

Prepared for:

NULEAF NATURALS

1550 LARIMER ST. #964 DENVER, CO USA 80202

NuLeaf Naturals CBC Oil Tincture Formulation

Batch ID or Lot Number:	Test:	Reported:	USDA License:	
C348	Potency	08Dec2023	N/A	
Matrix:	Test ID:	Started:	Sampler ID:	
Solution	T000264033	06Dec2023	N/A	
	Method(s): TM14 (HPLC-DAD)	Received: 05Dec2023	Status: N/A	

		Result		
LOD (mg/mL)	LOQ (mg/mL)	(mg/mL)	Result (mg/g)	Notes
0.518	1.764	64.840	70.50	Density = 0.92g/m
0.473	1.613	ND	ND	
1.518	4.551	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
1.557	4.668	ND	ND	
0.359	1.076	ND	ND	
0.650	1.947	ND	ND	
0.294	1.001	2.020	2.20	
1.228	4.186	ND	ND	
0.383	1.306	2.060	2.20	
0.838	2.856	ND	ND	
1.463	4.987	ND	ND	
1.329	4.529	ND	ND	
1.178	4.013	ND	ND	
0.267	0.911	ND	ND	
1.039	3.539	ND	ND	
		68.920	74.90	•
		ND	ND	
		0.000	0.00	
	0.518 0.473 1.518 1.557 0.359 0.650 0.294 1.228 0.383 0.838 1.463 1.329 1.178 0.267	0.473 1.613 1.518 4.551 1.557 4.668 0.359 1.076 0.650 1.947 0.294 1.001 1.228 4.186 0.383 1.306 0.838 2.856 1.463 4.987 1.329 4.529 1.178 4.013 0.267 0.911	LOD (mg/mL) LOQ (mg/mL) (mg/mL) 0.518 1.764 64.840 0.473 1.613 ND 1.518 4.551 <loq< td=""> 1.557 4.668 ND 0.359 1.076 ND 0.650 1.947 ND 0.294 1.001 2.020 1.228 4.186 ND 0.383 1.306 2.060 0.838 2.856 ND 1.463 4.987 ND 1.329 4.529 ND 1.178 4.013 ND 0.267 0.911 ND 1.039 3.539 ND 68.920 ND</loq<>	LOD (mg/mL) LOQ (mg/mL) (mg/mL) Result (mg/g) 0.518 1.764 64.840 70.50 0.473 1.613 ND ND 1.518 4.551 <loq< td=""> <loq< td=""> 1.557 4.668 ND ND 0.359 1.076 ND ND 0.650 1.947 ND ND 0.294 1.001 2.020 2.20 1.228 4.186 ND ND 0.383 1.306 2.060 2.20 0.838 2.856 ND ND 1.463 4.987 ND ND 1.178 4.013 ND ND 1.178 4.013 ND ND 1.039 3.539 ND ND ND ND ND ND</loq<></loq<>

Final Approval

PREPARED BY / DATE

Karen Winternheimer 08Dec2023 03:02:00 PM MST

Samantha Smoll

APPROVED BY / DATE

https://results.botanacor.com/api/v1/coas/uuid/551898c5-1a67-4168-867b-ba495f9533b0

Sam Smith

08Dec2023

03:03:00 PM MST

Definitions

% = % (w/w) = Percent (weight of analyte / weight of product). ND = None Detected (defined by dynamic range of the method).

Total Potential Delta 9-THC or CBD is calculated to take into account the loss of a carboxyl group during decarboxylation step, using the following formulas: Total Potential Delta 9-THC = Delta 9-THC + (Delta 9-THCa *(0.877)) and Total CBD = CBD + (CBDa *(0.877)).

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 A2LA Cert #: 4329.02 Chemical; 4329.03 Biological.

Cert #4329.02 551898c51a674168867bba495f9533b0.1

Prepared for:

NULEAF NATURALS

1550 LARIMER ST. #964 DENVER, CO USA 80202

NuLeaf Naturals CBC Oil Tincture Formulation

Batch ID or Lot Number: C348	Test: Heavy Metals	Reported: 06Dec2023	USDA License: NA	
Matrix:	Test ID:	Started:	Sampler ID:	
Concentrate	T000264036	06Dec2023	NA	
	Method(s):	Received:	Status:	
	TM19 (ICP-MS): Heavy Metals	05Dec2023	NA	

Heavy Metals	Dynamic Range (ppm)	Result (ppm)	Notes	
Arsenic	0.05 - 4.61	ND		
Cadmium	0.05 - 4.52	ND		
Mercury	0.05 - 4.50	ND		
Lead	0.05 - 4.79	ND		

Final Approval

PREPARED BY / DATE

Sam Smith 06Dec2023 02:47:00 PM MST

APPROVED BY / DATE

Karen Winternheimer 06Dec2023 02:52:00 PM MST

https://results.botanacor.com/api/v1/coas/uuid/e73191e5-e6fa-4e08-b8b7-a58317c9b3e7

Definitions

ND = None Detected (defined by dynamic range of the method) Dynamic Range = Limit of Quantitation (LOQ) through Upper Limit of Method Range

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 A2LA Cert #: 4329.02 Chemical; 4329.03 Biological.

