Rhenium-188: Availability from the $^{188}\text{W}/^{188}\text{Re}$ Generator and Status of Current Applications

M.R.A. Pillai1,*, Ashutosh Dash1 and F.F. Knapp Jr2

1Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
2Nuclear Medicine Program, Isotope Development Group, MS 6229, Bldg. 4501, Oak Ridge National Laboratory (ORNL), PO Box 2008, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA

Abstract: Rhenium-188 is one of the most readily available generator derived and useful radionuclides for therapy emitting β particles (2.12 MeV, 71.1% and 1.965 MeV, 25.6%) and imageable gammas (155 keV, 15.1%). The $^{188}\text{W}/^{188}\text{Re}$ generator is an ideal source for the long term (4-6 months) continuous availability of no carrier added (nca) ^{188}Re suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The challenges associated with the double neutron capture route of production of the parent ^{188}W radionuclide have been a major impediment in the progress of application of ^{188}Re. Tungsten-188 of adequate specific activity can be prepared only in 2-3 of the high flux reactors operating in the World. Several useful technologies have been developed for the preparation of clinical grade $^{188}\text{W}/^{188}\text{Re}$ generators. Since the specific activity of ^{188}W used in the generator is relatively low 185 GBq(<5 Ci)/g, the eluted $^{188}\text{ReO}_4^-$ can have low radioactive concentration often insufficient for radiopharmaceutical preparation. However, several efficient post elution concentration techniques have been developed that yield clinically useful $^{188}\text{ReO}_4^-$ solutions. Rhenium-188 has been used for the preparation of therapeutic radiopharmaceuticals for the management of diseases such as bone metastasis, rheumatoid arthritis and primary cancers. Several early phase clinical studies using radiopharmaceuticals based on ^{188}Re-labeled phosphonates, antibodies, peptides, lipiodol and particulates have been reported. This article reviews the availability and use of ^{188}Re including a discussion of why broader use of ^{188}Re has not progressed as expected as a popular radionuclide for therapy.

Keywords: Rhenium-188, $^{188}\text{W}/^{188}\text{Re}$ generator, Radionuclide therapy, Bone pain palliation, hepatocarcinoma, Rheumatoid arthritis.

INTRODUCTION

Radionuclide therapy has been successfully applied for the treatment of thyroid cancer for well over 65 years and is undergoing a renaissance thanks to the demonstrated utility of β and α-emitters with potential utility in the treatment of several cancers [1-8]. One of the important factors for this new realization is the development of new targeting methodologies using novel molecules derived by taking advantage of specific biochemical reactions involving the cells. These include among others peptide-receptor, antigen-antibody and enzyme-substrate interactions. Together with the above developments is the availability of several therapeutic radionuclides [9-11] other than ^{131}I that can be bound to carrier molecules through specially designed bifunctional chelating agents (BFCAs) that are able to tightly bind the radionuclidic agents [12-16]. The large number of β particle emitting therapeutic radionuclides proposed in recent decades, prominently include^{186}Re, ^{188}Re, ^{185}Rh, ^{90}Y, ^{166}Ho, ^{175}Yb, ^{177}Lu, ^{170}Tm, etc. [17-24]. While each radionuclide is proposed because of its unique properties for targeted therapy, the ultimate choice depends upon the ready availability of the radionuclide of choice in high specific activity and radiochemical concentration in the clinical setting. Most therapeutic radionuclides suggested in this context are short-lived in nature thus limiting their availability at the hospital site.

Radionuclide generators represent convenient in-house radionuclide production systems. The availability of a daughter radionuclide that can be readily obtained from a long lived parent radionuclide greatly enhances the potential utilization of the radionuclide. In this context, ^{90}Y and ^{188}Re offer significant advantages over many other radionuclides used for therapy as they are available in pure form by adapting the radionuclide generator concept [25]. Although the development of generator technologies for both these radionuclides is feasible, each has its own specific challenges which must be addressed. Considerable progress has been made in the last couple of decades to develop therapeutically useful generators for obtaining both ^{90}Y and ^{188}Re in purity and radioactive concentration sufficient for the formulation of therapeutic radiopharmaceuticals. This review summarizes the technologies developed for the preparation of $^{188}\text{W}/^{188}\text{Re}$ generator, post elution concentration of the ^{188}Re-perrhenate eluate and a brief discussion of ^{188}Re radionuclide generators.

Rhenium Radionuclides in Nuclear Medicine

There are more than 45 radionuclides reported for rhenium, of which ^{186}Re and ^{188}Re have been extensively studied for nuclear medicine applications. Table 1 summarizes the radionuclidic characteristics of these two rhenium isotopes which are used in nuclear medicine and related specialties for various therapeutic applications.

Irradiation of natural rhenium in a nuclear reactor yields a mixture of ^{186}Re and ^{188}Re [26], the proportion of each ra-
Rhenium-188: Availability from the 188W/188Re Generator

Current Radiopharmaceuticals, 2012, Vol. 5, No. 3

Table 1. Decay Characteristics and Production Methods of 186Re and 188Re

<table>
<thead>
<tr>
<th>Decay Product</th>
<th>Half-life</th>
<th>β E_{max}(MeV)</th>
<th>γ-energy (keV)</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>186Re</td>
<td>186W (EC, 7.47%) 186Os (β^-, 92.43%)</td>
<td>90 h</td>
<td>1.069 (71.0%)</td>
<td>2.120 (71.1%)</td>
</tr>
<tr>
<td>188Re</td>
<td>188Os (β^-, 100%)</td>
<td>17 h</td>
<td>0.932 (21.54%)</td>
<td>1.965 (25.6%)</td>
</tr>
</tbody>
</table>

Fig. 1. Reactor Production and Decay Scheme for Tungsten-188.

The natural abundance of 186W is 28.6% and enriched targets are essential for the production of 188W sufficient for generator use. By using enriched 186W targets, the specific activity of 188W is correspondingly augmented. Use of an enriched targets is also important to avoid the high radiation field contributed by other radioactive isotopes of W (182W, 185W mainly). Otherwise, thicker shielding will be required for both transportation of 188W to the generator loading facilities and for generator shielding. A specific activity of up to 85×10^{14} n.cm$^{-2}$sec$^{-1}$ can be obtained by using enriched target and following an irradiation cycle of about 20-24 days at neutron flux of $\sim 10^{15}$ n.cm$^{-2}$sec$^{-1}$. The current status of reactor production and processing of 188W is summarized as a chapter of a recent book published by the International Atomic Energy Agency (IAEA) [29]. As per this report,
tungsten-188 having adequate specific activity suitable for the production of 188W/188Re generators can be accomplished in only a limited number of the research reactors i.e. SM Reactor, RIAR, Dmitrovgrad, Russian Federation; ORNL, HFIR, USA and BR2 Reactor, Belgium.

