (I.S.)		X	X	X	X	X
1,4-Naphthoquinone	130-15-4	$X$	ND	ND	ND	X
1-Naphthylamine	134-32-7	OS(44)	ND	ND	ND	X
2-Naphthylamine	91-59-8	$\times$	ND	ND	ND	X
Nicotine	54-11-5	DE(67)	ND	ND	ND	x
5-Nitroacenaphthene	602-87-9	X	ND	ND	ND	X
2-Nitroaniline	88-74-4	X	X	ND	$x$	x
3-Nitroaniline	99-09-2	X	X	ND	$x$	$x$
4-Nitroaniline	100-01-6	X	X	ND	x	x
5-Nitro-o-anisidine	99-59-2	X	ND	ND	ND	X
Nitrobenzene	98-95-3	X	X	X	X	X
Nitrobenzene-d ${ }^{\text {( }}$ (surr.)		X	X	X	X	X
4-Nitrobiphenyl	92-93-3	X	ND	ND	ND	x
Nitrofen	1836-75-5	X	ND	ND	ND	X
2-Nitrophenol	88-75-5	X	X	X	X	X
4-Nitrophenol	100-02-7	X	X	X	X	X
5-Nitro-o-toluidine	99-55-8	X	ND	ND	ND	x
Nitroquinoline-1-oxide	56-57-5	X	ND	ND	ND	X
N -Nitrosodibutylamine	924-16-3	X	ND	ND	ND	X
N-Nitrosodiethylamine	55-18-5	X	ND	ND	ND	x
N-Nitrosodimethylamine	62-75-9	X	X	X	$x$	x
N -Nitrosomethylethylamine	10595-95-6	X	ND	ND	ND	X
N -Nitrosodiphenylamine	86-30-6	X	x	X	X	X
N-Nitrosodi-n-propylamine	621-64-7	X	X	X	X	x
N -Nitrosomorpholine	59-89-2	ND	ND	ND	ND	x
N -Nitrosopiperidine	100-75-4	X	ND	ND	ND	X
N-Nitrosopyrrolidine	930-55-2	X	ND	ND	ND	X
Octamethyl pyrophosphoramide	152-16-9	LR	ND	ND	ND	LR
4,4'-0xydianiline	101-80-4	X	ND	ND	ND	X
Parathion	56-38-2	X	ND	ND	ND	X
Pentach1orobenzene	608-93-5	X	ND	ND	ND	X


Compounds	Appropriate Preparation Techniques					
	CAS No ${ }^{\text {a }}$	3510	3520	$\begin{aligned} & 3540 / \\ & 3541 \end{aligned}$	3550	3580
Pentachloronitrobenzene	82-68-8	X	ND	ND	ND	X
Pentachlorophenol	87-86-5	x	X	X	$x$	$x$
Perylene-d ${ }_{12}$ (I.S.)		X	X	X	X	$x$
Phenacetin	62-44-2	$x$	ND	ND	ND	$x$
Phenanthrene	85-01-8	X	X	X	X	X
Phenanthrene-d $\mathrm{d}_{10}$ (I.S.)		X	X	X	X	X
Phenobarbital	50-06-6	$X$	ND	ND	ND	X
Phenol	108-95-2	DC(28)	X	X	$x$	$x$
Phenol-d ${ }_{6}$ (surr.)		DC(28)	X	X	X	$x$
1,4-Phenylenediamine	106-50-3	X	ND	ND	ND	X
Phorate	298-02-2	X	ND	ND	ND	X
Phosalone	2310-17-0	HS (65)	ND	ND	ND	$x$
Phosmet	732-11-6	HS (15)	ND	ND	ND	X
Phosphamidon	13171-21-6	HE (63)	ND	ND	ND	X
Phthalic anhydride	85-44-9	CP, HE(1)	ND	ND	ND	CP
2-Picoline	109-06-8	ND	ND	ND	ND	ND
Piperonyl sulfoxide	120-62-7	X	ND	ND	ND	X
Pronamide	23950-58-5	X	ND	ND	ND	X
Propylthiouracil	51-52-5	LR	ND	ND	ND	LR
Pyrene	129-00-0	X	X	X	X	X
Pyridine	110-86-1	ND	ND	ND	ND	ND
Resorcinol	108-46-3	DC, OE(10)	ND	ND	ND	X
Safrole	94-59-7	X	ND	ND	ND	X
Strychnine	60-41-3	AW, OS(55)	ND	ND	ND	X
Sulfallate	95-06-7	X	ND	ND	ND	X
Terbufos	13071-79-9	X	ND	ND	ND	X
Terpheny $1-\mathrm{d}_{14}$ (surr.)	1718-51-0	X	X	ND	X	X
1,2,4,5-Tetrach1orobenzene	95-94-3	X	ND	ND	ND	X
2,3,4,6-Tetrachlorophenol	58-90-2	X	ND	ND	ND	X
Tetrachlorvinphos	961-11-5	X	ND	ND	ND	X
Tetraethyl dithiopyrophosphate	3689-24-5	X	X	ND	ND	ND
Tetraethyl pyrophosphate	107-49-3	X	ND	ND	ND	X
Thionazine	297-97-2	X	ND	ND	ND	X
Thiophenol (Benzenethiol)	108-98-5	X	ND	ND	ND	X
Toluene diisocyanate	584-84-9	HE (6)	ND	ND	ND	X
o-Toluidine	95-53-4	X	ND	ND	ND	X
Toxaphene	8001-35-2	X	X	X	$x$	X
2,4,6-Tribromophenol (surr.)		X	X	X	X	X
1,2,4-Trich1orobenzene	120-82-1	X	X	X	X	X
2,4,5-Trichlorophenol	95-95-4	X	X	ND	$x$	x
2,4,6-Trichlorophenol	88-06-2	X	X	X	X	X
Trifluralin	1582-09-8	X	ND	ND	ND	X
2,4,5-Trimethylaniline	137-17-7	X	ND	ND	ND	X
Trimethyl phosphate	512-56-1	HE (60)	ND	ND	ND	X


	Appropriate Preparation Techniques					
Compounds	CAS No ${ }^{\text {a }}$	3510	3520	$\begin{aligned} & 3540 \\ & 3541 \end{aligned}$	$3550$	3580
1,3,5-Trinitrobenzene	99-35-4	$x$	ND	ND	ND	$X$
Tris(2,3-dibromopropy1) phosphate	126-72-7	$X$	ND	ND	ND	LR
Tri-p-tolyl phosphate	78-32-0	$X$	ND	ND	ND	$X$
0,0,0-Triethyl phosphorothioate	126-68-1	X	ND	ND	ND	X

a Chemical Abstract Service Registry Number.
$A W=$ Adsorption to walls of glassware during extraction and storage.
$C P=$ Nonreproducible chromatographic performance.
$D C=$ Unfavorable distribution coefficient (number in parenthesis is percent recovery).
$H E=H y d r o l y s i s ~ d u r i n g ~ e x t r a c t i o n ~ a c c e l e r a t e d ~ b y ~ a c i d i c ~ o r ~ b a s i c ~ c o n d i t i o n s ~$ (number in parenthesis is percent recovery).
$H S=$ Hydrolysis during storage (number in parenthesis is percent stability).
$L R=$ Low response.
$N D=$ Not determined.
$O E=$ Oxidation during extraction accelerated by basic conditions (number in parenthesis is percent recovery).
$O S=0 x i d a t i o n d u r i n g$ storage (number in parenthesis is percent stability). $X=$ Greater than 70 percent recovery by this technique.
1.2 Method 8270 can be used to quantitate most neutral, acidic, and basic organic compounds that are soluble in methylene chloride and capable of being eluted without derivatization as sharp peaks from a gas chromatographic fusedsilica capillary column coated with a slightly polar silicone. Such compounds include polynuclear aromatic hydrocarbons, chlorinated hydrocarbons and pesticides, phthalate esters, organophosphate esters, nitrosamines, haloethers, aldehydes, ethers, ketones, anilines, pyridines, quinolines, aromatic nitro compounds, and phenols, including nitrophenols. See Table 1 for a list of compounds and their characteristic ions that have been evaluated on the specified GC/MS system.
1.3 The following compounds may require special treatment when being determined by this method. Benzidine can be subject to oxidative losses during solvent concentration. Also, chromatography is poor. Under the alkaline conditions of the extraction step, $\alpha$-BHC, $\gamma$-BHC, Endosulfan I and II, and Endrin are subject to decomposition. Neutral extraction should be performed if these compounds are expected. Hexachlorocyclopentadiene is subject to thermal decomposition in the inlet of the gas chromatograph, chemical reaction in acetone solution, and photochemical decomposition. N-nitrosodimethylamine is difficult to separate from the solvent under the chromatographic conditions described. $N$-nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine. Pentachlorophenol, 2,4-dinitrophenol,

4-nitrophenol, 4,6-dinitro-2-methylphenol, 4-chloro-3-methylphenol, benzoic acid, 2-nitroaniline, 3-nitroaniline, 4-chloroaniline, and benzyl alcohol are subject to erratic chromatographic behavior, especially if the GC system is contaminated with high boiling material.
1.4 The estimated quantitation 1 imit (EQL) of Method 8270 for determining an individual compound is approximately $1 \mathrm{mg} / \mathrm{kg}$ (wet weight) for soil/sediment samples, $1-200 \mathrm{mg} / \mathrm{kg}$ for wastes (dependent on matrix and method of preparation), and $10 \mu \mathrm{~g} / \mathrm{L}$ for ground water samples (see Table 2). EQLs will be proportionately higher for sample extracts that require dilution to avoid saturation of the detector.
1.5 This method is restricted to use by or under the supervision of analysts experienced in the use of gas chromatograph/mass spectrometers and skilled in the interpretation of mass spectra. Each analyst must demonstrate the ability to generate acceptable results with this method.

### 2.0 SUMMARY OF METHOD

2.1 Prior to using this method, the samples should be prepared for chromatography using the appropriate sample preparation and cleanup methods. This method describes chromatographic conditions that will allow for the separation of the compounds in the extract and for their qualitative and quantitative analysis by mass spectrometry.

### 3.0 INTERFERENCES

3.1 Raw GC/MS data from all blanks, samples, and spikes must be evaluated for interferences. Determine if the source of interference is in the preparation and/or cleanup of the samples and take corrective action to eliminate the problem.
3.2 Contamination by carryover can occur whenever high-concentration and low-concentration samples are sequentially analyzed. To reduce carryover, the sample syringe must be rinsed out between samples with solvent. Whenever an unusually concentrated sample is encountered, it should be followed by the analysis of solvent to check for cross contamination.

### 4.0 APPARATUS AND MATERIALS

4.1 Gas chromatograph/mass spectrometer system
4.1.1 Gas chromatograph - An analytical system complete with a temperature-programmable gas chromatograph suitable for splitless injection and all required accessories, including syringes, analytical columns, and gases. The capillary column should be directly coupled to the source.
4.1.2 Column - $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID (or 0.32 mm ID) $1 \mu \mathrm{~m}$ film thickness silicone-coated fused-silica capillary column (J\&W Scientific DB-5 or equivalent).
4.1.3 Mass spectrometer - Capable of scanning from 35 to 500 amu every 1 sec or less, using 70 volts (nominal) electron energy in the electron impact ionization mode. The mass spectrometer must be capable of producing a mass spectrum for decafluorotriphenylphosphine (DFTPP) which meets all of the criteria in Table 3 when $1 \mu \mathrm{~L}$ of the GC/MS tuning standard is injected through the GC (50 ng of DFTPP).
4.1.4 GC/MS interface - Any GC-to-MS interface that gives acceptable calibration points at 50 ng per injection for each compound of interest and achieves acceptable tuning performance criteria may be used. For a narrowbore capillary column, the interface is usually capillary-direct into the mass spectrometer source.
4.1.5 Data system - A computer system must be interfaced to the mass spectrometer. The system must allow the continuous acquisition and storage on machine-readable media of all mass spectra obtained throughout the duration of the chromatographic program. The computer must have software that can search any GC/MS data file for ions of a specific mass and that can plot such ion abundances versus time or scan number. This type of plot is defined as an Extracted Ion Current Profile (EICP). Software must also be available that allows integrating the abundances in any EICP between specified time or scan-number limits. The most recent version of the EPA/NIST Mass Spectral Library should also be available.
4.1.6 Guard column (optional) (J\&W Deactivated Fused Silica, 0.25 mm ID $\times 6 \mathrm{~m}$, or equivalent) between the injection port and the analytical column joined with column joiners (Hewlett Packard No. 5062-3556, or equivalent).
4.2 Syringe - $10 \mu \mathrm{~L}$.
4.3 Volumetric flasks, Class A - Appropriate sizes with ground glass stoppers.
4.4 Balance - Analytical, 0.0001 g.
4.5 Bottles - glass with Teflon-1ined screw caps or crimp tops.

