contents

Section Overview	2/2-2/5
Product Overview	2/6-2/7
SIRIUS Contactors	
3RT20, 3-pole to 95A	2/8
3RT10, 3-pole to 500A	2/9
3RT12, 3-pole Vacuum to 500A	2/10
3RT23, 4-pole with 4 NO	2/11
3RT24, 3-pole for Resistive Loads	2/12
3RT25, 4-pole with 2 NO + 2 NC	2/13
3RT26, for Capacitor Switching	2/19
3RT20, Interface Coupling Contactors	2/20-2/21
3RT20 Motor Contactors for DC Operation	2/16-2/18
3RH21 Contactor Relays	2/14-2/15
3RA13 / 3RA23 Reversing Contactors	2/37-2/44
3RT, 3TF Safety Contactors and	
3RH2, 3TH2 Safety Control Relays	2/22-2/23
Function Modules for Communications	2/24-2/36
3RA24, Wye-Delta Starting	2/45-2/48
Contactor Coil Codes	2/49
SIRIUS Control Relays \& Coupling Relays	
3RH2 Control Relays	2/50
3RH24 Latched Control Relays	2/51
Auxiliary Switches	2/51
3RH21 Coupling Relays	2/52
Special Application Contactors (3TF6 / 3TB5 / 3TC)	
3TF6 Vacuum Contactors up to 820A	2/53-2/54
3TC DC Switching Contactors	2/55-2/56
3TB5 Contactor Coils	2/100-2/101
SIRIUS Contactor \& Relay Accessories	
Overview	2/57-2/65
Auxiliary Switches	2/66-2/69
AuxiliaryTime Delay and Latching Blocks	2/70-2/71
Surge and EMC Suppressors	2/73-2/74
Contactor Accessories	2/76-2/79
Reversing Accessories	2/80-2/82
Wye-delta Accessories	2/83
NEMA 1 Enclosures	2/93

SIRIUS Current Monitoring Relays

3RR21 Basic Versions
2/84-2/87
3RR22 Standard Versions
3RR24 with IO-Link
Accessories
2/84-2/87
2/88-2/91
2/92

Special Application Contactor Accessories

Auxiliary Contacts 2/53
Box Terminals and Covers 2/54
Surge Suppressors for 3TB, 3TC, 3TF
SIRIUS Contactor Spare Parts
Coils 2/94-2/98
Arc Chutes 2/99
Contact Kits 2/99
Obsolete Contactor / Relay Spare Parts..... 2/102-2/103
Design / Function Overview
3RT20 Contactors, S00 to S3 2/104-2/105
3RT10 Contactors, S6 to S12 2/106-2/107
WYE-Delta Starters2/110-2/115
3RH2 Control Relays2/116
3TF6 Vacuum Contactors up to 820A 2/117
3RT / 3RH Accessories
Technical Data
3RT10 / 3RT20 Contactors 2/121-2/151
3RT12 Vacuum Contactors 2/127, 2/152-2/157
3RT24 Resistive Load Contactors 2/158-2/165
3RT23 4-pole Contactors 4 NO 2/166-2/167
3RT25 4-pole Contactors 2 NO \& 2 NC 2/168-2/169
3RT26 Capacitor Switching Contactors 2/170
3RT20 Interface Relays 2/171
3TF6 Vacuum Contactors up to 820A 2/172-2/177
3TC DC Switching Contactors 2/178-2/181
Accessories 2/182-2/184
3RH2 Control and Latching Relays 2/185-2/188
3RH21 Coupling Relays 2/189
Circuit Diagrams
3RT Contactors \& Accessories 2/190-2/198
3RA23 Reversing Contactors 2/199
WYE-Delta Starters 2/200
3TF6 Vacuum Contactors up to 820A 2/201
3RH2 Control \& Latching Relays 2/203
3RH21 Coupling Relays 2/202
Position of Terminals
3RT Contactors and Accessories 2/203-2/207
3RT Capacitor Contactors 2/206
3TF6 Vacuum Contactors up to 820A 2/208
3RH2 Control Relays 2/203
Dimensions
3RT, 3-pole Contactors S00 to S3 2/209-2/212
3RT10, 3-pole Contactors S6 to S12 2/213-2/214
3RT24, 3-pole Contactors for Resistive Loads 2/213-2/214
3RT12, 3-pole Vacuum Contactors 2/215
3RT23, 3RT25 4-pole Contactors 2/216
3RT26, Contactors for Capacitor Switching 2/217
3RA13 / 23 Reversing Contactors 2/218-2/220
3TF6 Vacuum Contactors up to 820A 2/221
Contactor Accessories 2/222-2/223
3RH2 Control and Coupling Relays 2/224

Contactors and Contactor Assemblies

Contactors for switching three-phase motors

contents

Contactors for switching three-phase motors

3RT20 contactors, 3-pole 3 to 75 HP, Sizes S00 to S3 with screw, spring or ring lug connections

Page
Selection and ordering data

- AC/DC operation 2/8
- Accessories 2/66
- Spare parts

2/94
Description 2/104
Technical data 2/121
Internal circuit diagrams 2/190
Position of terminals 2/203
Dimension drawings 2/209

3RT10 contactors, 3-pole, 100 to 400 HP ,
sizes S6, S10 and S12

Selection and ordering data

- AC/DC operation 2/9
- Accessories 2/66
- Spare parts 2/98

Description 2/106
Technical data 2/123
Internal circuit diagrams 2/196
Position of terminals 2/204
$\begin{array}{ll}\text { Dimension drawings } & 2 / 213\end{array}$

3RT20 NEMA labeled contactors, NEMA size 0 to 6

Page

Selection and ordering data

- AC/DC operation 2/8,2/9
- Accessories 2/66
- Spare parts 2/94

Description 2/104
Technical data 2/121
Internal circuit diagrams 2/190
Position of terminals 2/203
Dimension drawings 2/209

Contactor assemblies for switching three-phase motors

3RT12 vacuum contactors, 3-pole, 150 to 400 HP,
sizes S10 and S12
Page
Selection and ordering data

- AC/DC operation 2/10
- Accessories 2/66
- Spare parts 2/98

Description 2/106
Technical data 2/152
Internal circuit diagrams 2/196
Position of terminals 2/204
Dimension drawings $\quad 2 / 215$

3RA13 / 23 contactor assemblies for reversing, 3 to 75 HP , sizes S00 to S3 with screw or spring loaded connections Page

Selection and ordering data

- AC/DC operation 2/40
- Accessories 2/80
- Spare parts 2/94

Overview 2/38
Description 2/37
Circuit diagrams 2/199
Position of terminals 2/204
Dimension drawings $\quad 2 / 218$

Wye Delta for customer assembly of sizes S00 to S12

Page

Selection and ordering data

- For wye-delta starting 2/47
- Accessories 2/83
- Spare parts 2/94

Overview 2/108
Description 2/110
Circuit diagrams 2/200

contents

Contactors for special applications

3RT14 / 24 contactors, $I_{\mathrm{e}} /$ AC-1: 140 to 690 A, 3-pole, sizes S3 to S12, with screw connections

Selection and ordering data

- AC/DC operation
- Accessories
- Spare parts 2/97

Descriptions
2/12
Technical Data 2/158
Internal circuit diagrams 2/196
Position of terminals 2/204
Dimension drawings 2/211

3RT20 coupling relays up to 20 HP (interface,) 3-pole, for switching motors, sizes SOO and SO
with screw or spring connections
Page
Selection and ordering data

- DC operation	$2 / 20$
- Accessories	$2 / 66$
- Spare parts	$2 / 94$
Description	$2 / 20$
Technical Data	$2 / 171$
Internal circuit diagrams	$2 / 190$
Position of terminals	$2 / 203$
Dimension drawings	$2 / 209$

Contactors and Contactor Assemblies

Contactors for special application

contents

Contactors for special applications

3TF68 and 3TF69 vacuum contactors, 500 to 700 HP ; contactor assemblies

Selection and ordering data

- AC/DC operation 2/53
- Accessories 2/53
- Spare parts 2/53
Descriptions 2/117

Technical Data 2/172
Internal circuit diagrams 2/201
Position of terminals 2/208
Dimension drawings 2/221

Page
/53
117

3 TB50 to 3TB56 contactors with DC solenoid system, 100 to 300 HP

Selection and ordering data

- Spare parts

2/101

3TC Contactors

Page
Selection and ordering data

- DC operation
- Spare parts

3RT1 SIRIUS Nomenclature

3RT1	0	3	5	1	A	B0	1
SIRIUS	Application	Frame	Current	Terminal	Coil Type	Coil Voltage	Aux Contacts A)
Contactor	$0=3$ pole Standard	5 = S6	Designation	2 = Spring Loaded	A = AC/DC ($56-\mathrm{S} 12$)	See Coil	$0=$ None
	$2=3$ pole Vacuum	$6=$ S10	Choices =	Coil only	$N=$ UC Solid state	Selection Chart	$4=2 \mathrm{NO}+2 \mathrm{NC}(\mathrm{S6}-\mathrm{ST} 2)$
	$3=4$ pole NO	7 = S12		6 = Busbar Terminal	(S6-S12)		$5=1 \mathrm{NO}+1 \mathrm{NC}(\mathrm{S6}-\mathrm{S} 12)$
	$4=3$ pole resistive load				$\mathrm{P}=$ UC Solid state		$6=2 \mathrm{NO}+2 \mathrm{NC}(\mathrm{S6}-\mathrm{S} 12)$
	$5=4$ pole $2 \mathrm{NO}+2 \mathrm{NC}$				with RLT (S6-S12)		A) per EN50012
	$6=3$ pole Capacitive						

3RT2 SIRIUS Innovations Nomenclature

3RT2	0	1	5	1	A	B0	1
SIRIUS Innovations Contactor	Application $\begin{aligned} & 0=3 \text { pole Standard } \\ & 3=4 \text { pole } \mathrm{NO} \\ & 5=4 \text { pole } 2 \mathrm{NO}+2 \text { NC } \\ & 6=3 \text {-pole Capacitive } \end{aligned}$	Frame $\begin{aligned} & 1=S 00 \\ & 2=50 \\ & 3=\$ 2 \\ & 4=S 3 \end{aligned}$	Current $3,4,5,6,7,8$	Terminal 1 = Screw 2 = Spring Loaded 3 = Spring Loaded Coil only 4 = Ring Lug	Coil Type $\begin{aligned} & A=A C(S 0-S 3) \\ & B=D C \\ & N=U C \text { Electronic } \end{aligned}$	Coil Voltage See Coil Selection Chart page 2/49	Aux Contacts A) $\begin{aligned} & 0=1 N O+1 N C(S O-S 3) \\ & 1=1 \text { NO (SOO) } \\ & 2=1 \text { NC (SOO) } \\ & 4=2 N O+2 N C(S O O-S 3) \end{aligned}$ A) per EN50012

[^0]
Contactors and Contactor Assemblies

SIRIUS control relays

Contents

SIRIUS contactor relays

SIRIUS coupling relays (interface)

3RH21 coupling relays for switching auxiliary circuits, 4-pole, size SOO, DC operation

Page
Selection and ordering data

- With screw connections 2/52
- with Cage Clamp connections

2/52

Application	$2 / 52$
Technical data	$2 / 189$
Terminal diagrams	$2 / 202$
Position of terminals	$2 / 203$
Dimension drawings	$2 / 224$

IEC Power Control

Contactors and Contactor Assemblies

Overview

SOO 3RT20 1

3RT2015 (p. 2/8)	3RT2016	3RT2017	3RT2018	3RT2023 $(p .2 / 8)$	3RT2024	3RT2025	3RT2026	3RT2027	3RT2028

SO 3RT20 2

S2 3RT20 3

3RT20 contactors

AC/DC operation
Type
AC/DC operation

3RT2035 3RT2036 3RT2037 3RT2038 (p. 2/8)

Maximum 3-phase horsepower ratings at 460 V (UL and CSA listed values)

200 V	HP	1.5	2	3	3	2	3	5	7.5	10	10	10	15	20	20
230 V	HP	2	3	3	5	3	3	5	7.5	10	10	15	15	20	25
460 V	HP	3	5	7.5	10	5	7.5	10	15	20	25	30	40	50	50
575 V	HP	5	7.5	10	10	7.5	10	15	20	25	25	40	50	50	60
AC-3															
$I_{\text {e }} / \mathrm{AC}-3 / 400 \mathrm{~V}$	A	6	9	12	16	9	12	17	25	32	38	40	50	65	80
230 V	kW	1.5	2.2	3	4	2.2	3	4	5.5	7.5	11	11	15	18.5	22
400 V	kW	3	4	5.5	7.5	4	5.5	7.5	11	15	18.5	18.5	22	30	37
500 V	kW	3.5	4.5	5.5	7.5	4.5	7.5	10	11	18.5	18.5	22	30	37	37
690 V	kW	4	5.5	5.5	7.5	7.5	7.5	11	11	18.5	18.5	22	22	37	45
1000 V	kW	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AC-4 (at $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)															
400 V	kW	3	4	4	5.5	4	5.5	7.5	7.5	11	11	18.5	22	30	37
400 V (200,000 operating cycles)	kW	1.15	2	2	2.5	2	2.6	3.5	4.4	6	6	11.6	12.6	14.7	15.8
AC-1 (40 $\left.{ }^{\circ} \mathrm{C}, \leq 690 \mathrm{~V}\right)$															
$\underline{I_{\text {e }}}$	A	18	22	22	22	40	40	40	40	50	50	60	70	80	90

Accessories for contactors

3RA23 Reversing contractor assemblies

Complete units	Type	3RA2315	3RA2316 3RA2317 (page 2/40)	3RA2318	(page 2/42)					3RA2335	(page 2/43)		3RA2338
460 V	HP	3	$5 \quad 7.5$	10	7.5	10	15	20	25	30	40	50	50
Installation kits / wiring connectors		3RA2913-2AA1 (p. 2/81)			3RA2923-2AA1 (p. 2/81)					3RA2933-2AA1 (p. 2/81)			
Mechanical interlocks		3RA2912-2H (p. 2/82)			3RA2922-2H (p. 2/82)					3RA2934-2B (p. 2/80)			

Contactors and Contactor Assemblies

Overview

Accessories for contactors								
Auxiliary switchfront lateralblocks	$\begin{aligned} & \text { 3RH29 } 11 \\ & \text { 3RH29 } 21 \end{aligned}$	$\begin{aligned} & \text { (p. 2/66) } \\ & \text { (p. 2/68) } \\ & \hline \end{aligned}$	3RH19 21 3RH19 21	$\begin{aligned} & \text { (p. 2/66) } \\ & \text { (p. 2/68) } \\ & \hline \end{aligned}$				$\overline{3 T Y 7} 561 \quad \text { (p. 2/53) }$
Terminal covers	3RT2946-4EA2	(p. 2/79)	3RT19 56-4EA1/2/3	(p. 2/79)	3RT19 66-4EA1/2/3	(p. 2/79)		3TX7 686/696 (p. 2/54)
Box terminals	-		3RT19 55/56-4G	(p. 2/79)	3RT19 66-4G	(p. 2/79)		-
Surge suppressor	3RT29 36	(p. 2/73)	3RT19 56-1C (RC element) (p. 2/73)					$3 \mathrm{TX7} 572$ (p. 2/54)
3RU21 and 3RB3 overload relays (Section 3)								
3RU21, thermal, CLASS 10	3RU21 46 18-100A (p.3/10)		-		-		-	-
3RB30/31, solid-state, CLASS 5, 10, 20 and 30	$\begin{aligned} & \text { 3RB30 } 46 \text { 12.5-100A } \\ & \text { 3RB31 } 43 \end{aligned}$	$\begin{aligned} & \hline \text { (p. 3/22) } \\ & \text { (p. 3/23) } \end{aligned}$	$\begin{aligned} & \text { 3RB20 } 56 \text { 50-200A } \\ & \text { 3RB21 } 56 \end{aligned}$	$\begin{aligned} & \hline \text { (p. 3/22) } \\ & \text { (p. 3/23) } \end{aligned}$	$\begin{aligned} & \text { 3RB20 } 66 \text { 50-630A } \\ & \text { 3RB21 } 66 \end{aligned}$	$\begin{aligned} & \text { (p. 3/22) } \\ & \text { (p. 3/23) } \end{aligned}$	3RB20 66 3RB21 66 (p. 3/2/22)	3RB20 66 160-630A 3RB21 66 (p. 3/22)
3RB22/23, solid-state, CLASS 5, 10, 20 and 30			$\begin{aligned} & \text { 3RB2.83+ 20-200A } \\ & \text { 3RB2956 } \end{aligned}$	(p. 3/34)	$\begin{aligned} & \text { 3RB2.83 + 63-640A (p. 3/34) } \\ & \text { 3RB2956 } \end{aligned}$			
3RV20 circuit-breakers (Section 1)								
Type	3RV20 41 45-100A	(p. 1/5)	-		-		-	-
Link modules	3RA19 41	(p. 1/10)	-		-		-	-
3RA23 Reversing contractor assemblies								
Complete units Type	$\begin{array}{ll} \begin{array}{ll} \text { 3RA23 } 45 \\ (\text { p. } 2 / 44) \end{array} & \text { 3RA23 } 46 \end{array}$	$\text { 3RA23 } 47$	-		-		-	-
460 V HP	$60 \quad 75$	75	100125	150	150200	250	$300 \quad 400$	$500 \quad 700$
Installation kits / wiring connectors	3RA2943-2AA1	(p. 2/81)	3RA1953-2A	(p. 2/81)	3RA1963-2A	(p. 2/81)	3RA1973-2A (p. 2/81)	3TX7680-1A
Mechanical interlocks	3RA2934-2B		3RA1954-2A	(p. 2/80)				3TX7686-1A

Contactors for Switching Motors

3RT contactors, 3-pole - Size S00 to S3

1) All terminals are spring loaded on frame sizes $S 00$ \& $S 0$.

Only the coil terminals are spring loaded on frame sizes S2 \& S3.
2) Max UL FLA $=65 \mathrm{~A}$ at 460 V

Note: Ring lug terminals are also available in size SOO \& SO contactors, except contactors with communication interface or UC coil. Change the 8th digit of the order number to a " 4 ", e. g. 3RT2015-4AK61.

For further coil voltages, see page 2/49.
For auxiliaries and accessories, see page 2/66-2/83 For spare parts, see page 2/94-2/99.
For technical data, see page 2/121-2/142.
For description, see page 2/104-2/105.
For int. circuit diagrams, see page 2/190-2/197.
For dimension drawings, see page 2/209-2/212.

