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Abstract: Vitamin B3 (nicotinic acid, niacin) deficiency causes the systemic disease pellagra, which
leads to dermatitis, diarrhea, dementia, and possibly death depending on its severity and duration.
Vitamin B3 is used in the synthesis of the NAD+ family of coenzymes, contributing to cellular
energy metabolism and defense systems. Although nicotinamide (niacinamide) is primarily used
as a nutritional supplement for vitamin B3, its pharmaceutical and cosmeceutical uses have been
extensively explored. In this review, we discuss the biological activities and cosmeceutical properties
of nicotinamide in consideration of its metabolic pathways. Supplementation of nicotinamide restores
cellular NAD+ pool and mitochondrial energetics, attenuates oxidative stress and inflammatory
response, enhances extracellular matrix and skin barrier, and inhibits the pigmentation process in the
skin. Topical treatment of nicotinamide, alone or in combination with other active ingredients, reduces
the progression of skin aging and hyperpigmentation in clinical trials. Topically applied nicotinamide
is well tolerated by the skin. Currently, there is no convincing evidence that nicotinamide has
specific molecular targets for controlling skin aging and pigmentation. This substance is presumed
to contribute to maintaining skin homeostasis by regulating the redox status of cells along with
various metabolites produced from it. Thus, it is suggested that nicotinamide will be useful as a
cosmeceutical ingredient to attenuate skin aging and hyperpigmentation, especially in the elderly or
patients with reduced NAD+ pool in the skin due to internal or external stressors.

Keywords: nicotinamide; niacinamide; vitamin B3; skin aging; pigmentation; cosmetic; cosmeceutical;
metabolism; antioxidant; senescence; inflammation

1. Introduction

The primary characteristic of the skin is that it surrounds our body and is directly
exposed to the external environment. Skin serves the barrier function to protect the body
from external harmful factors and to prevent water loss from the body, as well as the
thermoregulation function to keep body temperature constant despite changes in external
temperature [1]. However, when the skin is subjected to pathological conditions due to
internal and external factors, such as malnutrition, infection, wounds, and exposure to
pollutants, abnormalities in the immune system and excessive inflammatory response
throughout the body can be induced. Even if the symptoms are limited to the skin, various
skin diseases, aging, and cancer can occur, and these are the main research subjects in
dermatology.

Another characteristic of the skin is that it is an externally visible organ, and therefore,
its health is important from an aesthetic point of view, as well as a medical point of view.
The aging of the skin involves both the decline of various biological functions and changes
in morphological beauty. In the cosmetic field, skin aging is being studied by dividing
it into natural aging, which is a chronological skin change caused by internal factors of
the body, and photoaging, which is a skin change caused by exposure to ultraviolet (UV)
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rays from the sun [2]. Natural aging and photoaging are not mutually exclusive but partly
overlap. Clinical observations show that naturally aged skin is thin, dry, and has many
fine wrinkles, whereas photoaged skin usually has a leathery and saggy appearance with
reduced elasticity, uneven pigmentation, coarse and deep wrinkles, and telangiectasia
(appearance of blood vessels) [3]. Changes due to natural aging or photoaging occur in
both epidermal and dermal compartments. A decrease in the extracellular matrix (ECM) of
the dermis, such as collagen and elastin, is consistently observed in either natural aging or
photoaging [4].

Reactive oxygen species (ROS) and free radicals generated over the antioxidant capac-
ity of cells due to external factors, such as UV radiation and pollution, or internal metabolic
dysfunction can cause oxidative damage to cells [5]. ROS also induces senescence of cells
and degradation of ECM involved in premature skin aging [6,7]. Indeed, ROS plays a
pathological role in the development of various skin diseases and cancer [8–10]. There-
fore, ingredients that directly remove ROS or enhance the antioxidant capacity of cells are
expected to help maintain skin homeostasis [11,12].

Nicotinamide (niacinamide) is the amide form of water-soluble vitamin B3 (nicotinic
acid, niacin). Vitamin B3 deficiency causes pellagra [13,14]. Nicotinamide is a component of
coenzymes, such as nicotinamide adenine dinucleotide (NAD+), reduced nicotinamide ade-
nine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADP+), and
reduced nicotinamide adenine dinucleotide phosphate (NADPH) [14,15]. Nicotinamide
has the same vitamin activity as nicotinic acid, but other pharmacological actions and side
effects are different [16]. Unlike nicotinic acid, nicotinamide does not reduce cholesterol
or cause flushing [17]. Supplementation of nicotinamide as an essential nutrient will be
beneficial to the health of the whole body and the skin.

In the field of dermatology, many studies on nicotinamide and its analogs have been
reported concerning the prevention and treatment of cancer, blistering disorders, acne
vulgaris, psoriasis, wound healing, and pigmentation disorders [18–21]. Nicotinamide has
also been used in the cosmetic field for decades to prevent skin aging and brighten skin
tone [22–25]. However, its mechanism of action in alleviating skin diseases or controlling
skin aging and pigmentation is not well understood. In addition, it is unclear whether the
efficacy of nicotinamide is its direct effect or its indirect effect acting as a precursor of other
active metabolites.

The purpose of this review is to understand the mechanistic basis for the cosmeceutical
application of nicotinamide. The pharmaceutical application of nicotinamide is excluded
from the scope of this review. First, we briefly review the metabolic process of nicotinamide.
Secondly, we examine the antioxidant and anti-inflammatory effects of nicotinamide and
its effects on cell senescence and epidermal differentiation. Next, we discuss the effects
of nicotinamide on the ECM and skin barrier, which is closely related to skin aging,
and on the synthesis and distribution of melanin related to skin pigmentation. Finally,
we review the results of clinical trials on the efficacy of cosmetic formulations containing
nicotinamide alone or in combination with other active ingredients to control skin aging and
pigmentation. It is hoped that this study will help us understand the mechanism of action
of nicotinamide and correctly evaluate the potential of nicotinamide as a cosmeceutical.

2. Metabolism of Nicotinamide
2.1. Synthesis and Function of NAD(H) and NADP(H)

The roles of NAD+ coenzyme in the life system are significant and broad [15,26]. In
this section, we briefly review the metabolic pathways of NAD+ with special attention to
nicotinamide (Figure 1).
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Figure 1. Metabolic pathways related to nicotinamide: ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP,
adenosine triphosphate; cADPR, cyclic ADP-ribose; CYP, cytochrome P450; NaAD+, nicotinic acid adenine dinucleotide;
NaADP+, nicotinic acid adenine dinucleotide phosphate; NAD+, nicotinamide adenine dinucleotide; NADH, reduced
nicotinamide adenine dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, reduced nicotinamide
adenine dinucleotide phosphate; NaMN, nicotinic acid mononucleotide; NAMPT, nicotinamide phosphoribosyltrans-
ferase; NMN, nicotinamide mononucleotide; NNT, nicotinamide nucleotide transhydrogenase; PARP, poly(ADP-ribose)
polymerase; PPi, inorganic pyrophosphate; PRPP, phosphoribosyl pyrophosphate.
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De novo synthesis of NAD+ starts with oxidation of L-tryptophan to N-formyl-L-
kynurenine by tryptophan 2,3-dioxygenase or indoleamine 2,3-dioxygenase [27,28]. N-
formyl-L-kynurenine is converted to quinolinic acid via multiple enzymatic and non-
enzymatic reactions. Nicotinic acid mononucleotide (NaMN) is synthesized from quinolinic
acid and phosphoribosyl pyrophosphate (PRPP) by quinolinate phosphoribosyltransferase,
and inorganic pyrophosphate (PPi) and carbon dioxide are released as by-products.