### 5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.
5.2 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.
5.3 Stock standard solutions (1000 mg/L) - Standard solutions can be prepared from pure standard materials or purchased as certified solutions.
5.3.1 Prepare stock standard solutions by accurately weighing about 0.0100 g of pure material. Dissolve the material in pesticide quality acetone or other suitable solvent and dilute to volume in a 10 mL volumetric flask. Larger volumes can be used at the convenience of the analyst. When compound purity is assayed to be $96 \%$ or greater, the weight may be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards may be used at any concentration if they are certified by the manufacturer or by an independent source.
5.3.2 Transfer the stock standard solutions into bottles with Teflon lined screw-caps. Store at $-10^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ or less and protect from 1 ight. Stock standard solutions should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.
5.3.3 Stock standard solutions must be replaced after 1 year or sooner if comparison with quality control check samples indicates a problem.
5.4 Internal standard solutions - The internal standards recommended are 1,4-dichlorobenzene-d , naphthalene-d 8 , acenaphthene-d ${ }_{10}$, phenanthrene-d 10 , chrysene- $d_{12}$, and perylene-d 12 (see Table 5). Other compounds may be used as internal standards as long as the requirements given in Sec. 7.3.2 are met. Dissolve 0.200 g of each compound with a small volume of carbon disulfide. Transfer to a 50 mL volumetric flask and dilute to volume with methylene chloride so that the final solvent is approximately $20 \%$ carbon disulfide. Most of the compounds are also soluble in small volumes of methanol, acetone, or toluene, except for perylene- $d_{12}$. The resulting solution will contain each standard at a concentration of $4,000 \mathrm{ng} / \mu \mathrm{L}$. Each 1 mL sample extract undergoing analysis should be spiked with $10 \mu \mathrm{~L}$ of the internal standard solution, resulting in a concentration of $40 \mathrm{ng} / \mu \mathrm{L}$ of each internal standard. Store at $-10^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ or less when not being used.
5.5 GC/MS tuning standard - A methylene chloride solution containing $50 \mathrm{ng} / \mu \mathrm{L}$ of decafluorotriphenylphosphine (DFTPP) should be prepared. The standard should also contain $50 \mathrm{ng} / \mu \mathrm{L}$ each of 4,4'-DDT, pentachlorophenol, and benzidine to verify injection port inertness and GC column performance. Store at $-10^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ or less when not being used.
5.6 Calibration standards - A minimum of five calibration standards should be prepared. One of the calibration standards should be at a concentration near, but above, the method detection limit; the others should correspond to the range of concentrations found in real samples but should not exceed the working range of the GC/MS system. Each standard should contain each analyte for detection by this method (e.g. some or all of the compounds listed in Table 1 may be included). Each 1 mL aliquot of calibration standard should be spiked with $10 \mu \mathrm{~L}$ of the internal standard solution prior to analysis. All standards should be stored at $-10^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ or less, and should be freshly prepared once a year, or sooner if check standards indicate a problem. The daily calibration standard should be prepared weekly and stored at $4^{\circ} \mathrm{C}$.
5.7 Surrogate standards - The recommended surrogate standards are phenol-d ${ }_{6}$, 2-fluorophenol , 2,4,6-tribromophenol , nitrobenzene-d 5 , 2-fluorobiphenyl, and p-terphenyl-d $\mathrm{d}_{14}$. See Method 3500 for the instructions on preparing the surrogate standards. Determine what concentration should be in the blank extracts after all extraction, cleanup, and concentration steps. Inject this concentration into the GC/MS to determine recovery of surrogate standards in all blanks, spikes, and sample extracts. Take into account all dilutions of sample extracts.
5.8 Matrix spike standards - See Method 3500 for instructions on preparing the matrix spike standard. Determine what concentration should be in the blank extracts after all extraction, cleanup, and concentration steps. Inject this concentration into the GC/MS to determine recovery of surrogate standards in all matrix spikes. Take into account all dilutions of sample extracts.
5.9 Acetone, hexane, methylene chloride, isooctane, carbon disulfide, toluene, and other appropriate solvents - Pesticide quality or equivalent
6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING
6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1 .

### 7.0 PROCEDURE

7.1 Sample preparation - Samples must be prepared by one of the following methods prior to GC/MS analysis.

Matrix Methods
Water 3510, 3520
Soil/sediment 3540, 3541, 3550
Waste
3540, 3541, 3550, 3580
7.1.1 Direct injection - In very limited applications direct injection of the sample into the GC/MS system with a $10 \mu \mathrm{~L}$ syringe may be appropriate. The detection limit is very high (approximately $10,000 \mu \mathrm{~g} / \mathrm{L}$ ); therefore, it is only permitted where concentrations in excess of $10,000 \mu \mathrm{~g} / \mathrm{L}$ are expected. The system must be calibrated by direct injection.
7.2 Extract cleanup - Extracts may be cleaned up by any of the following methods prior to GC/MS analysis.

Compounds	Methods
Phenols	$3630,3640, ~ 8040^{\text {a }}$
Phthalate esters	$3610,3620,3640$
Nitrosamines	$3610,3620,3640$
Organochlorine pesticides \& PCBs	3620,3660
Nitroaromatics and cyclic ketones	3620,3640
Polynuclear aromatic hydrocarbons	$3611,3630,3640$
Haloethers	3620,3640
Chlorinated hydrocarbons	3620,3640
Organophosphorus pesticides	3620
Petroleum waste	3611,3650
All priority pollutant base,	
$\quad$ neutral, and acids	3640

a Method 8040 includes a derivatization technique followed by GC/ECD analysis, if interferences are encountered on GC/FID.
7.3 Initial calibration - The recommended GC/MS operating conditions:

Mass range:	$35-500$ amu
Scan time:	$1 \mathrm{sec} / \mathrm{scan}$
Initial temperature:	$40^{\circ} \mathrm{C}$, hold for 4 minutes
Temperature program:	$40-270^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$
Final temperature:	$270^{\circ} \mathrm{C}$, hold until benzo[g,h,i]perylene has
Injector temperature:	eluted
Transfer line temperature:	$250-300^{\circ} \mathrm{C}$
Source temperature:	$250-300^{\circ} \mathrm{C}$
Injector:	According to manufacturer's specifications
Sample volume:	Grob-type, splitless
Carrier gas:	$1-2 \mu \mathrm{~L}$

(Split injection is allowed if the sensitivity of the mass spectrometer is sufficient).
7.3.1 Each GC/MS system must be hardware-tuned to meet the criteria in Table 3 for a 50 ng injection of DFTPP. Analyses should not begin until al1 these criteria are met. Background subtraction should be straightforward and designed only to eliminate column bleed or instrument background ions. The GC/MS tuning standard should also be used to assess GC column performance and injection port inertness. Degradation of DDT to DDE and DDD should not exceed 20\%. (See Sec. 8.3.1 of Method 8081 for the percent breakdown calculation). Benzidine and pentachlorophenol should be present at their normal responses, and no peak tailing should be visible. If degradation is excessive and/or poor chromatography is noted, the injection port may require cleaning. It may also be necessary to break off the first 6-12 in. of the capillary column. The use of a guard column (Sec. 4.1.6) between the injection port and the analytical column may help prolong analytical column performance.
7.3.2 The internal standards selected in Sec. 5.4 should permit most of the components of interest in a chromatogram to have retention times of 0.80-1.20 relative to one of the internal standards. Use the base peak ion from the specific internal standard as the primary ion for quantitation (see Table 1). If interferences are noted, use the next most intense ion as the quantitation ion (i.e. for $1,4-$ dichlorobenzene-d , use $152 \mathrm{~m} / \mathrm{z}$ for quantitation).
7.3.3 Analyze $1 \mu \mathrm{~L}$ of each calibration standard (containing internal standards) and tabulate the area of the primary characteristic ion against concentration for each compound (as indicated in Table 1). Figure 1 shows a chromatogram of a calibration standard containing base/neutral and acid analytes. Calculate response factors (RFs) for each compound relative to one of the internal standards as follows:

$$
R F=\left(A_{x} C_{i s}\right) /\left(A_{i s} C_{x}\right)
$$

where:

$A_{x}=$| Area of the characteristic ion for the compound being |
| :--- |
| measured. |


$A_{i s}=$| Area of the characteristic ion for the specific internal |
| :--- |

$C_{i s}=$ Concentration of the specific internal standard $(n g / \mu \mathrm{L})$.
$C_{x}=$ Concentration of the compound being measured $(n g / \mu \mathrm{L})$.
7.3.4 A system performance check must be performed to ensure that minimum average RFs are met before the calibration curve is used. For semivolatiles, the System Performance Check Compounds (SPCCs) are: N-nitroso-di-n-propylamine; hexachlorocyclopentadiene; 2,4-dinitro-phenol; and 4-nitrophenol. The minimum acceptable average RF for these compounds is 0.050. These SPCCs typically have very low RFs (0.1-0.2) and tend to decrease in response as the chromatographic system begins to deteriorate or the standard material begins to deteriorate. They are usually the first to show poor performance. Therefore, they must meet the minimum requirement when the system is calibrated.
7.3.4.1 The percent relative standard deviation (\%RSD) should be less than $15 \%$ for each compound. However, the \%RSD for each individual Calibration Check Compound (CCC) (see Table 4) must be less than $30 \%$. The relative retention times of each compound in each calibration run should agree within 0.06 relative retention time units. Late-eluting compounds usually have much better agreement.

$$
\% R S D=\frac{S D}{\overline{R F}} \times 100
$$

where:

RSD	$=$ relative standard deviation.
RF	$=$ mean of 5 initial RFs for a compound.
$S D$	$=$ standard deviation of average RFs for a compound.

$$
S D=\sqrt{\sum_{i=1}^{n} \frac{\left(R F_{i}-\overline{R F}\right)^{2}}{n-1}}
$$

where:

$$
\begin{array}{ll}
R F_{i} & =\text { RF for each of the } 5 \text { calibration levels } \\
N & =\text { Number of RF values (i.e., 5) }
\end{array}
$$

7.3.4.2 If the \%RSD of any CCC is $30 \%$ or greater, then the chromatographic system is too reactive for analysis to begin. Clean or replace the injector liner and/or capillary column, then repeat the calibration procedure beginning with section 7.3 .
7.3.5 Linearity - If the \%RSD of any compound is $15 \%$ or $1 e s s$, then the relative response factor is assumed to be constant over the calibration range, and the average relative response factor may be used for quantitation (Sec. 7.6.2).
7.3.5.1 If the \%RSD of any compound is greater than $15 \%$, construct calibration curves of area ratio ( $A / A_{i s}$ ) versus concentration using first or higher order regression fit of the five calibration points. The analyst should select the regression order which introduces the least calibration error into the quantitation (Sec. 7.6.2.2 and 7.6.2.3). The use of calibration curves is a recommended alternative to average response factor calibration, and a useful diagnostic of standard preparation accuracy and absorption activity in the chromatographic system.

### 7.4 Daily GC/MS calibration

7.4.1 Prior to analysis of samples, the GC/MS tuning standard must be analyzed. A 50 ng injection of DFTPP must result in a mass spectrum for DFTPP which meets the criteria given in Table 3. These criteria must be demonstrated during each 12 hour shift.
7.4.2 A calibration standard(s) at mid-concentration containing all semivolatile analytes, including all required surrogates, must be analyzed every 12 hours during analysis. Compare the instrument response factor from the standards every 12 hours with the SPCC (Sec. 7.4.3) and CCC (Sec. 7.4.4) criteria.
7.4.3 System Performance Check Compounds (SPCCs): A system performance check must be made during every 12 hour shift. For each SPCC compound in the daily calibration a minimum response factor of 0.050 must be obtained. This is the same check that is applied during the initial calibration. If the minimum response factors are not met, the system must be evaluated, and corrective action must be taken before sample analysis begins. The minimum RF for semivolatile SPCCs is 0.050 . Some possible problems are standard mixture degradation, injection port inlet contamination, contamination at the front end of the analytical column, and
active sites in the column or chromatographic system. This check must be met before analysis begins.
7.4.4 Calibration Check Compounds (CCCS): After the system performance check is met, CCCs listed in Table 4 are used to check the validity of the initial calibration.