AC Coil Selection for 3RT201 through 3RT204

•0Coil Code	C2 2	H2 $^{3)}$	K6	P6	U6	V6	T6
$\mathbf{6 0 ~ H z}$	24 V	48 V	120 V	240 V	277 V	480 V	600 V
$\mathbf{5 0 ~ H z}$	24 V	48 V	110 V	220 V	-	-	-

2) Use Code B0 for 3RT201, S00 3) Use Code H0 for 3RT201, SO0							
DC Coil Selection for 3RT201 \& 3RT202 (for 3RT203 \& 3RT204 see UC)							
-0Coil Code	A4 ${ }^{4}$	B4	W4	E4	F4	G4	M4
DC	12 V	24 V	48 V	60 V	110 V	125 V	220 V
4) 3RT201 and 3RT202 only							
UC Coil Selection for 3RT202				UC Coil Selection for 3RT203 \& 3RT204			
-0Coil Code	B3	F3	P3 ${ }^{\text {4) }}$	$\bullet \bullet$	B3	F3	P3 ${ }^{\text {5 }}$
UC	21-28V	95-130V	200-280V		20-33V	$83-155 \mathrm{~V}$	175-280V
${ }^{5}$) at upper limit	$1.1 \times U_{S}$						

Contactors for Switching Motors

3RT contactors，3－pole－Size S6－S12 and NEMA size 4－6

Selection and ordering data

＊AC／DC Coils with built in surge suppressor
＊Coil Types（ 40 Hz to $60 \mathrm{~Hz}, \mathrm{DC}$ ）：
＊Conventional Coil
＊Solid－state operated coil with wider range and 24 V DC PLC input
＊Solid－state operated coil with Remaining Lifetime Indication（RLT）
＊Box terminals ordered separately

3RT1054－6A．． 6

3RT1065－6P．． 5

Frame Size	Amp Ratings		Single－phase HP ratings		Three－phase HP ratings				Auxiliary contacts		Screw Terminals on coil and aux． Order No．	Spring－type terminals on coil and aux．contacts Order No．	Weight approx． kg
	AC3	AC1	115V	230 V	200V	230 V	460V	575 V	NO	NC			
3RT 3－pole Contactors													3.5
S6	115	160	－	25	40	50	100	125	2	2	3RT1054－6ロ－06	3RT1054－2ロ－06	
	150	185	－	30	50	60	125	150	2	2	3RT1055－6ロ・06	3RT1055－2■006	
	185	215	－	30	60	75	150	200	2	2	3RT1056－6ロ－96	3RT1056－2ロ006	
S10	225	275	－	－	60	75	150	200	2	2	3RT1064－6ロ－96	3RT1064－2■－06	6.7
	265	330	－	－	75	100	200	250	2	2	3RT1065－6ロ－96	3RT1065－2■－06	
	300	330	－	－	100	125	250	300	2	2	3RT1066－6ロ－96	3RT1066－2■006	
S12	400	430	－	－	125	150	300	400	2	2	3RT1075－6ロ－96	3RT1075－2■006	10.5
	500	610	－	－	150	200	400	500	2	2	3RT1076－6ロ－06	3RT1076－2■•06	

UC Conventional Coil
Solid State Operated Coil＝
Solid State Operated Coil with RLT＝
ロ
A
N
-

NEMA Slze	Amp Ratings	Single－phase HP ratings		Three－phase HP ratings				Auxiliary contacts		Screw Terminals on coil and aux． Order No．	Spring－type terminals on coil and aux．contacts Order No．	Weight approx． kg
		115 V	230 V	208V	230 V	460V	575 V	NO	NC			
NEMA Labeled Contactors												
4	135	－	30	40	50	100	100	2	2	3RT1056－6A•06－OUA0	－	3.5
5	300	－	－	100	125	250	300	2	2	3RT1066－6A•＠6－OUA0	－	6.7
6	400	－	－	150	200	400	500	2	2	3RT1076－6A＠O6－0UA0	－	10.5

All coil voltages are in the adjacent table
For auxiliaries and accessories，
see page 2／66－2／83．
For spare parts，see page 2／94－2／99．
For technical data，see page 2／143－2／151．
For description，see page 2／106－2／107．
For int．circuit diagrams，see page 2／196－2／198
For dimension drawings，see page 2／213－2／214．

Sizes S6 to S12 Coil Codes－UC operation（AC 50 to 60 Hz and DC）				
UC Conventional Coil		Solid－State Coil		
$\begin{aligned} & \text { Rated control } \\ & \text { supply voltage Us } \\ & \text { Us } \boldsymbol{m i n} \text {... Us max }{ }^{10} \end{aligned}$	3RT1．5．－．A	Rated control supply voltage Us Us min ．．．Us max ${ }^{1}$ ）	3RT1．5．－．N	3RT1．5．－．P
	3RT1．6．－． A		3RT1．6．－．N	3RT1．6．－．P
	3RT1．7．－． A		3RT1．7．－．N	3RT1．7．－．P
Coil Codes	$\bullet \bullet$	Coil Codes	$\bullet \bullet$	$\bullet \bullet$
$23 . .26 \mathrm{~V} \mathrm{AC/DC}$	B3	$21 . . .27 .3 \mathrm{~V} \mathrm{AC/DC}$	B3	－
42 ．．． 48 V AC／DC	D3	$96 . . .127 \mathrm{~V}$ AC／DC	F3	F3
110 ．．． 127 V AC／DC	F3	$200 . .277$ V AC／DC	P3	P3

1）Operating range： $0.8 \times$ Us min to $1.1 \times$ Us max．

Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole

Selection and ordering data

- AC/DC operation ($40 \mathrm{~Hz} \ldots 60 \mathrm{~Hz}, \mathrm{DC}$)
- Withdrawable coils
- Integrated coil circuit (varistor)
- Auxiliary and control conductors: screw connections
- Main conductor: bar connections

Size	Horsepower ratings and utilization categories								Rated control supply voltage U_{s}	Order No.	Weight approx.
	AC-3 Maximum inductive current Amps	Ratings of three-phase motors				AC-1 Maximum resistive current Amps	NO	NC	AC/DC V		kg
Conventional operating mechanism											
S10	225	60	75	150	200	330	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	3RT12 64-6AF36 3RT12 64-6AP36	6.4
	265	75	100	200	250	330	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	3RT12 65-6AF36 3RT12 65-6AP36	
	300	100	125	250	300	330	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	3RT12 66-6AF36 3RT12 66-6AP36	
S12	400	125	150	300	400	610	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	3RT12 75-6AF36 3RT12 75-6AP36	9.6
	500	150	200	400	500	610	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	3RT12 76-6AF36 3RT12 76-6AP36	
Solid-state operating mechanism for DC 24 V PLC output											
S10	225	60	75	150	200	330	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT12 64-6NF36 3RT12 64-6NP36	6.4
	265	75	100	200	250	330	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \end{array}$	3RT12 65-6NF36 3RT12 65-6NP36	
	300	100	125	250	300	330	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT12 66-6NF36 3RT12 66-6NP36	
S12	400	125	150	300	400	610	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \end{array}$	3RT12 75-6NF36 3RT12 75-6NP36	9.6
	500	150	200	400	500	610	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT12 76-6NF36 3RT12 76-6NP36	

Universal Coil Selection for 3RT126 through 3RT127: Conventional Operation										
Coil Code	B3	D3	F3	M3	P3	U3	V3	R3	S3	T3
Volts AC/DC $40-60 ~ H z, ~ D C ~$	$23 . .26 \mathrm{~V}$	$42 . .48 \mathrm{~V}$	$110 . .127 \mathrm{~V}$	$200 . .220 \mathrm{~V}$	$220 . .240 \mathrm{~V}$	$240 . .277 \mathrm{~V}$	$380 . .420 \mathrm{~V}$	$440 . .480 \mathrm{~V}$	$500 . .550 \mathrm{~V}$	$575 . .600 \mathrm{~V}$

Solid State Selection for 3RT126 through 3RT127: Solid-State				
Coil Code	B3	F3	P3	
Volts AC/DC	$21 . .27 .3 \mathrm{~V}$	$96 \ldots 127 \mathrm{~V}$	$200 . .277 \mathrm{~V}$	
$40-60 \mathrm{~Hz}, \mathrm{DC}$				

[^1]3RT23 contactors, 4-pole (4 NO contacts) for switching resistive loads (AC-1)

Standards

IEC 60947-1, EN 60947-1
IEC 60947-4-1, EN 60947-4-1
IEC 60947-5-1, EN 60947-5-1 (auxiliary switches)

Design

The contactors are suitable for use in any climate. They are safe from touch to DIN VDE 0106, Part 100. The accessories for the 3 -pole SIRIUS contactors can also be used for the 4-pole designs.
Mountable auxiliary contacts
Size SOO: 4 auxiliary contacts of which up to 3 can be NC. Size SO \& S2: 4 additional auxiliary contacts up to 3 can be NC. Sizes S2 and S3: Up to 4 auxiliary contacts (either laterally mounted or snappped onto the top).
Contactor assemblies with mechanical interlock
The 4-pole 3RT23 contactors with 4 NO contacts as the main contacts are suitable for making contactor assemblies with a mechanical interlock, e.g. for system transfers.
Size S00: Contactor assemblies can be made using two 3RT231. contactors in conjunction with the mechanical interlock and two connecting clips (Order No. 3RA2912-2H, pack comprising 10 interlocking elements and 20 clips for 10 contactor assemblies, see accessories on page $2 / 72$).

Size SO: In order to make 4-pole contactor assemblies using two 3RT232. contactors, the fourth pole of the left-hand contactor must always be moved to the left-hand side. The contactor assembly can then be made easily with the aid of the 3RA2922-2H mechanical interlock and connecting clip set fitted between the two contactors.
Sizes S2 and S3: Contactor assemblies can be made using two 3RT23 3 or 3RT23 4. contactors in conjunction with the laterally mountable mechanical interlock and the mechanical connectors. The mechanical interlock for fitting onto the front cannot be used for size S2 and S3 contactors.

Application

- Switching resistive loads
- Isolating systems with unearthed or poorly earthed neutral conductors
- System transfers when alternative AC power supplies are used
- As contactors which only carry current and do not have to switch in case of inductive loads - e.g. variable-speed operating mechanisms
- Switching mixed loads in distribution systems (e.g. for supplying heaters, lamps, motors, PC power supply units) with p.f. > 0.8 according to IEC 60947-4-1, test conditions for utilization category AC-1

Selection and ordering data

Rating data		Auxiliary contacts			Rated control supply voltage U_{S} $50 / 60 \mathrm{~Hz}$	AC Operation Screw Terminals ${ }^{1)}$ Order No.	Rated control supply voltage Us	DC Operation Screw Terminals ${ }^{1)}$ Order No.
AC-1 Max resist. current $/ \mathrm{e}$	UL ratings AC loads at 600 V , 60 Hz	Identification No.	Version					
Amps	Amps		NO	NC	V AC		V DC	

For screwing and stapping onto 35 mm mounting rail
3RT23 17-1AP60

Size SOO - Auxiliary switches can be retrofitted

18	16	$\mathbf{1 8}$	-	-	-
22	20	$\mathbf{2 0}$	-	-	-

24	3RT23 16-1AB00	24	3RT23 16-1BB40
110/120	3RT23 16-1AK60	125	3RT23 16-1BG40
220/240	3RT23 16-1AP60	220	3RT23 16-1BM40
24	3RT23 17-1AB00	24	3RT23 17-1BB40
$110 / 120$	3RT23 17-1AK60	125	3RT23 17-1BG40
220/240	3RT23 17-1AP60	220	3RT23 17-1BM40

Size SO - Terminal designations according to EN $50012-1$ NO +1 NC, identification number 11E
3RT23 27-1AP60

3RT23 36-1AP60

1) Size SOO and SO contactors are also available with spring-type terminals. Replace the 8th digit of the order no. with a "2" e.g. "3RT23 16-2AK60"
2) Minimum conductor cross-section 8 AWG

For further voltages, see page 2/49.
For coil voltage tolerance, p. 2/49
For auxiliaries and accessories,
see page 2/66-2/83.
For spare parts, see page 2/94-2/99.

For technical data, see page 2/166-2/167.
For in. circuit diagrams, see page 2/191-2/196. For dimension drawings, see page 2/216.

Application

$A C$ and DC operation (size S3)
UC operation (AC/DC)
(sizes S6 to S12)
IEC 60 947, EN 60947
(VDE 0660)

The contactors are suitable for use in any climate. They are safe from touch to DIN VDE 0106 Part 100.
3RT14/3RT24 contactors are used for switching resistive loads
(AC-1) or as contactors, for example in variable-speed drives which normally only have to carry the current.

The accessories for the SIRIUS 3RT10/3RT20 contactors can also be used here.

Selection and ordering data

3RT24 46-1A. . 0

Ratings AC-1 utilization category,					UL Ratings				Rated control supply voltage U_{s}	Order No.	Weight approx.
	IEC Ratings										
Maximum current	Rated power of three phase loads cos $\varnothing=0.95$ (@60ㅇ)				Max Current	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 460 / \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 575 / \\ & 600 \mathrm{~V} \end{aligned}$			
Amps	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \text { 690V } \\ & \text { kW } \end{aligned}$	Amps	Hp		Hp			kg

With screw connections for screwing and snapping onto
35 mm and 75 mm standard mounting rails
Size S3 • (without auxiliary contacts)

- AC operation

$\mathbf{1 4 0}$	50	86	107	148	140	15	30	40	$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ $120 \mathrm{~V}, 60 \mathrm{~Hz}$ $240 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT24 46-1AC2 0 3RT24 46-1AK6 0 3RT24 46-1AP6 0	1.8

- DC operation • DC solenoid system

$\mathbf{1 4 0} |$| | 50 | 86 | 107 | 148 | 131 | 15 | 30 | 40 | DC 24 V
 DC 48 V | 3RT24 46-1BB4 0
 3RT24 46-1BW40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- AC/DC operation ($40 \mathrm{~Hz} \ldots 60 \mathrm{~Hz}, \mathrm{DC}$) . Integrated coil circuit (varistor)
- Main conductor: bar connections
- Withdrawable coils
- Auxiliary and control conductors: screw connections

Universal Coil Selection for 3RT145 through 3RT147: Conventional Operation										
Coil Code	B3	D3	F3	M3	P3	U3	V3	R3	S3	T3
Volts AC/DC $40-60 \mathrm{~Hz}, \mathrm{DC}$	$23 . .26 \mathrm{~V}$	42 .. 48 V	110 .. 127 V	200 .. 220 V	220 .. 240 V	240 .. 277 V	380 .. 420 V	440 .. 480 V	500 .. 550 V	575 .. 600 V

Universal Coil Selection for 3RT145 through 3RT147: Solid-State			
Coil Code	B3	F3	P3
Volts AC/DC	$21 . .27 .3 \mathrm{~V}$	$96 . .127 \mathrm{~V}$	$200 . .277 \mathrm{~V}$
$40-60 \mathrm{~Hz}, \mathrm{DC}$			

Note: B3 code not available for
Remaining Lifetime Contactors.

For further coil voltages, see page 2/49. For auxiliaries and accessories, see page 2/66-2/83.
For spare parts, see page 2/94-2/99.
For technical data, see page 2/158-2/165. For int. circuit diagrams, see page 2/196.
For dimension drawings,
see page 2/211, 2/213-2/214.

Contactors for Special Applications

3RT25 contactors, 4-pole (2 NO + 2 NC) contacts for switching motors

AC and DC operation

IEC 60 947-4-1/EN 60 947-4-1
(VDE 0660, Part 102)

Design

The contactors are suitable for use in any climate. They are safe to touch according to EN 50274. The accessories for the 3 -pole SIRIUS contactors can also be used for the 4-pole designs.

Mountable auxiliary contacts

Size SOO and SO:

4 auxiliary contacts, of which up to 4 can be NC contacts.

Size S2

Up to 4 auxiliary contacts (either laterally mounted or snapped onto the top; auxiliary switch blocks to EN 50012 and EN 50 005)

Application

- Changing the polarity of hoisting gear motors
- Switching two separate loads from the same source

Selection and ordering data

Rating data							Rated control supply voltage U_{s}	AC Operation ${ }^{2)}$ Screw terminals Order No.	Rated control supply voltage U_{S}	DC Operation ${ }^{2)}$ Screw terminals Order No.
AC-2/AC-3 T_{u} : up to $60^{\circ} \mathrm{C}$			AC-1 Max resistive current		Auxiliary contacts Version					
Max Current $/ \mathrm{e}$ at 400 V	Max motor HP at 460 V, 60 Hz									
			$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$						
Amps	NO	NC	Amps		NO	NC	V AC, $50 / 60 \mathrm{~Hz}$		V DC	

For screwing and snapping onto 35 mm standard mounting rail

Size $S O 0^{3)}$ - Auxiliary switches can be retrofitted

9	5	18	16	-	-	24	3RT25 16-1AB00	24	3RT25 16-1BB40
						110/120	3RT25 16-1AK60	125	3RT25 16-1BG40
						220/240	3RT25 16-1AP60	220	3RT25 16-1BM40
12	$7.5{ }^{4)}$	22	20	-	-	24	3RT25 17-1AB00	24	3RT25 17-1BB40
						110/120	3RT25 17-1AK60	125	3RT25 17-1BG40
						220/240	3RT25 17-1AP60	220	3RT25 17-1BM40
16	$10^{4)}$	22	20	-	-	24	3RT25 18-1AB00	24	3RT25 18-1BB40
						110/120	3RT25 18-1AK60	125	3RT25 18-1BG40
						220/240	3RT25 18-1AP60	220	3RT25 18-1BM40

Size SO - Terminal designations according to EN 50012, $1 \mathrm{NO}+1$ NC, identification number 11E

110/120	3RT25 26-1AK60
220/240	3RT25 26-1AP60

24 3RT25 26-1BB40
125 3RT25 26-1BG40
220 3RT25 26-1BM40

Size S2

	V UC	
3RT25 35-1AC20	$20-33$	3RT25 35-1NB30
3RT25 35-1AK60	$83-155$	3RT25 35-1NF30
3RT25 35-1AP60	$175-280$	3RT25 35-1NP30
3RT25 36-1AC20	$20-33$	3RT25 36-1NB30
3RT25 36-1AK60	$83-155$	3RT25 36-1NF30
3RT25 36-1AP60	$175-280$	3RT25 36-1NP30

For further voltages, see page 2/49.

For auxiliaries and accessories, see page 2/66-2/83.
For spare parts, see page 2/94-2/99. For technical data, see page 2/168-2/169.
For int. circuit diagrams, see page 2/191-2/196.
For dimension drawings, see page 2/216.

1) For changing polarity; not suitable for reversing.
2) Size SOO and SO contactors are also available with spring-type terminals. Replace the 8th digit of the order no. with a " 2 " e.g. "3RT25 16-2AK60"
3) Size SOO:

Coil voltage tolerance
at $50 \mathrm{~Hz}: 0.8 \ldots 1.1 \times U_{s}$
at $60 \mathrm{~Hz}: 0.85 \ldots 1.1 \times U_{s}$
4) The NC contact can switch up to 5 HP .

3RT, 3RH Contactors for Special Applications

3RH21 contactor relays

Overview

DC operation
IEC 60947-4-1, EN 60947-4-1, for requirements according to IEC 60077-1 and IEC 60077-2.
The contactor relays are finger-safe according to EN 50274. The size S00 contactor relays have spring-type connections for all terminals.