As tryptophan is one of the essential amino acids that cannot be synthesized well by
humans, the salvage pathway using nicotinamide or nicotinic acid from dietary sources
is important for the synthesis of NAD+ [29]. NaMN is synthesized from nicotinic acid
and PRPP by nicotinate phosphoribosyltransferase, and PPi is released as a by-product.
Nicotinic acid adenine dinucleotide (NaAD+) is synthesized from NaMN and adenosine
triphosphate (ATP) by NaMN adenylyltransferase, releasing PPi as a by-product and is
then used in the synthesis of NAD+ by NAD synthetase, which uses glutamine as an
amine group donor and energy from ATP hydrolysis to adenosine monophosphate (AMP)
and PPi. NAD+ is also synthesized by NMN adenylyltransferase using nicotinamide
mononucleotide (NMN) and ATP. Nicotinamide and PRPP are used in the synthesis of
NMN by nicotinamide phosphoribosyltransferase (NAMPT), which releases PPi as a by-
product. NMN is also synthesized from nicotinamide riboside and ATP by nicotinamide
riboside kinase, which releases adenosine diphosphate (ADP) as a by-product.

Conversion of NAD+ to NADP+ is catalyzed by NAD+ kinase consuming ATP
molecules for needed free energy [30]. Nicotinamide nucleotide transhydrogenase (NNT)
catalyzes a reversible reaction, NADH + NADP+ 
 NAD+ + NADPH [31]. NAD(H) and
NADP(H) play as cofactors or coenzymes in a myriad of oxidation-reduction reactions
in biological systems [32]. NAD+ serves as an electron acceptor in many enzyme reac-
tions in glycolysis, the citric acid cycle, and β-oxidation of fatty acids, producing NADH.
NADH serves as an electron donor in many enzyme reactions, such as NADH dehydro-
genase in complex I of mitochondrial electron transport and lactate dehydrogenase in
the cytosol. NADP+ serves as an electron acceptor in many enzyme reactions, such as
glucose 6-phosphate dehydrogenase in the pentose phosphate pathway and isocitrate
dehydrogenase outside the context of the citric acid cycle. NADPH serves as an electron
donor in many enzyme reactions, such as NADPH oxidase, cytochrome P450 (CYP), nitric
oxide synthase, and glutathione reductase. Glutathione reductase catalyzes a reaction,
glutathione disulfide (GSSG) + NADPH→ 2 × glutathione (GSH) + NADP+.

2.2. Metabolisms of NAD+ and Nicotinamide

Poly(ADP-ribose) polymerase (PARP) family consists of 18 genes, which encode
17 enzymes with either mono-ADP ribosyltransferase or PARP activity [33]. NAD+ is
used as a substrate for mono-ADP-ribosylation of target proteins catalyzed by mono-ADP
ribosyltransferase activity, and for poly(ADP-ribose) polymerization catalyzed by PARP
activity [34,35]. Nicotinamide is released as a by-product. Hydrolysis of mono- and poly-
ADP-ribosylated proteins by mono-ADP-ribose hydrolase and poly(ADP-ribose) hydrolase
results in the production of ADP-ribose. These reversible processes are involved in DNA
repair, apoptosis, and many other biological processes to maintain cellular homeostasis [36].

Sirtuins are a family of signaling proteins that have a mono-ADP-ribosyltransferase
activity or a protein deacylase activity (deacetylase, desuccinylase, demalonylase, demyris-
toylase, or depalmitoylase activity) and have been hypothesized to play a role in the aging
process [37]. Histone deacetylation by sirtuins yields the deacetylated protein, O-acetyl
ADP-ribose, and nicotinamide [38]. Sirtuins epigenetically regulate target gene expression
involved in stress resistance and energy alertness and directly link cell physiology to the
energy status of the cell [39].

CD38 functions as a receptor and a multifunctional enzyme, catalyzing the cleavage
of NAD+ into cyclic ADP ribose (cADPR) and nicotinamide, the hydrolysis of cADPR
to ADP-ribose, and the direct hydrolysis of NAD+ to ADP-ribose and nicotinamide [40].
CD38 also catalyzes a base exchange reaction that couples the conversion of NADP+ to
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NaADP with the conversion of nicotinic acid to nicotinamide [41], or that of NaAD+ to
NAD+ [42]. Both cADPR and NaADP+ play essential roles for the regulation of intracellular
Ca2+ [43,44]. CD38 is considered to play a critical role in keeping a harmonized balance
between various NAD+ metabolites.

Nicotinamide is metabolized to 1-methylnicotinamide by nicotinamide
N-methyltransferase, which uses S-adenosyl methionine as a methyl group donor [45].
1-Methylnicotinamide is further oxidized to 1-methyl-2-pyridone-5-carboxamide or 1-
methyl-4-pyridone-3-carboxamide by aldehyde oxidase [46]. Nicotinamide is also directly
oxidized to nicotinamide N-oxide by CYP 2E1 in human liver microsomes [47]. These
enzyme reactions mainly occur in the liver and are considered a clearance mechanism
involved in the urinary excretion of nicotinamide.

3. Antioxidant and Anti-Inflammatory Effects of Nicotinamide
3.1. Antioxidant Properties of Nicotinamide

Lngestion of nicotinamide, prevents lipid peroxidation and normalizes the reduced
antioxidants and antioxidant enzymes in experimental animal models [48–50].

Kamat et al. showed that nicotinamide scavenged singlet oxygen at the rate constant
of 1.8 × 108 M−1 s−1 and inhibited lipid peroxidation of rat liver microsomes induced by
the photosensitized reaction of methylene blue irradiated with visible light in the presence
of oxygen [51]. They also showed that nicotinamide inhibited lipid peroxidation induced by
NADPH/ADP-Fe3+ in rat liver microsomes [51]. Nicotinamide inhibited lipid peroxidation
and protein oxidation (carbonylation) induced by the ascorbate–Fe2+ system in the rat
brain mitochondria, whereas such action was not observed for nicotinic acid [52].

3.2. Protective Effect of Nicotinamide in Cells Exposed to Environmental Stressors

Nicotinamide rescued the viability of a Chinese hamster ovary cell line (CHO AA8)
irradiated with UV radiation and prevented apoptosis through mechanisms related to the
stabilization of the cytoskeleton proteins, such as F-actin, vimentin, and β-tubulin [53].
Nicotinamide exhibited a protective effect against UVA- and/or UVB-induced DNA dam-
age in normal human epidermal melanocytes, as indicated by decreased levels of cyclobu-
tane pyrimidine dimers and 8-hydroxy-2’-deoxyguanosine [54]. This effect was associated
with the enhanced expression of nucleotide excision repair genes, such as sirtuin 1 (SIRT1),
tumor suppressor protein P53, damage-specific DNA binding protein (DDB) 1 and 2, 8-
oxoguanine glycosylase (OGG) 1, excision repair cross-complementation group (ERCC)
1 and 2, and cyclin-dependent kinase (CDK) 7, and the activation of the nuclear factor
erythroid 2-related factor 2 (NRF 2) signaling pathway.

Nicotinamide inhibited the generation of ROS, the oxidation of lipids, proteins, and
DNA, cell membrane depolarization, and the apoptosis in human HaCaT keratinocytes
cells exposed to particulate matter (PM) 2.5 [55]. Mi et al. examined the protective effect
of nicotinamide and 12-hydroxystearic acid in reconstructed human skin equivalents
exposed to benzo(a)pyrene as a representative airborne particle-bound organic compound,
or to squalene monohydroperoxide as a representative sebum peroxidation product [56].
Individual treatment and co-treatment of the skin equivalents with nicotinamide (5 mM)
and 12-hydroxystearic acid (20 µM) ameliorated viability loss, inflammatory response, and
pigmentation induced by benzo(a)pyrene or squalene monohydroperoxide.