Calculate the percent drift using:

$$
\% \text { Drift }=\frac{C_{I}-C_{C}}{C_{I}} \times 100
$$

where:
$C_{I}=$ Calibration Check Compound standard concentration.
$C_{c}=$ Measured concentration using selected quantitation method.
If the percent difference for each CCC is less than or equal to $20 \%$, the initial calibration is assumed to be valid. If the criterion is not met (> 20\% drift) for any one CCC, corrective action must be taken. Problems similar to those listed under SPCCs could affect this criterion. If no source of the problem can be determined after corrective action has been taken, a new five-point calibration must be generated. This criterion must be met before sample analysis begins. If the CCCs are not analytes required by the permit, then all required analytes must meet the $20 \%$ drift criterion.
7.4.5 The internal standard responses and retention times in the calibration check standard must be evaluated immediately after or during data acquisition. If the retention time for any internal standard changes by more than 30 seconds from the last calibration check (12 hours), the chromatographic system must be inspected for malfunctions and corrections must be made, as required. If the EICP area for any of the internal standards changes by a factor of two ( $-50 \%$ to $+100 \%$ ) from the last daily calibration check standard, the mass spectrometer must be inspected for malfunctions and corrections must be made, as appropriate. When corrections are made, reanalysis of samples analyzed while the system was malfunctioning is required.

### 7.5 GC/MS analysis

7.5.1 It is highly recommended that the extract be screened on a GC/FID or GC/PID using the same type of capillary column. This will minimize contamination of the GC/MS system from unexpectedly high concentrations of organic compounds.
7.5.2 Spike the 1 mL extract obtained from sample preparation with $10 \mu \mathrm{~L}$ of the internal standard solution just prior to analysis.
7.5.3 Analyze the 1 mL extract by GC/MS using a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ (or 0.32 mm ) silicone-coated fused-silica capillary column. The volume to be injected should ideally contain 100 ng of base/neutral and 200 ng of acid
surrogates (for a $1 \mu \mathrm{~L}$ injection). The recommended GC/MS operating conditions to be used are specified in Sec. 7.3.
7.5.4 If the response for any quantitation ion exceeds the initial calibration curve range of the GC/MS system, extract dilution must take place. Additional internal standard must be added to the diluted extract to maintain the required $40 \mathrm{ng} / \mu \mathrm{L}$ of each internal standard in the extracted volume. The diluted extract must be reanalyzed.
7.5.5 Perform all qualitative and quantitative measurements as described in Sec. 7.6. Store the extracts at $4^{\circ} \mathrm{C}$, protected from light in screw-cap vials equipped with unpierced Teflon lined septa.

### 7.6 Data interpretation

### 7.6.1 Qualitative analysis

7.6.1.1 The qualitative identification of compounds determined by this method is based on retention time, and on comparison of the sample mass spectrum, after background correction, with characteristic ions in a reference mass spectrum. The reference mass spectrum must be generated by the laboratory using the conditions of this method. The characteristic ions from the reference mass spectrum are defined to be the three ions of greatest relative intensity, or any ions over $30 \%$ relative intensity if less than three such ions occur in the reference spectrum. Compounds should be identified as present when the criteria below are met.
7.6.1.1.1 The intensities of the characteristic ions of a compound maximize in the same scan or within one scan of each other. Selection of a peak by a data system target compound search routine where the search is based on the presence of a target chromatographic peak containing ions specific for the target compound at a compound-specific retention time will be accepted as meeting this criterion.
7.6.1.1.2 The RRT of the sample component is within $\pm$ 0.06 RRT units of the RRT of the standard component.
7.6.1.1.3 The relative intensities of the characteristic ions agree within $30 \%$ of the relative intensities of these ions in the reference spectrum. (Example: For an ion with an abundance of $50 \%$ in the reference spectrum, the corresponding abundance in a sample spectrum can range between $20 \%$ and $80 \%$.)
7.6.1.1.4 Structural isomers that produce very similar mass spectra should be identified as individual isomers if they have sufficiently different GC retention times. Sufficient GC resolution is achieved if the height of the valley between two isomer peaks is less than $25 \%$ of the sum of the two peak heights. Otherwise, structural isomers are identified as isomeric pairs.
7.6.1.1.5 Identification is hampered when sample components are not resolved chromatographically and produce mass spectra containing ions contributed by more than one analyte. When gas chromatographic peaks obviously represent more than one sample component (i.e., a broadened peak with shoulder(s) or a valley between two or more maxima), appropriate selection of analyte spectra and background spectra is important. Examination of extracted ion current profiles of appropriate ions can aid in the selection of spectra, and in qualitative identification of compounds. When analytes coelute (i.e., only one chromatographic peak is apparent), the identification criteria can be met, but each analyte spectrum will contain extraneous ions contributed by the coeluting compound.
7.6.1.2 For samples containing components not associated with the calibration standards, a library search may be made for the purpose of tentative identification. The necessity to perform this type of identification will be determined by the purpose of the analyses being conducted. Computer generated library search routines should not use normalization routines that would misrepresent the library or unknown spectra when compared to each other. For example, the RCRA permit or waste delisting requirements may require the reporting of nontarget analytes. Only after visual comparison of sample spectra with the nearest library searches will the mass spectral interpretation specialist assign a tentative identification. Guidelines for making tentative identification are:
(1) Relative intensities of major ions in the reference spectrum (ions > 10\% of the most abundant ion) should be present in the sample spectrum.
(2) The relative intensities of the major ions should agree within $\pm 20 \%$. (Example: For an ion with an abundance of $50 \%$ in the standard spectrum, the corresponding sample ion abundance must be between 30 and 70\%.)
(3) Molecular ions present in the reference spectrum should be present in the sample spectrum.
(4) Ions present in the sample spectrum but not in the reference spectrum should be reviewed for possible background contamination or presence of coeluting compounds.
(5) Ions present in the reference spectrum but not in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks. Data system library reduction programs can sometimes create these discrepancies.
7.6.2.1 When a compound has been identified, the quantitation of that compound will be based on the integrated abundance from the EICP of the primary characteristic ion.
7.6.2.2 If the \%RSD of a compound's relative response factor is $15 \%$ or less, then the concentration in the extract may be determined using the average response factor (RF) from initial calibration data (7.4.5.2) and the following equation:.

$$
C_{e x}(m g / L)=\frac{\left(A_{x} \times C_{i s}\right)}{\left(A_{i s} \times \overline{R F}\right)}
$$

where $C_{e x}$ is the concentration of the compound in the extract, and the other terms are as defined in Sec. 7.4.3.
7.6.2.3 Alternatively, the regression line fitted to the initial calibration (Sec. 7.3.5.1) may be used for determination of the extract concentration.
7.6.2.4 Compute the concentration of the analyte in the sample using the equations in Secs. 7.6.2.4.1 and 7.6.2.4.2.
7.6.2.4.1 The concentration of the analyte in the liquid phase of the sample is calculated using the concentration of the analyte in the extract and the volume of liquid extracted, as follows:

$$
\text { Concentration in } 1 \text { iquid }(\mu \mathrm{g} / \mathrm{L})=\frac{\left(C_{e x} \frac{x}{V_{0}} \mathrm{~V}_{\mathrm{ex}}\right)}{( }
$$

where:

$$
\begin{array}{ll}
V_{\text {ex }} & =\text { extract volume, in } m L \\
V_{0} & =\text { volume of liquid extracted, in } L .
\end{array}
$$

7.6.2.4.2 The concentration of the analyte in the solid phase of the sample is calculated using the concentration of the pollutant in the extract and the weight of the solids, as follows:

$$
\text { Concentration in solid }(\mu \mathrm{g} / \mathrm{kg})=\frac{\left(C_{e x} \frac{x}{V_{\mathrm{S}}}\right)}{W_{\mathrm{s}}}
$$

where:

$$
\begin{array}{ll}
V_{\text {ex }} & =\text { extract volume, in } \mathrm{mL} \\
W_{s} & =\text { sample weight, in } \mathrm{kg} .
\end{array}
$$

7.6.2.5 Where applicable, an estimate of concentration for noncalibrated components in the sample should be made. The formulae
given above should be used with the following modifications: The areas $A_{x}$ and $A_{i s}$ should be from the total ion chromatograms and the RF for the compound should be assumed to be 1. The concentration obtained should be reported indicating (1) that the value is an estimate and (2) which internal standard was used to determine concentration. Use the nearest internal standard free of interferences.
7.6.2.6 Quantitation of multicomponent compounds (e.g. Aroclors) is beyond the scope of Method 8270. Normally, quantitation is performed using a GC/ECD by Method 8081.

### 8.0 QUALITY CONTROL

8.1 Each laboratory that uses these methods is required to operate a formal quality control program. The minimum requirements of this program consist of an initial demonstration of laboratory capability and an ongoing analysis of spiked samples to evaluate and document quality data. The laboratory must maintain records to document the quality of the data generated. Ongoing data quality checks are compared with established performance criteria to determine if the results of analyses meet the performance characteristics of the method. When results of sample spikes indicate atypical method performance, a quality control reference sample (Sec. 8.5.1) must be analyzed to confirm that the measurements were performed in an in-control mode of operation.
8.2 Before processing any samples, the analyst should demonstrate, through the analysis of a method blank, that interferences from the analytical system, glassware, and reagents are under control. Each time a set of samples is extracted or there is a change in reagents, a method blank should be processed as a safeguard against chronic laboratory contamination. The blanks should be carried through all stages of sample preparation and measurement.
8.3 The experience of the analyst performing GC/MS analyses is invaluable to the success of the methods. Each day that analysis is performed, the daily calibration standard should be evaluated to determine if the chromatographic system is operating properly. Questions that should be asked are: Do the peaks look normal?; Is the response obtained comparable to the response from previous calibrations? Careful examination of the standard chromatogram can indicate whether the column is still good, the injector is leaking, the injector septum needs replacing, etc. If any changes are made to the system (e.g. column changed), recalibration of the system must take place.
8.4 Required instrument $Q C$ is found in the following sections
8.4.1 The GC/MS system must be tuned to meet the DFTPP specifications in Secs. 7.3.1 and 7.4.1.
8.4.2 There must be an initial calibration of the GC/MS system as specified in Sec. 7.3.
8.4.3 The GC/MS system must meet the SPCC criteria specified in Sec. 7.4 .3 and the CCC criteria in Sec. 7.4.4, each 12 hours.
8.5 To establish the ability to generate acceptable accuracy and precision, the analyst must perform the following operations.
8.5.1 A quality control (QC) reference sample concentrate is required containing each base/neutral analyte at a concentration of $100 \mathrm{mg} / \mathrm{L}$ and each acid analyte at a concentration of $200 \mathrm{mg} / \mathrm{L}$ in acetone or methanol. (See Sec. 5.5.1 of Method 3500 for minimum requirements.) The QC reference sample concentrate may be prepared from pure standard materials or purchased as certified solutions. If prepared by the laboratory, the QC reference sample concentrate must be made using stock standards prepared independently from those used for calibration.
8.5.2 Using a pipet, prepare QC reference samples at a concentration of $100 \mu \mathrm{~g} / \mathrm{L}$ by adding 1.00 mL of QC reference sample concentrate to each of four 1-L aliquots of water.
8.5.3 Analyze the well-mixed QC reference samples according to the method beginning in Sec. 7.1 with extraction of the samples.
8.5.4 Calculate the average recovery (x) in $\mu \mathrm{g} / \mathrm{L}$, and the standard deviation of the recovery (s) in $\mu \mathrm{g} / \mathrm{L}$, for each analyte of interest using the four results.
8.5.5 For each analyte compare $s$ and $\bar{x}$ with the corresponding acceptance criteria for precision and accuracy, respectively, found in Table 6. If $s$ and $x$ for all analytes meet the acceptance criteria, the system performance is acceptable and analysis of actual samples can_begin. If any individual s exceeds the precision limit or any individual $x$ falls outside the range for accuracy, then the system performance is unacceptable for that analyte.