Ambient temperature

The permissible ambient temperature for operation of the contactor relays (across the full coil operating range) is -40 to $+70^{\circ} \mathrm{C}$.

Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current carrying capacity of the conducting paths and the switching frequency.

Control and auxiliary circuits

The solenoid coils of the contactor relays have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{S}}$ and are fitted as standard with suppressor diodes to provide protection against overvoltage. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

Application

For operation in installations which are subject both to considerable variations in the control voltage and to high ambient temperatures, e. g. railway applications under extreme climatic conditions, rolling mills, etc.

Also for control supply voltages with battery buffer for longer operating times should the battery charging fail.

Contactor relays without series resistor

Control and auxiliary circuits
These contactor relays have an extended operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$; the solenoid coils are fitted with a suppressor diode. An additional series resistor is not required.
Note:
An additional auxiliary switch block cannot be mounted.
Side-by-side mounting
A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C} \leq 70^{\circ} \mathrm{C}$.

Contactor relays with series resistor

Control and auxiliary circuits
The DC solenoid systems of the contactor relays are modified (to hold-in coil) by means of a series resistor.

The size SOO contactor relays are supplied prewired with a plugon module containing the series resistor. The suppressor diode is integrated.

A 4-pole auxiliary switch block (according to EN 50005) can be fitted additionally.
Side-by-side mounting
Side-by-side mounting is permitted at ambient temperatures up to $70^{\circ} \mathrm{C}$.

Selection and ordering data

```
DC operation · DC solenoid system
Spring-type terminals
For screw and snap-on mounting onto standard mounting rail
Solenoid coil fitted with suppressor diode
```


1) It is not possible to mount an auxiliary switch block.
${ }^{2)}$ 4-pole auxiliary switch block according to EN 50005 can be mounted.

More information

Contactors	Type		3RH21 ..
Upright mounting position			
- Contactors with series resistor			Special version (on request)
- Contactors without series resistor			Special version (on request)
Ambient temperature			
- During operation		${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
- During storage		${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$
Solenoid coil operating range	DC		$0.7 \ldots 1.25 \times U_{\text {S }}$
Power consumption of the soleno	oils		For cold coil and $1.0 \times U_{\text {s }}$
- Contactors with series resistor	- Closing - Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$
- Contactors without series resistor	- Closing - Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$

All specifications and technical specifications not mentioned here are identical to those of the standard contactor relays.

3RT20 motor contactors, $7.5 \ldots 25 \mathrm{HP}$

Overview

DC operation

IEC 60947-4-1, EN 60947-4-1,
for requirements according to IEC 60077-1 and IEC 60077-2.
The contactors are finger-safe according to EN 50274. The contactors have spring-type connections as well as screw connections. The size SOO and SO contactors have spring-type connections for all terminals.

Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full coil operating range) is -40 to $+70^{\circ} \mathrm{C}$.
Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current carrying capacity of the conducting paths and the switching frequency.

Control and auxiliary circuits

The solenoid coils of the contactor relays have an extended coil operating range from 0.7 to 1.25 or $1.3 \times U_{\mathrm{S}}$ and are fitted as standard with suppressor diodes. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

Application

For operation in installations which are subject both to considerable variations in the control voltage and to high ambient temperatures, e. g. railway applications under extreme climatic conditions, rolling mills, etc.
Also for control supply voltages with battery buffer for longer operating times should the battery charging fail.

Contactors without series resistor

Control and auxiliary circuits
These contactors have an extended operating range from 0.7 to $1.25 \times U_{\text {s }}$; on size SOO the coils are fitted with suppressor diodes, on size SO with varistors. An additional series resistor is not required.

Note:
An additional auxiliary switch block cannot be mounted.
Side-by-side mounting
A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C} \leq 70^{\circ} \mathrm{C}$.

3RT20 1. contactors with series resistor
Control and auxiliary circuits
The solenoid coils of the contactors have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with suppressor diodes to provide protection against overvoltage.

The DC solenoid systems of the contactors are modified (to holding excitation) by means of a series resistor.

The size SOO contactors are supplied prewired with a plug-on module containing the series resistor. The suppressor diode is integrated. A 4-pole auxiliary switch block (according to EN 50005) can be fitted additionally.
A circuit diagram showing the terminals is labeled on each contactor. One NC of the auxiliary contacts is required for the series resistor function. The selection and ordering data shows the number of additional, unassigned auxiliary contacts. With size SOO it is possible to extend the number of auxiliary contacts.

Side-by-side mounting

At ambient temperatures up to $70^{\circ} \mathrm{C}$, the size SOO contactors and contactor relays are allowed to be mounted side by side.

3RT20 2. contactors with solid-state operating mechanism, extended operating range
Control and auxiliary circuits
The solenoid coils of the contactors have an extended coil operating range from 0.7 to $1.3 \times U_{\mathrm{S}}$ and are fitted as standard with varistors to provide protection against overvoltage.

The contactors are energized via upstream control electronics which ensure the coil operating range of 0.7 to $1.3 \times U_{\mathrm{s}}$ at an ambient temperature of $70^{\circ} \mathrm{C}$. They are supplied as complete units with integrated coil electronics. A varistor is integrated for damping opening surges in the coil.

The mounting possibilities for auxiliary switches correspond to those of the standard contactors for switching motors in the matching size (see page 2/58).

Side-by-side mounting
Side-by-side mounting is permitted at ambient temperatures up to $70^{\circ} \mathrm{C}$ for these contactor versions in size SO .

Selection and ordering data

DC operation • DC solenoid system
Spring-type terminals
For screw and snap-on mounting onto standard mounting rail Solenoid coil fitted with suppressor diode (S00)

For accessories and spare parts, see page 2/66-2/69.
${ }^{1)}$ It is not possible to mount an auxiliary switch block. A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$.
${ }^{2)}$ One 4-pole auxiliary switch block according to EN 50005 can be mounted; no distance required up to $70^{\circ} \mathrm{C}$.
${ }^{3)} \mathrm{NC}$ contact cannot be used because it is required for switching the series resistor
4) Versions available with screw terminals.

3RT, 3RH Contactors for Special Applications

3RT20 motor contactors, $7.5 \ldots 25 \mathrm{HP}$

DC operation • DC solenoid system
Spring-type terminals
For screw and snap-on mounting onto standard mounting rail Solenoid coil fitted with varistor (SO)

3RT20 contactors for switching motors
kg
Size SO
Terminal designations according to EN 50012
$1 \mathrm{NO}+1 \mathrm{NC}$, identification number $\mathbf{1 1 E}$

Without series resistor ${ }^{1)}$

16	--	5	10	15	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 25-2KB40 } \\ & \text { 3RT20 25-2KG40 } \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.600 \end{aligned}$
25	--	7.5	15	20	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 26-2KB40 } \\ & \text { 3RT20 26-2KG40 } \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.600 \end{aligned}$
32	--	10	20	25	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 27-2KB40 } \\ & \text { 3RT20 27-2KG40 } \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.600 \end{aligned}$
With solid-state operating mechanism										
16	--	5	10	15	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 25-2XB40-0LA2 } \\ & \text { 3RT20 25-2XG40-0LA2 } \end{aligned}$	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$
25	--	7.5	15	20	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 26-2XB40-0LA2 } \\ & \text { 3RT20 26-2XG40-0LA2 } \end{aligned}$	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$
32	--	10	20	25	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	3RT20 27-2XB40-0LA2 3RT20 27-2XG40-0LA2	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$
38	--	10	25	25	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	3RT20 28-2XB40-0LA2 3RT20 $28-2 X G 40-0 L A 2$	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$

For accessories and spare parts, see page 2/66-2/69.
${ }^{1)}$ It is not possible to mount an auxiliary switch block. A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$.

More information

Contactors	Type	3RT20 17	3RT20 2.	3RT20 2.-2XB40- OLA2
3RT20 2.-2XF40-				
OLA2				

[^2]
3RT26 capacitor contactors

AC operation

IEC 60947-5, DIN EN 60947-5-1, (VDE 0660 Part 200)
The contactors are suitable for use in any climate and are finger safe per DIN EN 50274.
The 3RT26 capacitor contactors are application specific variants of the size S00 to S2 SIRIUS Innovations contactors. The capacitors are precharged by means of the mounted leading NO contacts and resistors; only then do the main contacts close.

This prevents disturbances in the power system and welding of the contactors.
Only discharged capacitors are permitted to be switched on with capacitor contactors. Recommendation: use discharge chokes for parallel connection with the capacitors.

The capacitor contactors of size SOO contain either 1 NO or 1 NC in the basic unit and another unassigned NC contact in the auxiliary switch block fitted to the basic unit.

The auxiliary switch block which is snapped onto the capacitor contactor of sizes SO contains the three leading NO contacts and one standard NO contact, which is unassigned.

The capacitor contactors of size S2 can be fitted additionally with a 2-pole auxiliary switch on the right side (2 NO , 2 NC or $1 \mathrm{NO}+1 \mathrm{NC}$), type 3RH19 21-1EA.. for lateral mounting.
For the capacitor making and breaking capacity of the basic 3RT20 contactor variant, see the technical data.

Selection and ordering data AC operation

AC-6b utilization category For switching three-phase capacitors at an ambient temperature of $60^{\circ} \mathrm{C}^{2}$)					Current	Auxiliary contacts, unassigned	Rated control supply voltage $U_{s}{ }^{1 \text { 1 }}{ }^{3)}$	Screw connection	Weight approx.
UL capacitor rating at operational voltage								Order No.	
	200/208	230/240	460/480	575/600					
Phase	kvar	kvar	kvar	kvar			AC		kg

For screwing and snapping onto 35 mm standard mounting rail
3RT26 17-1AK63

- Size S00

$1 \varnothing$	3.6	4	8.3	10
$3 \varnothing$	6.2	6.9	14	17

18	$1 \mathrm{NO} / 1 \mathrm{NC}$

$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT26 17-1AB03
$20 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT26 17-1AK63
$40 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT26 17-1AP63

- Size S0

$1 \varnothing$	4.8	5.3	11	13
$3 \varnothing$	8.3	9.1	18	23
$1 \varnothing$	5.8	6.4	13	16
$3 \varnothing$	10	11	22	28

3RT2637-1NF35

$1 \varnothing$	6.6	7.3	15	18
$3 \varnothing$	11	13	25	31
$1 \varnothing$	8.6	9.5	20	24
$3 \varnothing$	15	16	33	41

1NO / 2NC	$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT26 25-1AC25	0.49
	$120 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT26 25-1AK65	
	240 V, 60 Hz	3RT26 25-1AP65	
1NO / 2NC	$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT26 26-1AC25	0.49
	$120 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT26 26-1AK65	
	240 V, 60 Hz	3RT26 26-1AP65	
1NO / 2NC	$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT26 27-1AC25	0.49
	120 V, 60 Hz	3RT26 27-1AK65	
	240 V, 60 Hz	3RT26 27-1AP65	
1NO / 2NC	$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT26 28-1AC25	0.59
	$120 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT26 28-1AK65	
	$240 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT26 28-1AP65	

- Size S2

$1 \varnothing$	14	16	33	40	72A	2 NC	23-33 VUC	3RT26 36-1NB35	1.11
$3 \varnothing$	25	27	55	69			83-155 VUC	3RT26 36-1NF35	
							175-280 VUC	3RT26 36-1NP35	
$1 \varnothing$	20	22	45	54	98A	2 NC	20-33 VUC	3RT26 37-1NB35	1.11
$3 \varnothing$	34	38	75	94			83-155 VUC	3RT26 37-1NF35	
85.	$\times \cup$						175-280 VUC	3RT26 37-1NP35	

1) Coil voltage tolerance: $0.85 \ldots 1.1 \times U_{s}$.

175-280 VUC
3RT26 37-1NP35
2) A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$

For further voltages, see page 2/49.
For auxiliaries and accessories,
see page 2/66-2/83.
For technical data, see page 2/170.
For wiring diagram, see page 2/198.
For dimension drawings, see page $2 / 217$.

3) at upper limit $=1.1 \times U_{S}$

Contactors for Special Applications

3RT20 coupling contactors (interface) for switching motors, 3 -pole

AC and DC operation

IEC 60947, EN 60947.
The 3RT20 coupling contactors for switching motors are tailored to the special requirements of working with electronic controls.

The 3RT20 1 coupling contactors cannot be expanded with auxiliary switch blocks.
Coupling contactors have a low power consumption and an extended solenoid coil operating range.

Depending on the version, the solenoid coils are supplied either without overvoltage damping or with a diode, suppressor diode or varistor connected as standard

Selection and ordering data DC operation

For screwing and snapping onto 35 mm standard mounting

 rail- Size S00

Terminal designations according to EN 50012
Rated control supply voltage $U_{\mathrm{s}}=\mathrm{DC} 24 \mathrm{~V}$, coil voltage tolerance $\mathbf{0 . 7}$ to $\mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathrm{s}}$
Power consumption of the coils 2.8 W at 24 V (no auxiliary switch blocks can be mounted)

Diode, varistor or RC element can be mounted	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & - \end{aligned}$	$\overline{1}$	$\begin{aligned} & \text { 3RT20 15-1HB41 } \\ & \text { 3RT20 15-1HB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 15-2HB41 } \\ & \text { 3RT20 15-2HB42 } \end{aligned}$	0.28/0.30
Diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	3RT20 15-1J B41 3RT20 15-1J B42	$\begin{aligned} & \text { 3RT20 15-2J B41 } \\ & \text { 3RT20 15-2J B42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 15-1KB41 } \\ & \text { 3RT20 15-1KB42 } \end{aligned}$	3RT20 15-2KB41 3RT20 15-2KB42	0.28/0.30
Diode, varistor or RC element can be mounted	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1HB41 } \\ & \text { 3RT20 16-1HB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2HB41 } \\ & \text { 3RT20 16-2HB42 } \end{aligned}$	0.28/0.30
Diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	3RT20 16-1J B41 3RT20 16-1J B42	3RT20 16-2J B41 3RT20 16-2J B42	0.28/0.30
Suppressor diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1KB41 } \\ & \text { 3RT20 16-1KB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2KB41 } \\ & \text { 3RT20 16-2KB42 } \end{aligned}$	0.28/0.30
Diode, varistor or RC element can be mounted	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 17-1HB41 } \\ & \text { 3RT20 17-1HB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2HB41 } \\ & \text { 3RT20 17-2HB42 } \end{aligned}$	0.28/0.30
Diode integrated	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	3RT20 17-1J B41 3RT20 17-1J B42	$\begin{aligned} & \text { 3RT20 17-2J B41 } \\ & \text { 3RT20 17-2J B42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	12	7.5	$\begin{gathered} 10 E \\ 01 \end{gathered}$	$\begin{aligned} & 1 \\ & - \end{aligned}$	$\overline{1}$	$\begin{aligned} & \text { 3RT20 17-1KB41 } \\ & \text { 3RT20 17-1KB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2KB41 } \\ & \text { 3RT20 17-2KB42 } \end{aligned}$	0.28/0.30

For technical data, see page 2/171.
For int. circuit diagrams, see page 2/190-2/195.
For dimension drawings, see page $2 / 209$.

1) Complete HP ratings on page 2/124

Contactors for Special Applications

3RT20 coupling contactors (interface) for switching motors

Selection and ordering data
DC operation

3RT2015-1VB41

3RT2015-2VB41

3RT2024-1KB40

Surge suppressor	Ratings Utilization category		Auxiliary contacts			Screw connection	Spring-type connection	Weight approx.
	AC-3		Ident. no.	Design		Order No.	Order No.	(screw/ spring)
	Maximum inductive current	Maximum horsepower ratings at 460 V						
	Amps	HP		NO	NC			kg

For screwing and snapping onto
35 mm standard mounting rail

- Size S00

Terminal designations according to EN 50012
Rated control supply voltage $U_{\mathrm{s}}=$ DC 24 V , coil voltage tolerance $\mathbf{0 . 8 5}$ to $\mathbf{1 . 8 5} \times \boldsymbol{U}_{\mathbf{s}}$
Power consumption of the coils 1.6 W at 24 V (no auxiliary switch blocks can be mounted)

Diode, varistor or RC element can be mounted	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 15-1MB41-0KTO } \\ & \text { 3RT20 15-1M B42-0KT0 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 15-2M B41-0KT0 } \\ & \text { 3RT20 15-2M B42-0KT0 } \end{aligned}$	0.28/0.30
Diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 15-1VB41 } \\ & \text { 3RT20 15-1VB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 15-2VB41 } \\ & \text { 3RT20 15-2VB42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 15-1SB41 } \\ & \text { 3RT20 15-1SB42 } \end{aligned}$	$\begin{array}{ll} \text { 3RT20 15-2SB41 } \\ \text { 3RT20 15-2SB42 } \end{array}$	0.28/0.30
Diode, varistor or RC element can be mounted	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1M B41-0KT0 } \\ & \text { 3RT20 16-1M B42-0KT0 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2M B41-0KTO } \\ & \text { 3RT20 16-2M B42-0KTO } \end{aligned}$	0.28/0.30
Diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1VB41 } \\ & \text { 3RT20 16-1VB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2VB41 } \\ & \text { 3RT20 16-2VB42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1SB41 } \\ & \text { 3RT20 16-1SB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2SB41 } \\ & \text { 3RT20 16-2SB42 } \end{aligned}$	0.28/0.30
Diode, varistor or RC element can be mounted	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 17-1M B41-0KTO } \\ & \text { 3RT20 17-1M B42-0KTO } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2M B41-0KTO } \\ & \text { 3RT20 17-2M B42-0KTO } \end{aligned}$	0.28/0.30
Diode integrated	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 17-1VB41 } \\ & \text { 3RT20 17-1VB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2VB41 } \\ & \text { 3RT20 17-2VB42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 17-1SB41 } \\ & \text { 3RT20 17-1SB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2SB41 } \\ & \text { 3RT20 17-2SB42 } \end{aligned}$	0.28/0.30

- Size S0

Rated control supply voltage $U_{s}=$ DC 24 V , coil voltage tolerance $\mathbf{0 . 7}$ to $\mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathbf{s}}$
Power consumption of the coils 4.5 W at 24 V no auxiliary switch blocks can be mounted.

| Varistor |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| integrated |

[^3]
Applications

"Safety" Contactors

Safety rated contactors are required to have mirrored contact construction according to IEC 60947-4-1 Annex F. A mirror contact is a Normally Closed (NC) auxiliary contact which can not be closed simultaneously with a Normally Open (NO) main contact.

In some industries, such as automotive, requirements have been established that a safety rated contactor must also have permanently mounted auxiliary contact blocks. See page 2/23 for Contactors with permanently mounted auxiliary contacts.