Cert #4329.02 e73191e5e6fa4e08b8b7a58317c9b3e7.1

Prepared for:

NULEAF NATURALS

1550 LARIMER ST. #964 DENVER, CO USA 80202

NuLeaf Naturals CBC Oil Tincture Formulation

Batch ID or Lot Number:	Test:	Reported:	USDA License:
C348	Microbial Contaminants	08Dec2023	NA
Matrix:	Test ID:	Started:	Sampler ID:
Finished Product	T000264035	05Dec2023	NA
	Method(s): TM25 (PCR) TM24, TM26, TM27 (Culture Plating)	Received: 05Dec2023	Status: NA

Microbial			Quantitation		
Contaminants	Method	LOD	Range	Result	Notes
STEC	TM25: PCR	10 ⁰ CFU/25g	NA	Absent	Free from visual mold, mildew, and — foreign matter
Salmonella	TM25: PCR	10 ⁰ CFU/25g	NA	Absent	
Total Yeast and Mold*	TM24: Culture Plating	10 ¹ CFU/g	1.0x10 ² - 1.5x10 ⁴	None Detected	_
Total Aerobic Count*	TM26: Culture Plating	10 ² CFU/g	1.0x10 ³ - 1.5x10 ⁵	None Detected	_
Total Coliforms*	TM27: Culture Plating	10 ¹ CFU/g	1.0x10 ² - 1.5x10 ⁴	None Detected	_

Final Approval

Buanne Maillot

Brianne Maillot 08Dec2023 09:45:00 AM MST

APPROVED BY / DATE

Eden Thompson

Eden Thompson-Wright 08Dec2023 10:31:00 AM MST

PREPARED BY / DATE

https://results.botanacor.com/api/v1/coas/uuid/09517481-57de-4d71-8305-0089ad6aaca7

Definitions

* Values recorded in scientific notation, a common microbial practice of expressing numbers that are too large to be conveniently written in decimal form. Examples: 10² = 100 CFU, 10³ = 1,000 CFU, 10⁴ = 10,000 CFU, 10⁵ = 100,000 CFU

CFU/g = Colony Forming Units per Gram, LOD = Limit of Detection

ULOQ = Upper Limit of Quantitation, LLOQ = Lower Limit of Quantitation

STEC = Shiga Toxin-Producing E. coli

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 A2LA Cert #: 4329.02 Chemical; 4329.03 Biological.

Cert #4329.02 0951748157de4d7183050089ad6aaca7.1

Prepared for:

NULEAF NATURALS

1550 LARIMER ST. #964 DENVER, CO USA 80202

NuLeaf Naturals CBC Oil Tincture Formulation

Batch ID or Lot Number: C348	Test: Pesticides	Reported: 08Dec2023	USDA License: NA
Matrix:	Test ID:	Started:	Sampler ID:
Concentrate	T000264034	07Dec2023	NA
	Method(s):	Received:	Status:
	TM17 (LC-QQ LC MS/MS)	05Dec2023	NA

Pesticides	Dynamic Range (ppb)	Result (ppb)	Dyna
Abamectin	329 - 2679	ND	Malathion
Acephate	48 - 2797	ND	Metalaxyl
Acetamiprid	45 - 2749	ND	Methiocarb
Azoxystrobin	44 - 2707	ND	Methomyl
Bifenazate	47 - 2673	ND	MGK 264 1
Boscalid	47 - 2696	ND	MGK 264 2
Carbaryl	44 - 2731	ND	Myclobutanil
Carbofuran	43 - 2710	ND	Naled
Chlorantraniliprole	48 - 2723	ND	Oxamyl
Chlorpyrifos	21 - 2701	ND	Paclobutrazol
Clofentezine	256 - 2706	ND	Permethrin
Diazinon	272 - 2700	ND	Phosmet
Dichlorvos	288 - 2784	ND	Prophos
Dimethoate	46 - 2763	ND	Propoxur
E-Fenpyroximate	290 - 2716	ND	Pyridaben
Etofenprox	41 - 2674	ND	Spinosad A
Etoxazole	292 - 2599	ND	Spinosad D
Fenoxycarb	21 - 2706	ND	Spiromesifen
Fipronil	48 - 2760	ND	Spirotetramat
Flonicamid	49 - 2803	ND	Spiroxamine 1
Fludioxonil	316 - 2666	ND	Spiroxamine 2
Hexythiazox	46 - 2661	ND	Tebuconazole
lmazalil	265 - 2718	ND	Thiacloprid
Imidacloprid	48 - 2888	ND	Thiamethoxam
Kresoxim-methyl	46 - 2702	ND	Trifloxystrobin