NOTE: The large number of analytes in Table 6 present a substantial probability that one or more will fail at least one of the acceptance criteria when all analytes of a given method are analyzed.
8.5.6 When one or more of the analytes tested fail at least one of the acceptance criteria, the analyst must proceed according to Sec. 8.5.6.1 or 8.5.6.2.
8.5.6.1 Locate and correct the source of the problem and repeat the test for all analytes of interest beginning with Sec. 8.5.2.
8.5.6.2 Beginning with Sec. 8.5.2, repeat the test only for those analytes that failed to meet criteria. Repeated failure, however, will confirm a general problem with the measurement system. If this occurs, locate and correct the source of the problem and repeat the test for all compounds of interest beginning with Sec. 8.5.2.
8.6 The laboratory must, on an ongoing basis, analyze a method blank, a matrix spike, and a replicate for each analytical batch (up to a maximum of 20
samples/batch) to assess accuracy. For soil and waste samples where detectable amounts of organics are present, replicate samples may be appropriate in place of matrix spiked samples. For laboratories analyzing one to ten samples per month, at least one spiked sample per month is required.
8.6.1 The concentration of the spike in the sample should be determined as follows:
8.6.1.1 If, as in compliance monitoring, the concentration of a specific analyte in the sample is being checked against a regulatory concentration limit, the spike should be at that limit or 1 to 5 times higher than the background concentration determined in Sec. 8.6.2, whichever concentration would be larger.
8.6.1.2 If the concentration of a specific analyte in a water sample is not being checked against a limit specific to that analyte, the spike should be at $100 \mu \mathrm{~g} / \mathrm{L}$ or 1 to 5 times higher than the background concentration determined in Step 8.6.2, whichever concentration would be larger. For other matrices, recommended spiking concentration is 20 times the EQL.
8.6.1.3 If it is impractical to determine background levels before spiking (e.g. maximum holding times will be exceeded), the spike concentration should be at (1) the regulatory concentration limit, if any; or, if none (2) the larger of either 5 times higher than the expected background concentration or $100 \mu \mathrm{~g} / \mathrm{L}$. For other matrices, recommended spiking concentration is 20 times the EQL.
8.6.2 Analyze one sample aliquot to determine the background concentration (B) of each analyte. If necessary, prepare a new QC reference sample concentrate (Sec. 8.5.1) appropriate for the background concentration in the sample. Spike a second sample aliquot with 1.00 mL of the $Q C$ reference sample concentrate and analyze it to determine the concentration after spiking (A) of each analyte. Calculate each percent recovery (p) as $100(A-B) \% / T$, where $T$ is the known true value of the spike.
8.6.3 Compare the percent recovery (p) for each analyte in a water sample with the corresponding QC acceptance criteria found in Table 6. These acceptance criteria were calculated to include an allowance for error in measurement of both the background and spike concentrations, assuming a spike to background ratio of $5: 1$. This error will be accounted for to the extent that the analyst's spike to background ratio approaches 5:1. If spiking was performed at a concentration lower than $100 \mu \mathrm{~g} / \mathrm{L}$, the analyst must use either the QC acceptance criteria presented in Table 6, or optional QC acceptance criteria calculated for the specific spike concentration. To calculate optional acceptance criteria for the recovery of an analyte: (1) Calculate accuracy ( $x^{\prime}$ ) using the equation found in Table 7, substituting the spike concentration (T) for C; (2) calculate overall precision (S') using the equation in Table 7, substituting x' for x; (3) calculate the range for recovery at the spike concentration as (100x'/T) $\pm 2.44\left(100 S^{\prime} / T\right) \%$.
8.6.4 If any individual $p$ falls outside the designated range for recovery, that analyte has failed the acceptance criteria. A check standard containing each analyte that failed the criteria must be analyzed as described in Sec. 8.7.
8.7 If any analyte in a sample fails the acceptance criteria for recovery in Sec. 8.6, a QC reference sample containing each analyte that failed must be prepared and analyzed.

NOTE: The frequency for the required analysis of a QC reference sample will depend upon the number of analytes being simultaneously tested, the complexity of the sample matrix, and the performance of the laboratory. If the entire list of analytes in Table 6 must be measured in the sample in Sec. 8.6, the probability that the analysis of a QC reference sample will be required is high. In this case, the QC reference sample should be routinely analyzed with the spiked sample.
8.7.1 Prepare the $Q C$ reference sample by adding 1.0 mL of the $Q C$ reference sample concentrate (Sec. 8.5.1 or 8.6.2) to 1 L of water. The QC reference sample needs only to contain the analytes that failed criteria in the test in Sec. 8.6.
8.7.2 Analyze the QC reference sample to determine the concentration measured (A) of each analyte. Calculate each percent recovery ( $p_{s}$ ) as $100(\mathrm{~A} / \mathrm{T}) \%$, where T is the true value of the standard concentration.
8.7.3 Compare the percent recovery $\left(p_{s}\right)$ for each analyte with the corresponding QC acceptance criteria found in Table 6. Only analytes that failed the test in Sec. 8.6 need to be compared with these criteria. If the recovery of any such analyte falls outside the designated range, the laboratory performance for that analyte is judged to be out of control, and the problem must be immediately identified and corrected. The analytical result for that analyte in the unspiked sample is suspect and may not be reported for regulatory compliance purposes.
8.8 As part of the QC program for the laboratory, method accuracy for each matrix studied must be assessed and records must be maintained. After the analysis of five spiked samples (of the same matrix) as in Sec. 8.6, calculate the average percent recovery $(p)$ and the standard deviation of the percent recovery $\left(s_{p}\right)$. Express the accuracy assessment as a percent recovery interval from $\bar{p}-2 s_{p}$ to $p+2 s_{p}$. If $p=90 \%$ and $s_{p}=10 \%$, for example, the accuracy interval is expressed as $70-110 \%$. Update the accuracy assessment for each analyte on a regular basis (e.g. after each five to ten new accuracy measurements).
8.9 The following procedure should be performed to determine acceptable accuracy and precision limits for surrogate standards.
8.9.1 For each sample analyzed, calculate the percent recovery of each surrogate in the sample.
8.9.2 Once a minimum of thirty samples of the same matrix have been analyzed, calculate the average percent recovery (P) and standard deviation of the percent recovery (s) for each of the surrogates.
8.9.3 For a given matrix, calculate the upper and lower control limit for method performance for each surrogate standard. This should be done as follows:

Upper Control Limit (UCL) $=P+3 s$
Lower Control Limit (LCL) = P - 3s
8.9.4 For aqueous and soil matrices, these laboratory-established surrogate control limits should, if applicable, be compared with the control limits listed in Table 8. The limits given in Table 8 are multilaboratory performance-based limits for soil and aqueous samples, and therefore, the single-laboratory limits established in Sec. 8.9.3 must fall within those given in Table 8 for these matrices.
8.9.5 If recovery is not within limits, the following procedures are required.

- Check to be sure there are no errors in calculations, surrogate solutions and internal standards. Also, check instrument performance.
- Recalculate the data and/or reanalyze the extract if any of the above checks reveal a problem.
- Reextract and reanalyze the sample if none of the above are a problem or flag the data as "estimated concentration".
8.9.6 At a minimum, each laboratory should update surrogate recovery limits on a matrix-by-matrix basis, annually.
8.10 It is recommended that the laboratory adopt additional quality assurance practices for use with this method. The specific practices that are most productive depend upon the needs of the laboratory and the nature of the samples. Field duplicates may be analyzed to assess the precision of the environmental measurements. When doubt exists over the identification of a peak on the chromatogram, confirmatory techniques such as gas chromatography with a dissimilar column, specific element detector, or a mass spectrometer must be used. Whenever possible, the laboratory should analyze standard reference materials and participate in relevant performance evaluation studies.


### 9.0 METHOD PERFORMANCE

9.1 Method 8250 (the packed column version of Method 8270) was tested by 15 laboratories using organic-free reagent water, drinking water, surface water, and industrial wastewaters spiked at six concentrations over the range 5$1,300 \mu \mathrm{~g} / \mathrm{L}$. Single operator accuracy and precision, and method accuracy were found to be directly related to the concentration of the analyte and essentially
independent of the sample matrix. Linear equations to describe these relationships are presented in Table 7.
9.2 Chromatograms from calibration standards analyzed with Day 0 and Day 7 samples were compared to detect possible deterioration of GC performance. These recoveries (using Method 3510 extraction) are presented in Table 9.
9.3 Method performance data (using Method 3541 Automated Soxhlet extraction) are presented in Table 10. Single laboratory accuracy and precision data were obtained for semivolatile organics in a clay soil by spiking at a concentration of $6 \mathrm{mg} / \mathrm{kg}$ for each compound. The spiking solution was mixed into the soil during addition and then allowed to equilibrate for approximately 1 hr prior to extraction. The spiked samples were then extracted by Method 3541 (Automated Soxhlet). Three determinations were performed and each extract was analyzed by gas chromatography/ mass spectrometry following Method 8270. The low recovery of the more volatile compounds is probably due to volatilization losses during equilibration. These data are listed in Table 11 and were taken from Reference 9.

### 10.0 REFERENCES

1. U.S. EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, Method 625," October 26, 1984.
2. U.S. EPA Contract Laboratory Program, Statement of Work for Organic Analysis, July 1985, Revision.
3. Eichelberger, J.W., L.E. Harris, and W.L. Budde, "Reference Compound to Calibrate Ion Abundance Measurement in Gas Chromatography-Mass Spectrometry Systems," Analytical Chemistry, 47, 995-1000, 1975.
4. "Method Detection Limit for Methods 624 and 625," 01ynyk, P., W.L. Budde, and J.W. Eichelberger, Unpublished report, October 1980.
5. "Interlaboratory Method Study for EPA Method 625-Base/Neutrals, Acids, and Pesticides," Final Report for EPA Contract 68-03-3102 (in preparation).
6. Burke, J.A. "Gas Chromatography for Pesticide Residue Analysis; Some Practical Aspects," Journal of the Association of Official Analytical Chemists, 48, 1037, 1965.
7. Lucas, S.V.; Kornfeld, R.A. "GC-MS Suitability Testing of RCRA Appendix VIII and Michigan List Analytes "; U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268, February 20, 1987, Contract No. 68-03-3224.
8. Engel, T.M.; Kornfeld, R.A.; Warner, J.S.; Andrews, K.D. "Screening of Semivolatile Organic Compounds for Extractability and Aqueous Stability by SW-846, Method 3510"; U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268, June 5, 1987, Contract 68-03-3224.
9. Lopez-Avila, V. (W. Beckert, Project Officer); "Development of a Soxtec Extraction Procedure for Extraction of Organic Compounds from Soils and Sediments"; U.S. Environmental Protection Agency. Environmental Monitoring and Support Laboratory. Las Vegas, NV, October 1991; EPA 600/X91/140.