Siemens Contactors for "Safety" applications:

All Siemens standard 3RT, 3TF6, 40 HN \& 40PH Contactors are provided with positively driven (mirror) contacts which meet or exceed the criteria for "Safety Contactors" according to IEC 60947-4 Annex F which describes the requirements for mirror contact performance. When applying Safety Contactors in safety circuits, the NC auxiliary contacts must be wired in series or parallel and must be used as monitoring contacts with feedback to the safety evaluation device (i.e. safety relay or failsafe logic controller).

"Safety" Control Relays

Safety rated control relays are required to have positively driven contact elements according to IEC 60947-5-1 Annex L. Positively driven contact elements are a combination of NO auxiliary contacts and NC auxiliary contacts whose construction prevents them from being closed simultaneously.

In some industries, such as automotive, requirements have been established that a safety rated control relays must also have permanently mounted auxiliary contact blocks. See page 2/18 for Control Relays with permanently mounted auxiliary contacts.

Siemens Control Relays for "Safety" applications:

All SIRIUS 3RH control relays (with at least 1 NC contact) meet or exceed the criteria for "Safety Control Relays" according to IEC 60947-5-1 Annex L. This is true for the basic 3RH relay with or without an additional auxiliary contact block.

For contactors, see pages 2/8-2/9.
For auxiliaries contact blocks, see pages 2/66-2/68.
For control relays, see pages 2/50-2/52.
For auxiliaries contact blocks, see page 2/66-2/68..

Application

"Safety" Contactors

Safety rated contactors are required to have mirrored contact construction according to IEC 60947-4 Annex F. A mirror contact is a Normally Closed (NC) auxiliary contact which can not be closed simultaneously with a Normally Open (NO) main contact. In some industries, such as Automotive, the auxiliary contact blocks are required to be permanently attached to meet the requirements of "unitentional misuse" as specified in IEC 60292, paragraph 3.12. Tested by SUVA.

3RT202* -1AK64-3MAO

"Safety" Control Relays

Safety rated control relays are required to have positively driven contact elements according to IEC 60947-5-1 Annex L. Positively driven contact elements are a combination of NO auxiliary contacts and NC auxiliary contacts whose construction prevents them from being closed simultaneously. In some industries, such as automotive, the auxiliary contact blocks are required to be permanently attached to meet the requirements of "unitentional misuse" as specified in IEC 60292, paragraph 3.12. Tested by SUVA.

3RH22**-2BB40

Application

Frame Size	Max. current		Single-phase HP ratings		Three-phase HP ratings				Auxiliary contacts			Screw Terminals	Spring-Type Terminals ${ }^{1)}$
	AC3	AC1	115 V	220/240V	200V	230 V	460 V	575V					
	A	A	HP	HP	HP	HP	HP	HP	Ident. No.	NO	NC		Order No.
Contactors with permanently mounted auxiliary contact blocks													
S00	6	18	1/4	$3 / 4$	$11 / 2$	2	3	5	22E	2	2	3RT2015-10e@4-3MAO	3RT2015-20004-3MA0
	9	22	1/3	1	2	3	5	$71 / 2$	22E	2	2	3RT2016-10004-3MAO	3RT2016-20004-3MAO
	12	22	1/2	2	3	3	$71 / 2$	10	22E	2	2	3RT2017-10004-3MAO	3RT2017-20004-3MA0
	16	22	1	2	3	5	10	10	22E	2	2	3RT2018-100@4-3MAO	3RT2018-20004-3MA0
SO	9	40	1	1	2	3	5	$71 / 2$	22E	2	2	3RT2023-10004-3MAO	3RT2023-20004-3MAO
	12	40	1	2	3	3	$71 / 2$	10	22E	2	2	3RT2024-10004-3MAO	3RT2024-20004-3MAO
	17	40	1	3	5	5	10	15	22E	2	2	3RT2025-100@4-3MAO	3RT2025-20004-3MA0
	25	40	2	3	$71 / 2$	$71 / 2$	15	20	22E	2	2	3RT2026-100७4-3MAO	3RT2026-20004-3MAO
	32	50	2	5	10	10	20	25	22E	2	2	3RT2027-10004-3MAO	3RT2027-20004-3MAO
	38	50	3	5	10	10	25	25	22E	2	2	3RT2028-10004-3MAO	3RT2028-20004-3MA0
S2	40	60	3	$71 / 2$	10	15	30	40	22E	2	2	3RT2035-100७4-3MAO	3RT2035-30004-3MA0
	50	70	3	10	15	15	40	50	22E	2	2	3RT2036-10004-3MAO	3RT2036-30004-3MA0
	65	80	5	10	20	20	50	50	22E	2	2	3RT2037-100७4-3MAO	3RT2037-30004-3MA0
	$80^{4)}$	90	5	15	20	25	50	60	22E	2	2	3RT2038-10004-3MAO	3RT2038-30004-3MA0
S3	80	120	$71 / 2$	15	25	30	60	75	22E	2	2	3RT2045-10004-3MAO	3RT2045-30004-3MA0
	95	120	10	20	30	30	75	100	22E	2	2	3RT2046-10004-3MAO	3RT2046-30004-3MAO
S6	150	185	--	30	50	60	125	150	22E	2	2	3RT1055-60006-3PAO	-
	185	215	--	30	60	75	150	200	22E	2	2	3RT1056-60006-3PAO	-
S10	225	275	--	--	60	75	150	200	22E	2	2	3RT1064-60**6-3PAO	-
	265	330	--	--	75	100	200	250	22E	2	2	3RT1065-60006-3PAO	-
	300	330	--	--	100	125	250	300	22E	2	2	3RT1066-60006-3PAO	-

Control circuit coil options: Replace $\mathbf{C O}$ with the desired code

Frame Size S00-S0	-0¢	Frame Size S2	$\bullet \bullet \bullet$	Frame Size S3	-0.	Frame Size S6-S10	-00
120 V AC	AK6	120 V AC	AK6	120 V AC **	AK6	$23 . .26 \mathrm{~V} \mathrm{UC}^{*}$, conventional coil	AB3
120 V AC, integrated varistor	CK6	120 V AC w/ Varistor	CK6	24 V DC	BB4	21-27 V UC*, solid state coil	NB3
230 V AC	APO	24 V DC w/Varistor	KB4	24 V DC w/diode assy	QB4	w/ PLC interface	
24 V DC	BB4					110 ... 127 V UC*, conventional coil	AF3
24 V DC, integrated varistor	DB4			**Available in 3RT1046 only		,	
24 V DC, integrated diode assy.	FB4					AC voltage, 40 to 60 Hz .	

Frame Size	Max. current at $240 \mathrm{~V}^{2)}$	Rated control supply voltage U_{s}	Auxiliary contacts			Screw Terminals ${ }^{3)}$	Spring Terminals ${ }^{3)}$
	A		Indent.	No. NO	NC	Order No.	Order No.
Control relays with permanently mounted auxiliary contact blocks							
S00-S00	10	$110 \mathrm{~V} \mathrm{AC} ,50 \mathrm{~Hz} / 120 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~Hz}$	44E	4	4	3RH2244-1AK60	3RH2244-2AK60
	10	24 V DC	44E	4	4	3RH2244-1BB40	3RH2244-2BB40
	10	$110 \mathrm{~V} \mathrm{AC} ,50 \mathrm{~Hz} / 120 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~Hz}$	62E	6	2	3RH2262-1AK60	3RH2262-2AK60
	10	24 V DC	62E	6	2	3RH2262-1BB40	3RH2262-2BB40

For other voltages see page 2/49. For accessories, see pages 2/73-2/78 For spare parts, see pages 2/94-2/97.
For technical data, see pages 2/121-2/142.
For description, see pages 2/104-2/105.

For int. circuit diagrams, see page 2/190-2/196. For dimension drawings, see pages 2/209-2/215. 1) All terminals are spring loaded on frame size SOO and SO . Only the coil and auxiliary contact terminals are spring loaded on frame sizes S2 \& S3.
2) For AC-15/AC-14, max current for front mounted auxiliary contacts $=6 \mathrm{~A}$. 3) The 3RH22 control relays are also available with ring lug terminals. Replace the 8th digit of the order number with a " 4 ", e. g. 3RH2244-4AK60
4) Max UL FLA $=65 \mathrm{~A}$ at 460 V

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

Introduction

Overview

The function modules for mounting onto contactors enable the assembly of starters and contactor assemblies for direct-on-line, reversing and wye-delta starting without any additional, complicated wiring of the individual components. They include the key control functions required for the particular starter, e. g. timing and interlocking, and can be connected to the control system by either parallel wiring or through IO-Link or AS-Interface.

| Version | SIRIUS function modules
 for parallel wiring | SIRIUS function modules
 For IO-Link |
| :--- | :--- | :--- | :--- | :--- |
| For direct-on-line starting relays: ON or OFF-delay with | | |
| semiconductor output | | |
| With screw or spring-type terminals | | |

[^4][^5]
Overview

Simply by being plugged in place, the SIRIUS function modules enable different functionalities required for the assembly of starters to be realized in the starter. The function modules and wiring kits help to reduce the wiring work within the starter practically to zero.

SIRIUS function modules for direct-on-line starting

The electronic timing relays which can be mounted onto the contactor are available in these versions:

- Sizes SOO and SO for applications in the range from 24 to 240 V AC/DC (wide voltage range)
- Size S2 for applications in either the range from 24 to 90 V AC/DC or 90 to 240 V AC/DC

Both the electrical and mechanical connection are made by simple snapping on and locking.
A protection circuit (varistor) is integrated in each module.
The electronic timing relay with semiconductor output uses two contact legs to actuate the contactor underneath by means of a semiconductor after the set time t has elapsed.
The switching state feedback is performed by a mechanical switching state indicator (plunger). In addition, the auxiliary switches in the contactors are freely accessible and can be used for feedbacks to the control system or for signal lamps.
A sealable cover is available to protect against careless adjustment of the set times.

SIRIUS function modules for reversing starting

The wiring kits for reversing starters enable the cost-effective assembly of contactor assemblies. They can be used for all applications with reversing duty up to 50 HP .
For a detailed description see page 2/37.

SIRIUS function modules for wye-delta starting

Both interlocking and timing functions are required for the assembly of wye-delta starters. With the function modules for wye-delta starting and the matching link modules for the main circuit, these starters can be assembled easily and with absolutely no errors.

The entire sequence in the control circuit is integrated in the snap-on modules. This covers:

- An adjustable wye time t from 0.5 to 60 s
- A non-adjustable dead interval of 50 ms
- Electrical contacting to the contactors by means of coil pick-off (contact legs)
- Feedback of the switching state at the contactor using a mechanical switch position indicator (plunger)
- Electrical interlocking between the contactors

These modules do not require their own terminals and can therefore be used for contactors with both screw and spring-type terminals in the S00, S0 and S2. To start the wye-delta starter, only the first of the three contactors (line contactor) is actuated. All other functions then take place inside the individual modules.

This also offers advantages if the timing function was previously implemented in a controller, as it again results in a significant reduction in the number of PLC outputs, the programming work and the wiring outlay.
The kits for the main circuit include the mechanical interlock, the star jumper, the wiring modules at the top and at the bottom, and the required connecting clips.
A protection circuit (varistor) is integrated in the basic module.

Application

The snap-on function modules for direct-on-line starting are used above all for realizing timing functions independently of the control system.
With the OFF-delay variant of the timing relay it is possible for example for the fan motor for cooling a main drive to be switched off with a delay so that sufficient cooling after operation is guaranteed even if the plant and its control system have already been switched off.
The ON-delay timing relays enable for example the time-delayed starting of several drives so that the summation starting current does not rise too high, which could result in voltage failure.
The function modules for wye-delta starting are mostly used where current-limiting measures for starting a drive are required, e.g. for large fans and ventilators, and a high level of availability is essential at the same time. This technology has been used with success for several decades and has the additional advantage of requiring relatively little know-how. Through the use of function modules, the assembly work with simple standard components is even easier and error-free.

Benefits

The use of snap-on function modules for direct-on-line starting (timing relays) results in the following advantages:

- Reduction of control current wiring
- Prevention of wiring errors
- Reduction of testing costs
- Implementation of timing functions independently of the control system
- Less space required in the control cabinet compared to a separate timing relay
- No additive protection circuit required (varistor integrated)

The use of function modules for wye-delta starting results in the following advantages:

- Operation solely through the line contactor A1/A2 - no further wiring needed
- Reduction of the control current wiring inside the contactor assembly and to the higher-level control system where applicable
- Prevention of wiring errors
- Reduction of testing costs
- Integrated electrical interlocking saves costs and prevents errors
- Less space needed in the control cabinet compared to using a separate timing relay
- Adjustable starting in star mode from 0.5 to 60 s
- Independent of the contactor's control supply voltage (24 to 240 V AC/DC)
- Varistor integrated - no additive protection circuit required
- No control current wiring thanks to plug-in technology and connecting cables
- Mechanically coded assembly enables easy configuration and reliable wiring
- Fewer versions - one module kit for screw and spring-type connection and for the two sizes SOO to S2
- Mechanical interlocking (with wiring kit for the main circuit)

Contactors for Switching Motors

3RT2 contactors，3－pole－Communication Contactors

Selection and ordering data

－Ideal for diagnostics to the automation controller
－Quickly locate and rectify faults
－Configuration available in Step 7 and TIA Portal
－Easy engineering of parameters
－For DOL，reversing and wye delta starters up to 50 HP
－Manual starter operation with optional operator panel
－Reduces control wiring in the panel
－Available for 24VDC control systems
－Easily snap on IO－Link or AS－Interface modules onto contactors

	Frame Size	Amp Ratings		Single－phaseHP ratings		Three－phase HP ratings				Auxiliary contacts		Screw Terminals 24 V DC coil Order No．	Spring－type Terminals 1） 24 V DC coil Order No．	Weight approx． kg
		AC3	AC1	115 V	230 V	208V	230 V	460 V	575 V	NO	NC			
3RT 3－pole Contactors														
	S00	7	18	0.25	0.75	1.5	2	3	5	1	0	3RT2015－1BB41－0CC0	3RT2015－2BB41－0CC0	0.28
										0	1	3RT2015－1BB42－0CC0	3RT2015－2BB42－0CC0	
			22	0.33	1	2		5	7.5	1	0	3RT2016－1BB41－0CC0	3RT2016－2BB41－0CC0	
		9								0	1	3RT2016－1BB42－0CC0	3RT2016－2BB42－0CC0	
		12	22	0.5	2	3		7.5	10	1	0	3RT2017－1BB41－0CC0	3RT2017－2BB41－0CC0	
										0	1	3RT2017－1BB42－0CC0	3RT2017－2BB42－0CC0	
		16	22		2	3		10	10	1	0	3RT2018－1BB41－0CC0	3RT2018－2BB41－0CCO	
										0	1	3RT2018－1BB42－0CC0	3RT2018－2BB42－0CC0	
3RT2028－18B40－OCCO	S0	9	40	1	1	2	3	5	7.5	1	1	3RT2023－1BB40－0CC0	3RT2024－2BB40－0CC0	0.58
		12	40	1	2	3	3	7.5	10	1	1	3RT2024－1BB40－0CC0	3RT2024－2BB40－0CC0	
		16	40	1	3	5	5	10	15	1	1	3RT2025－1BB40－0CC0	3RT2025－2BB40－0CC0	
		25	40	2	3	7.5	7.5	15	20	1	1	3RT2026－1BB40－0CC0	3RT2026－2BB40－0CC0	
		32	50	2	5	10	10	20	25	1	1	3RT2027－1BB40－0CC0	3RT2027－2BB40－0CC0	
		38	50	3	5	10	10	25	25	1	1	3RT2028－1BB40－0CC0	3RT2028－2BB40－0CC0	
3RT2038－1NB30－OCCO	S2	40	60	3	7.5	10	15	30	40	1	1	3RT2035－1NB30－0CCO	3RT2035－3NB30－0CC0	1.122
		50	70	3	10	15	15	40	50	1	1	3RT2036－1NB30－0CCO	3RT2036－3NB30－0CC0	
		65	80	5	10	20	20	50	50	1	1	3RT2037－1NB30－0CCO	3RT2037－3NB30－0CCO	
		80	90	5	15	20	25	50	60	1	1	3RT2038－1NB30－0CCO	3RT2038－3NB30－0CC0	

1）All terminals are spring loaded in sizes $S 00$ and $S 0$ ．
For size S2，only the coil and aux contacts are spring loaded．
Communication capable contactors are ideal for starter feedback to the automation level． IO－Link starters in the cabinet save considerable wiring effort．AS－Interface is best suited for distributed systems．

For reversing contactors with communication capability，see pages 2／39－2／43
For accessories，see page $2 / 27,2 / 30,2 / 34$ ．
For technical data，see page $2 / 31,2 / 35,2 / 36$
For description，see page 2／24．
For further information on IO－Link and AS－Interface，see page 2／28－2／29 and 2／32－2／33．

Selection and ordering data

3RA28 16-0EW20

For	Rated control supply	Time setting range t		
contactors	voltage $U_{s}^{1)}$		\quad	Tim
:---				

Type V s

3RA29 13-2AA1
Screw terminals

Assembly kits for reversing starting
Assembly kits for making 3-pole contactor assemblies
The assembly kit contains:
Mechanical interlock;
2 connecting clips for 2 contactors,
wiring modules on the top and bottom

3RT20 1.	•For size S00	3RA29 13-2AA1	0.046	3RA29 13-2AA2	
3RT20 2.	\bullet For size SO	3RA29 23-2AA1	0.089	3RA29 23-2AA2	0.070
3RT20 3.	For size S2 (w/o mechanical interlock, see pg. 2/43)	3RA29 33-2AA1	0.159	3RA29 33-2AA2	

Assembly kits for wye-delta starting
Assembly kits for making 3-pole contactor assemblies
The assembly kit contains:
Mechanical interlock,
4 connecting clips for 3 contactors;
star jumper,
wiring modules on the top and bottom

3RT20 1.	- For size SOO	3RA29 13-2BB1	0.051	3RA29 13-2BB2	0.080
3RT20 2.	- For size S0 (only main circuit for version with spring-type terminals)	3RA29 23-2BB1	0.099	3RA29 23-2BB2	0.133
3RT20 3.	- For size S2 (only main circuit for version with spring-type terminals)	3RA29 33-2BB1	0.242	3RA29 33-2BB2	0.182

Function modules for wye-delta starting
The electrical connection between the function
module and the contactor assembly is estab-
lished automatically by snapping on and plug-
ging in the connecting cables.
Wye-delta function (varistor integrated)

3RT20 1 3RT20 2. 3RT20 3.	$24 . .240$ AC/DC	$\begin{aligned} & 0.5 \ldots 60 \\ & (10,30,60 \\ & \text { selectable) } \end{aligned}$	3RA28 16-0EW20	0.170	3RA28 16-0EW20	0.170
Accessories						
	Sealable covers for 3RA27, 3RA28, 3RA29		3RA29 10-0	0.002	3RA29 10-0	0.002

1) AC voltage values apply for 50 Hz and 60 Hz .
${ }^{2)}$ Assembly kits in sizes $S 0$ and S2 are supplied with wiring modules for the main circuit only.