Enriched 186W as metal as well as oxide form is used as target for irradiation. At ORNL, 97% enriched 186W as the oxide sealed in quartz tubes enclosed in aluminum capsules is irradiated for one or two cycles of 23-24 days each at a neutron flux of about 2.5×10^{15} n.cm$^{-2}$.s$^{-1}$ [30]. The production yields are substantially lower than the calculated values using reported cross sections for the different reactions taking place during irradiation. The loss of 188W due to neutron burn-up, 188W(n, γ)189W (\(\sigma = 12\) barn), is one of the factors contributing to reduced production yields of 188W [31]. Sodium tungstate solution required for subsequent treatment for generator loading is produced by dissolving tungsten oxide in sodium hydroxide solution with moderate heating.

Owing to the relatively low density of powder metallic targets and to ensure maximum utilization of irradiation space in the reactor, ORNL has developed a pressed enriched 186W metal target configuration [32]. In this method, the metallic tungsten target, in the form of small pellets (4 mm diameter \times 3 mm height) is prepared by cold pressing followed by sintering. Such targets have difficulties in dissolving post irradiation and therefore converted to tungsten oxide by heating in a stream of air in a furnace and dissolved in sodium hydroxide to obtain solutions of sodium tungstate. It is estimated that greater than 37 TBq (1 kilo curie) of 188W per cycle can be produced in the HFIR, ORNL using this methodology [29]. The apparatus used at ORNL for post-irradiation conversion of metallic enriched 186W targets to tungsten oxide is shown schematically in Fig. (3).

Collaboration between ORNL and SCK.CEN in 1998 had successfully demonstrated that the BR2 reactor in Mol, Belgium can be utilized for 188W production. The production of 186W in the BR2 Reactor was carried out in the central beryllium plug H1 where the thermal neutron flux peaks to 1×10^{15} n.cm$^{-2}$.s$^{-1}$ [33]. The high-density pressed metallic 186W targets (97% enriched) made by ORNL were used for irradiation. The specific activity of BR2-produced 188W was about 37 GBq (1 Ci) using 20+ day cycle of irradiation.

The chemical processing of the targets is accomplished by dissolution of the target in NaOH solution while using metal oxide targets. Metallic enriched targets are dissolved by high temperature oxidative processing. Post dissolution purification of the target is essential to remove radionuclidic impurities such as 191Os, 192Ir and other chemical impurities such as silicates coming from quartz capsules [29]. In Russia, an ion-exchange chromatography purification using Dowex-1 resin is reported [29]. After purification, the per-tungstic acid solution is evaporated to dryness and taken in required quantity of sodium hydroxide and treated for the preparation of generators. At the SM reactor at Dimitrovgrad 188W having specific activity >185 GBq (5 Ci)/g had been obtained by irradiating 186W enriched targets in oxide form at neutron flux >1x1015 n.cm$^{-2}$.s$^{-1}$ and following several ‘mini cycles’ [29]. At present the SM reactor at Dimitrovgrad, Russian Federation is the sole source of 188W suitable for the production of 188W/188Re generators and World’s dependence on a single source for the raw material 186W is a major factor affecting the progress of 188Re radiopharmaceuticals in clinical medicine. Table 2 summarizes the high flux research reactors that can produce 188W.

188W/188Re Generator

Hayes and Rafter in 1965 proposed the use of 188Re as a possible diagnostic (not therapeutic) agent [34,35] and subsequently in 1966, Lewis and Elridge first reported the preparation of a 188W/188Re generator [36]. There have been several early reports subsequent to that on the development of 188W/188Re generator culminating in the development of clinically useful devices [37-44]. As in the case of development of 99mMo/99Tc generators, all available options have also been evaluated for the preparation of 188W/188Re generators and the technologies used for the separation of 188Re from 188W are briefly discussed below.

Alumina Based 188W/188Re Generator

The alumina based column generator technology used for the preparation of 99mMo/99Tc generators has also been widely used for the preparation of 188W/188Re generators. Due to the lower specific activity, a maximum of 185 GBq (5
Ci)/g for 188W as compared to >370 TBq(1000 Ci)/g for fission produced 99Mo, the eluted 188Re has lower radioactive concentration. Hence, most often the 188Re eluted from an alumina column chromatography generator is not suitable for the direct formulation of radiopharmaceuticals and post elution concentration of the generator eluent solution is essential to obtain 188ReO4 having radioactive concentration sufficient for radiopharmaceutical formulation. Table 3 summarizes the characteristics of the commercial 188W/188Re generators available in the world market.

Table 2. High Flux Research Reactors for the Production of 188W

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Institution</th>
<th>Reported/Projected Specific Activity (Activity of 188W/g W)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFIR</td>
<td>ORNL, Oak Ridge, USA</td>
<td>148–185 GBq(4–5 Ci), one cycle 296–333 GBq(8–9 Ci), two consecutive cycle</td>
<td>Routine production since 1986</td>
</tr>
<tr>
<td>SM3</td>
<td>Research Institute for Atomic Reactors (RIAR), Dimitrovgrad, Russian Federation</td>
<td>~ 185 GBq(5 Ci) for several ‘mini-cycles’</td>
<td>Routine production since about 1986. Backup production for ORNL.</td>
</tr>
<tr>
<td>BR2</td>
<td>SCK-CEN, Mol, Belgium</td>
<td>~ 37 GBq(1 Ci), 20+ d cycle; cycle length varies</td>
<td>Experience since about 200; Backup production for ORNL</td>
</tr>
<tr>
<td>ATR</td>
<td>Idaho National Laboratory (INL), Idaho Falls, USA</td>
<td>18.5 GBq(0.5 Ci), one cycle expected</td>
<td>Production not yet initiated</td>
</tr>
</tbody>
</table>