TABLE 1.
CHARACTERISTIC IONS FOR SEMIVOLATILE COMPOUNDS

Compound	Retention   Time (min.)	Primary Ion	Secondary Ion(s)
2-Picoline	$3.75{ }^{\text {a }}$	93	66,92
Aniline	5.68	93	66,65
Phenol	5.77	94	65,66
Bis(2-chloroethyl) ether	5.82	93	63,95
2-Chlorophenol	5.97	128	64,130
1,3-Dich1orobenzene	6.27	146	148,111
1,4-Dichlorobenzene-d ${ }_{4}$ (I.S.)	6.35	152	150,115
1,4-Dichlorobenzene	6.40	146	148,111
Benzyl alcohol	6.78	108	79,77
1,2-Dich1orobenzene	6.85	146	148,111
N-Nitrosomethylethylamine	6.97	88	42,88,43,56
Bis(2-chloroisopropyl) ether	7.22	45	77,121
Ethyl carbamate	7.27	62	62,44,45,74
Thiophenol (Benzenethiol)	7.42	110	110,66,109,84
Methyl methanesulfonate	7.48	80	80,79,65,95
N-Nitrosodi-n-propylamine	7.55	70	42,101,130
Hexachloroethane	7.65	117	201,199
Maleic anhydride	7.65	54	54,98,53,44
Nitrobenzene	7.87	77	123,65
Isophorone	8.53	82	95,138
N-Nitrosodiethylamine	8.70	102	102,42,57,44,56
2-Nitrophenol	8.75	139	109,65
2,4-Dimethylphenol	9.03	122	107,121
p-Benzoquinone	9.13	108	54,108, 82,80
Bis(2-chloroethoxy)methane	9.23	93	95,123
Benzoic acid	9.38	122	105,77
2,4-Dich1orophenol	9.48	162	164,98
Trimethyl phosphate	9.53	110	110,79,95,109,140
Ethyl methanesulfonate	9.62	79	79,109,97,45,65
1,2,4-Trich1orobenzene	9.67	180	182,145
Naphthalene-d8 (I.S.)	9.75	136	68
Naphthalene	9.82	128	129,127
Hexach1orobutadiene	10.43	225	223,227
Tetraethyl pyrophosphate	11.07	99	99,155,127,81,109
Diethyl sulfate	11.37	139	139,45,59,99,111,125
4-Chloro-3-methylphenol	11.68	107	144,142
2-Methylnaphthalene	11.87	142	141
2 -Methylphenol	12.40	107	107,108,77,79,90
Hexachloropropene	12.45	213	213,211,215,117,106,141
Hexachlorocyclopentadiene	12.60	237	235,272
N-Nitrosopyrrolidine	12.65	100	100,41,42,68,69
Acetophenone	12.67	105	71,105,51,120
4 -Methylphenol	12.82	107	107,108,77,79,90
2,4,6-Trich1orophenol	12.85	196	198,200
o-Toluidine	12.87	106	106,107,77,51,79
3 -Methylphenol	12.93	107	107,108,77,79,90

TABLE 1. (Continued)

Compound $\quad$ Reten	Retention   Time (min.)	Primary Ion	$\begin{aligned} & \text { Secondary } \\ & \text { Ion(s) } \end{aligned}$
2-Chloronaphthalene	13.30	162	127,164
N -Nitrosopiperidine	13.55	114	42,114,55,56,41
1,4-Phenylenediamine	13.62	108	108,80,53,54,52
1-Chloronaphthalene	$13.65{ }^{\text {a }}$	162	127,164
2-Nitroaniline	13.75	65	92,138
5-Chloro-2-methylaniline	14.28	106	106,141,140,77,89
Dimethyl phthalate	14.48	163	194,164
Acenaphthylene	14.57	152	151,153
2,6-Dinitrotoluene	14.62	165	63,89
Phthalic anhydride	14.62	104	104,76,50,148
o-Anisidine	15.00	108	80,108,123,52
3-Nitroaniline	15.02	138	108,92
Acenaphthene-d $\mathrm{d}_{10}$ (I.S.)	15.05	164	162,160
Acenaphthene	15.13	154	153,152
2,4-Dinitrophenol	15.35	184	63,154
2,6-Dinitrophenol	15.47	162	162,164,126,98,63
4-Chloroaniline	15.50	127	127,129,65,92
Isosafrole	15.60	162	162,131,104,77,51
Dibenzofuran	15.63	168	139
2,4-Diaminotoluene	15.78	121	121,122,94,77,104
2,4-Dinitrotoluene	15.80	165	63,89
4-Nitrophenol	15.80	139	109,65
2-Naphthylamine	$16.00^{\text {a }}$	143	115,116
1,4-Naphthoquinone	16.23	158	158,104,102,76,50,130
p-Cresidine	16.45	122	122,94,137,77,93
Dichlorovos	16.48	109	109,185,79,145
Diethyl phthalate	16.70	149	177,150
Fluorene	16.70	166	165,167
2,4,5-Trimethylaniline	16.70	120	120,135,134,91,77
N -Nitrosodibutylamine	16.73	84	84,57,41,116,158
4-Chlorophenyl phenyl ether	16.78	204	206,141
Hydroquinone	16.93	110	110,81,53,55
4,6-Dinitro-2-methylphenol	17.05	198	51,105
Resorcinol	17.13	110	110,81,82,53,69
N-Nitrosodiphenylamine	17.17	169	168,167
Safrole	17.23	162	162,162,104,77,103,135
Hexamethyl phosphoramide	17.33	135	135,44,179,92,42
3-(Chloromethyl)pyridine hydrochloride	ride17.50	92	92,127,129,65,39
Diphenylamine	$17.54{ }^{\text {a }}$	169	168,167
1,2,4,5-Tetrachlorobenzene	17.97	216	216,214,179,108,143,218
1-Naphthylamine	18.20	143	143,115,89,63
1-Acetyl-2-thiourea	18.22	118	43,118,42,76
4-Bromophenyl phenyl ether	18.27	248	250,141
Toluene diisocyanate	18.42	174	174,145,173,146,132,91
2,4,5-Trichlorophenol	18.47	196	196,198,97,132,99
Hexachlorobenzene	18.65	284	142,249

TABLE 1.
(Continued)

Compound	Retention   Time (min.)	$\begin{aligned} & \text { Primary } \\ & \text { Ion } \end{aligned}$	Secondary Ion(s)
Nicotine	18.70	84	84,133,161,162
Pentachlorophenol	19.25	266	264,268
5-Nitro-o-toluidine	19.27	152	77,152,79,106,94
Thionazine	19.35	107	96,107,97,143,79,68
4-Nitroaniline	19.37	138	138,65,108,92,80,39
Phenanthrene-d ${ }_{10}$ (i.s.)	19.55	188	94,80
Phenanthrene	19.62	178	179,176
Anthracene	19.77	178	176,179
1,4-Dinitrobenzene	19.83	168	168,75,50,76,92,122
Mevinphos	19.90	127	127,192,109,67,164
Naled	20.03	109	109,145,147,301,79,189
1,3-Dinitrobenzene	20.18	168	168,76,50,75,92,122
Diallate (cis or trans)	20.57	86	86,234,43,70
1,2-Dinitrobenzene	20.58	168	168,50,63,74
Diallate (trans or cis)	20.78	86	86,234,43,70
Pentach1orobenzene	21.35	250	250,252,108,248,215,254
5-Nitro-o-anisidine	21.50	168	168,79,52,138,153,77
Pentachloronitrobenzene	21.72	237	237,142,214,249,295,265
4-Nitroquinoline-1-oxide	21.73	174	174,101,128,75,116
Di-n-butyl phthalate	21.78	149	150,104
2,3,4,6-Tetrach1oropheno 1	21.88	232	232,131,230,166,234,168
Dihydrosaffrole	22.42	135	135,64,77
Demeton-0	22.72	88	88,89,60,61,115,171
Fluoranthene	23.33	202	101,203
1,3,5-Trinitrobenzene	23.68	75	75,74,213,120,91,63
Dicrotophos	23.82	127	127,67,72,109,193,237
Benzidine	23.87	184	92,185
Trifluralin	23.88	306	306,43,264,41,290
Bromoxynit	23.90	277	277,279,88,275,168
Pyrene	24.02	202	200,203
Monocrotophos	24.08	127	127,192,67,97,109
Phorate	24.10	75	75,121,97,93,260
Sulfallate	24.23	188	188,88,72,60,44
Demeton-S	24.30	88	88,60,81,89,114,115
Phenacetin	24.33	108	180,179,109,137,80
Dimethoate	24.70	87	87,93,125,143,229
Phenobarbital	24.70	204	204,117,232,146,161
Carbofuran	24.90	164	164,149,131,122
Octamethyl pyrophosphoramide	24.95	135	135,44,199,286,153,243
4 - Aminobiphenyl	25.08	169	169,168,170,115
Dioxathion	25.25	97	97,125,270,153
Terbufos	25.35	231	231,57,97,153,103
人, $\alpha$-Dimethylphenylamine	25.43	58	58,91,65,134,42
Pronamide	25.48	173	173,175,145,109,147
Aminoazobenzene	25.72	197	92,197,120,65,77
Dichlone	25.77	191	191,163,226,228,135,193

TABLE 1.
(Continued)

Compound	Retention   Time (min.)	Primary Ion	Secondary Ion(s)
Dinoseb	25.83	211	211,163,147,117,240
Disulfoton	25.83	88	88,97,89,142,186
Fluchloralin	25.88	306	306,63, 326,328, 264,65
Mexacarbate	26.02	165	165,150,134,164,222
4,4'-0xydianiline	26.08	200	200,108,171,80,65
Butyl benzyl phthalate	26.43	149	91,206
4-Nitrobiphenyl	26.55	199	199,152,141,169,151
Phosphamidon	26.85	127	127,264,72,109,138
2-Cyclohexyl-4,6-Dinitrophenol	26.87	231	231,185,41,193,266
Methyl parathion	27.03	109	109,125,263,79,93
Carbaryl	27.17	144	144,115,116,201
Dimethylaminoazobenzene	27.50	225	225,120,77,105,148,42
Propylthiouracil	27.68	170	170,142,114,83
Benz(a)anthracene	27.83	228	229,226
Chrysene-d ${ }_{12}$ (I.S.)	27.88	240	120,236
3,3'-Dich1orobenzidine	27.88	252	254,126
Chrysene	27.97	228	226,229
Malathion	28.08	173	173,125,127,93,158
Kepone	28.18	272	272,274,237,178,143,270
Fenthion	28.37	278	278,125,109,169,153
Parathion	28.40	109	109,97,291,139,155
Anilazine	28.47	239	239,241,143,178,89
Bis(2-ethylhexyl) phthalate	28.47	149	167,279
3,3'-Dimethylbenzidine	28.55	212	212,106,196,180
Carbophenothion	28.58	157	157,97,121,342,159,199
5-Nitroacenaphthene	28.73	199	199,152,169,141,115
Methapyrilene	28.77	97	97,50,191,71
Isodrin	28.95	193	193,66,195,263,265,147
Captan	29.47	79	79,149,77,119,117
Chlorfenvinphos	29.53	267	267,269,323,325,295
Crotoxyphos	29.73	127	127,105,193,166
Phosmet	30.03	160	160,77,93,317,76
EPN	30.11	157	157,169,185,141,323
Tetrachlorvinphos	30.27	329	109,329,331,79,333
Di-n-octyl phthalate	30.48	149	167,43
2-Aminoanthraquinone	30.63	223	223,167,195
Barban	30.83	222	222,51,87,224,257,153
Aramite	30.92	185	185,191, 319,334,197,321
Benzo(b)fluoranthene	31.45	252	253,125
Nitrofen	31.48	283	283,285,202,139,253
Benzo(k)fluoranthene	31.55	252	253,125
Chlorobenzilate	31.77	251	251,139,253,111,141
Fensulfothion	31.87	293	293,97,308,125,292
Ethion	32.08	231	231,97,153,125,121
Diethylstilbestrol	32.15	268	268,145,107,239,121,159
Famphur	32.67	218	218,125,93,109,217

TABLE 1.
(Continued)

	Retention   Time   Compound	Primary	Secondary
			Ion

Revision 2 September 1994

TABLE 1. (Continued)

Compound	$\begin{aligned} & \text { Retention } \\ & \text { Time (min.) } \end{aligned}$	Primary   Ion	Secondary   Ion(s)
Endosulfan sulfate	--	272	387,422
Endrin	--	263	82,81
Endrin aldehyde	--	67	345,250
Endrin ketone	--	317	67,319
2-Fluorobiphenyl (surr.)	--	172	171
2-Fluorophenol (surr.)	--	112	64
Heptachlor	--	100	272,274
Heptachlor epoxide	--	353	355,351
Nitrobenzene-d ${ }_{5}$ (surr.)	--	82	128,54
N -Nitrosodimethylamine	--	42	74,44
Phenol-d ${ }_{6}$ (surr.)	--	99	42,71
Terphenyl-d ${ }_{14}$ (surr.)	--	244	122,212
2,4,6-Tribromophenol (surr.)	--	330	332,141
Toxaphene	--	159	231,233

I.S. = internal standard.
surr. = surrogate.
${ }^{\text {a }}$ Estimated retention times.
${ }^{\text {b }}$ Substitute for the non-specific mixture, tricresyl phosphate.