These studies suggest that the topical application of nicotinamide may alleviate
oxidative stress and reduce cytotoxicity, inflammation, and pigmentation in the skin that is
exposed to UV or PM.

3.3. Anti-Inflammatory Effects of Nicotinamide

Nicotinamide suppressed interleukin (IL)-8 production at the mRNA and protein
levels through modulation of the nuclear factor (NF)-κB and mitogen-activated pro-
tein kinase (MAPK) pathways in HaCaT cells and primary keratinocytes stimulated
by Propionibacterium acnes, the etiological agent causing inflammatory acne vulgaris [57].



Antioxidants 2021, 10, 1315 6 of 24

Nicotinamide downregulated the expression of IL-6, IL-10, monocyte chemoattractant
protein-1 and tumor necrosis factor (TNF)-α in UV-irradiated keratinocytes [58].

Nicotinamide attenuated the synthesis of inflammatory mediators, such as prostaglandin
(PG) E2, IL-6, and IL-8 in human epidermal keratinocytes and in full-thickness three-
dimensional skin organotypic models that were stimulated by UV radiation [59]. In a
clinical trial, pretreatment with 5% nicotinamide reduced erythema that was induced by
UV radiation [59]. Analysis of IL-1α and its receptor antagonist (IL-1αRA) ratios showed
that nicotinamide significantly reduced the UV-induced inflammatory response, compared
to the control sites.

3.4. Anti-Inflammatory Effects of N-Methylnicotinamide and NMN

Nicotinamide and l-methylnicotinamide exhibit anti-inflammatory effects in several
experimental models although the relative activity of these two substances is not consistent.
The contact hypersensitivity reaction of CBA/J inbred mice to oxazolone was reduced
when the mice were fed with 1-methylnicotinamide or nicotinamide added to the drink,
the former being relatively more effective [60]. In an in vitro experiment using CBA/J
mouse peritoneal macrophages activated with lipopolysaccharide, nicotinamide inhibited
the production of a variety of pro-inflammatory factors, such as TNF-α, IL-6, nitric oxide,
and PGE2, and 1-methylnicotinamide was less effective, although both substances similarly
attenuated the generation of ROS [61]. It is considered that the anti-inflammatory activity of
these two substances is affected by bioavailability, such as absorption through the digestive
tract and cell membrane.

In clinical trials, topical application of a gel containing 0.25% 1-methylnicotinamide
twice a day for 4 weeks alleviated rosacea, a chronic facial dermatosis [62]. Intradermal
injection of 1-methylnicotinamide or nicotinamide increased skin vascular permeability
in rats, the former being more effective [63]. The changes in skin vascular permeability
were attenuated by indomethacin and Nω-nitro-L-arginine methyl ester, indicating the
involvement of PGs and nitric oxide (NO). Although the molecular mechanism linking skin
vascular permeability and rosacea is unclear, it is considered that 1-methylnicotinamide or
nicotinamide directly or indirectly affects vascular endothelial function [64,65].

In a rat model, oral administration of NMN alone or in combination with Lactobacil-
lus fermentum TKSN041 reduced UV-induced skin oxidative damage and inflammatory
response and restored small molecular antioxidants and antioxidant enzymes in blood and
skin tissues [66].

4. Modulation of Cell Senescence and Epidermal Differentiation by Nicotinamide
4.1. Differential Effects of Nicotinamide on Lifespans of Yeast and Mammalian Cells

Nicotinamide is known as an inhibitor of silent information regulator-2 (sir2) deacety-
lase that mediates lifespan extension by calorie restriction in yeasts (Saccharomyces cerevisiae),
and nicotinamide depletion or overexpression of nicotinamidase 1 (pyrazinamidase 1) pro-
longs the lifespan of yeast cells [67].

On the contrary, nicotinamide supplementation to human cells rather prolongs the
replicative lifespan and retards the senescence [68,69]. Matuoka et al. observed that
nicotinamide reverses the aging phenotypes in human diploid fibroblasts as evaluated
by cell morphology, senescence-associated β-galactosidase activity, and cell replication
potential, and tentatively attributed this action of nicotinamide to the enhancement of
histone acetyltransferase activity and subsequently altered gene expression [68]. Lim et al.
demonstrated that that nicotinamide extends the lifespan of primary human diploid
somatic fibroblasts (82-6 and IMR-90) via a mechanism largely independent of SIRT1,
a close human homolog of yeast sir2 [69].

The discrepancy regarding the effects of nicotinamide on the lifespans of yeast cells
vs. mammalian cells could be attributed to differences in intracellular nicotinamide con-
centrations in situ [70,71]. The 50% inhibitory concentration of nicotinamide on Sir2 is
about 50 µM, and this level of nicotinamide concentration can be reached in yeasts [70]. On
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the other hand, it is difficult to reach this nicotinamide concentration in mammalian cells
because the supplied nicotinamide is rapidly metabolized by NAMPT in a mammalian
NAD+ salvage pathway [71].

4.2. Antisenescence Effects of Nicotinamide

Cellular NAD+ pool is low in aged skin [72]. Thus, external supplementation of
nicotinamide as a primary precursor of NAD+ and related coenzymes may improve the
epidermal homeostasis and cellular bioenergetics in aged and stressed cells [73]. Kang et al.
proposed that the extension of the lifespan of normal human fibroblasts by nicotinamide
might be associated with the reduction in mitochondrial ROS production [74]. The antioxi-
dant activity of nicotinamide reducing ROS production and lipofuscin accumulation corre-
lates with antisenescence activity suppressing the increases in cell size, granule content, and
senescence-associated β-galactosidase activity as observed in both rapidly senescing cells
(human breast cancer MCF-7 cell line treated with Adriamycin) and already senescent cells
(old passage human fibroblasts) [75]. Gene expression of subunits of complexes I to V of
mitochondrial electron transport chain was reduced in fibroblasts from older aged donors,
and treatment of the cells with nicotinamide restored gene expression and mitochondrial
function to younger cell levels [76].

Ectopic expression of NAMPT in human aortic endothelial cells extended replicative
lifespan, delayed markers of senescence, and limited ROS accumulation under high glucose
conditions [77]. Nicotinamide protected glycolysis and oxidative phosphorylation activities
in dermal fibroblasts exposed to oxidative stress through a mechanism partially dependent
on NAMPT [78]. NAMPT and NAD+ contents have been shown to decline in primary
mouse embryonic fibroblast cells undergoing replicative senescence, whereas constitutive
over-expression of NAMPT increases NAD+ content and delays cell senescence, which is
associated with increases in the activity of SIRT1 and the expression levels of superoxide
dismutase 2 and catalase [79]. FK866, a NAMPT inhibitor, induced premature differentia-
tion and senescence of human primary keratinocytes in multi-dimensional culture, and this
effect was competitively attenuated by nicotinamide [80]. Therefore, NAMPT is considered
to mediate the antisenescence effects of nicotinamide at least partly.

4.3. Epidermal Stem Cells

Adult stem cells are present in the bulge region of the hair follicles and the basal layer
of the interfollicular epidermis and play a critical role in maintaining the structural and
functional integrity of the skin through self-renewal and generation of daughter cells that
undergo terminal differentiation [81]. Skin aging is more associated with the reduction
of healthy stem cells able to respond to proliferative signals rather than the reduction of
the total number of stem cells [82]. Liu et al. have proposed a mechanistic model for skin
aging based on the competition between epidermal stem cells expressing different levels
of hemidesmosome component collagen 17A1 [83]. In this model, the stressed stem cells
expressing a low level of collagen 17A1 are delaminated from the basal epidermis, whereas
healthy stem cells expressing a high level of collagen 17A1 survive in the aging skin.
Regardless of who the final winner is, this competition leads to an eventual loss of collagen
17A1 due to exhaustion of epidermal stem cells and results in skin aging represented by a
thin epidermal structure.