Table 3. The Characteristics of the Commercial 188W/188Re Generators

<table>
<thead>
<tr>
<th>S. No</th>
<th>Institution/Suppliers</th>
<th>Strength</th>
<th>Column Material</th>
<th>Specific Activity of 188W</th>
<th>Housing</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ORNL, TN, USA</td>
<td>9.25 GBq(250 mCi) to 111 GBq(3 Ci) cGMP system</td>
<td>Alumina</td>
<td>148-185 GBq(4-5 Ci/g)</td>
<td>one inch lead pig with inlet/outlet holes</td>
<td>>500 generators since 1986</td>
</tr>
<tr>
<td>2</td>
<td>Dimitrovgrad, Russia</td>
<td>3.7-111 GBq(0.1-3 Ci) Sterile cGMP system</td>
<td>Alumina</td>
<td>185 GBq(5 Ci)/g</td>
<td>15 kg lead assembly</td>
<td>Regular production and supply.</td>
</tr>
<tr>
<td>3</td>
<td>IRE, Belgium</td>
<td>Up to 55.4 GBq(1.5 Ci)</td>
<td>Alumina</td>
<td>185 GBq(5 Ci)/g</td>
<td>highly shielded</td>
<td>Generator is available with an automatic concentration module.</td>
</tr>
<tr>
<td>4</td>
<td>ITM AG, Germany</td>
<td>Unknown</td>
<td>Alumina</td>
<td>185 GBq(5 Ci)/g</td>
<td>Unknown</td>
<td>Regular production and supply.</td>
</tr>
<tr>
<td>5</td>
<td>Polatom, Poland</td>
<td>18.5 GBq(500 mCi)</td>
<td>Use of 99Mo/99mTc column system</td>
<td>185 GBq(5 Ci)/g</td>
<td>Unknown</td>
<td>Regular production and supply.</td>
</tr>
<tr>
<td>6</td>
<td>IDB, Holand</td>
<td>3.7-18.5 GBq(100-500 mCi)</td>
<td>alumina</td>
<td>Unknown</td>
<td>16 kg lead assembly</td>
<td>Regular production and supply.</td>
</tr>
<tr>
<td>7</td>
<td>MAP Medical Technologies, Finland</td>
<td>< 18.5 GBq(500 mCi)</td>
<td>Use of established 99Mo/99mTc column system</td>
<td>185 GBq(5 Ci)/g</td>
<td>Unknown</td>
<td>Production ceased in 2002.</td>
</tr>
</tbody>
</table>

Extensive work started by Knapp, et al., at the Oak Ridge National Laboratory (ORNL) in the mid eighties have resulted in the preparation of a 188W/188Re generator system using acidic alumina matrix analogous to the widely used 99Mo/99mTc generator [44-46]. The alumina-based 188W/188Re generators produced at the ORNL typically contains 50 mg W per gram of alumina. Owing to the low specific activity of 188W and limited binding capacity of alumina for W, a large alumina column is required for the generator column, resulting in relatively high saline elution volumes and low activity concentrations of the 188Re. The generators are eluted with physiological saline and 188Re yields are generally 75% to 80%. As the buildup of 188Re is 62% at 24 hour post elution, daily elution provides 188Re of approximately 50% of the 188W activity. Tungsten-188 breakthrough values are typically in the 10^-6 range; however, any breakthrough can be effectively removed by subsequent post elution process by passage of the bolus through a small, commercially available alumina QMA Sep-Pak column [47]. Schematic view of a 188W/188Re generator is shown in Fig. (4).

The complete generator setup consists of an attachment for the generator effluent for flow through an alumina QMA SepPak, which effectively removes low levels of any 188W breakthrough, and then through a tandem silver-cation/QMA
Analysis by HPLC demonstrated that the 188Re eluate was of high specific activity 188W [148 GBq (4 Ci)/g] and having a preparation of an alumina based column generator using the evaluated further. Despite the good reported procedure, this generator was not further evaluated; however, the method is expected to be readily adapted with 188W prepared using enriched 186W target.

Iiller et al. studied the feasibility of using zirconium tungstate gels (composites of WO₃-ZrO₂) synthesized by sol-gel process for the production of 188W/188Re generators using tungsten of natural isotopic abundance irradiated in a moderate flux nuclear reactor [55]. Rhenium-188 as perrhenate was eluted using 0.9% NaCl solution. Long term use of a clinical scale generator made by this route is, however, yet to be assessed.

Thermo-chromatographic Separation

A thermo-chromatographic process has also been reported for separating 188Re from 188W based on the volatility of HReO₄. In this process, the irradiated target (188W) is heated to about 900 to 1000 °C to volatilize the Re containing species, which is carried to a colder region in a stream of moist air with a yield of 65% [32, 56]. The main advantage of this method is that the enriched 188W target used for activation could be recovered and recycled more easily. The major disadvantage of this process is the requirement of high temperature operations which results in a slow start up and requires significant thermal shielding to retain heat. The high operating temperature can also potentially volatilize other undesirable materials out of the target as well and contaminate the 188Re. Like the 99Mo/99mTc generator based on sublimation technology, this method was not further evaluated. The requirement of high temperature operations, typically several hundred degrees centigrade on a very regular basis poses many challenges that limit its utility.

Chromatographic Generators Using High Capacity Adsorbents

Development of high capacity adsorbents for the preparation of adsorption/chromatography column generators using low specific activity 99Mo as well as 188W is an interesting proposition and ongoing research. In this connection, the pioneering work of Matsuoka et al. on the preparation of poly zirconium compound (PZC) that showed 99Mo capacity several times higher than the conventional acidic alumina is an important step [57]. Van So et al. prepared polymeric titanium oxychloride sorbent as column matrix for the development of both 99Mo/99mTc and 188W/188Re generators [58]. Adsorption capacities of up to 520 mg of tungsten per gram of PZC and 515 mg of tungsten per gram of PTC were reported [59]. Elution yields greater than 80% were achieved with both the PZC and the PTC sorbents. These sorbents are yet to be tested at high activity level operations and other harsh conditions typically encountered in making clinical scale generators.
Polyethylene glycol (PEG)-based aqueous biphasic systems (ABS) and the analogous aqueous biphasic extraction chromatographic (ABEC) resins have also been evaluated for the separation of ^{188}Re from tungstate ^{188}W in alkaline tungstate media [60,61]. The reported studies indicated that $^{188}\text{W}/^{188}\text{Re}$ separation is possible, however, follow up and demonstration of the utility of these techniques still remains. Other reports include the use of hydroxyapatite particles as column matrix, however, with limited success [62]. A synthetic alumina functionalized with a sulfate moiety has been developed by sol-gel process to be used as a column matrix [63]. The maximum capacity of the adsorbent for tungsten is reported to be higher than 450 mg/g. The efficacy of the sorbent was demonstrated by developing a 37 GBq (1 Ci) $^{188}\text{W}/^{188}\text{Re}$ generator. Elution efficiency of ^{188}Re was 70-90% by using 5 mL of the saline solution. The ratio of $^{188}\text{W}/^{188}\text{Re}$ in the eluted solution is 0.002-0.003%. Rhenium-188 obtained from this generator required purification to reduce the ^{188}W level. The feasibility of this concept is yet to be evaluated under high activity loading typically used in the preparation of clinical sacle generator.