TABLE 2.
ESTIMATED QUANTITATION LIMITS (EQLs) FOR SEMIVOLATILE ORGANICS

Semivolatiles	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water $\mu \mathrm{g} / \mathrm{L}$	Low Soil/Sediment ${ }^{\text {b }}$ $\mu \mathrm{g} / \mathrm{kg}$
Acenaphthene	10	660
Acenaphthylene	10	660
Acetophenone	10	ND
2-Acetylaminofluorene	20	ND
1-Acetyl-2-thiourea	1000	ND
2-Aminoanthraquinone	20	ND
Aminoazobenzene	10	ND
4-Aminobipheny 1	20	ND
Anilazine	100	ND
o-Anisidine	10	ND
Anthracene	10	660
Aramite	20	ND
Azinphos-methy 1	100	ND
Barban	200	ND
Benz(a)anthracene	10	660
Benzo(b)fluoranthene	10	660
Benzo(k)fluoranthene	10	660
Benzoic acid	50	3300
Benzo(g, h, i) perylene	10	660
Benzo(a)pyrene	10	660
p-Benzoquinone	10	ND
Benzyl alcohol	20	1300
Bis(2-chloroethoxy)methane	10	660
Bis(2-chloroethyl) ether	10	660
Bis(2-chloroisopropyl) ether	10	660
4-bromophenyl phenyl ether	10	660
Bromoxynil	10	ND
Butyl benzyl phthalate	10	660
Captafol	20	ND
Captan	50	ND
Carbaryl	10	ND
Carbofuran	10	ND
Carbophenothion	10	ND
Chlorfenvinphos	20	ND
4-Chloroaniline	20	1300
Chlorobenzilate	10	ND
5-Chloro-2-methylaniline	10	ND
4-Chloro-3-methylphenol	20	1300
3-(Chloromethyl)pyridine hydrochloride	- 100	ND
2-Chloronaphthalene	10	660
2-Chlorophenol	10	660
4-Chlorophenyl phenyl ether	10	660
Chrysene	10	660
Coumaphos	40	ND

CD-ROM
8270B-32
Revision 2
September 1994

Semivolatiles	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water $\mu \mathrm{g} / \mathrm{L}$	Low Soil/Sediment ${ }^{\text {b }}$ $\mu \mathrm{g} / \mathrm{kg}$
p-Cresidine	10	ND
Crotoxyphos	20	ND
2-Cyclohexyl-4,6-dinitrophenol	100	ND
Demeton-0	10	ND
Demeton-S	10	ND
Diallate (cis or trans)	10	ND
Diallate (trans or cis)	10	ND
2,4-Diaminotoluene	20	ND
Dibenz(a,j)acridine	10	ND
Dibenz(a,h)anthracene	10	660
Dibenzofuran	10	660
Dibenzo(a, e) pyrene	10	ND
Di-n-butyl phthalate	10	ND
Dichlone	NA	ND
1,2-Dichlorobenzene	10	660
1,3-Dichlorobenzene	10	660
1,4-Dichlorobenzene	10	660
3,3'-Dichlorobenzidine	20	1300
2,4-Dichlorophenol	10	660
2,6-Dichlorophenol	10	ND
Dichlorovos	10	ND
Dicrotophos	10	ND
Diethyl phthalate	10	660
Diethylstilbestrol	20	ND
Diethyl sulfate	100	ND
Dimethoate	20	ND
3,3'-Dimethoxybenzidine	100	ND
Dimethylaminoazobenzene	10	ND
7,12-Dimethylbenz(a)anthracene	10	ND
3,3'-Dimethylbenzidine	10	ND
a,a-Dimethylphenethylamine	ND	ND
2,4-Dimethylphenol	10	660
Dimethyl phthalate	10	660
1,2-Dinitrobenzene	40	ND
1,3-Dinitrobenzene	20	ND
1,4-Dinitrobenzene	40	ND
4,6-Dinitro-2-methylphenol	50	3300
2,4-Dinitrophenol	50	3300
2,4-Dinitrotoluene	10	660
2,6-Dinitrotoluene	10	660
Dinocap	100	ND
Dinoseb	20	ND
5,5-Diphenylhydantoin	20	ND
Di-n-octyl phthalate	10	660
CD-ROM	8270B-33	Revision 2   September 1994

TABLE 2.
(Continued)

Semivolatiles	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water $\mu \mathrm{g} / \mathrm{L}$	Low Soil/Sediment ${ }^{\text {b }}$ $\mu \mathrm{g} / \mathrm{kg}$
Disulfoton	10	ND
EPN	10	ND
Ethion	10	ND
Ethyl carbamate	50	ND
Bis(2-ethylhexyl) phthalate	10	660
Ethyl methanesulfonate	20	ND
Famphur	20	ND
Fensulfothion	40	ND
Fenthion	10	ND
Fluchloralin	20	ND
Fluoranthene	10	660
Fluorene	10	660
Hexachlorobenzene	10	660
Hexachlorobutadiene	10	660
Hexachlorocyclopentadiene	10	660
Hexachloroethane	10	660
Hexachlorophene	50	ND
Hexachloropropene	10	ND
Hexamethylphosphoramide	20	ND
Hydroquinone	ND	ND
Indeno(1,2,3-cd)pyrene	10	660
Isodrin	20	ND
Isophorone	10	660
Isosafrole	10	ND
Kepone	20	ND
Leptophos	10	ND
Malathion	50	ND
Maleic anhydride	NA	ND
Mestranol	20	ND
Methapyrilene	100	ND
Methoxychlor	10	ND
3-Methylcholanthrene	10	ND
4,4'-Methylenebis(2-chloroaniline)	NA	ND
Methyl methanesulfonate	10	ND
2-Methylnaphthalene	10	660
Methyl parathion	10	ND
2-Methylphenol	10	660
3-Methylphenol	10	ND
4-Methylphenol	10	660
Mevinphos	10	ND
Mexacarbate	20	ND
Mirex	10	ND
Monocrotophos	40	ND
Naled	20	ND
CD-ROM	8270B-34	Revision 2   September 1994

TABLE 2.
(Continued)

Semivolatiles	Estimated Quantitation Limits ${ }^{\text {² }}$	
	Ground water $\mu \mathrm{g} / \mathrm{L}$	Low Soil/Sediment ${ }^{\text {b }}$ $\mu \mathrm{g} / \mathrm{kg}$
Naphthalene	10	660
1,4-Naphthoquinone	10	ND
1-Naphthylamine	10	ND
2-Naphthylamine	10	ND
Nicotine	20	ND
5-Nitroacenaphthene	10	ND
2-Nitroaniline	50	3300
3-Nitroaniline	50	3300
4-Nitroaniline	20	ND
5-Nitro-o-anisidine	10	ND
Nitrobenzene	10	660
4-Nitrobipheny 1	10	ND
Nitrofen	20	ND
2-Nitrophenol	10	660
4-Nitrophenol	50	3300
5-Nitro-o-toluidine	10	ND
4-Nitroquinoline-1-oxide	40	ND
N -Nitrosodibutylamine	10	ND
N -Nitrosodiethylamine	20	ND
N -Nitrosodiphenylamine	10	660
N-Nitroso-di-n-propylamine	10	660
N -Nitrosopiperidine	20	ND
N-Nitrosopyrrolidine	40	ND
Octamethyl pyrophosphoramide	200	ND
4,4'-0xydianiline	20	ND
Parathion	10	ND
Pentachlorobenzene	10	ND
Pentachloronitrobenzene	20	ND
Pentachlorophenol	50	3300
Phenacetin	20	ND
Phenanthrene	10	660
Phenobarbital	10	ND
Phenol	10	660
1,4-Pheny ${ }^{\text {enediamine }}$	10	ND
Phorate	10	ND
Phosalone	100	ND
Phosmet	40	ND
Phosphamidon	100	ND
Phthalic anhydride	100	ND
2-Picoline	ND	ND
Piperonyl sulfoxide	100	ND
Pronamide	10	ND
Propylthiouracil	100	ND
Pyrene	10	660
CD-ROM	8270B-35	Revision 2   September 1994

TABLE 2.
(Continued)

Semivolatiles	Estimated Quantitation Limits ${ }^{\text {a }}$	
	Ground water $\mu \mathrm{g} / \mathrm{L}$	Low Soil/Sediment ${ }^{\text {b }}$ $\mu \mathrm{g} / \mathrm{kg}$
Pyridine	ND	ND
Resorcinol	100	ND
Safrole	10	ND
Strychnine	40	ND
Sulfallate	10	ND
Terbufos	20	ND
1,2,4,5-Tetrachlorobenzene	10	ND
2,3,4,6-Tetrachlorophenol	10	ND
Tetrachlorvinphos	20	ND
Tetraethyl pyrophosphate	40	ND
Thionazine	20	ND
Thiophenol (Benzenethiol)	20	ND
Toluene diisocyanate	100	ND
o-Toluidine	10	ND
1,2,4-Trichlorobenzene	10	660
2,4,5-Trichlorophenol	10	660
2,4,6-Trichlorophenol	10	660
Trifluralin	10	ND
2,4,5-Trimethylaniline	10	ND
Trimethyl phosphate	10	ND
1,3,5-Trinitrobenzene	10	ND
Tris(2,3-dibromopropyl) phosphate	200	ND
Tri-p-tolyl phosphate(h)	10	ND
0,0,0-Triethy phosphorothioate	NT	ND

a Sample EQLs are highly matrix-dependent. The EQLs listed herein are provided for guidance and may not always be achievable.
b EQLs listed for soil/sediment are based on wet weight. Normally data are reported on a dry weight basis, therefore, EQLs will be higher based on the \% dry weight of each sample. These EQLs are based on a 30 g sample and gel permeation chromatography cleanup.
$N D=$ Not determined.
$N A=$ Not applicable.
NT $=$ Not tested.

Other Matrices

## Factor ${ }^{\text {c }}$

High-concentration soil and sludges by sonicator	7.5
Non-water miscible waste	75

${ }^{\text {c EQL }}=(E Q L$ for Low Soil/Sediment given above in Table 2) X (Factor).

TABLE 3.
DFTPP KEY IONS AND ION ABUNDANCE CRITERIAa,b

Mass	Ion Abundance Criteria
51	30-60\% of mass 198
68	< $2 \%$ of mass 69
70	< $2 \%$ of mass 69
127	40-60\% of mass 198
197	< 1\% of mass 198
198	Base peak, 100\% relative abundance
199	5-9\% of mass 198
275	10-30\% of mass 198
365	> $1 \%$ of mass 198
441	Present but less than mass 443
442	> 40\% of mass 198
443	17-23\% of mass 442
a See Reference 3.	
${ }^{5}$ Alt manuf adve	may be used (e.g., CLP, Method 525, or ), provided that method performance is not

TABLE 4.
CALIBRATION CHECK COMPOUNDS

Base/Neutral Fraction	Acid Fraction
Acenaphthene	4-Chloro-3-methylphenol
$1,4-$ Dichlorobenzene	$2,4-$ Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
N-Nitrosodiphenylamine	Phenol
Di-n-octyl phthalate	Pentachlorophenol
Fluoranthene	$2,4,6-$ Trichlorophenol
Benzo(a)pyrene	


1,4-Dichlorobenzene-d ${ }_{4}$	Naphthalene-d8	Acenaphthene- $\mathrm{d}_{10}$
Aniline	Acetophenone	Acenaphthene
Benzyl alcohol	Benzoic acid	Acenaphthylene
Bis(2-chloroethyl) ether	Bis(2-chloroethoxy)methane	1-Chloronaphthalene
Bis(2-chloroisopropyl)	4-Chloroaniline	2-Chloronaphthalene
ether	4-Chloro-3-methylphenol	4-Chloropheny
2-Chlorophenol	2,4-Dichlorophenol	phenyl ether
1,3-Dichlorobenzene	2,6-Dichlorophenol	Dibenzofuran
1,4-Dichlorobenzene	$\alpha, \alpha$-Dimethy ${ }^{\text {- }}$	Diethyl phthalate
1,2-Dichlorobenzene	phenethylamine	Dimethyl phthalate
Ethyl methanesulfonate	2,4-Dimethylphenol	2,4-Dinitrophenol
2-Fluorophenol (surr.)	Hexachlorobutadiene	2,4-Dinitrotoluene
Hexachloroethane	Isophorone	2,6-Dinitrotoluene
Methyl methanesulfonate	2-Methylnaphthalene	Fluorene
2-Methylphenol	Naphthalene	2-Fluorobiphenyl
4 -Methylphenol	Nitrobenzene	(surr.)
N -Nitrosodimethylamine	Nitrobenzene-d8 (surr.)	Hexachlorocyclo-
N-Nitroso-di-n-propyl-	2-Nitrophenol	pentadiene
amine	N-Nitrosodibutylamine	1-Naphthylamine
Phenol	N -Nitrosopiperidine	2-Naphthylamine
Phenol-d ${ }_{6}$ (surr.)	1,2,4-Trich1orobenzene	2-Nitroaniline
2-Picoline		3-Nitroaniline
		4-Nitroaniline
		4-Nitrophenol
		Pentachlorobenzene
		1,2,4,5-Tetra-
		chlorobenzene
		2,3,4,6-Tetra-
		chlorophenol
		2,4,6-Tribromo-
		phenol (surr.)
		2,4,6-Trichloro-
		phenol
		2,4,5-Trichloro-
		phenol

