

Proudly distributed by Transilluminators.com P: (617)286-4632 E: sales@transilluminators.com W: www.transilluminators.com

DETERMINING EPROM ERASURE OR STERILIZATION TIME

Sterilization dosage = (UV intensity) x (Exposure time). Therefore,

Sterilization time in seconds = <u>Sterilization dosage: $(W.sec/cm^2)x 1,000,000$ </u> Intensity: $(\mu W/cm^2)$

or

<u>Sterilization dosage: (µW.see/cm²)</u> Intensity: (µW/cm²)

Notice the term " μ " in the numerator of the second equation - this is not in the first equation. By multiplying the numerator in the first equation by 1,000,000, you are converting *watt* sinto *microwatt*. SOne microwatt = one watt x 10⁻⁶ (10 to the (-6) power).

Assume you are sterilizing ostrich or emu eggs and the sterilization dosage = $8800 \,\mu\text{W.sec/cm}^2$; the intensity of the light source is $1500 \,\mu\text{W/cm}^2$. Note that we are referring to *micr o*watt seconds. Since the dosage is already in microwatts, there is no need to multiply the numerator by 1,000,000.

The resulting equation would be:

<u>Sterilization dosage: 8800μW.sec/cm</u>² UV Intensity: 1500μW/cm² = 5.87 seconds

Now assume you are erasing EPROMs and the recommended erasure dosage is 15W.sec/cm². Assume the intensity of the light source is 18,000W/cm². The equation would be:

<u>15Wsec/cm² x 1,000,000</u>		<u>15,000,000µWsec/cm²</u>
$18,000 \mu W/cm^2 \ge 60$	You get	$18,000 \mu W/cm^2 \ge 60 =$
<u>833.33 sec</u> .		
60	= 13.89 minutes	