Function	Function charts
	$\square \square$ Timing relay energized
	\square Contact closed
	\square Contact open
2 NO contacts (internally connected)	
Wye-delta function	3RA28 16-0EW20
(varistor integrated)	
- 1 NO contact, delayed	Y $\square \square \square \square \square^{\text {® }}$
NO contact, instantaneous	$\Delta \square_{\square-1 \rightarrow 50 \mathrm{~ms}}{ }^{\text {a }}$

Note:
When the function modules are used, no other auxiliary switches are allowed to be mounted on the basic units.

Contactors and Contactor Assemblies

SIRIUS function modules for IO-Link

Overview

The SIRIUS function modules for IO-Link enable the assembly of starters and contactor assemblies for direct-on-line, reversing and wye-delta starting without any additional, complicated wiring of the individual components. They include the key control functions required for the particular starter, e. g. timing and interlocking. The electrical and mechanical connection to the contactor is established by snapping on and locking. An additive protection circuit for the individual contactors can be dispensed with completely, and feedback from the contactor contacts is performed with Hall sensors which provide reliable feedback concerning the switching state even under extremely dusty conditions. The starters are connected to the higher-level
control system through IO-Link, with the possibility of connecting up to four starters as a group to one port of the IO-Link master.
Through this type of connection to the control system, a maximum of wiring is saved. The following essential signals are transmitted:

- Availability of the starter in response to an indirect inquiry from the motor starter protector
- Starter operation
- Feedback concerning the switching state of the starter

Signal transmission through IO-Link

The inquiry from the motor starter protector does not take place through additional wiring between the auxiliary switch and the module but by means of a voltage inquiry at the contactor input.

This requires the use of communication versions of the contactors with communication interface (see page 2/26).

[^6]
Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for IO-Link

By grouping up to four starters it is possible to connect up to 16 starters to one master of the ET200S. All the signals of the individual controls are made available through only 3 individual wires per starter group directly in the process image. If the
potential at the master of the ET200S is the same as that of the controls, a further reduction in wiring is possible by providing the control supply voltage to the contactors by jumpering the corresponding communication wires.

Group formation with IO-Link

In case of a malfunction, the corresponding error signals are also sent directly to the PLC in acyclic mode. This is in addition to transmission of the switching signals and status signals.
Possible error signals:

- Device defect
- No main voltage (motor starter protector tripped)
- No control supply voltage
- Limit position on the right / on the left
- Manual mode
- Process image fault

Application

The use of SIRIUS function modules with IO-Link is recommended above all in machines and plants in which there are several motor starters in one control cabinet. Using IO-Link, the connection of these starters to the automation level is easy, quick and error-free. And with IO modules no longer needed, the width of the ET200S becomes far smaller.

This easy integration of the starters in the TIA world does not limit the flexibility in the field in the least. For example, all function modules have special terminals in order to enable direct local disconnection. These terminals can be connected for example to a position switch. The input interrupts the voltage supply to the contactor coil directly, i. e. without going through the PLC. These terminals are jumpered in the as-delivered state.
Local manual operation of the complete starter group is also straight-forward using a operator panel. The latter is easily connected to the last starter and can be built into the front panel of the control cabinet if required. This offers significant advantages particularly for commissioning.

Benefits

- Reduction of the control current wiring to no more than one cable having three conductors for four starters
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Integration in TIA for clear diagnostics if a fault occurs
- Fewer IO modules saves space in the control cabinet
- All essential timing and interlocking functions for reversing duty and wye-delta starting are integrated
- No additional control circuit required

Further information on the application and benefits of the SIRIUS
function modules for connection to the control system through
IOLink can be found in Chapter 14 "Industrial Communication".

Selection and ordering data

1) For prewired contactor assemblies for reversing starting with voltage tap-off, see pages $2 / 40$ and $2 / 43$. When these contactor assemblies are used, the assembly kit for the wiring is already integrated.
2) Version in sizes S0 and S2 with spring-type terminals:

Only the wiring modules for the main circuit are included.
No connectors are included for the auxiliary and control circuit.

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for IO-Link

1) For complete contactor assemblies for wye-delta starting including function modules, see pages $2 / 47$ and $2 / 48$.
2) When using the function modules for wye-delta starting, the wiring modules for the auxiliary current are not required.
3) Version in sizes $S 0$ and $S 2$ with spring-type terminals:

Only the wiring modules for the main circuit are included.
No connectors are included for the auxiliary and control circuit.

Matching contactors with communications interface required;
see pages 2/26.

[^7]
Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for AS-Interface

Overview

The SIRIUS function modules for AS-Interface enable the assembly of starters and contactor assemblies for direct-on-line, reversing and wye-delta starting without any additional, complicated wiring of the individual components. They include the key control functions required for the particular starter, e. g. timing and interlocking. The electrical and mechanical connection to the contactor is established by snapping on and locking. An additional control circuit for the individual contactors can be eliminated with completely because a varistor is integrated in the modules. Feedback from the contactor contacts is performed with Hall sensors which provide reliable feedback concerning the switching state even under extremely dusty conditions. Connection of the starters to the higher-level control system takes place through AS-Interface with the Specification V2.1 in A/B technology. As the result, up to 62 starters can be con-
nected to one master and the address is entered in normal manner with an addressing unit.
Through the AS-Interface connection to the control system, a maximum of wiring is saved. The wiring outlay is reduced to the control supply voltage and the two individual wires for AS-Interface.
The following essential signals are transmitted:

- Availability of the starter in response to an indirect inquiry from the motor starter protector
- Starter operation
- Feedback concerning the switching state of the starter

1

AS-Interface

Signal transmission through AS-Interface
The inquiry from the motor starter protector does not take place through additional wiring between the auxiliary switch and the module but by means of a voltage inquiry at the contactor input.

This requires use of communication versions of the contactors with communication interface (see page 2/26).

[^8]
Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for AS-Interface

\square AS-Interface

Topology with AS-Interface

This easy integration of the starters in the TIA world does not limit the flexibility in the field in the least. For example, all function modules have special terminals in order to enable direct local disconnection. These terminals can be connected for example,

Application

The use of SIRIUS function modules with AS-Interface is recommended above all in machines and plants requiring easy connection of several different sensors and actuators both inside and outside the control cabinet to the higher-level control system. And with IO modules no longer needed, the width of the PLC is far smaller.

to a position switch. The input interrupts the voltage supply to the contactor coil directly, i. e. without going through the PLC. These terminals are jumpered in the as-delivered state.

Benefits

- Reduction of control current wiring
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Elimination of IO modules saves space in the control cabinet
- All essential timing and interlocking functions for reversing duty and wye-delta starting are integrated
- No additional control circuit required

SIRIUS function modules for AS-Interface

Selection and ordering data

Matching contactors with communications interface required; see page 2/26.

For matching AS-Interface masters, routers and power supply units, see Chapter 14 "Industrial Communication".

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for AS-Interface

For manuals, see
http://support.automation.siemens.com/WW/view/en/39318922.

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules

Technical specifications

Design

Complete equipment assemblies
The fully wired reversing contactor assemblies are suitable for use in any climate. They are safe from touch to EN 50274.
The contactor assemblies each consist of two contactors with identical ratings. The contactors are mechanically and electrically interlocked (NC contact interlock). The main and control circuits are wired according to the circuit diagrams on page 2/199.

For motor protection, either 3RU2 or 3RB3 overload relays for direct mounting or individual mounting or thermistor motor protection tripping units must be ordered separately.

Components for customer assembly
Installation kits for all sizes are available for customer assembly of reversing contactor assemblies.
Contactors, overload relays, the mechanical interlock and - for momentary-contact operation auxiliary switch blocks for latching must be ordered separately

The following points should be noted:

Size S00

- For maintained-contact operation: use contactors with an NC contact in the basic unit for the electrical interlock.
- For momentary-contact operation: use contactors with an NC contact in the basic unit for the electrical interlock; in addition, an auxiliary switch block with at least one NO contact for latching is required per contactor.
Size SO and S2
Contactors come equipped with integrated 1 NO and 1 NC aux contacts in each contactor. Both electrical interlocking and latching are satisfied with the integrated auxiliaries. Mechanical interlocking is required in either size and comes in the assembly kits except for size S2 where you need to order 3RA2934-2B interlock separately.
Sizes S3
- For maintained-contact operation:
the contactors have no auxiliary contact in the basic unit; NC contacts for the electrical interlock are therefore integrated in the mechanical interlock that can be mounted on the side of each contactor (one contact each for the left and right-hand contactors).
- For momentary-contact operation:
the electrical interlock is the same as for maintained-contact operation; in addition, an auxiliary switch with one NO contact for latching is required per contactor. This contact can be snapped onto the top of the contactors. Alternatively, auxiliary switch blocks mounted on the side can be used; they must be fitted onto the outside of each contactor.

If the front-mounted mechanical interlock is used for size S2 to S3 contactors, two location holes for single-pole auxiliary switch blocks are provided on the front of each S2 contactor while three additional, single-pole auxiliary switch blocks can be snapped onto S3 contactors. The maximum auxiliary switch complements percontactorstatedonpage2/12 must not be exceeded.

When size S3 contactors are combined with a frontmounted mechanical interlock, the 3RA19 33-2B and 3RA19 43-2B installation kits cannot be used.

Sizes S6 to S12
To insert the mechanical interlock, the prestamped location holes positioned opposite on the contactor must be knocked out. The internal auxiliary contacts (up to $1 \mathrm{NO}+1 \mathrm{NC}$ per contactor) can be used for the electrical interlock and latching. The mechanical interlock itself does not contain any auxiliary contacts. Additional auxiliary contacts can be used on the outside and front (on the front in the case of 3RT10) of the reversing contactor assembly.

Principle of operation

The operating times of the individual 3RT10/20 contactors are rated in such a way that no overlapping of the contact making and the arcing time between two contactors can occur on reversing, providing they are interlocked via their auxiliary switches (NC contact interlock) and the operating mechanisms. An additional dead interval of 50 ms is necessary on reversing if the individual contactors are used at voltages $>500 \mathrm{~V}$. The operating times of the individual contactors are not affected by the mechanical interlock.

Surge suppression

Sizes S00 to S3
All contactor assemblies can be fitted with RC elements or varistors for damping opening surges in the coil.
As with the individual contactors, the surge suppressors can either be plugged onto the front of the contactors (SOO) or fitted onto the coil terminals on the top or bottom (S3). For sizes S0 and S2, the surge protection fits behind the hinged door on the front of the contactor and does not take up any additional space.
Sizes S6 to S12
The contactors are fitted with varistors as standard.

3RA13 and 3RA23 reversing contactor assemblies

Overview

The 3RA13 and 3RA23 reversing contactor assemblies can be ordered as follows:
Sizes S00 to S3

- Fully wired and tested, open type, with mechanical and electrical interlock. 1)

$$
\underline{s i s}
$$

 S

 S}- As components for customer assembly.
There is also a range of accessories (auxiliary switch blocks, surge suppressors, etc.) that must be ordered separately.

For overload relays for motor protection, see section 3.

The 3RA23 and 3RA13 contactor assemblies have screw connections and are available for screwing or snapping onto 35 mm standard mounting rails. The 3RA23 contactor assemblies are also available with spring-type terminals.

The © and (1) approvals only apply to the complete contactor assemblies and not to the components for customer assembly.

$A C$ and DC operation

See pages 2/40 through 2/44 for complete part numbers.

Maximum horsepower rating at 460 V AC	AC-3 maximum inductive current	Size	Order No. Contactor					
	A			Mechanical interlock ${ }^{2}$)	Mechanical interlock ${ }^{3}$)	Mechanical interlock ${ }^{4}$)	Installation kit	Fully wired and tested contactor assembly
$\begin{gathered} 3 \\ 5 \\ 7.5 \\ 10 \\ \hline \end{gathered}$	$\begin{array}{r} 7 \\ 9 \\ 12 \\ 16 \end{array}$	S00	3RT20 15 3RT20 16 3RT20 17 3RT20 18	3RA29 13-2AA1 ${ }^{6}$) -		-	3RA29 13-2AA1 ${ }^{6}$)	$\begin{aligned} & \text { 3RA23 } 15-8 \text { XB30- ... } \\ & \text { 3RA23 16-8XB30- ... } \\ & \text { 3RA23 17-8XB30- ... } \\ & \text { 3RA23 } 18-8 \text { XB30- .. } \end{aligned}$
$\begin{aligned} & 7.5 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 25 \\ & 32 \\ & 38 \\ & \hline \end{aligned}$	So	3RT20 24 3RT20 25 3RT20 26 3RT20 27 3RT20 28	3RA29 23-2AA1 ${ }^{6}$	${ }^{6}$) -	-	3RA29 23-2AA1 ${ }^{\text {¢ }}$)	3RA23 24-8XB30- ... 3RA23 25-8XB30- ... 3RA23 26-8XB30- ... 3RA23 27-8XB30- ... 3RA23 28-8XB30- ...
$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 65 \\ & 80 \\ & \hline \end{aligned}$	S2	$\begin{aligned} & \text { 3RT20 } 35 \\ & \text { 3RT20 } 36 \\ & \text { 3RTT0 } 37 \\ & \text { 3RT20 } 38 \end{aligned}$	3RA29 34-2B	-	-	3RA29 33-2AA1 ${ }^{7}$)	$\begin{aligned} & \text { 3RA23 } 35-8 \text { XB30-1.. } \\ & \text { 3RA23 36-8XB30-1.. } \\ & \text { 3RA23 37-8XB30-1.. } \\ & \text { 3RA23 38-8XB30-1.. } \end{aligned}$
$\begin{aligned} & 50 \\ & 60 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 80 \\ & 95 \\ & \hline \end{aligned}$	S3	3RT20 44 3RT20 45 3RT20 46	3RA19 34-2B	-	-	3RA19 43-2A ${ }^{\text {8 }}$)	$\begin{aligned} & \text { 3RA13 44-8XB30-1.. } \\ & \text { 3RA13 45-8XB30-1. } \\ & \text { 3RA13 46-8XB30-1.. } \end{aligned}$
$\begin{aligned} & \hline 100 \\ & 125 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \\ & 150 \\ & 185 \end{aligned}$	S6	3RT10 54 3RT10 55 3RT10 56	-	-	3RA19 54-2A	3RA19 53-2A ${ }^{\text {a }}$)	-
$\begin{array}{r} 150 \\ 200 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 265 \\ & 300 \\ & \hline \end{aligned}$	S10	3RT10 64 3RT10 65 3RT10 66	-	-	3RA19 54-2A	3RA19 63-2A 9)	-
$\begin{array}{r} 300 \\ 400 \end{array}$	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	S12	$\begin{aligned} & \text { 3RT10 } 75 \\ & \text { 3RT10 } 76 \end{aligned}$	-	-	3RA19 54-2A	3RA19 73-2A ${ }^{\text {a }}$)	-

For accessories, see page 2/80-2/83.
For circuit diagrams, see page 2/199.
For dimension drawings, see page 2/218-2/220.

1) An additional dead interval of 50 ms is necessary on reversing at voltages $>500 \mathrm{~V}$.
2) Laterally mountable with one auxiliary contact (except no auxiliary contact in S2)
3) For front mounting with one auxiliary contact.
4) Laterally mountable without auxiliary contact.
5) Interlock must be ordered with installation kit.
6) Installation kit contains: mechanical interlock; 2 connecting clips for 2 contactors; wiring connectors on the top and bottom.
7) Installation kit contains: 2 connecting clips for 2 contactors; wiring connectors on the top and bottom and the mechanical interlock.
8) Installation kit contains: 2 connecting clips for 2 contactors; wiring connectors on the top and bottom.
9) Installation kit contains: wiring connector on the top and bottom.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested reversing contactor assemblies • Size SOO - Up to 10 HP
The figure shows the version with screw terminals

Mountable accessories (optional)

To be ordered separately Type
(6) Auxiliary switch block, front ${ }^{11}$

3RH2911
(7) Auxiliary switch block, lateral
(8) Surge suppressors
(9) Solder pin adapters 3RH2921
(a) the control system

Complete reversing contactor assembly			
Individual parts		Type	
		Q11	Q12
(1)(2)	Contactors, 3 kW	3RT2015	3RT2015
(1)(2)	Contactors, 4 kW	3RT2016	3RT2016
(1)2)	Contactors, 5.5 kW	3 T2017	3RT2017
(1) 2	Contactors, 7.5 kW	3RT2018	3RT2018
(3) \ldots (5)	Assembly kit comprising:	3RA2913-2AA1	
(3) Mechanical interlock ${ }^{2}$			
(4) Two connecting clips for two contactors ${ }^{2}$)			
(5) Wiring modules on the top and bottom for connecting the main current circuits, electrical interlock included ${ }^{3}$), interruptible (NC contact interlock)			

1) Auxiliary switch block according to EN 50005 must be used.
2) The parts (3) and (4) can only be ordered together as 3RA2912-2H mechanical connectors.
3) 3RT201. contactors with one NC contact in the basic unit are required for the electrical interlock. An additional NO contact is required for momen-tary-contact operation.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested contactor assemblies ${ }^{2}$. Size S00 • Up to 10 HP

For other voltages see page 2/49
For accessories and spare parts, see page 2/66-2/83.

1) For coil operating range, see page $2 / 49$.
2) The contactors integrated in the contactor assemblies have no unassigned auxiliary contacts.
3) For use with 3RA27 and 3RA28 communication modules.

See pages 2/24 to 2/31.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested reversing contactor assemblies • Size SO - Up to 25 HP
The figure shows the version with screw terminals
Mountable accessories (optional)
To be ordered separately

(6) Auxiliary switch block, front	3RH2911
(7) Auxiliary switch block, lateral	3RH2921
(8) Surge suppressors	3RT2926
(9) Function module for connection to	
the control system	

3RA271.-1BA00

1) The parts (3) and (4) can only be ordered together as 3RA2922-2H
meechanical connectors.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested contactor assemblies • Size SO－up to 25 HP

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Selection and ordering data

1) Max UL FLA $=65 \mathrm{~A}$ at 460 V

Fully wired and tested reversing contactor assemblies. Size S2. Up to 50 HP
The figure shows the version with screw terminals

Mountable accessories (optional)

| To be ordered separately | Type |
| :--- | :--- | :--- |
| (6) Auxiliary switch block, front | 3RH2911 |
| (7) Auxiliary switch block, lateral | 3RH2921 |
| (8) Surge suppressors | 3RT2936 |
| (9) Function module for connection to | 3RA271.-1BA00 |
| the control system | |

For further voltages, see page 2/49. For overview, see page 2/37-2/38. For accessories, see page 2/66-2/83. For circuit diagrams, see page 2/200. For dimension drawings, see page $2 / 218$.