Nanomaterial Based Adsorbents

Owing to the high surface area and intrinsic surface reactivity, nanomaterial based sorbents has higher sorption capacity and selectivity compared to the conventional adsorbents such as alumina and similar oxide species. The high surface area is advantageous for realizing high capacity facilitating enhanced loading of ^{188}W and allowing the use of low specific activity ^{188}W. Chakraborty et al. have successfully exploited three different nanomaterial based sorbents such as polymer embedded nanocrystalline titania (TiP), nanocrystalline zirconia and nanocrystalline γ-Al$_2$O$_3$ for the preparation of radionuclide generators [64-66]. The high sorption properties coupled with their relatively easy synthesis and exceptional acid base stability have rendered these nanocrystalline metal oxides well suited for the preparation of $^{188}\text{W}/^{188}\text{Re}$ generators. The surface acid-base properties of nanocrystalline metal oxides are inherent and are primarily responsible for the retention of ^{188}W. Interfacial chemistry of the nanocrystalline metal oxides allows for selective sequestration of negatively charged poly tungstate anions. Apart from improving sorption capacity, the rigid, open pore structure of these nanomaterial based sorbents facilitate poly tungstate anions to reach binding sites of sorbent for rapid and efficient sorption kinetics. The decay of ^{188}W to ^{188}Re is not accompanied by any serious disruption of chemical bonds. As the tungstate ions begin transformation into perrenate ion ($^{188}\text{ReO}_4^-$) which has -1 charge, the binding would become weaker and easy displacement of $^{188}\text{ReO}_4^-$ is expected with facile elution with normal 0.9% saline. From the perspective of the end-user, the reported procedure retains the simple-to-operate qualities of the chromatographic generator. The radioactive concentration of ^{188}Re availed from this generator is adequate for radilabelling studies. The scope of using nanomaterial based adsorbents is relatively more appealing, especially if engineering efforts for the development of a closed shielded generator assembly system containing sterile column are given. This is a realizable proposition that is less demanding and can contribute to regional needs in the near future.

Solvent Extraction Generator

In the quest for an effective method to obtain ^{188}Re using LSA ^{188}W, attention had been focused towards the use of solvent extraction technique with methylethyl ketone (MEK) as used for $^{99}\text{Mo}/^{99m}\text{Tc}$ generator systems owing to their similar chemical properties. A $^{188}\text{W}/^{188}\text{Re}$ solvent extraction generator using methylethyl ketone (MEK) to separate $^{188}\text{ReO}_4^-$ was reported from the V.G. Khlopin Radium Institute, Russia for medical purposes [67]. The main advantage of such a generator is the possibility to use low specific activity ^{188}W. The parent and daughter radionuclides were separated on centrifugal semicounter-current extractor in which ^{188}Re was extracted by MEK from alkaline solution (2.5 M KOH + 2.5 M K$_2$CO$_3$) containing up to 200 g/L of W. Subsequently MEK layer is evaporated to dryness and the residue is dissolved in isotonic solution of NaCl. The yield was about 89 % and the radiochemical purity of $^{188}\text{ReO}_4^-$ solution was ~ 97 %. The current status of this generator system is unknown.

Electrochemical Generator

Electrochemical separation technologies have many advantages and was first reported for making a $^{90}\text{Sr}/^{90}\text{Y}$ generator yielding clinically useful ^{90}Y [68]. This work was then extended to the electrochemical separation of ^{188}Re from ^{188}W [69]. In the technology developed, the separation of ^{188}Re from $^{188}\text{W}/^{188}\text{Re}$ mixture was realized in an oxalate bath. Controlled electrolysis carried out at pH 1-2 at a constant potential of -7 V and for sixty minute duration, about 85% of the ^{188}Re could be deposited on the platinum cathode. The ^{188}W contamination was between 0.05 - 0.1 % which was removed by passing through a small column containing 200 mg of acidic alumina which reduced the level to below 10-3 % in different batches. The radiochemical purity of $^{188}\text{ReO}_4^-$ eluate varied from 95-98 %. The main advantages of the electrochemical separation is that the radiolytic damage as seen in a column generator is avoided as the ^{188}W after electrolysis is stored in solution form. This technology is effective with low specific activity ^{188}W. The electrochemical separation by itself acts as a concentration step and hence there is no need for post elution concentration of $^{188}\text{ReO}_4^-$. The electrochemical generator technology is an open technology without any intellectual property right (IPR) issues and hence can be universally adapted.

Post- elution Concentration of ^{188}Re

A major challenge in the successful development of $^{188}\text{W}/^{188}\text{Re}$ generators for clinical application is the low radiolysis concentration of the eluted $^{188}\text{ReO}_4^-$ solution which is often encountered for the commonly used adsorptive type column generator, this results from the large alumina columns needed for adsorbing sufficient quantity of the invariably low specific activity ^{188}W. A radioactive concentration 740 MBq (20 mCi)/mL is desirable for most radilabelling studies which can be achieved by having a post elution concentration step. The long half-life of the parent radioisotope (69 d) allows the generator to be used for 2-3 half-lives, that is for at least 4-6 months provided the generator is integrated with a post elution concentration system.
The concept of post elution concentration of generator eluates was first developed at the ORNL, USA [70]. Several methods have been subsequently reported for the post elution concentration of perrhenate eluate. The use of evaporation as a concentrating procedure is precluded owing to its complexity in the radiopharmacy and the potential presence of macroscopic levels of NaCl present which will also get concentrated to unacceptable levels for radiolabeling as well as injection into patients.