Epidermal stem cells can also undergo senescence, accelerating premature aging of
the skin [84]. It is hypothesized that the skin aging process may be slowed down by
maintaining a young stem cell phenotype [85]. In this regard, sirtuins are viewed as a
promising target in slowing down the aging process [86]. Various natural compounds
are known to modulate the activity of sirtuins and will be potentially useful for this
purpose [87].
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4.4. Modulation of Epidermal Differentiation by Nicotinamide

Nicotinamide affects the proliferation and differentiation of various stem cells includ-
ing human embryonic stem cells [88]. In a study by Tan et al. [80], high concentrations
of nicotinamide inhibited the differentiation of the upper epidermal layers and main-
tained proliferation in the basal layer of a three-dimensional organotypic skin model.
Nicotinamide increased the proliferative capacity of human primary keratinocytes and
the proportion of human primary keratinocyte stem cells (holoclones), which were re-
duced by FK866. By contrast, FK866 induced the premature senescence of human primary
keratinocyte, which was rescued by nicotinamide. These observations suggest that nicoti-
namide metabolism through NAMPT can modulate epidermal differentiation and stem
cell biology.

5. Enhancement of ECM and Skin Barrier by Nicotinamide
5.1. Changes of ECM by Skin Aging

The main component of ECM is collagen and elastin, and these fibrous components
provide the skin’s tensile strength, elasticity, and resiliency [89]. In human skin, type I,
type III, and type V collagen constitute 80–90%, 8–12%, and less than 5% of total collagen,
respectively [90]. Alteration in the amount and structures of collagen and elastin is a
common feature of natural aging and photoaging of the skin [4]. The activities of matrix
metalloproteinase (MMP) and elastase are increased in aged skin while transforming
growth factor (TGF)-β signaling that leads to the synthesis of collagen is reduced [91,92].

ROS increased by internal and external factors stimulates activator protein (AP)-1
and NF-κB through cell signaling systems involving several MAPKs, and increases the
expression of MMPs in epidermal keratinocytes and dermal fibroblasts, resulting in colla-
gen degradation [7,89,92,93]. Stratifin, also called 14-3-3σ protein, plays an important role
in communication between keratinocytes and fibroblasts, especially for the degradation
of dermal collagen associated with premature skin aging [93,94]. Stratifin from the ker-
atinocytes exposed to UV radiation stimulates the fibroblasts in close vicinity to increase
MMP 1 expression [95,96].

Other components of the ECM include different types of glycosaminoglycans, such
as heparan sulfate/heparin, chondroitin sulfate/dermatan sulfate, keratan sulfate, and
hyaluronan and proteoglycans made of glycosaminoglycans (other than hyaluronan) and
protein cores [97]. These extremely hydrophilic components reside in the space between the
cell and the collagen/elastin fibrils in the dermis and adopt highly extended conformations
that enable matrices to hold a high amount of water and to withstand high compressive
forces dermis [98]. The levels of different types of glycosaminoglycans and proteoglycans
change differently by natural aging and photoaging of the skin [99].

5.2. Effects of Nicotinamide on Collagen and Other ECMs

Nicotinamide and its derivatives have been shown to increase the expression of colla-
gen (type I, III, and V), elastin, and fibrillin (1 and 2), and reduce MMP (1, 3, and 9) and
elastase activity in non-irradiated and UVA-irradiated dermal fibroblasts [100,101]. Nicoti-
namide alone or in combination with other substances, such as L-carnosine, hesperidin,
enhanced fibroblast collagen synthesis and cellular proliferation, thereby augmenting
wound healing in vitro [102]. Topical nicotinamide improved tissue regeneration by in-
creasing fibroblast proliferation, collagen synthesis, and vascularization in skin wounds
of Sprague Dawley rats [103]. These studies provide evidence from various aspects that
nicotinamide has the action of promoting the synthesis of dermal collagen and inhibiting
its degradation.

5.3. Enhancement of Skin Barrier by Nicotinamide

During aging, the structural and functional integrity of the skin barrier is changed
or disturbed [104]. Tanno et al. showed that in cultured human epidermal keratinocytes,
nicotinamide could upregulate the synthesis of major components of skin barriers, such as
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ceramide, other sphingolipid fractions (glucosylceramide and sphingomyelin), free fatty
acid, and cholesterol [105]. Supplementation of nicotinamide to cultured normal human
epidermal keratinocytes increased the synthesis of involucrin and filaggrin, which are
essential proteins for fully integral keratinized corneocytes [106].

A facial moisturizer containing 2% nicotinamide improved skin barriers in patients
with rosacea [107]. Myristyl nicotinate enhanced the NAD+ pool, epidermal differentiation,
and barrier function in the photoaged skin [108]. Thus, nicotinamide and its metabolism
could enhance the structural and functional integrity of the skin barriers.

6. Regulation of Pigmentary Process by Nicotinamide
6.1. Effects of Nicotinamide on Melanogenesis vs. Melanosome Transfer

Nicotinamide has a variable effect on melanin synthesis in melanocyte monoculture.
There are reports that nicotinamide increased, decreased, or had no significant effect on
tyrosinase activity and melanin synthesis [109,110]. On the other hand, in melanocyte-
keratinocyte co-culture, reconstituted skin tissue model, or live skin, nicotinamide con-
sistently decreased melanin content or pigmentation [22,111]. Furthermore, nicotinamide
slowed the melanosome transfer from melanocytes to keratinocytes [22,111]. This sug-
gests that the interaction between melanocytes and keratinocytes is important in skin
pigmentation and that nicotinamide may affect melanocytes indirectly by primarily affect-
ing keratinocytes.

6.2. Mechanisms for Melanosome Transfer

The transfer of melanosomes from melanocytes to keratinocytes has become a very
important and interesting research topic in dermatology [112–115]. Melanosome trans-
fer, the process of transferring a package of organelles from a donor cell to a recipient
cell, is a very unique biological process, and various mechanisms, such as cytophago-
cytosis, membrane fusion, shedding–phagocytosis, and exocytosis–endocytosis, have
been proposed to describe this process [115]. The membrane fusion mechanism was
supported by Scott et al. [116]. Shedding–phagocytosis mechanisms were supported by
Ando et al. [117] and Wu et al. [118]. The exocytosis–endocytosis mechanism was sup-
ported by Tarafder et al. [119]. Regardless of the mechanism, the precise nature of the
“donate-it” signal that keratinocytes send to melanocytes and the “receive-it” signal that
melanocytes send to keratinocytes is not yet clear.

6.3. Modulation of Melanosome Transfer

Protease-activated receptor-2 (PAR-2) is expressed in the skin and plays an important
role in the regulation of growth and differentiation of keratinocytes [120,121]. In 2000,
Seiberg et al. showed that PAR-2 expressed in keratinocytes could regulate skin pigmenta-
tion, although this receptor is not expressed in melanocytes [122]. They further showed that
activation of PAR-2 by SLIGRL peptide (a peptide agonist derived from the N-terminus of
PAR-2) could enhance melanosome transfer and inhibition of this receptor by RWJ-503530
(a serine protease inhibitor) could reduce melanosome transfer [123].