Coil voltage tolerance: at $50 \mathrm{~Hz}: 0.8$ to $1.1 \times \mathrm{Us}$ at $60 \mathrm{~Hz}: 0.85$ to $1.1 \times \mathrm{Us}$ at AC/DC: 0.8 to $1.1 \times \mathrm{Us}$

Complete reversing contactor assembly
Individual
(1)(2)
(1) 2
(1) 2
(1) 2
(3) 4

Type Q11

Contactors, 18.5 kW
Contactors, 22 kW Contactors, 30 kW Contactors, 37 kW
Assembly kit
comprising:

3RT2036 3RT2036
$3 R T 2037$ 3RT2037
3RT2038 3RT2038
3RA2933-2AA1
(3) Two connectors for two contactors
(4) Wiring modules on the top and bottom for connecting the main and auxiliary current circuits, electrical interlock included (NC contact interlock)
Mechanical interlock
(must be ordered separately)

Selection and ordering data

AC data Amp ratings AC2/AC3	UL data Single-phase HP ratings		Three-phase HP ratings				Rated control supply voltage ${ }^{1)}$	Auxiliary contacts		Fully wired and tested contactor assembly Order No.	Weight approx.kg
	115 V	230 V	200 V	230 V	460 V	575 V					
A	HP	HP	HP	HP	HP	HP		NO	NC		
AC operation											
80	5	15	20	25	50	60	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	3RA2345-8XB30-1AC2 3RA2345-8XB30-1AK6 3RA2345-8XB30-1AP6	3.9
95	7.5	15	25	30	60	75	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	3RA2346-8XB30-1AC2 3RA2346-8XB30-1AK6 3RA2346-8XB30-1AP6	3.9
110	10	20	30	30	75	100	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RA2347-8XB30-1AC2 } \\ & \text { 3RA2347-8XB30-1AK6 } \\ & \text { 3RA2347-8XB30-1AP6 } \end{aligned}$	3.9
DC operation											
80	5	15	20	25	50	60	24 V DC	0	2	3RA2345-8XB30-1BB4	5.7
95	7.5	15	25	30	60	75	24 V DC	0	2	3RA2346-8XB30-1BB4	
110	10	20	30	30	75	100	24 V DC	0	2	3RA2347-8XB30-1BB4	

Fully wired and tested reversing contactor assemblies . Size S3 - Up to 75 HP
The figure shows the version with screw terminals

Mountable accessories (optional)

To be ordered separately	Type
(11) Auxiliary switch block, front	3RH2911
(12) Auxiliary switch block, lateral	3RH2921
(13) Surge suppressors	3RT2936
(14) Function module for connection	3RA271.-1BA00
to the control system (the associated module	

For further voltages, see page 2/49.
For overview, see page 2/37-2/38
For accessories, see page 2/66-2/83.
For circuit diagrams, see page 2/200.
For dimension drawings, see page $2 / 218$.

1) Coil voltage tolerance at $50 \mathrm{~Hz}: 0.8 \quad \ldots 1.1 \times U_{s}$ at $60 \mathrm{~Hz}: 0.85 \ldots 1.1 \times U^{s}$

Complete reversing contactor assembly
Individual
(1)(2)
(1)(2)
(1) (2)

Contactors, 37 kW
Contactors, 45 kW

Assembly kit
comprising:

Type
Q11 Q12

3RT2046 3RT2046
3RT2047 3RT2047
3RA2943-2AA1
(3) Two connectors for two contactors
(4) Wiring modules on the top and bottom for connecting the main and auxiliary current circuits, electrical interlock included (NC contact interlock)
(5) Mechanical interlock
(must be ordered separately)

3RA24 Contactor Assemblies for Wye-Delta Starting

3RA24 complete units, 5.5 ... 22 kW

Overview

These 3RA24 contactor assemblies for wye-delta starting are designed for standard applications.
Note:
Contactor assemblies for wye-delta starting in special applications such as very heavy starting or wye-delta starting of special motors must be customized. Help with designing such special applications is available from Technical Assistance.

The 3RA24 contactor assemblies for wye-delta starting can be ordered as follows:
Sizes SOO and SO

- Fully wired and tested, with electrical and mechanical interlock.
- As individual parts for customer assembly.

A dead interval of 50 ms on reversing is already integrated in the function module for wye-delta starting.
There is also a range of accessories (lateral auxiliary switch blocks, etc.) that must be ordered separately.
For overload relays for motor protection see Chapter 3 "Overload Relays" --> "3RB3 Solid-State Overload Relays"

The 3RA24 contactor assemblies have screw or spring-type terminals and are suitable for screwing or snapping onto TH 35 standard mounting rails.
With the fully wired and tested 3RA24 contactor assemblies, the auxiliary contacts included in the basic devices are unassigned.

Motor protection

Overload relays or thermistor motor protection releases can be used for overload protection.
The overload relay can be either mounted onto the line contactor or separately fitted. It must be set to 0.58 times the rated motor current.

Surge suppression

Sizes SOO and S0
Surge suppression (varistor) is included in the function modules for wye-delta starting.

Function modules for wye-delta starting

The 3RA28 16-0EW20 wye-delta function module (see page $2 / 27$ replaces the complete wiring in the control circuit and can be used in the voltage range from 24 to $240 \mathrm{~V} \mathrm{AC/DC}$. It is snapped onto the front of the contactor assembly size SOO or SO.
One function module comprises a complete module kit:

- One 3RA29 12-0 basic module with integrated control logic and time setting,
- And two 3RA29 11-0 coupling modules with related connecting cables.

The scope of supply comprises a complete module kit for one contactor assembly for wye-delta starting size SOO or SO, regardless of the connection method.

Screw terminals

Spring-type terminals

Rated data at AC 50 Hz 400 V			Size			
Power kW	Operational current I_{e} A	Motor current A		Line/delta contactor	Star contactor	Order No. complete
5.5	12	9.5 ... 13.8	S00-S00-S00	3RT20 15-2	3RT20 15-2	3RA24 15-8XF31-2...
7.5	16	12.1 ... 17		3RT20 17-2	3RT20 15-2	3RA24 16-8XF31-2...
11	25	19 ... 25		3RT20 18-2	3RT20 16-2	3RA24 17-8XF31-2...
11	25	19 ... 25	S0-S0-S0	3RT20 24-2	3RT20 24-2	3RA24 23-8XF32-2...
15	32	24.1... 34		3RT20 26-2	3RT20 24-2	3RA24 25-8XF32-2...
18.5	40	34.5 ... 40		3RT20 26-2	3RT20 24-2	3RA24 25-8XF32-2...
25	50	$31 . . .43$		3RT20 27-2	3RT20 26-2	3RA24 26-8XF32-2...

Note:

[^9]
3RA24 Contactor Assemblies for Wye-Delta Starting

3RA24 complete units, 5.5 ... 22 kW

Components for customer assembly

Assembly kits with wiring modules and mechanical connectors are available for contactor assemblies for wye-delta starting Contactors, overload relays, function modules for wye-delta starting or wye-delta timing relays, auxiliary switches for electrical interlock - if required also feeder terminals and base plates - must be ordered separately.
The wiring kits for sizes SOO and SO contain the top and bottom main conducting path connections between the line and delta
contactors (top) and between the delta and star contactors (bottom).

Control circuit

Features:

- Time setting range 0.5 to 60 s (3 selectable settings)
- Wide voltage range 24 to 240 V AC/DC
- Dead interval of 50 ms , non-adjustable.

Screw terminals

Power	Accessories for customer assembly			Overload relay, thermal (trip class CLASS 10)		Overload relay, solid-state (trip class CLASS 10)	
	Function modules for wye-delta starting	Assembly kit B, for single infeed	Star jumper	Setting range	Order No.	Setting range	Order No.
kW				A		A	
5.5	3RA28 16-0EW20	3RA29 13-2BB1 ${ }^{1)}$	3RT29 16-4BA31	5.5... 8	3RU21 16-1HB0	$4 \ldots 16$	3RB30 16-1TB0
7.5				7 ... 10	3RU21 16-1JB0		
11				11 ... 16	3RU21 16-4AB0		
11	3RA28 16-0EW20	3RA29 23-2BB1 ${ }^{\text {2) }}$	3RT29 26-4BA31	11 ... 16	3RU21 26-4AB0	6 ... 25	3RB30 26-1QB0
15				14 ... 20	3RU21 26-4BB0		
18.5				20 ... 25	3RU21 26-4DB0		
22				20 ... 25	3RU21 26-4DB0		

Spring-type terminals

Power	Accessories for customer assembly			Overload relay, thermal (trip class CLASS 10)		Overload relay, solid-state (trip class CLASS 10)	
	Function modules for wye-delta starting	Assembly kit B, for single infeed	Star jumper	Setting range	Order No.	Setting range	Order No.
kW				A		A	
5.5	3RA28 16-0EW20	3RA29 13-2BB2 ${ }^{1)}$	3RT29 16-4BA32	$5.5 \ldots 8$	3RU21 16-1HC0	4... 16	3RB30 16-1TE0
7.5				7 ... 10	3RU21 16-1JC0		
11				11 ... 16	3RU21 16-4AC0		
11	3RA28 16-0EW20	3RA29 23-2BB2 ${ }^{\text {2) }}$	3RT29 26-4BA32	11 ... 16	3RU21 26-4AC0	6... 25	3RB30 26-1QE0
15				14 ... 20	3RU21 26-4BC0		
18.5				20 ... 25	3RU21 26-4DC0		
22				20 ... 25	3RU21 26-4DC0		

1) The assembly kit contains: mechanical interlock, 4 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and star contactor); star jumper and auxiliary circuit wiring
2) The assembly kit contains: mechanical interlock, 4 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and star contactor); star jumper.

Order No. scheme

3RA24 Contactor Assemblies for Wye-Delta Starting

3RA24 complete units, 5.5 ... 22 kW

Fully wired and tested contactor assemblies • Size S00-S00-S00 • Up to 11 kW

[^10] Number is not UL Listed.

For other voltages see page 2/49.

3RA24 Contactor Assemblies for Wye-Delta Starting

3RA24 complete units, 5.5 ... 22 kW

Fully wired and tested contactor assemblies • Size SO-SO-SO • Up to 22 kW

3RA24 2.-8XE32-1BB4						3RA24 2.-8XF32-1A. 2			3RA24 2.-8XF32-2A . 2		
Rated data AC-3					Rated control supply voltage $U_{s}{ }^{1)}$ at $50 / 60 \mathrm{~Hz}$	Screw terminals	(\Im)	Weight approx.	Spring-type terminals	$\begin{aligned} & \infty \\ & \square \end{aligned}$	Weight approx.
Operational current I_{e} up to 400 V	Rating induc at 50 $230 \mathrm{~V}$	gs of tion mo Hz and 400 V	ors 500 V	690		Order No.		approx.	Order No.	\square	approx.
A	kW	kW	kW	kW	V			kg			kg
AC operation, 50/60 Hz											
25	7.1	11	15.6	19	$\begin{aligned} & 24 \mathrm{AC} \\ & 110 / 220 \mathrm{AC} \\ & 220 / 240 \mathrm{AC} \end{aligned}$	3RA24 23-8XF32-1AC2 3RA24 23-8XF32-1AK6 3RA24 23-8XF32-1AP6		$\begin{aligned} & 1.370 \\ & 1.370 \\ & 1.370 \end{aligned}$	3RA24 23-8XF32-2AC2 3RA24 23-8XF32-2AK6 3RA24 23-8XF32-2AP6		$\begin{aligned} & 1.530 \\ & 1.530 \\ & 1.530 \end{aligned}$
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	$\begin{aligned} & 24 \mathrm{AC} \\ & 110 / 220 \mathrm{AC} \\ & 220 / 240 \mathrm{AC} \end{aligned}$	3RA24 25-8XF32-1 AC2 3RA24 25-8XF32-1AK6 3RA24 25-8XF32-1AP6		$\begin{aligned} & 1.370 \\ & 1.370 \\ & 1.370 \end{aligned}$	3RA24 25-8XF32-2AC2 3RA24 25-8XF32-2AK6 3RA24 25-8XF32-2AP6		$\begin{aligned} & 1.530 \\ & 1.530 \\ & 1.530 \\ & \hline \end{aligned}$
50	--	22	19	19	$\begin{aligned} & 24 \mathrm{AC} \\ & 110 / 220 \mathrm{AC} \\ & 220 / 240 \mathrm{AC} \end{aligned}$	3RA24 26-8XF32-1AC2 3RA24 26-8XF32-1AK6 3RA24 26-8XF32-1AP6		$\begin{aligned} & 1.390 \\ & 1.390 \\ & 1.390 \end{aligned}$	3RA24 26-8XF32-2AC2 3RA24 26-8XF32-2AK6 3RA24 26-8XF32-2AP6		$\begin{aligned} & 1.550 \\ & 1.550 \\ & 1.550 \end{aligned}$
DC operation											
25	7.1	11	15.6	19	24 DC	3RA24 23-8XF32-1BB4		1.940	3RA24 23-8XF32-2BB4		2.100
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	24 DC	3RA24 25-8XF32-1BB4		1.940	3RA24 25-8XF32-2BB4		2.100
50	--	22	19	19	24 DC	3RA24 26-8XF32-1BB4		1.960	3RA24 26-8XF32-2BB4		2.120
For IO-Link connection											
25	7.1	11	15.6	19	24 DC	3RA24 23-8XE32-1BB4		1.940	3RA24 23-8XE32-2BB4		2.100
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	24 DC	3RA24 25-8XE32-1BB4		1.940	3RA24 25-8XE32-2BB4		2.100
50	--	22	19	19	24 DC	3RA24 26-8XE32-1BB4		1.960	3RA24 26-8XE32-2BB4		2.120
For AS-Interface connection											
25	7.1	11	15.6	19	24 DC	3RA24 23-8XH32-1BB4		1.960	3RA24 23-8XH32-2BB4		2.120
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	24 DC	3RA24 25-8XH32-1BB4		1.960	3RA24 25-8XH32-2BB4		2.120
50	--	22	19	19	24 DC	3RA24 26-8XH32-1BB4		1.980	3RA24 26-8XH32-2BB4		2.140

[^11] Number is not UL Listed.

For other voltages see page 2/49.

Rated control supply voltages

Selection and ordering data

Contactor type	3RT201	3RT231	3RT202	3RT232	3RT2617	3RT203	3RT233	3RT104
Rated control supply voltage U_{s}	3RA211	3RT251	3RA212	3RT252	3RT2627	3RA213	3RT253	3RT134
					3RT2637			3RT144
								3RA114
	SOO	S00	SO	SO	S00-S2	S2	S2	S3

Rated control supply voltages (changes to 10th and 11th positions of the Order No.)
AC Operation ${ }^{1)}$

Coils for 50 Hz (exception: size S00: 50 and $60 \mathrm{~Hz}{ }^{2}$)	24 V AC		B0							
	42 V AC		D0	D0	D0	--	--	D0	--	D0
	48 V AC		H0	H0	H0	--	--	H0	--	H0
	110 V AC		FO	F0	F0	F0	FO	F0	FO	F0
	230 V AC		PO	P0	PO	PO	PO	PO	PO	PO
	400 V AC		V0	V0	V0	V0	Vo	Vo	V0	V0
Coils for 50 and $60 \mathrm{~Hz}^{2)}$	24 V AC		B0	B0	C2	C2	C2	C2	C2	C2
	42 V AC		D0	D0	D2	D2	--	D2	D2	D2
	48 V AC		H0	H0	H2	H2	--	H2	H2	H2
	110 V AC		F0	F0	G2	G2	G2	G2	G2	G2
	208 V AC		M2							
	220 V AC		N2							
	230 V AC		PO	P0	L2	L2	L2	L2	L2	L2
	240 V AC		P2							
For USA and Canada ${ }^{3)}$	50 Hz :	60 Hz :								
	110 V AC	120 V AC	K6							
	220 V AC	240 V AC	P6							
		277 V AC	-	-	-	U6	-	U6	U6	U6
		480 V AC	V6	-	V6	-	-	V6	V6	V6
		600 V AC	-	-	-	T6	-	T6	T6	T6
For Japan	50/60 Hz ${ }^{4}$:	$60 \mathrm{~Hz}{ }^{5}$:								
	100 V AC	110 V AC	G6							
	200 V AC	220 V AC	N6							
	400 V AC	440 V AC	R6							

DC Operation ${ }^{1)}$

12 V DC	A4	A4	-	-	-	-	-	-
24 V DC	B4	B4	B4	B4	-	-	-	-
42 V DC	D4	D4	D4	D4	-	-	-	-
48 V DC	W4	W4	W4	W4	-	-	-	-
60 V DC	E4	E4	E4	E4	-	-	-	-
72 V DC	J8	J8	J8	J8	-	-	-	-
80 V DC	-	-	-	-	-	-	-	-
110 V DC	F4	F4	F4	F4	-	-	-	-
125 V DC	G4	G4	G4	G4	-	-	-	-
220 V DC	M4	M4	M4	M4	-	-	-	-
230 V DC	P4	P4	P4	-	-	-	-	-

Coil codes for frame sizes S6-S12 can be found on page 2/9. Further voltages on request

Rated control supply voltage	Contactor type	--	3RT2. 2.-.N	Rated control supply voltage	Contactor type	3RT2. 3.-.N	3RT2. 2.-.N
$U_{\text {S min }} \ldots U_{\text {S max }}{ }^{6}{ }^{\text {\% }}$	Size	S00	S0	U_{S} min $\ldots U_{S} \max ^{6}{ }^{6}$	Size	S2	S3

Sizes S00 to S3

AC/DC operation (50/60 Hz AC, DC)

Selection and ordering data
AC and DC operation

3RH11..-1...

3RH11..-2....

For screw and snap-on mounting onto TH 35 standard mounting rail

	10	40E	4	-	24 110/120 220/240	3RH2140-1AB00 3RH2140-1AK60 3RH2140-1AP60	$\begin{aligned} & 24 \\ & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { 3RH2140-1BB40 } \\ & \text { 3RH2140-1BF40 } \\ & \text { 3RH2140-1BM40 } \end{aligned}$
	10	31 E	3	1	24 110/120 220/240	$\begin{aligned} & \text { 3RH2131-1AB00 } \\ & \text { 3RH2131-1AK60 } \\ & \text { 3RH2131-1AP60 } \end{aligned}$	$\begin{aligned} & 24 \\ & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { 3RH2131-1BB40 } \\ & \text { 3RH2131-1BF40 } \\ & \text { 3RH2131-1BM40 } \end{aligned}$
	10	22E	2	2	24 110/120 220/240	3RH2122-1AB00 3RH2122-1AK60 3RH2122-1AP60	$\begin{aligned} & 24 \\ & 110 \\ & 220 \end{aligned}$	3RH2122-1BB40 3RH2122-1BF40 3RH2122-1BM40

Notes:
For further voltages, see page 2/49.
For accessories, see pages 2/66-2/77
For technical data, see pages 2/185-2/188.
For overview, see page 2/116.
For position terminals, see page 2/202-2/203.
For dimension drawings, see page 2/124.
1)The 3 RH2 21 contactor relays are also available with spring-type terminals. Replace the 8th digit of the order number with a " 2 " e.g. "3RH2140-2AB00"
2) The 3 RH2 21 contactor relays are also available with ring lug terminals. Replace the 8th digit of the order number with a " 4 " e.g. "3RH2140-4AB00"
3)AC coil operating range at $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{S}$ at $60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{S}$
4)For AC-15/AC-14 the following applies: $l_{e}=6 A$ for mounted auxiliary contacts.