The ORNL method for 188Re concentration utilizes the sequential trapping of the macroscopic levels of the chloride anion on a silver impregnated cation column followed by selective trapping of perrhenate on a QMA anion column [71]. After washing with water, perrhenate ions can be eluted in saline. The volume of saline required and thus the final radioactive concentration of 188Re solution is a function of the QMA column void volume. Jaeckel et al. reported a semi-automated system for elution and concentration of the 188Re-eluate from 111 GBq (3 Ci) 188W/188Re-generators to provide high 188Re-activity per unit volume [72]. By using ion exchange cartridges, small eluate volumes (2-3 mL) of maximum 37 GBq (1 Ci) of 188Re/mL activity concentration were routinely prepared. Luo et al. designed an automated system comprised of a concentrator, a control box and a computer to control the process [73]. A column of cation-exchange resin in Ag$^+$ form and an anion-exchange column in series were used in the concentration procedure. Mushtaq reported a method based on generator elution with a mixture of 0.7 M acetic acid and 0.0225 M sodium chloride instead of physiological saline [74]. The passage of the bolus through an amine-type (Acclax Plus QMA Sep-Pak) anion exchange cartridge results in trapping of the microscopic levels of the perrhenate. Subsequent elution of the anion exchange cartridge with 2 mL of saline provides solutions with high radioactive concentration of 188Re. Sarkar et al. described two methods using (i) a single diethyl aminoethyl (DEAE) cellulose anion exchanger column and (ii) a combination of Dowex-1×8 and AgCl columns to concentrate 188Re availed from an alumina column [75].

Mushtaq described a method which is based on generator elution with acetone followed by evaporation and dissolution in saline to obtain sodium perrhenate solution [76]. Mushtaq et al. have also proposed a method which is based on the extraction of 188Re-perrhenate in methyl ethyl ketone for concentration purposes [77]. The electrochemical separation by Chakravarty et al. was also extended for the post elution concentration of generator eluted sodium perrhenate [78].

Several concentration systems were also developed as part of an IAEA coordinated research project on the development of generator technologies for therapeutic radionuclides [25].

The availability of 188W/188Re generator has been one of the major challenges since there were very limited suppliers for the generators on an international basis. Initially, their generation production and supply was provided by ORNL and later a Finnish company called MAP Technologies entered into the manufacturing of the generators. The production of generators by both the above organization has been discontinued. Currently Polatom, Poland; ITM Isotopen Technologie, München AG, Germany and IDB Holland are the known suppliers of 188W/188Re generators.

Rhenium Chemistry

Rhenium is a transition metal and the last element having a stable isotope to be discovered in the year 1925 and is named after the river Rhine. Rhenium is a third-row transition metal in group 7 after manganese and technetium with an atomic number of 75. Chemically, rhenium resembles to manganese and technetium [79,80]. The ground state electronic configuration of rhenium is 4f14, 5d4, 6s2. The ability of rhenium to complex with a variety of ligands and bifunctional chelating agents is a key factor in the successful development of rhenium radiopharmaceuticals for targeted therapy. Rhenium complexes exist in nine oxidation states ranging from −1, 0 to +7 and having coordination numbers up to nine. Three distinct approaches have been adapted for the preparation of rhenium radiopharmaceuticals which include complexation of the targeting molecule, complexing rhenium to a prosthetic bifunctional chelating agent (BFCA) attached to the targeting molecule or making rhenium as an integral part of a molecule which by itself is expected to work as the targeting molecule [81]. The nuclear and chemical characteristics of 188Re are depicted in Table 4.

The initial developments of rhenium radiopharmaceuticals have been based on the experience gained with 99mTc radiopharmaceuticals [82] and most labelling methods have been very similar to those used for the preparation of 99mTc radiopharmaceuticals. However, as the work progressed significant differences in the chemistry between the two elements were noticed necessitating more fundamental work for the development of rhenium chemistry applicable for the preparation of radiopharmaceuticals. The overall conclusion is that rhenium chemistry at the tracer level (nca) is much more difficult than 99mTc chemistry. At macroscopic levels, the complexes formed with technetium and rheniums with different ligands could have identical structures, despite following different routes of synthesis [83, 84]. The chemistry between 188Re and 186Re is expected to be similar as the difference in mass number is too small to show any isotopic effect. However, 188Re eluted from the generator often needs addition of carrier rhenium to make stable complexes (i.e for HEDP preparation).

REVIEW OF RHENIUM RADIOPHARMACEUTICALS

Rhenium-188 is one of the early radionuclides proposed for radionuclide therapy and there have been several active groups working on the development of therapeutic radio-

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy of β radiation</td>
<td>2.12 MeV (79%) 1.96 MeV (20%)</td>
</tr>
<tr>
<td>Energy of γ radiation</td>
<td>155 keV (10%)</td>
</tr>
<tr>
<td>Availability</td>
<td>188W/188Re generator</td>
</tr>
<tr>
<td>Specific activity</td>
<td>Carrier-free [6.8 TBq (184 Ci)/μmol]</td>
</tr>
<tr>
<td>Half-life</td>
<td>16.7 hour</td>
</tr>
<tr>
<td>Chemistry</td>
<td>VII B transition metal, chemistry is similar to technetium.</td>
</tr>
</tbody>
</table>
pharmaceuticals with ^{188}Re, eluted from the $^{188}\text{W}/^{188}\text{Re}$ generator. A variety of therapeutic radiopharmaceuticals with ^{188}Re are reported and several of these have progressed into human studies. A brief review of the preparation and clinical use of ^{188}Re radiopharmaceuticals is given below.

^{188}Re-DMSA for the Treatment of Medullary Carcinoma

^{188}Re-DMSA (dimercaptosuccinic acid) is a true 'matched pair' of ^{99m}Tc and ^{188}Re and one of the earliest radionuclide radiopharmaceuticals to be developed [85]. ^{99m}Tc(V)-DMSA is useful for imaging medullary carcinoma of thyroid, head and neck tumors and metastasis from breast carcinoma to liver, brain and skeleton [86]. ^{188}Re-DMSA was envisaged to be useful for the treatment of the above cancers. Blower et al. reported clinical studies in patients with ^{188}Re-DMSA and found that the radiopharmaceutical is particularly taken up by metastatic bone cancer originating from prostatic carcinoma [87]. The authors concluded that ^{188}Re-DMSA could be a good agent for metastatic bone pain palliation.

However, one of the problems associated with the preparation of ^{188}Re-DMSA was the high renal uptake of the product as compared to ^{99m}Tc(V)-DMSA. Unlike the ^{99m}Tc(V)-DMSA complex, increasing the pH to higher values did not result in the reduction of renal uptake presumably irrespective of the pH, Re forms complex at +5 oxidation state [88]. Singh et al. performed thorough detailed HPLC studies confirmed that ^{188}Re-DMSA complex exists in multiple isomeric forms [89]. Dadachova et al. reported the synthesis of ^{188}Re(V)-DMSA by using sodium metabisulfite instead of stannous ions as the reducing agent and the complex showed less renal uptake [90]. Similar results were obtained by Kothari et al. who demonstrated by detailed HPLC analysis that the complexes formed with stannous ions and metabisulfite (MBS) have varying amounts of the different isomers which could explain the difference in the in vivo uptake values of the two products [91]. Their studies also showed that while there is no difference in the blood clearance pattern between the two complexes, the kidney retention of ^{188}Re(V)-DMSA (MBS) was significantly lower (0.68 ± 0.06%) as compared to 2.93±0.93% for ^{99m}Tc(V)DMSA (SnCl$_2$). Another interesting observation was that the bone uptake and retention of the complex prepared with SnCl$_2$ was much higher as compared to the complex prepared with metabisulfite. Apparently despite the promising results of Blower and others, the clinical use of ^{188}Re-DMSA has not progressed further.