UV rays increased PAR-2 expression in the upper epidermis of human skin, and the
change was more rapid and bigger in dark-skinned people [124]. Optimized concentration
of hydrogen peroxide (0.3 mM) increased melanin content and melanosome transfer in
melanocyte–keratinocyte co-cultures through upregulating expression levels of PAR-2
and Rab-27A [125]. Activation of keratinocyte PAR-2 stimulated the release of PGE2 and
PGF2α, the paracrine factors act on EP1, EP3, and FP receptors on melanocytes, increasing
the number and length of melanocyte dendrites [126]. PGE2, as well as α-melanocyte-
stimulating hormone (MSH), stimulated melanosome transfer in melanocyte–keratinocyte
co-cultures [127]. These studies suggest a possible relationship between oxidative stress
and PAR-2 activation, and thus, there is a possibility that melanosome transfer may be
modulated by certain antioxidants or anti-inflammatory agents. Interestingly, macelignan,
a natural product derived from Myristica fragrans, attenuated the expression of PAR-2 at
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the mRNA and protein levels, calcium mobilization, and phagocytic activity of HaCaT
keratinocyte cells stimulated with SLIGRL peptide [128]. Macelignan also reduced PGE2
secretion from HaCaT keratinocytes and dendrite formation of B16F10 melanoma cells
in a co-culture model with SLIGRL stimulation [128]. However, it is not known whether
nicotinamide affects the expression of PAR-2 and related signaling pathways.

Melanosome transfer is also regulated by other receptors, such as keratinocyte growth
factor receptors expressed in keratinocytes [114], N-methyl-D-aspartate receptors [129], tran-
sient receptor potential cation channel subfamily M member 1 (TRPM1, melastatin-1) [130],
and Toll-like receptors 2/3 [131] expressed in melanocytes. The direct and indirect effects of
nicotinamide on cellular signaling related to melanosome transfer involving these receptors
remain to be explored [132].

7. Clinical Evidence for Skin Antiaging Efficacy of Nicotinamide

Clinical studies on the skin antiaging efficacy of nicotinamide alone or in combina-
tion with other active ingredients are summarized in Table 1. In double-blind, placebo-
controlled, split-face, left–right, randomized clinical studies, Bissett et al. assessed the effect
of nicotinamide on the appearance of aging facial skin [23,24]. Moisturizer product with or
without containing 5% nicotinamide was applied on the facial skin for 12 weeks. Nicoti-
namide at 5% was evaluated to be well tolerated by the skin and to improve a broad array
of skin appearance (fine lines/wrinkles, texture, hyperpigmentation spots, red blotchiness,
and skin sallowness), and elasticity.

Table 1. Skin antiaging efficacy of cosmeceuticals containing nicotinamide alone or with other active ingredients.

Literature Study Format No. of Subjects Compared
Formulations Treatment Key Findings

[23]

A double-blind,
placebo-controlled, split-face,
left–right randomized clinical

study

50

An oil-in-water
moisturizer (placebo

control
To each side of the face

was applied each
product, twice daily for

12 weeks.

Improved fine lines/wrinkles,
hyperpigmentation spots, texture, red

blotchiness, and skin yellowing
(sallowness) compared to the control

in endpoints.5% nicotinamide

[24]

A double-blind, placebo
formulation–controlled, split-face

study with left–right
randomization

50

An oil-in-water
moisturizer (placebo

control
To each side of the face

was applied each
product, twice daily for

12 weeks.

Reduced fine lines, wrinkles,
hyperpigmented spots, red

blotchiness, and skin sallowness
(yellowing), and increased elasticity

(as measured via cutometry).
5% nicotinamide

[133]
A randomized, double-blind,
placebo-controlled, split-face

comparative study

27

An aqueous serum
Test serum was applied
evenly to one side of the
face and vehicle to the
other side twice daily

for 12 weeks.

Combination of kinetin and
nicotinamide reduced pore, wrinkle,
unevenness, erythema, and spot at

weeks 8 and 12 and increased corneal
moisture at week 12. Nicotinamide

alone reduced pore and unevenness at
week 8 and wrinkle at week 12.

0.03% kinetin + 4%
nicotinamide

25
An aqueous serum

4% nicotinamide

[134]
A randomized,

placebo-controlled, split-face
study

30

A vehicle lotion
The test product was

applied on wrinkles of
one side and a control
product on the other

side for 8 weeks.

Test product reduced wrinkle grades
and average roughness of skin surface

(Ra value) in the tested skin area to
lower levels compared to

pre-application (p < 0.001) and the
vehicle control (p < 0.001) in

endpoints.

4% nicotinamide

[135] A randomized, parallel-group
facial appearance study

99

A daytime lotion (SPF
30) containing 5%
nicotinamide and

peptides; a night cream
containing nicotinamide
and peptides; a wrinkle

treatment containing
nicotinamide, peptides,

and 0.3% retinyl
propionate.

Subjects applied a
wrinkle treatment twice
daily, a daytime lotion,

and the night cream
daily.

The cosmetic regimen significantly
improved wrinkle appearance after 8
weeks relative to tretinoin in the total
population, with comparable benefits

in subject cohorts (n = 25) who
continued treatment for an additional

16 weeks.
97

0.02% tretinoin in an
emollient base; a

sunscreen (SPF 30)
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Table 1. Cont.

Literature Study Format No. of Subjects Compared
Formulations Treatment Key Findings

[136]
A randomized, double-blinded,

vehicle-controlled, split-face
study

40

A simple oil-in-water
emulsion Subjects applied the

products twice daily to
either the left- or

right-hand side of their
face at 2 mg cm−2.

Test product improved stratum
corneum hydration, barrier function,

elasticity, and surface topography
compared with the vehicle control in

endpoints.

2% gold silk sericin,
5% nicotinamide, 0.1%

signalineTM

(diacylglycerol and fatty
alcohols)

[137] An open-label, single-center
study 25

0.5% retinol, 4.4%
nicotinamide, 1%

resveratrol, and 1.1%
hexylresorcinol

Treatment at night for
10 weeks.

The formulation improved
hyperpigmentation, overall skin

clarity, evenness of skin tone, and
wrinkles compared to baseline at

week 4 and through week 10.

[138]
A double-blind, randomized,
split-face, vehicle-controlled

study
24

2% human
adipocyte-derived
mesenchymal stem

cell-conditioned
medium and 2%

nicotinamide

Applied twice daily for
3 weeks after fractional

ablative CO2 laser
treatment.

The formulation reduced the wrinkle
index (p = 0.036) and melanin index (p

= 0.043) compared to the control
group.

A vehicle cream

In a randomized, double-blind, placebo-controlled, split-face comparative study by
Chiu et al. [133], 4% nicotinamide alone reduced pores and skin unevenness after 8 weeks
and improved wrinkles after 12 weeks. In contrast, the formulation containing 0.03%
kinetin + 4% nicotinamide significantly reduced erythema and hyperpigmented spots in
addition to pores, roughness, and wrinkles after 8 weeks.

The anti-wrinkle effect of nicotinamide was further examined by Kawada et al. in a
randomized, placebo-controlled, split-face study [134]. A cosmetic containing 4% nicoti-
namide was applied on the wrinkles of one side and a control cosmetic on the other side
of the face for 8 weeks. The wrinkle grades in the test area, evaluated by doctors’ visual
observation, were significantly lower than those before application (p < 0.001) or in the
control area (p < 0.001) at the endpoints. The average surface roughness (Ra value) on
the test area, determined using skin replica, was significantly lower, compared to the
pre-application values (p < 0.01) or those in the control site (p < 0.05).

Fu et al. reported significant results in a clinical trial comparing the antiaging effect
of the cosmetic regimen using a series of products containing nicotinamide/other active
ingredients plus a sunscreen with the sun protection factor (SPF) 30, vs. the use of control
products containing 0.02% Tretinoin plus a sunscreen with SPF 30 [135]. However, it is
difficult to estimate the relative contribution of nicotinamide to the observed antiaging
effects of the cosmetic regimen.