(surr.) = surrogate

Phenanthrene- $\mathrm{d}_{10}$	Chrysene- $\mathrm{d}_{12}$	Perylene- $\mathrm{d}_{12}$
4 - Ami nobipheny 1	Benzidine	Benzo(b)fluor-
Anthracene	Benzo(a)anthracene	anthene
4-Bromophenyl phenyl ether	Bis(2-ethylhexyl) phthalate	Benzo(k)fluoranthene
Di-n-butyl phthalate	Butyl benzyl phthalate	Benzo(g, h, i)-
4,6-Dinitro-2-methylphenol	Chrysene   3,3'-Dich1orobenzidine	perylene Benzo(a)pyrene
Diphenylamine	p-Dimethylaminoazobenzene	Dibenz(a,j)acridine
Fluoranthene	Pyrene	Dibenz(a,h)-
Hexachlorobenzene	Terpheny ${ }^{\text {- }} \mathrm{d}_{14}$ (surr.)	anthracene
N-Nitrosodiphenylamine		7,12-Dimethylbenz-
Pentach1orophenol		(a)anthracene
Pentachloronitrobenzene		Di-n-octyl phthalate
Phenacetin		Indeno(1,2,3-cd)
Phenanthrene		pyrene
Pronamide		3-Methylchol-
		anthrene

(surr.) = surrogate

TABLE 6.
QC ACCEPTANCE CRITERIA ${ }^{a}$

Compound	Test conc. ( $\mu \mathrm{g} / \mathrm{L}$ )	Limit for s ( $\mu \mathrm{g} / \mathrm{L}$ )	Range for $x$ ( $\mu \mathrm{g} / \mathrm{L}$ )	Range   p, $p_{s}$   (\%)
Acenaphthene	100	27.6	60.1-132.3	47-145
Acenaphthylene	100	40.2	53.5-126.0	33-145
Aldrin	100	39.0	7.2-152.2	D-166
Anthracene	100	32.0	43.4-118.0	27-133
Benz(a)anthracene	100	27.6	41.8-133.0	33-143
Benzo(b)fluoranthene	100	38.8	42.0-140.4	24-159
Benzo(k)fluoranthene	100	32.3	25.2-145.7	11-162
Benzo(a)pyrene	100	39.0	31.7-148.0	17-163
Benzo(ghi)perylene	100	58.9	D-195.0	D-219
Benzyl butyl phthalate	100	23.4	D-139.9	D-152
$\beta-\mathrm{BHC}$	100	31.5	41.5-130.6	24-149
ס-BHC	100	21.6	D-100.0	D-110
Bis(2-chloroethyl) ether	100	55.0	42.9-126.0	12-158
Bis (2-chloroethoxy)methane	100	34.5	49.2-164.7	33-184
Bis(2-chloroisopropyl) ether	100	46.3	62.8-138.6	36-166
Bis(2-ethylhexyl) phthalate	100	41.1	28.9-136.8	8-158
4-Bromophenyl phenyl ether	100	23.0	64.9-114.4	53-127
2-Chloronaphthalene	100	13.0	64.5-113.5	60-118
4-Chlorophenyl phenyl ether	100	33.4	38.4-144.7	25-158
Chrysene	100	48.3	44.1-139.9	17-168
4,4'-DDD	100	31.0	D-134.5	D-145
4,4'-DDE	100	32.0	19.2-119.7	4-136
4,4'-DDT	100	61.6	D-170.6	D-203
Dibenzo(a,h)anthracene	100	70.0	D-199.7	D-227
Di-n-butyl phthalate	100	16.7	8.4-111.0	1-118
1,2-Dichlorobenzene	100	30.9	48.6-112.0	32-129
1,3-Dichlorobenzene	100	41.7	16.7-153.9	D-172
1,4-Dichlorobenzene	100	32.1	37.3-105.7	20-124
3,3'-Dichlorobenzidine	100	71.4	8.2-212.5	D-262
Dieldrin	100	30.7	44.3-119.3	29-136
Diethyl phthalate	100	26.5	D-100.0	D-114
Dimethyl phthalate	100	23.2	D-100.0	D-112
2,4-Dinitrotoluene	100	21.8	47.5-126.9	39-139
2,6-Dinitrotoluene	100	29.6	68.1-136.7	50-158
Di-n-octyl phthalate	100	31.4	18.6-131.8	4-146
Endosulfan sulfate	100	16.7	D-103.5	D-107
Endrin aldehyde	100	32.5	D-188.8	D-209
Fluoranthene	100	32.8	42.9-121.3	26-137
Fluorene	100	20.7	71.6-108.4	59-121
Heptachlor	100	37.2	D-172.2	D-192
Heptachlor epoxide	100	54.7	70.9-109.4	26.155
Hexachlorobenzene	100	24.9	7.8-141.5	D-152
Hexachlorobutadiene	100	26.3	37.8-102.2	24-116

Revision 2 September 1994

TABLE 6.
(Continued)


TABLE 7.
METHOD ACCURACY AND PRECISION AS FUNCTIONS OF CONCENTRATIONa

Compound	Accuracy, as recovery, $x^{\prime}$ ( $\mu \mathrm{g} / \mathrm{L}$ )	```Single analyst precision, Sr' ( }\mu\textrm{g}/\textrm{L}```	```Overal1 precision, S' ( }\mu\textrm{g}/\textrm{L}```
Acenaphthene	$0.96 \mathrm{C}+0.19$	$0.15 \underline{\bar{x}}-0.12$	$0.21 \underline{\bar{x}}-0.67$
Acenaphthylene	$0.89 C+0.74$	$0.24 \underline{x}-1.06$	$0.26 \underline{x}-0.54$
Aldrin	$0.78 \mathrm{C}+1.66$	$0.27 x-1.28$	$0.43 x+1.13$
Anthracene	$0.80 C+0.68$	$0.21 \underline{x}-0.32$	$0.27 \underline{x}-0.64$
Benz(a)anthracene	0.88C-0.60	$0.15 \underline{x}+0.93$	$0.26 \underline{x}-0.21$
Chloroethane	0.99C-1.53	$0.14 \underline{x}-0.13$	$0.17 \underline{x}-0.28$
Benzo(b)fluoranthene	0.93C-1.80	$0.22 \underline{x}+0.43$	$0.29 \underline{x}+0.96$
Benzo(k)fluoranthene	0.87C-1.56	$0.19 \underline{x}+1.03$	$0.35 \underline{x}+0.40$
Benzo(a)pyrene	0.90C-0.13	$0.22 \underline{x}+0.48$	$0.32 \underline{x}+1.35$
Benzo(ghi)perylene	0.98C-0.86	$0.29 \underline{x}+2.40$	$0.51 \underline{x}-0.44$
Benzyl butyl phthalate	0.66C-1.68	$0.18 \underline{x}+0.94$	$0.53 \underline{x}+0.92$
$\beta$-BHC	0.87C-0.94	$0.20 \underline{x}-0.58$	$0.30 \underline{x}+1.94$
$\delta-\mathrm{BHC}$	0.29C-1.09	$0.34 \underline{x}+0.86$	$0.93 \underline{x}-0.17$
Bis(2-chloroethyl) ether	0.86C-1.54	$0.35 \underline{x}-0.99$	$0.35 \underline{x}+0.10$
Bis (2-chloroethoxy)methane	1.12C-5.04	$0.16 \underline{x}+1.34$	$0.26 \underline{x}+2.01$
Bis(2-ch1oroisopropy1) ether	1.03C-2.31	$0.24 x+0.28$	$0.25 x+1.04$
Bis(2-ethylhexyl) phthalate	0.84C-1.18	$0.26 x+0.73$	$0.36 x+0.67$
4-Bromophenyl pheny1 ether	0.91C-1.34	$0.13 x+0.66$	$0.16 x+0.66$
2-Chloronaphthalene	$0.89 \mathrm{C}+0.01$	$0.07 \underline{x}+0.52$	$0.13 \underline{x}+0.34$
4-Chlorophenyl phenyl ether	$0.91 \mathrm{C}+0.53$	$0.20 x-0.94$	$0.30 x-0.46$
Chrysene	0.93C-1.00	$0.28 \underline{x}+0.13$	$0.33 \underline{x}-0.09$
4,4'-DDD	0.56C-0.40	$0.29 \underline{x}-0.32$	$0.66 \underline{x}-0.96$
4,4'-DDE	0.70C-0.54	$0.26 x-1.17$	$0.39 \underline{x}-1.04$
4,4'-DDT	0.79C-3.28	$0.42 \underline{x}+0.19$	$0.65 \underline{x}-0.58$
Dibenzo(a,h)anthracene	$0.88 \mathrm{C}+4.72$	$0.30 \underline{x}+8.51$	$0.59 \underline{x}+0.25$
Di-n-butyl phthalate	$0.59 \mathrm{C}+0.71$	$0.13 \underline{x}+1.16$	$0.39 \underline{x}+0.60$
1,2-Dich1orobenzene	$0.80 \mathrm{C}+0.28$	$0.20 \underline{x}+0.47$	$0.24 \underline{x}+0.39$
1,3-Dich1orobenzene	0.86C-0.70	$0.25 \underline{x}+0.68$	$0.41 \underline{x}+0.11$
1,4-Dich1orobenzene	0.73C-1.47	$0.24 \underline{x}+0.23$	$0.29 \underline{x}+0.36$
3,3'-Dichlorobenzidine	1.23C-12.65	$0.28 \underline{x}+7.33$	$0.47 \underline{x}+3.45$
Dieldrin	0.82C-0.16	$0.20 \underline{x}-0.16$	$0.26 \underline{x}-0.07$
Diethyl phthalate	$0.43 C+1.00$	$0.28 \underline{x}+1.44$	$0.52 \underline{x}+0.22$
Dimethyl phthalate	$0.20 \mathrm{C}+1.03$	$0.54 \underline{x}+0.19$	$1.05 \underline{x}-0.92$
2,4-Dinitrotoluene	0.92C-4.81	$0.12 x+1.06$	$0.21 \underline{x}+1.50$
2,6-Dinitrotoluene	1.06C-3.60	$0.14 \underline{x}+1.26$	$0.19 \underline{x}+0.35$
Di-n-octyl phthalate	0.76C-0.79	$0.21 x+1.19$	$0.37 \underline{x}+1.19$
Endosulfan sulfate	$0.39 C+0.41$	$0.12 x+2.47$	$0.63 \underline{x}-1.03$
Endrin aldehyde	0.76C-3.86	$0.18 x+3.91$	$0.73 \underline{x}-0.62$
Fluoranthene	$0.81 \mathrm{C}+1.10$	$0.22 x-0.73$	$0.28 x-0.60$

Revision 2 September 1994

TABLE 7.
(Continued)