Bone Pain Palliation Agents

Among the two radionuclides of rhenium, ^{186}Re-HEDP was initially explored and may be is preferred as a radionuclide for bone pain palliation due to the lower energy β-particles emitted and correspondingly by the possible lower myelotoxicity. Nevertheless, the ready availability of ^{188}Re from the generator is an operational convenience which led to the research towards the development of ^{188}Re based bone pain palliation agents. Published work includes the preparation and evaluation of ^{188}Re complexes of several bisphosphonate ligands such as hydroxyethylidene diphosphonate (HEDP) [92], ethylenediamine-N,N,N',N'-tetrakis (methylene phosphonic acid [93], 2-sulfonato-1,1-ethyldiene bisphosphonic acid (SEDP) [94] and dipicolylmine-alendronate [95]. There are several reports on the clinical use of ^{188}Re-HEDP in patients suffering from metastatic bone pain [96-100]. In one of the early reports, 61 patients suffering from bone metastases due to lung, breast, prostate, renal, and bladder cancers were treated with 1.147-6.956 GBq (31-188 mCi) of activity [97]. The patients were followed up for a period of one year and 80% overall pain relief was seen in patients and with no severe side effects or hematopoietic toxicity demonstrating the efficacy of the radiopharmaceutical. Liepe et al. studied ^{188}Re-HEDP in 27 patients with hormone refractory prostate cancer and the patients showed a response rate of 76% [96]. Palmedo et al. reported the administration of ^{188}Re-HEDP in 64 patients either as single dose or repetitive dose and the latter showing slightly better pain relief and more importantly, exhibited an apparent therapeutic effect [98]. In a recent report of the use of ^{188}Re-HEDP combined with capcitabine in hormone refractory prostate cancer patients with bone metastasis treated with 37 MBq (1 mCi)/kg no toxicity was seen [101]. A phase II clinical trial for finding the efficacy is reported to be in the planning stage. The clinical experience thus far suggests that ^{188}Re-HEDP has similar clinical efficacy profile as other bone pain palliating agents. Despite the demonstrated success of the therapy with ^{188}Re-HEDP, the radiopharmaceutical is not yet widely used.

^{188}Re Labeled Antibodies

The 16.9 h half life of ^{188}Re is relatively short as compared to the relatively long bio kinetics of antibodies thereby making ^{188}Re not an ideal choice for radiolabelling monoclonal antibodies. However, ^{188}Re being eluted from the generator is no carrier added (nca) and the short half life make it one of the highest specific activity radionuclides among the currently used β-emitting radionuclides for therapy. Rhenium-188 can be incorporated in the antibody either directly after the reduction of the disulphide bridges [102-104] or through bifunctional chelating agents [105,106]. Very recently a Re-tricarbonyl core has been used for radiolabelling of monoclonal antibodies for developing radiopharmaceutica ls [107,108].

There are several reports on the use of ^{188}Re labeled monoclonal antibodies in patients. Juweid et al. reported the biodistribution, pharmacokinetics and dosimetry of ^{188}Re labeled MN-14, an anti carcinoembryonic antigen (CEA) monoclonal antibody injected in 11 patients having advanced gastrointestinal cancer [109]. The administered dose ranged from 0.758 GBq-5.957 TBq (20.5 mCi to 161 Ci) and red marrow suppression was the only dose limiting toxicity (DLT) seen in the patients. Buchman et al. studied the biodistribution, radiation absorbed organ doses, toxicity and outcome of myeloablative radioimmunotherapy of ^{188}Re-labelled anti CD-66 monoclonal antibody in 20 high risk patients prior to stem cell transplantation [110,111]. The authors concluded that myeloablative radioimmunotherapy with ^{188}Re monoclonal antibody is a promising approach for the improvement of conventional conditioning of high risk leukemia patients prior to stem cell transplantation. Koenecke et al. also had a similar report on the use of ^{188}Re la-
beled anti CD66 in the conditioning of allogenic stem cell transplantation for acute myeloid leukemia [112]. Torres-Garcia et al. reported the biokinetics and dosimetry using 188Re-anti-CD20 [4.81-8.696 GBq (130-235 mCi)] in patients with Non-Hodgkin’s lymphoma [113]. They achieved a whole body dose rate of 0.75 Gy which corresponds to the dose recommended for NHL therapy. Torres et al. reported the locoregional administration of 186Re-labelled humanized anti-epidermal growth factor receptor monoclonal antibody, nimotuzumab, for the treatment of malignant gliomas [114]. The authors concluded that a single dose of 370 MBq (10 mCi) labeled antibody could be used safely in patients suffering from high grade gliomas and the clinical efficacy was good as seen from the delayed survival of the patients. A phase II clinical trial is apparently planned in this case to assess the efficacy of the treatment, however, the study was considerably delayed due to the non-availability of the generator.

Rhenium Labeled Peptides

The high specific activity 188Re obtained from 188W/188Re generator is ideally suitable for radiolabeling peptides as the carrier vector is present at sub-micromolar levels in peptide receptor radionuclide therapy (PRRNT). Radiolabeling of several peptides with 188Re is reported and many of them are analogs of the hormone somatostatin [115-121] and targeting the different subtypes of somatostatin receptors. Most of these peptides have a disulphide bridge linking the two cysteines in the structure which can be reduced and used for complexing with 188Re. Early on, Zamora et al. reported the labeling of RC-160, a cyclic octapeptide with 188Re by the direct method and the resultant radiolabelled product showed specific binding to NC1-H69 which expresses somatostatin receptors [115]. The radiolabelled product also showed specific uptake in nude mice bearing xenografts of human prostate adenocarcinoma [116,117]. Guhlke et al. modified this work by radiolabelling RC-160 by using MAG3 as a prosthetic group for chelating 188Re [118]. Molina-Trinidad et al. reported the direct radiolabelling of lanreotide with 188Re and the labeled product was injected in athymic mice implanted with different human cancer tumours and showed good uptake characteristics [119]. They further extended the work by injecting 188Re-lanreotide in rats implanted with hepatocarcinoma. Injection of the products through tail vein of the rats showed that the beta elimination time is longer [120]. Cyr et al. studied the radiolabeling of P2045 which is an 11 amino acid somatostatin analog with 188Re and 99mTc [121] targeted to small and non-small cell lung cancer. In vivo studies in AR42J xenograft mice model showed significant tumor uptake. A Phase I dose escalation study was done with 188Re-P2045 in 15 patients having SSTR positive lung cancer [122]. The patients were treated with upto 3.33 GBq(90 mCi)/m² of the radiotracer. Despite the fact that most patients were pretreated, the patients showed slight improvement in their survival. Other peptides labeled with 188Re include α-melanocyte stimulating hormone (α-MSH) [123,124], RGD [125], VEGF [126], and neurotensin (NT) [127].