Several other clinical trials have evaluated the efficacy of cosmetics containing nicoti-
namide and several other active ingredients (silk sericin, diacylglycerol, fatty alcohols,
retinol, resveratrol, hexylresorcinol, and/or stem cell culture medium) [136–138]. These
products showed a wrinkle improvement effect in common, and certain products were
evaluated to have improvement effects on skin moisture, skin barrier, elasticity, surface
morphology, skin clarity, and/or pigmentation [136–138]. Again, it is difficult to estimate
the contribution of nicotinamide to the clinical trial results obtained using the combina-
tion formulation.

8. Clinical Evidence for Skin-Lightening Efficacy of Nicotinamide
8.1. Skin-Lightening Efficacy of Nicotinamide

Clinical studies on the skin-lightening efficacy of nicotinamide as an active ingredient
are summarized in Table 2. Hakozaki et al. examined the skin depigmenting efficacy of
nicotinamide in humans [22]. In a randomized, split-face, double-blind, paired clinical
study involving eighteen Japanese women with multiple types of brown hyperpigmen-
tation, subjects applied a test moisturizer containing 5% nicotinamide and the control
moisturizer without nicotinamide to each side of the face twice daily for 8 weeks. The
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side of the face receiving the test moisturizer showed a significant decrease in the total
hyperpigmented area measured by image analysis and a reduction in visually assessed
hyperpigmentation degree, compared to the side receiving the control moisturizer after
4 weeks or 8 weeks of treatment.

Table 2. Skin-lightening efficacy of cosmeceuticals containing nicotinamide.

Literature Study Format No. of Subjects Compared
Formulations Treatment Key Findings

[22]

A randomized,
split-face, double-blind,

paired clinical study
18

5% nicotinamide

Subjects applied a test
or a control moisturizer
to each side of the face
twice daily for 8 weeks.

The side of the face receiving the test
moisturizer showed a significant decrease in
the total hyperpigmented area measured by
image analysis and a reduction in visually

assessed hyperpigmentation degree compared
to the side receiving the control moisturizer

after 4 weeks or 8 weeks of treatment.

A control moisturizer

A randomized,
split-face, double-blind,

round-robin design
120

A vehicle moisturizer
Applied two of three

different products, each
product to each side of

their face twice daily for
8 weeks.

After 4 weeks, L* value of the treated sides was
highest with a test sunscreen moisturizer,

followed by a control sunscreen moisturizer,
and a vehicle moisturizer.

A control sunscreen
moisturizer (SPF 15)

A test sunscreen
moisturizer containing

2% nicotinamide

[111]

A double-blinded,
randomized,

vehicle-controlled,
split-face design human

clinical trial

39

5% nicotinamide
Subjects applied either
test or control product
to the assigned sides of
their faces twice a day

for 8 weeks.

5% Nicotinamide-containing moisturizer
demonstrated a higher reduction in

hyperpigmented spot than the vehicle
moisturizer, after 4 and 8 weeks of treatment.
2% Nicotinamide did not show a statistically

significant effect compared to the vehicle
moisturizer.

A vehicle moisturizer

40
2% nicotinamide

A vehicle moisturizer

[139]
A double-blind,

randomized, clinical
trial

27

4% nicotinamide
Melasma patients

applied a product on
the left side of the face
and the other on the

right side for 8 weeks.

After 8 weeks of treatment, MASI score was
decreased, L* value was increased and a* value
was unchanged by both treatments compared

to the baseline values. Good to excellent
improvement was observed in 44% of patients

receiving nicotinamide and 55% of patients
receiving hydroquinone.

4% hydroquinone

[140]

A randomized,
double-blind, left–right

axilla,
placebo-controlled trial

24

4% nicotinamide
(n = 16 axillae)

Treatment at night for
9 weeks.

At 9 weeks, L* values in the nicotinamide and
desonide groups were increased more

compared with the placebo group. Desonide
was more effective than nicotinamide

(p = 0.002).

0.05% desonide
(n = 16 axillae)

A placebo cream
(n = 16 axillae)

Nicotinamide has been incorporated into a sunscreen product for added performance.
In total, 120 Japanese women with moderate-to-deep facial tan were enrolled in another
randomized, split-face, double-blind, round-robin design and were assigned to apply any
two of three different products, each product to each side of their face twice daily for
eight weeks [22]. Three tested products are a vehicle moisturizer, a control sunscreen
moisturizer with SPF 15, and a test sunscreen moisturizer containing 2% nicotinamide. The
skin color is expressed with the Commission Internationale de l’Eclairage Lab color space
composed of L* value (lightness), a* value (redness), and b* value (blueness) [141]. After
4 weeks of treatment, L* values of the treated sides were the highest for a test sunscreen
moisturizer, followed by a control sunscreen moisturizer and a vehicle moisturizer, with
statistical significances between test groups. After 4 weeks of treatment, the side of the face
receiving a test sunscreen moisturizer showed a significant increase in visually assessed
skin lightness, compared to the side receiving a vehicle moisturizer, whereas the side
of the face receiving a control sunscreen moisturizer was not lighter than the vehicle
moisturizer-treated side.

Dose-dependent efficacy of nicotinamide was examined in a double-blinded, random-
ized, vehicle-controlled, split-face design human clinical trial that involved 79 Japanese
women with multiple types of brown hyperpigmentation on both sides of the face [111].
Group 1 subjects applied a 5% nicotinamide-containing moisturizer and the vehicle mois-
turizer, and group 2 subjects applied a 2% nicotinamide-containing moisturizer and the
vehicle moisturizer to the assigned sides of their faces twice a day for 8 weeks. After
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4 or 8 weeks of treatment, the side of the face receiving a 5% nicotinamide-containing
moisturizer demonstrated a higher hyperpigmented spot-reduction than the site receiving
the vehicle moisturizer, while a 2% nicotinamide-containing moisturizer efficacy did not
show a statistically significant effect, compared to the vehicle moisturizer. During the
regression period, the spot-reduction efficacy of a 5% nicotinamide-containing moisturizer
was gradually reduced to a level not statistically different from the vehicle moisturizer
after 42 weeks. Therefore, topical nicotinamide can have dose-dependent and reversible
skin depigmenting effects in humans.

Depigmenting efficacy of nicotinamide was compared with other active ingredients.
Navarrete-Solís et al. performed a double-blind, randomized clinical trial to compare
the efficacy and safety of 4% nicotinamide vs. 4% hydroquinone in the treatment of
melisma [139]. For the study, 27 melasma patients applied a product on the left side of
the face, and the other on the right side for 8 weeks. After 8 weeks of treatment, melasma
area and severity index (MASI) was decreased, L* value was increased and a* value
was unchanged by both treatments compared to the baseline values. Good-to-excellent
improvement was observed in 44% of patients receiving nicotinamide and 55% of patients
receiving hydroquinone. Side effects were noted in 18% of patients receiving nicotinamide
and 29% of patients receiving hydroquinone. Therefore, nicotinamide and hydroquinone
were considered to have comparable skin depigmenting activity.

Castanedo-Cazares et al. compared the efficacy of nicotinamide and desonide against
axillary hyperpigmentation, which is a variant of inflammatory hyperpigmentation [140].
In a clinical trial involving 24 women with hyperpigmented axillae, the emulsions con-
taining 4% nicotinamide or 0.05% desonide (a low potency corticosteroid used against
skin inflammation) were applied to the hyperpigmented axillary region for 9 weeks. Both
nicotinamide and desonide improved skin lightness, compared with placebo, and the
former was slightly less effective than the latter.