Compound	$\begin{aligned} & \text { Accuracy, as } \\ & \text { recovery, x' } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	Single analyst precision, Sr $^{\prime}$ ( $\mu \mathrm{g} / \mathrm{L}$ )	Overall precision, $S^{\prime}(\mu \mathrm{g} / \mathrm{L})$
Fluorene	0.90C-0.00	$0.12 \underline{x}+0.26$	$0.13 \underline{x}^{-}+0.61$
Heptachlor	0.87C-2.97	$0.24 \underline{x}-0.56$	$0.50 \underline{x}-0.23$
Heptachlor epoxide	0.92C-1.87	$0.33 x-0.46$	$0.28 x+0.64$
Hexachlorobenzene	$0.74 \mathrm{C}+0.66$	$0.18 x-0.10$	$0.43 x-0.52$
Hexachlorobutadiene	0.71C-1.01	$0.19 x+0.92$	$0.26 x+0.49$
Hexachloroethane	0.73C-0.83	$0.17 \underline{x}+0.67$	$0.17 \underline{x}+0.80$
Indeno(1,2,3-cd)pyrene	0.78C-3.10	$0.29 x+1.46$	$0.50 x-0.44$
Isophorone	1.12C+1.41	$0.27 \underline{x}+0.77$	$0.33 x+0.26$
Naphthalene	$0.76 \mathrm{C}+1.58$	$0.21 \underline{x}-0.41$	$0.30 x-0.68$
Nitrobenzene	1.09C-3.05	$0.19 \underline{x}+0.92$	$0.27 \underline{x}+0.21$
N -Nitrosodi-n-propylamine	1.12C-6.22	$0.27 \underline{x}+0.68$	$0.44 \underline{x}+0.47$
PCB-1260	0.81C-10.86	$0.35 x+3.61$	$0.43 x+1.82$
Phenanthrene	$0.87 \mathrm{C}+0.06$	$0.12 x+0.57$	$0.15 x+0.25$
Pyrene	0.84C-0.16	$0.16 \underline{x}+0.06$	$0.15 \underline{x}+0.31$
1,2,4-Trich1orobenzene	0.94C-0.79	$0.15 \underline{x}+0.85$	$0.21 \underline{x}+0.39$
4-Chloro-3-methylphenol	$0.84 C+0.35$	$0.23 x+0.75$	$0.29 x+1.31$
2-Chlorophenol	$0.78 \mathrm{C}+0.29$	$0.18 x+1.46$	$0.28 x+0.97$
2,4-Dich1orophenol	0.87C-0.13	$0.15 x+1.25$	$0.21 \underline{x}+1.28$
2,4-Dimethylphenol	$0.71 \mathrm{C}+4.41$	$0.16 \underline{x}+1.21$	$0.22 \underline{x}+1.31$
2,4-Dinitrophenol	0.81C-18.04	$0.38 \underline{x}+2.36$	$0.42 \underline{x}+26.29$
2-Methy $-4,6$-dinitrophenol	1.04C-28.04	$0.10 \underline{x}+42.29$	$0.26 \underline{x}+23.10$
2-Nitrophenol	0.07C-1.15	$0.16 x+1.94$	$0.27 \underline{x}+2.60$
4-Nitrophenol	0.61C-1.22	$0.38 x+2.57$	$0.44 \underline{x}+3.24$
Pentachlorophenol	$0.93 C+1.99$	$0.24 \underline{x}+3.03$	$0.30 \underline{x}+4.33$
Phenol	$0.43 C+1.26$	$0.26 \underline{x}+0.73$	$0.35 x+0.58$
2,4,6-Trichlorophenol	0.91C-0.18	$0.16 x+2.22$	$0.22 x+1.81$


$x^{\prime}$	$=$	Expected recovery for one or more measurements of a sample containing a concentration of $C$, in $\mu \mathrm{g} / \mathrm{L}$.
$S_{r}{ }^{\prime}$	$=$	Expected single analyst standard deviation of measurements at an average concentration of $x$, in $\mu \mathrm{g} / \mathrm{L}$.
$S^{\prime}$	$=$	Expected interlaboratory standard deviation of measurements at an average concentration found of $x$, in $\mu \mathrm{g} / \mathrm{L}$.
C	$=$	True value for the concentration, in $\mu \mathrm{g} / \mathrm{L}$.
$\bar{x}$	=	Average recovery found for measurements of samples containing a concentration of $C$, in $\mu \mathrm{g} / \mathrm{L}$.

TABLE 8. SURROGATE SPIKE RECOVERY LIMITS FOR WATER AND SOIL/SEDIMENT SAMPLES

Surrogate Compound	Low/High   Water	Low/High   Soil/Sediment
Nitrobenzene- $\mathrm{d}_{5}$	$35-114$	$23-120$
2-F1uorobipheny	$43-116$	$30-115$
Terphenyl-d $\mathrm{d}_{14}$	$33-141$	$18-137$
Phenol-d	$10-94$	$24-113$
2-F7uorophenol	$21-100$	$25-121$
2,4,6-Tribromophenol	$10-123$	$19-122$

TABLE 9.
EXTRACTION EFFICIENCY AND AQUEOUS STABILITY RESULTS

COMPOUND	```PERCENT RECOVERY ON DAY 0 AVG. RSD```		PERC ON AVG.	$\begin{aligned} & \text { RECOVERY } \\ & 7 \\ & \text { RSD } \end{aligned}$
3-Amino-9-ethylcarbazole	80	8	73	3
4-Chloro-1,2-phenylenediamine	91	1	108	4
4-Chloro-1,3-phenylenediamine	84	3	70	3
1,2-Dibromo-3-chloropropane	97	2	98	5
2-sec-Butyl-4,6-dinitrophenol	99	3	97	6
Ethyl parathion	100	2	103	4
4,4'-Methylenebis(N,N-dimethylaniline)	108	4	90	4
2-Methyl-5-nitroaniline	99	10	93	4
2-Methylpyridine	80	4	83	4
Tetraethyl dithiopyrophosphate	92	7	70	1

TABLE 10.
AVERAGE PERCENT RECOVERIES AND PERCENT RSDS FOR THE TARGET COMPOUNDS FROM SPIKED CLAY SOIL AND TOPSOIL BY AUTOMATED SOXHLET EXTRACTION WITH HEXANE-ACETONE $(1: 1)^{a}$

Compound name	Clay Soil		Topsoil	
	Average percent recovery	```Percent RSD```	Average percent recovery	$\begin{gathered} \text { Percent } \\ \text { RSD } \end{gathered}$
1,3-Dich1orobenzene	0	--	0	--
1,2-Dich1orobenzene	0	--	0	--
Nitrobenzene	0	--	0	--
Benzal chloride	0	--	0	--
Benzotrichloride	0	--	0	--
4-Ch1oro-2-nitrotoluene	0	--	0	--
Hexachlorocyclopentadiene	4.1	15	7.8	23
2,4-Dichloronitrobenzene	35.2	7.6	21.2	15
3,4-Dichloronitrobenzene	34.9	15	20.4	11
Pentach1orobenzene	13.7	7.3	14.8	13
2,3,4,5-Tetrachloronitrobenzene	55.9	6.7	50.4	6.0
Benefin	62.6	4.8	62.7	2.9
alpha-BHC	58.2	7.3	54.8	4.8
Hexach1orobenzene	26.9	13	25.1	5.7
delta-BHC	95.8	4.6	99.2	1.3
Heptachlor	46.9	9.2	49.1	6.3
Aldrin	97.7	12	102	7.4
Isopropalin	102	4.3	105	2.3
Heptachlor epoxide	90.4	4.4	93.6	2.4
trans-Chlordane	90.1	4.5	95.0	2.3
Endosulfan I	96.3	4.4	101	2.2
Dieldrin	129	4.7	104	1.9
2,5-Dichlorophenyl-	110	4.1	112	2.1
4-nitrophenyl ether				
Endrin	102	4.5	106	3.7
Endosulfan II	104	4.1	105	0.4
p, p'-DDT	134	2.1	111	2.0
2,3,6-Trichlorophenyl-	110	4.8	110	2.8
4'-nitrophenyl ether				
2,3,4-Trich1orophenyl-	112	4.4	112	3.3
4'-nitrophenyl ether				
Mirex	104	5.3	108	2.2

a The operating conditions for the Soxtec apparatus were as follows: immersion time 45 min ; extraction time 45 min ; the sample size was 10 g ; the spiking concentration was $500 \mathrm{ng} / \mathrm{g}$, except for the surrogate compounds at $1000 \mathrm{ng} / \mathrm{g}$, compounds 23 , 27, and 28 at $1500 \mathrm{ng} / \mathrm{g}$, compound 3 at $2000 \mathrm{ng} / \mathrm{g}$, and compounds 1 and 2 at $5000 \mathrm{ng} / \mathrm{g}$.

TABLE 11.
SINGLE LABORATORY ACCURACY AND PRECISION DATA FOR THE EXTRACTION OF SEMIVOLATILE ORGANICS FROM SPIKED CLAY BY METHOD 3541 (AUTOMATED SOXHLET)a

Compound name	Average percent recovery	$\begin{gathered} \text { Percent } \\ \text { RSD } \end{gathered}$
Pheno 1	47.8	5.6
Bis(2-ch1oroethyl)ether	25.4	13
2-Ch1orophenol	42.7	4.3
Benzyl alcohol	55.9	7.2
2-Methylphenol	17.6	6.6
Bis(2-chloroisopropyl)ether	15.0	15
4-Methylphenol	23.4	6.7
N-Nitroso-di-n-propylamine	41.4	6.2
Nitrobenzene	28.2	7.7
Isophorone	56.1	4.2
2-Nitrophenol	36.0	6.5
2,4-Dimethylphenol	50.1	5.7
Benzoic acid	40.6	7.7
Bis(2-chloroethoxy)methane	44.1	3.0
2,4-Dichlorophenol	55.6	4.6
1,2,4-Trich1orobenzene	18.1	31
Naphthalene	26.2	15
4-Chloroaniline	55.7	12
4-Chloro-3-methylpheno 1	65.1	5.1
2-Methylnaphthalene	47.0	8.6
Hexachlorocyclopentadiene	19.3	19
2,4,6-Trichlorophenol	70.2	6.3
2,4,5-Trichlorophenol	26.8	2.9
2-Chloronaphthalene	61.2	6.0
2-Nitroaniline	73.8	6.0
Dimethyl phthalate	74.6	5.2
Acenaphthylene	71.6	5.7
3-Nitroaniline	77.6	5.3
Acenaphthene	79.2	4.0
2,4-Dinitrophenol	91.9	8.9
4-Nitrophenol	62.9	16
Dibenzofuran	82.1	5.9
2,4-Dinitrotoluene	84.2	5.4
2,6-Dinitrotoluene	68.3	5.8
Diethyl phthalate	74.9	5.4
4-Chlorophenyl-phenyl ether	67.2	3.2
Fluorene	82.1	3.4
4-Nitroaniline	79.0	7.9
4,6-Dinitro-2-methylphenol	63.4	6.8
N-Nitrosodiphenylamine	77.0	3.4
4-Bromophenyl-phenyl ether	62.4	3.0

Table 11. (Continued)

	Average   percent   recovery	Percent   RSD
Compound name		
	72.6	3.7
Hexachlorobenzene	62.7	6.1
Pentachlorophenol	83.9	5.4
Phenanthrene	96.3	3.9
Anthracene	78.3	40
Di-n-butyl phthalate	87.7	6.9
Fluoranthene	102	0.8
Pyrene	66.3	5.2
Buty1 benzyl phthalate	25.2	11
3,3'-Dichlorobenzidine	73.4	3.8
Benzo(a)anthracene	77.2	4.8
Bis(2-ethylhexyl) phthalate	76.2	4.4
Chrysene	83.1	4.8
Di-n-octyl phthalate	82.7	5.0
Benzo(b)fluoranthene	71.7	4.1
Benzo(k)fluoranthene	71.7	4.1
Benzo(a)pyrene	72.2	4.3
Indeno(1,2,3-cd)pyrene	66.7	6.3
Dibenzo(a,h)anthracene	63.9	8.0
Benzo(g,h,i)perylene	0	--
1,2-Dichlorobenzene	0	--
1,3-Dichlorobenzene	0	-
1,4-Dichlorobenzene	0	--
Hexachloroethane	0	-

a Number of determinations was three. The operating conditions for the Soxtec apparatus were as follows: immersion time 45 min ; extraction time 45 min ; the sample size was 10 g clay soil; the spike concentration was 6 $\mathrm{mg} / \mathrm{kg}$ per compound. The sample was allowed to equilibrate 1 hour after spiking.

Data taken from Reference 9.

FIGURE 1.
GAS CHROMATOGRAM OF BASE/NEUTRAL AND ACID CALIBRATION STANDARD



7.6.1 Identify analyte by comparing the sample and standard mass spectra.

7.6.2 Calculate concentration of each individual analyte; report results.