In spite of these promising studies with 188Re, currently much of the peptide radiolabelling work is done with 90Y and 177Lu. The main reasons for this shift in focus are the better availability of these radionuclides and the relatively easy +3 chemistry of the latter radionuclides thereby exhibiting better in vitro and in vivo stability.

188Re-lipidol for Hepatic Carcinoma (HCC)

Hepatic carcinoma is widely prevalent cancer and hence the development of therapeutic radiopharmaceuticals for its management if intercepted early, is an active area of radiopharmaceuticals research. Iodine-131 labelled lipiodol is a traditonal agent which is widely used radiopharmaceutical for the treatment of hepatocarcinoma [128]. Lipiodol or ethiodized oil, contains iodine combined with ethyelsters of fatty acids and is used as a contrast agent in myelography. The inactive iodines of lipiodol are exchanged with 131I, followed by solvent extraction of the labeled product for prepa-ration of the radiopharmaceutical.

There are several reports describing the preparation of 188Re lipiodol starting with Kim et al. suspending 188Re-sulphur colloid in lipiodol [129]. Dissolution of a lipophilic complex 188Re-HDD-[2,2,9,9-tetramethyl-4,7-diaza-1,10-decanediithiol] in lipiodol was first reported by Lee et al. [130] using a lipiodol solution of 188Re-TDD (2,2,9,9-tetramethyl-4,7-diaza-1,10-decanediithiol). Luo et al. used ECD as a chelating agent to prepare a lipophilic complex of 188Re for dissolution in lipiodol [131]. Ruyck et al. conducted a comparative evaluation of 188Re-4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol (HDD)/lipiodol with 131I-lipiodol in patients suffering from inoperable HCC [132]. Data analysis showed that 188Re-lipiodol yielded smaller cytotoxic effect and a lower radiation exposure for an expected higher tumor-killing ef-fect. Kumar et al. used 188Re-lipiodol in a patient with unresectable hepatocellular carcinoma to study the dosimetry aspects [133,134]. The maximum tolerated activity to be safely injected in the patient was calculated to be about 8.325 GBq(225 mCi) with the lungs being the dose limiting organ. Two doses of the radiopharmaceutical resulted in the complete disappearance of a large volume tumor and the patient was disease free for 18 months. Kumar et al. also reported a large scale clinical trial involving 93 patients in India and Vietnam using 188Re-lipiodol [135]. Lambert et al. reported 35 treatments in 28 patients with 188Re-HDD-lipiodol activity ranging from 4.81-7.03 GBq(130-190 mCi) [136,137]. The studies confirmed that the patients tolerated the dose and no severe complications were reported. Response assessment showed partial response in 1, stable disease in 28 and disease progression in 2 treatments. There was a significant reduction in AFP levels measured in patients six weeks after treatment. Garin et al. reported the preparation of 188Re(III)-SSS-lipiodol [SSS = (S,CPh)(S,CPh)₂] by dissolving the highly lipophilic complex 188Re(III)-SSS in lipiodol followed by injection to the hepatic artery of healthy pigs [138]. A comparative evaluation of 188Re-SSS-lipiodol with 131I-lipiodol in rats bearing hepatocarcinoma, the authors concluded that in small tumours the latter is more efficacious [139]. However, this may not be extendable to HCC in humans as the tumors are fairly large. The International Atomic Energy Agency (IAEA) conducted a multi-country Phase I/II clinical trial
involving 185 patients in eight countries using 188Re-HDD-Lipiodol in which three complete responses and 19 partial responses were reported [140-143].

The overall results of the clinical studies with 188Re-lipiodol demonstrated that it is a clinically useful agent. However, potential liver leakage of activity has been a concern and there are further developments to improve the radiolabelling yields and the in vivo stability of the injected radiopharmaceutical. Radiolabelling yields have been considerably improved by labeling lipiodol through rhenium(V) nitrido bis(diethylthiocarbamate) (DED) complex [144]. The Re(V) nitrido precursor was prepared in high yields using a lyophilized kit formulation and the resultant complex being highly lipophilic is quantitatively extracted into lipiodol. The results of the studies with 188Re-DED-lipiodol suggest that the radiopharmaceutical is stable in vivo and selectively gets accumulated in the tumour with high target to non-target ratios [145]. The results of the initial clinical trials showed that this could be a useful radiopharmaceutical for the therapy of unresectable hepatocellular carcinoma. Uccelli et al. recently reported an automated synthesis of 188Re-lipiodol [146]. Thieme et al. had reported the synthesis, characterization and biological evaluation of a 188Re(N)(cys)(PNP) mixed ligand complex for the preparation of 188Re lipiodol [147]. The continued developments in the preparation of 188Re-lipiodol show the interest in this product as it addresses the management of a widely prevalent cancer.

188Re-colloids for Radiosynovectomy
Radiosynovectomy is one of the early clinical applications using 188Re since the high energy β particles are especially useful for treating large joints. Several biodegradable particulates have been developed for this purpose which includes polypeptide colloids [148], hydroxyapatite particles [149,150], rhenium colloids [151] and microspheres [152,153]. Most of the particles are reported to have suitable biological properties for application in radiosynovectomy as seen in animal experiments. Several patient studies are also reported [154-156].