8.2. Skin-Lightening Efficacy of Combined Formulations of Nicotinamide and Other
Active Ingredients

An improved whitening efficacy can be expected when nicotinamide is used in combi-
nation with other active ingredients than when used alone. In addition, it will be possible
to enhance the whitening efficacy by increasing the absorption of active ingredients into
the skin in a special way rather than simply applying the formulation to the skin. Table 3
introduces several clinical studies that have been conducted based on this reasoning. The
composite formulations additionally contain various active ingredients such as arbutin,
kojic acid, ascorbic acid, ascorbyl glucoside, tranexamic acid, N-undecylenoyl phenylala-
nine, N-acetyl glucosamine, trans-4-(amino methyl) cyclohexanecarboxylic acid, potas-
sium azeloyl diglycinate, hydroxyethylpiperazineethane sulfonic acid, and/or epidermal
growth factor.

Table 3. Skin-lightening efficacy of cosmeceuticals containing nicotinamide in combination with other active ingredients.

Literature Study Format No. of Subjects Compared Formulations Treatment Key Findings

[142] A randomized,
split-face design

30
No treatment

Subjects used the
ultrasound device for 10

min with or without a
gel every night for

4 weeks.

Use of ultrasound treatment with
a gel reduced hyperpigmentation
compared with no treatment or

treatment of a gel alone after
4 weeks.

Ultrasound treatment

30
A gel containing 2% ascorbyl

glucoside, and 3.5% nicotinamide

Ultrasound treatment with a gel

[143]
Double-blind, left–right,
randomized, split-face

clinical studies

40
A vehicle emulsion

Treatment in the
morning and evening
before bedtime for 8

weeks.

Combination formulation and
nicotinamide alone reduced the

appearance of
hyperpigmentation after 8 weeks.

The combination was more
effective than nicotinamide alone

(p = 0.0003).

5% nicotinamide

40
5% nicotinamide

5% nicotinamide plus 1%
n-undecylenoyl phenylalanine
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Table 3. Cont.

Literature Study Format No. of Subjects Compared Formulations Treatment Key Findings

[144]

A double-blind,
vehicle-controlled,

full-face, parallel-group
clinical study

101 4% nicotinamide plus 2%
N-acetyl glucosamine

Treatment of a
sunscreen lotion in the

morning and test
creams in the evening

for 8 weeks.

The formulation reduced the area
of facial spots and the appearance

of irregular pigmentation at
weeks 6 (p = 0.0270 and weeks 8

(p = 0.037).
101 A vehicle cream

[145]
A single-center,

randomized,
double-blind, controlled

study

30

trans-4-(amino methyl)
cyclohexanecarboxylic acid,

potassium azeloyl diglycinate,
and nicotinamide

Treatment in the
morning and before
bedtime for 8 weeks.

The formulation reduced the
relative melanin value at week 6
(p = 0.006); Reduced MASI scores

at week 4 (p = 0.005).30 Emulsion-based control

[146]

A prospective,
randomized,
double-blind,

vehicle-controlled
clinical study

21 2% nicotinamide plus 2%
tranexamic acid

Treatment in the
morning and evening

for 8 weeks.

The formulation reduced melanin
index from baseline at weeks 4
(p < 0.001) and 8 (p < 0.001). It

reduced the mean pigment
intensity score compared with
the vehicle control formulation

(p = 0.015).

21 A vehicle cream

[147] A clinical study 55

3% tranexamic acid, 1% kojic
acid, 5% nicotinamide, and 5%
hydroxyethylpiperazineethane

sulfonic acid

Treatment in the
morning and evening

for 12 weeks.

The formulation reduced melanin
index and improved the

appearance of
hyperpigmentation compared to

both pre-treatment baselines.

[148]
A prospective,

randomized, controlled
split-face study

18

SKNB19 formulation containing
epidermal growth factor,

tranexamic acid, vitamin C,
arbutin, nicotinamide, and other

ingredients

Treatment in the
morning and night for 8
weeks. Hydroquinone

application only nightly.

SKNB19 improved the
appearance of

hyperpigmentation when
compared with 4% hydroquinone.

Standard formulation containing
4% hydroquinone

In the study of Bissett et al. [143], the whitening efficacies of 5% nicotinamide alone
and combined formulation of 5% nicotinamide plus 1% N-undecylenoyl phenylalanine
were compared. Significant differences were found after 8 weeks of using these products,
the latter being significantly more efficacious. In several other clinical studies, the combined
formulation was compared with the vehicle formulation; thus, it is difficult to distinguish
the contribution of individual components. In addition, in some studies, the content
of active ingredients is not disclosed, and therefore, caution is needed in interpreting
the results.

Significantly superior results were observed when the composite formulation (A
gel containing 2% ascorbyl glucoside, and 3.5% nicotinamide) was applied with ultra-
sonic treatment, compared to either conventional application only or ultrasonic treatment
only [142]. This study suggests that active ingredients, as well as techniques to increase
skin absorption, are important for better clinical benefit.

9. Discussion
9.1. Cosmetic Benefits and Side Effects of Topical Nicotinamide

In cosmetics, nicotinamide is mainly formulated at a concentration of 4 to 5% and
is used to control skin aging and pigmentation. Several clinical trials have shown that
the formulation containing nicotinamide has the effect of relieving skin aging such as
wrinkles, elasticity, and skin color, compared to the control formulation that does not
contain nicotine [23,134,135]. When nicotinamide-containing cosmetics are used in a well-
planned regimen, you can expect a skin-aging-relieving effect comparable to that of retinol
products [135]. To be sure, you can expect a good effect with a combination of nicotinamide
and retinol [137]. When products containing nicotinamide are applied to hyperpigmented
areas, skin-lightening effects can be expected [22,111]. The facial skin-lightening efficacy of
4% nicotinamide is almost comparable to that of 4% hydroquinone [139]. The underarm
skin-lightening efficacy of 4% nicotinamide is slightly weaker than 0.5% desonide [140].

Nicotinamide-containing products can be used together with sunscreen products
to attenuate sun-induced skin aging and pigmentation [135,143]. The skin-lightening
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efficacy of nicotinamide can be expected to increase with the use of a device that helps
transdermal absorption of the active ingredient [142]. Nicotinamide can be combined with
other active ingredients for added skin-lightening efficacy [143]. If nicotinamide plays a
role in inhibiting melanosome transfer in preventing skin pigmentation, combining it with
other active ingredients that play a different role would maximize the effect. Potential
candidates for combination with nicotinamide for this purpose may include substances that
inhibit the expression of enzymes involved in melanin synthesis [149,150], that inhibit the
catalytic activity of an enzyme [151–153], and/or that reduce the relative ratio of eumelanin
to pheomelanin [154,155].

Although nicotinamide is considered a very safe nutrient, its long-term use at very
high doses may cause side effects to the liver or other organs [156]. Serious metabolic and
epigenetic changes were observed in rats fed with high doses of nicotinamide over a long
period [157]. When 10% nicotinamide was applied to the skin, human subjects did not
feel stinging sensation or flushing, and irritation did not appear in a single-use primary
irritation test or a cumulative irritation test for 21 days with 5% product [158]. Thus,
nicotinamide is well tolerated by the skin at the normally used concentrations (<5%) [159].
Nevertheless, the skin reaction to nicotinamide can vary depending on the skin condition
of each individual; thus, it is necessary to consult a doctor if severe side effects exist.