	Dynamic Range (ppb)	Result (ppb)
Malathion	279 - 2664	ND
Metalaxyl	47 - 2702	ND
Methiocarb	49 - 2697	ND
Methomyl	45 - 2816	ND
MGK 264 1	160 - 1609	ND
MGK 264 2	106 - 1064	ND
Myclobutanil	18 - 2637	ND
Naled	41 - 2708	ND
Oxamyl	47 - 2800	ND
Paclobutrazol	43 - 2733	ND
Permethrin	293 - 2660	ND
Phosmet	41 - 2545	ND
Prophos	304 - 2654	ND
Propoxur	42 - 2715	ND
Pyridaben	282 - 2693	ND
Spinosad A	29 - 2107	ND
Spinosad D	61 - 656	ND
Spiromesifen	268 - 2623	ND
Spirotetramat	283 - 2740	ND
Spiroxamine 1	16 - 1001	ND
Spiroxamine 2	28 - 1579	ND
Tebuconazole	293 - 2678	ND
Thiacloprid	46 - 2782	ND
Thiamethoxam	45 - 2802	ND
Trifloxystrobin	42 - 2738	ND

Final Approval

L Wintersheumen PREPARED BY / DATE

Karen Winternheimer 08Dec2023 10:17:00 AM MST

Samantha Smoll

Sam Smith 08Dec2023 10:24:00 AM MST

APPROVED BY / DATE

https://results.botanacor.com/api/v1/coas/uuid/51088bf5-e32d-4f98-9b4b-05a8cb283edb

Definitions

ND = None Detected (defined by dynamic range of the method)
Dynamic Range = Limit of Quantitation (LOQ) through Upper Limit of Method Range
ppb = Parts Per Billion

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 A2LA Cert #: 4329.02 Chemical; 4329.03 Biological.

Cert #4329.02 51088bf5e32d4f989b4b05a8cb283edb.1

Prepared for:

NULEAF NATURALS

1550 LARIMER ST. #964 DENVER, CO USA 80202

NuLeaf Naturals CBC Oil Tincture Formulation

Batch ID or Lot Number: C348	Test:	Reported:	USDA License:
	Residual Solvents	08Dec2023	N/A
Matrix:	Test ID:	Started:	Sampler ID:
Concentrate	T000264037	08Dec2023	N/A
	Method(s):	Received:	Status:
	TM04 (GC-MS): Residual Solvents	05Dec2023	Active

Residual Solvents	Dynamic Range (ppm)	Result (ppm)	Notes
Propane	109 - 2184	ND	
Butanes (Isobutane, n-Butane)	206 - 4123	ND	
Methanol	61 - 1230	ND	
Pentane	105 - 2092	ND	
Ethanol	99 - 1975	ND	
Acetone	100 - 1995	ND	
Isopropyl Alcohol	100 - 2009	ND	
Hexane	6 - 127	ND	
Ethyl Acetate	101 - 2021	ND	
Benzene	0.2 - 4.0	ND	
Heptanes	102 - 2037	ND	
Toluene	17 - 347	ND	
Xylenes (m,p,o-Xylenes)	121 - 2418	ND	

Final Approval

L Wintersheumen PREPARED BY / DATE Karen Winternheimer 08Dec2023 01:56:00 PM MST

Samantha Smoll

Sam Smith 08Dec2023 02:04:00 PM MST

APPROVED BY / DATE

https://results.botanacor.com/api/v1/coas/uuid/9155d059-0e03-4be6-b38b-a625b107758e

Definitions

ND = None Detected (defined by dynamic range of the method)
Dynamic Range = Limit of Quantitation (LOQ) through Upper Limit of Method Range

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 A2LA Cert #: 4329.02 Chemical; 4329.03 Biological.

Cert #4329.02 9155d0590e034be6b38ba625b107758e.1