188Re for Intravascular Radionuclide Therapy (IVRNT)
Percutaneous transluminal coronary angioplasty (PTCA) is a mode of treatment of patients suffering from atherosclerotic coronary artery disease. Restenosis occurs in 30–50% of the patients post angioplasty. Radioisotopes such as 32P coated on stents or the use of a liquid-filled balloon containing a β− emitting radioisotope were proposed for use to prevent angioplasty restenosis [157]. This technique is called intravascular radionuclide therapy (IVRNT). Radionuclides with moderate half-life of 1-2 days and having particulate emissions close to 2 MeV are preferred for this purpose. Rhenium-188 as perrhenate was first successfully evaluated for this application [158]. Although, accidental rupture of the balloon may lead to high uptake of perrhenate ions in the thyroid gland, detailed pre and post thyroid blocking studies successfully demonstrated that perenate uptake could be blocked or displaced. Another approach was to use 188Re-complexes that have high renal clearance and several hydrophilic complexes have been reported to be prepared and clinically evaluated for this purpose [159-160].

In one IVRNT clinical trial encompassing 225 patients, 113 patients received 22.5 Gy intravascular beta-irradiation using 188Re post angioplasty [163]. After 6 months, the target vessel revascularization rate was significantly lower in patients who received radiation as against the control group of 112 patients [164]. In another report of a six-year clinical follow-up after treatment with 188Re filled balloon showed that the restenosis was lower in the case of 188Re patients as compared to the controls [165]. However, the number of patients was too small for a meaningful comparison. IVRNT never developed to the promise that it offered due to the availability of drug coated stents which are much easier used [166].

188Re Patches for Therapy of Skin Cancer
Skin cancer is one of the most common types of malignancy and although not fatal in many cases, untreated skin cancer could result in metastatic disease. Brachytherapy or external beam therapy using gamma rays X-rays or electrons are common procedures involved in radiation therapy. The use of radioactive patches to irradiate skin cancer is a simpler and non-invasive mode of treatment for those patients where traditionally therapeutic modalities would lead to scarring and disfigurement. Isotopes such as 90Y, 32P, 166Ho, 188Re etc. could be used in the patch preparation. Preparation of 188Re patches and its use in the treatment of melanoma induced in mice is reported [167]. Superficial tumors were induced in C57BL/6 mice and the 188Re bandage was applied on palpable tumors. Regression and delay of tumor growth was observed in all treated animals to varying extent depending upon the radiation dose and the treatment regimen followed. 188Re-labeled paper was prepared and the feasibility of its use for treating skin cancer was demonstrated by successful treatment of mouse skin cancer and mouse sarcoma [168].

STATUS OF CURRENT CLINICAL USE OF 188Re RADIOPHARMACEUTICALS
Rhenium radiopharmaceutical chemistry and development is one of the widely researched areas in nuclear medicine. Despite the large quantum of work done in this field, the authors are unaware of any large scale late stage clinical studies being conducted with 188Re. The main reason for the lack of clinical interest for rhenium radiopharmaceuticals appears to be the availability of other radionuclides such as 90Y and 177Lu for developing equivalent products. Initially, clinicians were highly enthused by the idea of using a generator eluted 188Re for making ‘matched pair’ of therapeutic products similar to the 99mTc eluted from the 99Mo/99mTc generator. The potential availability of freeze-dried kits for this purpose was yet another factor which appealed. Together with the generator and kits, it offered the possibility of diagnosis and therapy to be done at ease ensuring the comfort of the clinicians as well as patients.

The initial developments of the generator came from Oak Ridge National Laboratory (ORNL) which has the high flux reactor capable of making adequate quantities of 188W required for production of generators for the initial studies.
Other institutions having access to a research reactor were enthusiastic to produce 188W; however, they soon realized that the production of 188W will be the privilege of only those who have access to reactors having flux $>10^{15}$ n.cm$^{-2}$.sec$^{-1}$. Hence, despite the great interest in the work, the production of 188W was confined to three high flux research reactors, HFIR at Oakridge in the USA; SM reactor at Dimitrovgrad in the Russian Federation and BR2 reactor in Belgium.

In the late nineties, the International Atomic Energy Agency established several programs to promote the use of 188Re radiopharmaceuticals through a specially devised mechanism known as ‘Doctoral Coordinated Research Project (CRP)’ in which large resources from the Technical Co-Operation Department was also pooled to support research and development in participating member states. The project provided free generators as well as research funds to the participating groups to develop and implement therapy with 188Re radiopharmaceuticals. Clinically useful work on hepatocarcinoma and radiosynovectomy were performed by the participants during the project time (140-143). However, most participating laboratories could not sustain the program post completion of the IAEA CRP, because of the apparently high cost and limited availability of 188W/188Re generator which came in the way of the continuation of the program.

In absolute terms the cost per Bq or mCi of eluted 188Re can still be very cost effective per unit dose as the usable life of an 188W/188Re generator is for several months. Conservative estimate shows that 1.85-2.59 TBq(50-70 Ci) of 188Re can be eluted from a 37 GBq(1 Ci) generator when used over a period of six months. However, in order to optimally use the available 188Re, nuclear medicine departments need to pursue multiple applications such as targeted therapy of cancer, bone pain palliation and radiation synovectomy etc. In most cases this was never realized and the generator had limited use thereby making per patient cost high.

CONCLUSIONS

Generator produced 188Re offered great promise for development of therapeutic radiopharmaceuticals and a large volume of research in the development and clinical use of 188Re radiopharmaceuticals has been accomplished [169-173]. The technology for preparation of clinically useful 188Re from the 188W/188Re generator with or without the need for post elution concentration methods is also available [25,174]. From our perception, the limited production capability of the 188W parent radionuclide is the major factor which precluded the widespread use of this radionuclide. The availability of other more easily produced competing radionuclides such as 177Lu and 90Y increased interest in their use. Most similar studies with β-emitting radionuclides are currently focussed on the use of these two radionuclides. The rhenium isotopes especially 188Re could still have a place in providing certain unique products for e.g. 188Re-DMSA as an equivalent of it could not be made using other isotopes. Just like 188Re-DMSA there could be other situations, especially labelling of small molecules where conjugating DOTA or similar ligands will dramatically change the pharmacokinetic characteristics of the small molecules. The development and use for 188Re radiolabeling of novel cores such as nitrido and carbonyl could yield high specific activity products with more favourable biokinetics that may not be possible with competing radionuclides.

ACKNOWLEDGEMENTS

Declared none.

CONFLICT OF INTEREST

Declared none.

REFERENCES

Carcinogenesis, 2009, 30, 548-554.

Kumar, A.; Bal, C.; Brivastava, D.N.; Thulkar, S.P.; Sharma, S.; Acharya, S.K.; Duttagupta, S. Management of multiple intrahepatic recurrences after radiofrequency ablation of hepatocellular carci-