9.2. Mechanisms of Skin Antiaging Action of Nicotinamide

This review highlights the fact that nicotinamide can have a wide range of effects on
cellular metabolism; therefore, it is not easy to identify the mechanism of this substance in
controlling skin aging. Although nicotinamide, a reaction product of sirtuins or PARPs, can
inhibit these enzymes at several tens of micromolar concentrations [160,161], it is unclear
whether its intracellular concentrations can reach that high. Nicotinamide is known to be
absorbed into cells to some extent, but its transporter has not been identified yet, whereas
transporters of nicotinic acid and 1-methylnicotinamide are relatively well known [162].
The different effects of nicotinamide on the lifespans of yeast and mammalian cells [67–69]
suggest that in the latter case, the intracellular concentration is lower, and thus, the sirtuins
inhibitory concentration cannot be reached. A possible cause is that nicotinamide is rapidly
converted to NMN by NAMPT outside the cell. In agreement with this assumption, a
secreted form of NAMPT exists outside the cell [163], and a transporter responsible for
the intracellular uptake of NMN produced by this enzyme was recently discovered [164].
Accordingly, it is emphasized that the biological effects of nicotinamide can be dependent
on the activity of NAMPT, which plays an important role in aging [165].

Natural aging and photoaging commonly accompany cellular senescence, chronic
inflammation, and changes in the ECM and skin barrier along with external appear-
ance changes. In senescent cells, NAMPT, NAD+ pool, and mitochondrial electron trans-
port activity decrease, while ROS production increases [71,73,75]. The supply of nicoti-
namide helps to normalize these changes, delaying cell senescence and extending its
lifespan [72,74,75,77]. Nicotinamide inhibits the production of inflammatory cytokines
and PGs in keratinocytes or in three-dimensional skin models that are exposed to UV
radiation [58,59]. Nicotinamide decreases ECM-degrading enzymes and increases collagen
synthesis in dermal fibroblasts [100–102]. Nicotinamide enhances the structural and func-
tional integrity of the skin barrier by increasing the synthesis of lipid components [105].
Although nicotinamide exhibits various biological activities, the evidence for the existence
of a specific molecular target is not clear. For now, it is believed that nicotinamide con-
tributes to skin homeostasis by regulating the redox status of cells along with various
metabolites produced from it.

9.3. Mechanisms of Skin Depigmenting Action of Nicotinamide

The effects of nicotinamide on melanin synthesis in mono-cultured melanocytes are
diverse [109,110]. It is presumed that nicotinamide can help restore intrinsic melanin
synthesis in melanocytes when it is impaired for some reason, whereas it can prevent
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excessive melanin synthesis stimulated by external signals. In the keratinocyte–melanocyte
co-culture system, nicotinamide appears to consistently decrease the amount of melanin
delivered to keratinocytes [22,111]. This finding has been confirmed in other independent
studies [166,167]. Therefore, the interaction between these two cell types can be modulated
by nicotinamide, but the underlying molecular mechanism remains to be explored.

It is worth noting PAR-2 as the main director of melanosome transfer from melanocytes
to keratinocytes [122]. The receptor is expressed in keratinocytes, is activated by stimuli,
such as UV radiation or hydrogen peroxide, and releases PGE2, which warns surrounding
cells including melanocytes [124,125]. The melanocytes are then activated by this signal
to initiate the synthesis of melanin and biogenesis of melanosomes and deliver mature
melanosomes to keratinocytes via dendrites [126,127]. In this scenario, if a substance
could affect either or both of these two steps, it would exert an inhibitory effect on skin
hyperpigmentation. Studying whether nicotinamide affects the PAR-2 mediated signal
transduction process will be important in elucidating the mechanism of the pigmentation
inhibitory action of this substance.

A recent study showed that NNT could regulate melanin synthesis in the skin [168].
In human melanoma cells, depletion of NNT increased melanin synthesis, which was
inhibited by N-acetyl cysteine. Overexpression of NNT decreased eumelanin synthesis,
which was attributed to increases in the NADPH/NADP+ ratio and the GSH/GSSG ratio.
NNT expression levels were low in post-inflammatory hyperpigmentation or age spots of
human skin. It would be interesting to examine the effects of nicotinamide on pigmentation
in the skin with altered NNT activity.

9.4. Questions to Be Answered in Future Studies

As discussed above, important and interesting questions about the mechanism of
action and biological activity of nicotinamide remain unclear, with the following questions
to list a few:

• Is there any specific molecular target of nicotinamide for the control of skin aging or
pigmentation?

• Is the antiaging effect of nicotinamide is due to its intrinsic property or its metabolites?
• How does nicotinamide modulate the cell-to-cell interactions in the skin?
• Whether and how does nicotinamide regulate PAR-2 or NNT involved in skin

pigmentation?
• Does nicotinamide supplementation affect the NADPH/NADP+ ratio and the GSH/

GSSG ratio in the skin?
• Would it be more effective if the dose of nicotinamide is adjusted according to the

NAD+ pool level, which varies depending on the individual skin condition?
• How does nicotinamide affect the self-renewal, proliferation, differentiation, senes-

cence, and eventual exhaustion of epidermal stem cells?

10. Conclusions

The action of nicotinamide in controlling skin aging and pigmentation may be due
to the intrinsic properties of nicotinamide, or the properties of other metabolites derived
from nicotinamide, or both. Nicotinamide mitigates oxidative stress of cells via a direct
ROS/free radical-scavenging action or an indirect action that enhances the antioxidant
capacity of cells. Nicotinamide is metabolized by NAMPT to restore the NAD+ pool
and delay the senescence of cells. Both nicotinamide and its metabolites, such as NMN
and 1-methylnicotinamide exert anti-inflammatory properties in various experimental
models. Therefore, for cosmetic applications of nicotinamide, it is important to consider
the biological activities of its metabolites as well as nicotinamide itself.

External stimuli, such as UV light and PM, internal stimuli, and chronological time
cause skin aging and hyperpigmentation through direct and indirect paths. When epidermal
keratinocytes are activated through ROS-mediated signaling, the expressions of inflamma-
tory cytokines, PGs, and other signaling molecules are induced. Signaling molecules, such
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as stratifin, secreted from keratinocytes activate dermal fibroblasts to release MMPs for
ECM remodeling. PGs secreted from keratinocytes activate epidermal melanocytes to in-
crease melanin synthesis and melanosome biogenesis, and promote intercellular melanosome
transfer from melanocytes to keratinocytes. These overall processes can be alleviated by
supplementation of nicotinamide, resulting in reduced skin aging and pigmentation.

Therefore, nutritional and pharmacological actions of nicotinamide may be mediated
by a complex mechanism including several metabolic pathways and multiple signaling
processes. Aside from the identity of the mechanism of action, the results of many clinical
trials suggest that nicotinamide is a beneficial cosmetic ingredient that helps skin health
and beauty without any severe side effects.
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ADP adenosine diphosphate
AMP adenosine monophosphate
ATP adenosine triphosphate
cADPR cyclic ADP ribose
CYP cytochrome P450
ECM extracellular matrix
GSH glutathione
GSSG glutathione disulfide
IL interleukin
MAPK mitogen-activated protein kinase
MASI melasma area and severity index
MMP matrix metalloproteinase
NaAD + nicotinic acid adenine dinucleotide
NaADP + nicotinic acid adenine dinucleotide phosphate
NAD + nicotinamide adenine dinucleotide
NADH reduced nicotinamide adenine dinucleotide
NADP + nicotinamide adenine dinucleotide phosphate
NADPH reduced nicotinamide adenine dinucleotide phosphate
NaMN nicotinic acid mononucleotide
NAMPT nicotinamide phosphoribosyltransferase
NF-κB nuclear factor-κB
NMN nicotinamide mononucleotide
NNT nicotinamide nucleotide transhydrogenase
PAR-2 protease-activated receptor-2
PARP poly(ADP-ribose) polymerase
PG prostaglandin
PM particulate matter
PPi inorganic pyrophosphate
PRPP phosphoribosyl pyrophosphate
ROS reactive oxygen species
sir2 silent information regulator-2
SIRT1 sirtruin1
SPF sun protection factor
TGF-β transforming growth factor-β
TNF-α tumor necrosis factor-α
UV ultraviolet
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