Control Relays, Coupling Relays

3RH24 latched control relays, 4-pole

Overview

The contactor coil and the coil of the release solenoid are both designed for uninterrupted duty.
The number of auxiliary contacts can be extended by means of front auxiliary switch blocks (up to 4 poles).

RC elements, varistors diodes or diode assemblies can be fitted to both coils from the front for damping opening surges in the coil.

Selection and ordering data

Size SOO - Terminal designations according to EN 5001

	Rated current	Aux. contacts		Rated control supply voltage U_{S} V AC	AC Operation Screw Terminals ${ }^{1)}$ Order No.	Rated control supply voltage U_{S}V DC	DC Operation Screw Terminals Order No.
	$\begin{aligned} & \text { at } 240 \mathrm{~V} \\ & \text { AC-14, AC-15 } \\ & \text { NEMA } \\ & \text { A600/Q600 } \end{aligned}$	Ident. No.					
	Amps		NO ${ }^{\text {NC }}$				
For screw and snap-on mounting onto TH 35 standard mounting rail							
	10	40E	4 -	$\begin{aligned} & 24,50 / 60 \mathrm{~Hz} \\ & 110,50 \mathrm{~Hz} / 120,60 \mathrm{~Hz} \\ & 220,50 \mathrm{~Hz} / 240,60 \mathrm{~Hz} \\ & 230,50 / 60 \mathrm{~Hz} \end{aligned}$	3RH2440-1AB00 3RH2440-1AK60 3RH2440-1AP60 3RH2440-1AP00	$\begin{aligned} & 24 \\ & 110 \\ & 125 \\ & 220 \end{aligned}$	3RH2440-1BB40 3RH2440-1BF40 3RH2440-1BG40 3RH2440-1BM40
3RH2422-1BB40	10	31E	31	$\begin{aligned} & 24,50 / 60 \mathrm{~Hz} \\ & 110,50 \mathrm{~Hz} / 120,60 \mathrm{~Hz} \\ & 220,50 \mathrm{~Hz} / 240,60 \mathrm{~Hz} \\ & 230,50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 3RH2431-1AB00 } \\ & \text { 3RH2431-1AK60 } \\ & \text { 3RH2431-1AP60 } \\ & \text { 3RH2431-1AP00 } \end{aligned}$	$\begin{aligned} & 24 \\ & 110 \\ & 125 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { 3RH2431-1BB40 } \\ & \text { 3RH2431-1BF40 } \\ & \text { 3RH2431-1BG40 } \\ & \text { 3RH2431-1BM40 } \end{aligned}$
	10	22E	22	$\begin{aligned} & 24,50 / 60 \mathrm{~Hz} \\ & 110,50 \mathrm{~Hz} / 120,60 \mathrm{~Hz} \\ & 220,50 \mathrm{~Hz} / 240,60 \mathrm{~Hz} \\ & 230,50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 3RH2422-1AB00 } \\ & \text { 3RH2422-1AK60 } \\ & \text { 3RH2422-1AP60 } \\ & \text { 3RH2422-1AP00 } \end{aligned}$	$\begin{aligned} & 24 \\ & 110 \\ & 125 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { 3RH2422-1BB40 } \\ & \text { 3RH2422-1BF40 } \\ & \text { 3RH2422-1BG40 } \\ & \text { 3RH2422-1BM40 } \end{aligned}$

For accessories for 3RH24, see below and page 2/66-2/77
For technical data, see page 2/185-2/188.
For overview, see page 2/116.

For position of terminals, see page 2/202-2/203.
For dimension drawings, see page $2 / 224$.

Auxiliary switch blocks for 3RH21, 3RH24 control relays

Size SOO - For assembling to control relays to have 8 contacts	For contactor		Contacts Version		Weight approx.	Screw Terminals Order No.	Spring Terminals Order No.
	type	HS Block Ident. No.					
			14				
			NO	NC	kg.		
Auxiliary switch blocks for snapping onto the front according to EN 50011							
	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \mathrm{E} \end{aligned}$	80E	4	-	0.050	3RH2911-1GA40	3RH2911-2GA40
	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \mathrm{E} \end{aligned}$	71E	3	1	0.050	3RH2911-1GA31	3RH2911-2GA31
	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \mathrm{E} \end{aligned}$	62E	2	2	0.050	3RH2911-1GA22	3RH2911-2GA22
	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \text { E } \end{aligned}$	53E	1	3	0.050	3RH2911-1GA13	3RH2911-2GA13
3RH2911-2GA40	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \mathrm{E} \end{aligned}$	44E	-	4	0.050	3RH2911-1GA04	3RH2911-2GA04

1) Coil voltage tolerance

For further accessories see pages 2/66-2/77
at $50 \mathrm{~Hz}: 0.8$ to $1.1 \times \mathrm{Us}$
at $60 \mathrm{~Hz}: 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$

3RH21 coupling relays for switching auxiliary circuits, 4 pole

Application

DC operation
IEC 60947 and EN 60947

The 3RH2 2 coupling relays for switching auxiliary circuits are tailored to the special requirements of working with electronic controls.

The 3RH21 coupling relays cannot be extended with auxiliary switch blocks.

Coupling relays have a low power consumption, an extended coil voltage tolerance and an integrated surge suppressor for damping opening surges on select versions

Selection and ordering data DC operation

Size SOO - Terminal designations according to EN 50011

Surge suppressor	Rated current	Auxiliary contacts			Screw Terminals ${ }^{1)}$ Order No.	Spring Terminals ${ }^{1)}$ Order No.	Weight approx. kg .
	at $\mathbf{2 4 0} \mathbf{V}$ NEMA A600/Q600	Identification No.	Vers				
	Amps		NO	NC			

For screw and snap-on mounting onto TH 35 standard mounting rail

Rated control supply voltage $U_{s}=$ 24 V DC, coil voltage tolerance 0.7 to $1.25 \times U_{s}$	Diode, varistor, or RC element can be mounted	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \mathrm{E} \\ & 31 \mathrm{E} \\ & 22 \mathrm{E} \end{aligned}$	4 3 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3RH2140-1HB40 3RH2131-1HB40 3RH2122-1HB40	3RH2140-2HB40 3RH2131-2HB40 3RH2122-2HB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
2.8 W at 24 V (no auxiliary switch blocks can be mounted)	Diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \mathrm{E} \\ & 31 \mathrm{E} \\ & 22 \mathrm{E} \end{aligned}$	4 3 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3RH2140-1JB40 3RH2131-1JB40 3RH2122-1JB40	3RH2140-2JB40 3RH2131-2JB40 3RH2122-2JB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
	Suppressor diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { 40E } \\ & 31 E \\ & 22 E \end{aligned}$	4 3 2	$\begin{aligned} & \overline{1} \\ & 2 \end{aligned}$	3RH2140-1KB40 3RH2131-1KB40 3RH2122-1KB40	3RH2140-2KB40 3RH2131-2KB40 3RH2122-2KB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
Rated control supply voltage U_{S} $=24 \mathrm{~V}$ DC, coil voltage tolerance 0.85 to $1.85 \times U_{s}$	Diode, varistor, or RC element can be mounted	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 E \\ & 31 E \\ & 22 E \end{aligned}$	4 3 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3RH2140-1MB40-0KT0 3RH2131-1MB40-0KT0 3RH2122-1MB40-0KT0	3RH2140-2MB40-0KTO 3RH2131-2MB40-0KTO 3RH2122-2MB40-0KT0	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
1.6 W at 24 V (no auxiliary switch blocks can be mounted)	Diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \mathrm{E} \\ & 31 \mathrm{E} \\ & 22 \mathrm{E} \end{aligned}$	4 3 2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3RH2140-1VB40 3RH2131-1VB40 3RH2122-1VB40	3RH2140-2VB40 3RH2131-2VB40 3RH2122-2VB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
	Suppressor diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { 40E } \\ & 31 E \\ & 22 E \end{aligned}$	4 3 2	$\begin{aligned} & -1 \\ & 2 \end{aligned}$	3RH2140-1SB40 3RH2131-1SB40 3RH2122-1SB40	3RH2140-2SB40 3RH2131-2SB40 3RH2122-2SB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$

For technical data, see 2/189.
For position of terminals, see 2/202-2/203.
For dimension drawings, see 2/224.

1) Ring lug terminals are also available. Replace the 8th digit of the order number with a "4", e.g. 3RH2140-4HB40

Contactors for Switching Motors

3TF68 and 3TF69 vacuum contactors, 3-pole

Selection and ordering data

	Maximum inductive current AC-3	Maxim UL Ra 200 V	$\begin{aligned} & \text { hum po } \\ & \text { tings } \\ & 230 \mathrm{~V} \end{aligned}$	wer rat $460 \text { V }$	ings $575 \mathrm{~V}$	IEC ratings 1000 V	Max. resistive current AC-1	Auxiliary contacts		Rated control supply voltage ${ }^{1)}$	Order No.	Weight approx.
	A	HP	HP	HP	HP	kW	A	NO	NC	V		kg
AC operation ${ }^{2)}{ }^{3)}$												
3TF68	Size 14 Auxiliary and control conductors: screw terminals Main conductor: bar connections - AC Operation											
	630	200	250	500	600	600	700	4	4	110-132, $50 / 60 \mathrm{~Hz}$	3TF6844--CF7	15
	630	200	250	500	600	600	700	4	4	200-240, $50 / 60 \mathrm{~Hz}$	3TF6844--CM7	15
	820	290	350	700	860	800	910	4	4	110-132, $50 / 60 \mathrm{~Hz}$	3TF6944-■CF7	19
	820	290	350	700	860	800	910	4	4	200-240, $50 / 60 \mathrm{~Hz}$	3TF6944-[CM7	19
							UL ratings shown in above table: For IEC use only up to 1000 V:				$\begin{aligned} & \text { ■ }=0 \\ & \text { ■ } \end{aligned}$	
	- DC Operation											
	630	200	250	500	600	600	700	3	3	24 V DC	3TF6833-■DB4	16.9
	820	290	350	700	860	800	910	3	3	24 V DC	3TF6933-■DB4	20.9
							UL ratings shown in above table: For IEC use only up to 1000 V:				$\begin{aligned} & ■=1 \\ & \\ & =8 \end{aligned}$	

Accessories and Spare parts for 3TF68 and 3TF69 vacuum contactors

Selection and ordering data

	Details	For contactor type	Order No.	Weight approx.
				kg
Coils				
	AC Operation The coils are fitted with varistors for damping surges as standard; the coil is supplied with the closing electronics included. DC Operation Reversing contactors are required for size 14 contactors: Contactor type Reversing contactor type 3TF68 and 3TF69: 3TC44 (70 mm wide, 85 mm high) The coils are supplied without a reversing contactor. - For rated control supply voltages, see page 2/102.	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \\ & \\ & \text { 3TF68 } \\ & \text { 3TF69 } \end{aligned}$	3TY7683-0Ce0 3TY7693-0C•• 3TY7683-0D0e 3TY7693-0D00	$\begin{aligned} & 0.65 \\ & 0.56 \end{aligned}$
Vacuum interrupters				
	In order to ensure reliable operation of the contactors, only Siemens original replacement interrupters should be used. 3 vacuum interrupters with mouning parts per set.	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \end{aligned}$	$\begin{aligned} & \text { 3TY7680-0B } \\ & \text { 3TY7690-0B } \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.5 \\ & \hline \end{aligned}$
Auxiliary switch blocks with screw terminals				
	1 NO and 1 NC First auxiliary switch block, left or right. Replacement type for: 3TY7561-1A, -1B 1 NO and 1 NC First auxiliary switch block, left or right late break 1 NO and 1 NC Second auxiliary switch block, left or right. Replacement type for: $3 \mathrm{YY7} 561-1 \mathrm{~K},-1 \mathrm{~L}$ Auxiliary switches for coil reconnection, for DC economy circuit with 1 NC Auxiliary switch block late break Solid-state compatible auxiliary switch block with screw terminals For mounting onto the side of contactors. For use in dusty atmosphere and electronic circuits with rated operational currents $l_{\mathrm{e}} \mathrm{AC}-14$ and DC-13 from 1 mA to 300 mA at 3 V to 60 V.	3TF68 / 3TF69 3TF68 / 3TF69 3TF68 / 3TF69 screw connections 3TF68 / 3TF69 3TF68 / 3TF69	3TY7561-1AA00 3TY7561-1EA00 3TY7561-1KA00 3TY7681-1G 3TY7561-1UA00	$\begin{aligned} & 0.042 \\ & 0.042 \\ & 0.042 \\ & 0.042 \\ & 0.042 \end{aligned}$

For accessories, see page 2/53-2/54.
For technical data, see page 2/172-2/177
For description, see page 2/117.
For internal circuit diagrams, see page 2/211.
For position of terminals, see page $2 / 208$
For dimension drawings, see page 2/221.

1) For further voltages, see page 2/102.
2) Surge suppression integrated: fitted with varistor.
3) For EMC, see description on page 2/117.

3TF68/69 vacuum contactors are supplied with integrated surge suppression for the main conducting paths (for description, see page 2/117). In operation in circuits with DC choppers, frequency converters, variable-speed drives, for example, this protective circuitry is not required. It might be damaged by voltage peaks and harmonics generated, possibly followed by phase-to-phase shortcircuits. For this reason. the contactors can be supplied without overvoltage damping. To order these versions add a "-Z" and the order code "A02".

Contactors for Switching Motors

Accessories and Spare parts for 3TF68 and 3TF69 vacuum contactors

Selection and ordering data

	For contactor		Design	Order No.	Weight approx. kg	Std. Pack Qty
	Size	Type				
Interface for control by PLC						
3TX7 090-0D			Coil voltage tolerance: DC 17 V to 30 V Power consumption: 0.5 W at DC 24 V Fitted with varistor For technical data, see Part 7.			
(8) ब	14	$\begin{aligned} & \text { 3TF68 and } \\ & \text { 3TF69 } \end{aligned}$	For snapping onto the side of auxiliary switch blocks, with surge suppression	3TX7 090-0D	0.1	1
Terminal covers						
3TX7 686-0A	14	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \end{aligned}$	for protection against inadvertent contact with the exposed busbar connections (DIN VDE 0106 Part 100)"	(Order No. and price per set) 3TX7 686-0A 3TX7 696-0A	0.17	1 set = 2 units
Link for paralleling (star jumper) • 3-pole, without terminal ${ }^{1}$)						
3TX7 680-0D	14	3TF68		3TX7 680-0D	0.26	1
	$\begin{aligned} & \text { - Cov } \\ & 14 \end{aligned}$	te for paral 3TF68	g link A cover plate must be used in order to protect against inadvertent contact (DIN VDE 0106 Part 100).	3TX7 680-0E	0.18	1
Box terminals for laminated copper bars						
3TX7570-1E	- With	uxiliary con	tor terminal			
		3TF68	With single covers for protection against inadvertent contact (EN 50274)	3TX7 570-1E	0.6	1
	- With	liary condu	terminal			
	14	3TF69	Conductor cross-sections for auxiliary conductors:	3TX7 690-1F	2.0	1

Surge suppressors - Varistors

3TX7 572-3G	0.09	1
3TX7 572-3H	0.09	1
3TX7 572-3J	0.09	1

[^12]
Contactors and Replacement Parts

General Purpose - Type 3TC

Ordering information

- Select Contactor from table below.
- Complete catalog number replace the two daggers ($\dagger \dagger$) with appropriate coil voltage suffix. See corresponding coil voltage suffix table below.
- Technical Data see page 2/178-2/181.
- Dimensions see page 2/221.
-

Frame
Size

Ampere Rating		2 Pole DC HP Ratings (DC-3, DC-5)				Auxiliary contacts		AC-Operated Order No.	DC-Operated Order No.
Open	Enclosed	115 V	230 V	500 V	575 V	NO	NC		
40	40	5	10	15	15	2	2	3TC4417-0Btt	3TC4417-0Att
75	68	8	18	40	45	2	2	3TC4817-0B $\dagger \dagger$	3TC4817-0A $\dagger \dagger$
220	200	25	50	100	100	2	2	3TC5217-0B $\dagger \dagger$	3TC5217-0Att
330	300	40	75	150	150			3TC5617-0B \dagger	3TC5617-0A \dagger

| | Frame
 size | Contactor
 type | Mounting
 position | Solid
 state | Order No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Auxiliary Contact Blocks with 1 NO + 1 NC contacts ${ }^{2)}$ | | | | | |

Coil Suffix Table $\dagger \dagger$

Replace $\dagger \dagger$ in the contactor Order No. with a coil code from the table below.

V AC 50/60 Hz	Code	V DC	Code
24	C1	24	B4
120	K1*	36	V4
240	P1	48	W4
460	Vo	60	E4
600	SO	72	J8
*Use suffix K2 for 3TC44.		110	F4
		125	G4
		220	M4
		230	P4

[^13]| | For contactors | | Version | Rated control supply voltage U_{s} | | Order No. | Std.
 Pack
 Qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Size | Type | | \checkmark AC | V DC | | |
| Surge suppressors • Varistors | | | | | | | |
| | 2 | 3TC44 ${ }^{1 /}$ | Varistors ${ }^{2)}$
 with line spacer, for mounting onto the coil terminal | $24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$ $240 \ldots 400$ $400 \ldots 600$ | $\begin{array}{rrr} 24 \ldots & 70 \\ 70 \ldots & 150 \\ 150 \ldots & 250 \end{array}$ | 3TX7 402-3G
 3TX7 402-3H
 3TX7 402-3J
 3TX7 402-3K
 3TX7 402-3L | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| 3TX7 402-3. | 4 | 3TC48 | Varistors ${ }^{2)}$
 for sticking onto the contactor base or for mounting separately | $24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$ $240 \ldots 400$ $400 \ldots 600$ | $\begin{array}{rrr} 24 \ldots & 70 \\ 70 \ldots & 150 \\ 150 \ldots & 250 \end{array}$ | 3TX7 462-3G
 3TX7 462-3H
 3TX7 462-3J
 3TX7 462-3K
 3TX7 462-3L | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| | 8 and 12 | $\begin{aligned} & \text { 3TC52, } \\ & \text { 3TC56 } \end{aligned}$ | Varistor
 for sticking onto the contactor base or for mounting separately | $24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$ $240 \ldots 400$ $400 \ldots 600$ | | 3TX7 462-3G
 3TX7 462-3H
 3TX7 462-3J
 3TX7 462-3K
 3TX7 462-3L | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| 3TX7 462-3. | 8 and 12 | $\begin{aligned} & \text { 3TC52, } \\ & \text { 3TC56 } \end{aligned}$ | Varistors ${ }^{2)}$
 for separate screw connection or snapping onto TH 35 standard mounting rail | | $\begin{array}{rrr} 24 \ldots & 70 \\ 70 \ldots & 150 \\ 150 \ldots & 250 \end{array}$ | 3TX7 522-3G 3TX7 522-3H 3TX7 522-3J | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| Surge suppressors • RC elements | | | | | | | |
| | 4 | 3 TC 48 | RC elements
 For lateral snapping onto auxiliary switch or TH 35 standard mounting rail | $\begin{gathered} 24 \ldots \\ \hline \end{gathered} 48$ | $\begin{array}{r} 24 \ldots \\ \hline \end{array} \quad 70$ | 3TX7 462-3R
 3TX7 522-3R
 3TX7 462-3S
 3TX7 522-3S
 3TX7 462-3T
 3TX7 522-3T
 3TX7 462-3U
 3TX7 462-3V | |
| $\begin{aligned} & \text { 3TX7 462-3., } \\ & \text { 3TX7 522-3. } \end{aligned}$ | 8 and 12 | $\begin{aligned} & \text { 3TC52, } \\ & \text { 3TC56 } \end{aligned}$ | RC elements
 For lateral snapping onto auxiliary switch or TH 35 standard mounting rail | $24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$ $240 \ldots 400$ $400 \ldots 600$ | | 3TX7 522-3R
 3TX7 522-3S
 3TX7 522-3T
 3TX7 522-3U
 3TX7 522-3V | |
| Surge suppressors • Diodes | | | | | | | |
| | 4 to 12 | 3TC48, 3TC52, 3TC56 | Diode assemblies ${ }^{3)}$ (diode and Zener diode) for DC solenoid system, for sticking onto the contactor base or for mounting separately | | $24 . .250$ | 3TX7 462-3D | |
| Terminal covers | | | | | | | |
| 3TX6 506-3B | 6 10 and 14 | $\begin{aligned} & \text { 3TC48 } \\ & \text { 3TC52, } \\ & \text { 3TC56 } \end{aligned}$ | For protection against inadvertent exposed busbar connections. Can on free screw end. Covers one bus | contact with be screwed bar connecti | | 3TX6 506-3B
 3TX6 546-3B | 1 set=
 6 units
 1 set=
 6 units |

[^14]

3RT2 contactors and coupling relays - Size S00 with mountable accessories

Overview

The SIRIUS family of controls

The SIRIUS modular system with its components for the switching, starting, protection and monitoring of motors and industrial systems stands for the fast, flexible and space-saving construction of control cabinets.

3RT2 contactors

Size S00 with mountable accessories

3RT2 contactors

Size SO with mountable accessories

（1）Contactor size S0
（2）2－pole auxiliary switch block，laterally mountable
（3）1－pole auxiliary switch block，for snapping onto the front cable entry from the top
（4）4－pole auxiliary switch block，for snapping onto the front
（5）2－pole auxiliary switch block，for snapping onto the front cable entry from the bottom
（6）Surge suppressor with／without LED
（7）3RA27 function module for AS－Interface，direct starting
（8）3RA28 function module
（9）3RA27 function module for IO－Link，direct starting
（10）Pneumatically delayed auxiliary switch block
（11）Mechanical latching block
（12）Link for paralleling，3－pole，with connecting terminal
（13）Connection module（adapter and plug）for contactors with screw－type connection
（14）Coil terminal module，on the top and bottom
（15）Three－phase feeder terminal
（16）Link for paralleling（star jumper），3－pole， without connecting terminal
（17）Safety main current connector for two contactors
Assembly kit 3RA2923－2AA1 comprising：
（18）Wiring modules on the top and bottom for connecting the main current paths，electrical interlock included（NC contact interlock）
（19）Mechanical interlocks ${ }^{1}$ ）
（20）Two connecting clips for two contactors ${ }^{1)}$For contactorsFor contactors and coupling contactors

1）The parts（19）and（20）can only be ordered together as 3RA2912－2H mechanical connectors．

Size S2 with mountable accessories

3RT1 contactors
Size S3 with mountable accessories

3RT1 contactors - Sizes S6 to S12 with mountable accessories
(illustration for basic unit)

(1) 3RT10 and 3RT14 air-break contactors, sizes S6, S10 and S12
(2) Auxiliary switch block, solid-state time-delay (ON or OFF-delay or wye-delta function)
(3) 4-pole auxiliary switch block
(terminal designations according to EN 50012 or EN 50005)
(4) 2-pole auxiliary switch block, cable entry from above
(5) 2-pole auxiliary switch block, cable entry from below
(6) Single-pole auxiliary switch block (up to 4 can be snapped on)
(7) 2-pole auxiliary switch block, laterally mountable left or right (terminal designations according to EN 50012 or EN 50005) (identical for S0 to S12)
(9) Terminal cover for cable lug and busbar connection, different for sizes S6 and S10/S12
(10) Terminal cover for box terminal, different for sizes S 6 and S10/S12
(11) Box terminal block, different for sizes S 6 and $\mathrm{S} 10 / \mathrm{S} 12$Accessories identical for sizes S0 to S12Accessories identical for sizes S6 to S12
(8) Surge suppressor (RC element) for plugging into top of withdrawable coilAccessories differ according to size

For accessories see pages 2/66 to 2/83
For mountable overload relays see Chapter 3,
"Overload Relays".

For accessories see pages 2/66-2/83.
Mountable overload relays see Chapter 3, "Overload Relays".

(1) 3RT10 and 3RT14 air-break contactor, sizes S6, S10 and S12 or 3RT12 vacuum contactor, sizes S10 and S12
(2) Mechanical interlock, laterally mountable
(3) Wiring modules on the top and bottom, 3RA19
(4) Link for paralleling (star jumper), 3-pole, with through-hole, 3RT19 56-4BA31
(5) Terminal cover for box terminal,
different for sizes S6 and S10/S12
(6) Terminal cover for cable lug and busbar connection, different for sizes S6 and S10/S12Accessories identical for sizes S6 to S12
}Accessories different according to size

For accessories see pages 2/66-2/83.
For mountable overload relays see Chapter 3,
"Overload Relays".
Identical for sizes S6 to S12Different according to size

For surge suppressors see page 2/73, withdrawable coils see page 2/98.
For mountable overload relays see Chapter 3, "Overload Relays".

Auxiliary switch blocks

Selection and ordering data

Auxiliary switch blocks for snapping onto the front according to EN 50012
(also compliant with the requirements according to EN 50005)
Size SOO ${ }^{2)}$
For assembling contactors with $2,3,4$, or 5 auxiliary contacts

3RT201.,	11E		-	1	-	-	3RH2911-1HA01	3RH2911-2HA01
Ident. No. 10E	12E		-	2	-	-	3RH2911-1HA02	3RH2911-2HA02
3RT231.	13E		-	3	-	-	3RH2911-1HA03	3RH2911-2HA03
3RT251.	21E		1	-	-	-	3RH2911-1HA10	3RH2911-2HA10
	21E		1	1	-	-	3RH2911-1HA11	3RH2911-2HA11
	22E		1	2	-	-	3RH2911-1HA12	3RH2911-2HA12
	23E		1	3	-	-	3RH2911-1HA13	3RH2911-2HA13
	31E		2	-	-	-	3RH2911-1HA20	3RH2911-2HA20
	31E		2	1	-	-	3RH2911-1HA21	3RH2911-2HA21
	32E		2	2	-	-	3RH2911-1HA22	3RH2911-2HA22
	41E		3	-	-	-	3RH2911-1HA30	3RH2911-2HA30
	41E		3	1	-	-	3RH2911-1HA31	3RH2911-2HA31
Size S0 to S3								
For assembling contactors with 3,4 , or 5 auxiliary contacts								
3RT202. ,	12E		-	1	-	-	3RH2911-1HA01	3RH2911-2HA01
Ident. No. 11E	13E		-	2	-	-	3RH2911-1HA02	3RH2911-2HA02
3RT232.	14E		-	3	-	-	3RH2911-1HA03	3RH2911-2HA03
3RT252.	21E		1	-	-	-	3RH2911-1HA10	3RH2911-2HA10
3RT203.	22E		1	1	-	-	3RH2911-1HA11	3RH2911-2HA11
3RT233.	23E		1	2	-	-	3RH2911-1HA12	3RH2911-2HA12
3RT235.	24E		1	3	-	-	3RH2911-1HA13	3RH2911-2HA13
	31E		2	-	-	-	3RH2911-1HA20	3RH2911-2HA20
	32E		2	1	-	-	3RH2911-1HA21	3RH2911-2HA21
	33E		2	2	-	-	3RH2911-1HA22	3RH2911-2HA22
	41E		3	-	-	-	3RH2911-1HA30	3RH2911-2HA30
	42E		3	1	-	-	3RH2911-1HA31	3RH2911-2HA31
Auxiliary switch blocks for snapping onto the front according to EN 50012								
Sizes S6 to S12								
4-pole								
3RT1. 4 to	31		3	1	-	-	3RH1921-1HA31	3RH1921-2HA31
3RT1. 7 ,	22		2	2	-	-	3RH1921-1HA22	3RH1921-2HA22
3RT11.	13		1	3	-	-	3RH1921-1HA13	3RH1921-2HA13
	22	(with location digits 5, 6, 7, 8)	2	2	-	-	3RH1921-1XA22-0MAO	3RH1921-2XA22-0MAO

EN50005 and EN50012 designate the markings

of the auxiliary terminal numbers.
For position of the terminals see pages 2/202-2/206.
For int. circuit diagrams see page 2/190.
3RH29 aux blocks are not intended for use with 3RT1 or 3RH1 contactors and relays.
3RH19 aux blocks are not intended for use with 3RT2 or
3RH2 contactors and relays.
For auxiliary switch blocks for 3RH2140 and 3RH2440 see page $2 / 51$.

1) The 3RH2911-.HA.. aux. switches are available with ring-lug terminals. Replace the 8th digit of the Order No. with a " 4 ".
2) Size SOO can be mounted according to EN 50012 only on basic units which have no integrated NC contact.

Auxiliary switch blocks

Selection and ordering data

3RH2911-1FA40

3RH19 21-1C. .

3RH19 21-1LA..
3RH19 21-1MA..

Auxiliary switch blocks for snapping onto the front according to EN 50005
Sizes S00 to S3
2- or 4-pole auxiliary switch blocks for assembling contactors with 3 and 5 or 4 and 6 auxiliary contacts

3RT2. 1.,	40		4	-	-	-	3RH2911-1FA40	3RH2911-2FA40
3RT2. 2.,	22		2	2	-	-	3RH2911-1FA22	3RH2911-2FA22
3RT2. 3.,	$04{ }^{1)}$		-	4	-	-	3RH2911-1FA04	3RH2911-2FA04
3RH21 ..,	$11^{2)}$		-	-	1	1	3RH2911-1FB11	3RH2911-2FB11
3RH24 ..	$22^{2)}$		1	1	1	1	3RH2911-1FB22	$\begin{aligned} & \text { 3RH2911-2FB22 } \\ & \text { 3RH2911-2FC22 } \end{aligned}$
			-	-	2	2	3RH2911-1FC22	
1- and 2- pole auxiliary switch blocks, cable entry from above or below								
$\begin{aligned} & \text { 3RT2. 1., } \\ & \text { 3RT2. 2., } \\ & \text { 3RT2. 3., } \\ & \text { 3RH21.., } \\ & \text { 3RH24 .. } \end{aligned}$	10	Top Bottom	1	-	-	-	3RH2911-1AA10	-
			1	-	-	-	3RH2911-1BA10	-
	01	Top Bottom	-	1	-	-	3RH2911-1AA01	-
			-	1	-	-	3RH2911-1BA01	-
	11	Top	1	1	-	-	3RH2911-1LA11	-
		Bottom	1	1	-	-	3RH2911-1MA11	-
	20	Top	2	-	-	-	3RH2911-1LA20	-
		Bottom	2	-	-	-	3RH2911-1MA20	-

Sizes S6 to S12
4-pole auxiliary switch blocks

3RT1. 4 to	40		4	-	-	-	3RH1921-1FA40	3RH1921-2FA40
3RT1. 7,	31		3	1	-	-	3RH1921-1FA31	3RH1921-2FA31
3RT11	22		2	2	-	-	3RH1921-1FA22	3RH1921-2FA22
	04		-	4	-	-	3RH1921-1FA04	3RH1921-2FA04
	22 U		-	-	2	2	3RH1921-1FC22	3RH1921-2FC22
Single-pole auxiliary switch blocks (also compliant with EN 5001 ${ }^{\text {2) }}$								
3RT1. 4 to	-		1	-	-	-	3RH1921-1CA10	3RH1921-2CA10
3RT1. 7,	-		-	1	-	-	3RH1921-1CA01	3RH1921-2CA01
3RT11	-		-	-	1	-	3RH1921-1CD10	-
	-		-	-	-	1	3RH1921-1CD01	-
2-pole auxiliary switch blocks with cable entry from one side								
3RT1. 4 to	-	Top	1	1	-	-	3RH19 21-1LA11	-
3RT1. 7 ,	-	Bottom	1	1	-	-	3RH19 21-1MA11	-
3RT11	-	Top	2	-	-	-	3RH19 21-1LA20	-
	-	Bottom	2	-	-	-	3RH19 21-1MA20	-
	-	Top	-	2	-	-	3RH19 21-1LA02	-
	-	Bottom	-	2	-	-	3RH19 21-1MA02	-

EN50005 and EN50012 designate the markings
of the auxiliary terminal numbers.
For position of the terminals see pages 2/202-2/206.
For int. circuit diagrams see page 2/190.

1) Mounting is permitted only on basic units which have no integrated NC contact.
2) Version with early make and delayed break contacts
3) UL ratings: See appendix page 19/7

Laterally mountable auxiliary switch blocks

Selection and ordering data
NO NC

3RH2921-1DA02

For contactors/ control relays	Rated operational Current ${ }^{4)}$ 6A NEMA A600/Q600	Contactor with HS block Ident. No.	Mountable to contactor/ contactor relay side	Auxiliary contacts	Screw Terminals ${ }^{1)}$	Spring Terminals ${ }^{1)}$
				Version		
					Order No.	Order No.
Type				NO NC		

Laterally mountable auxiliary switch blocks according to EN 50012
Laterally mountable auxiliary switch block, 2-pole

Size SOO ${ }^{\text {1) }}$ 2)							
3RT201.	A600/Q600	12E	right or left	-	2	3RH2911-1DA02	3RH2911-2DA02
Ident. No. 10E	A600/Q600	21E	right or left	1	1	3RH2911-1DA11	3RH2911-2DA11
Size S0 to S3							
3RT2.2. ${ }^{\text {3) }}$	A600/Q600	13E	right or left	-	2	3RH2921-1DA02	3RH2921-2DA02
Ident.No. 11E	A600/Q600	22E	right or left	1	1	3RH2921-1DA11	3RH2921-2DA11
3RT2.3.	A600/Q600	31E	right or left	2	-	3RH2921-1DA20	3RH2921-2DA20
First laterally mountable auxiliary switch block, 2-pole							
Sizes S6 to S12							
3RT1. 3 to 3RT1. 7	A600/Q600		right or left	1	1	3RH1921-1DA11	3RH1921-2DA11
Second laterally mountable auxiliary switch block, 2-pole							
Sizes S6 to S12							
3RT1. 4 to 3RT1. 7	A300/Q300		right or left	1	1	3RH1921-1JA11	3RH1921-2JA11

Laterally mountable auxiliary switch blocks according to EN 50005

First laterally mountable auxiliary switch block, 2-pole

Sizes SOO ${ }^{1)^{2)}}$							
3RT2.1.	A600/Q600	02	right or left	-	2	3RH2911-1DA02	3RH2911-2DA02
Ident.No. 10E	A600/Q600	11	right or left	1	1	3RH2911-1DA11	3RH2911-2DA11
	A600/Q600	20	right or left	2	-	3RH2911-1DA20	3RH2911-2DA20
Sizes S0 to S3							
$\begin{aligned} & \text { 3RT2.2., } \\ & \text { 3RT2.3.3) } \end{aligned}$	A600/Q600	02	right or left	-	2	3RH2921-1DA02	3RH2921-2DA02
	A600/Q600	11	right or left	1	1	3RH2921-1DA11	3RH2921-2DA11
	A600/Q600	20	right or left	2	-	3RH2921-1DA20	3RH2921-2DA20
Sizes S6 to S12							
3RT1. 4 to	A300/Q300		right or left	-	2	3RH1921-1EA02	3RH1921-2EA02
3RT1. 7	A300/Q300		right or left	1	1	3RH1921-1EA11	-
	A300/Q300		right or left	2	-	3RH1921-1EA20	3RH1921-2EA20
Second laterally mountable auxiliary switch block, 2-pole							
Sizes S6 to S12							
3RT1. 4 to	A300/Q300		right or left	-	2	3RH1921-1KA02	3RH1921-2KA02
3RT1. 7	A300/Q300		right or left	1	1	3RH1921-1KA11	
	A300/Q300		right or left	2	-	3RH1921-1KA20	3RH1921-2KA20

EN50005 and EN50012 designate the markings
of the auxiliary terminal numbers.
For position of the terminals see pages 2/202-2/206
For int. circuit diagrams see pages 2/190-2/195.

1) With size SOO, mounting according to EN 50012 is permitted only on basic units which have no NC contact integrated.
2) Ident. No. 41,32 and 23 according to EN 50012 is also possible. Please note the corresponding circuit diagrams for mounting 3RH29 11-1DA.. on the left.

Solid-state auxiliary switch blocks

Selection and ordering data

- Operation in dusty atmospheres

■ Solid-state circuits with rated operational currents $I_{\mathrm{e}} / \mathrm{AC}-14$ and DC-13 from $1 \ldots 300 \mathrm{~mA}$ at 3 ... 60 V

- Hard gold-plated contacts

■ Mirror contacts according to EN 60947-4-1, Appendix F, for laterally mountable auxiliary switches

Selection and ordering data

3RH2911-2NFO2

3RH1921-2DE11

3RH29 21-2DE11

Solid-state compatible auxiliary switch blocks for snapping onto the front according to EN $50005^{1)}$

Sizes S00 to S3							
3RT2. 1.,	02	-	-	-	2	3RH2911-1NF02	3RH2911-2NF02
3RT2.2., 3RT2.3.	11	1	-	-	1	3RH2911-1NF11	3RH2911-2NF11
$\begin{aligned} & \text { 3RH21 .., } \\ & \text { 3RH24 .. } \end{aligned}$	20	2	-	-	-	3RH2911-1NF20	3RH2911-2NF20
Sizes S6 to S12							
3RT1. 4 to	-	1	1	1	1	3RH1921-1FE22	3RH19 21-2FE22
3RT1. 7	-	-	2	2	-		3RH1921-2FJ22

Solid-state compatible auxiliary switch blocks, laterally mountable,

according to EN 50012
First laterally mountable auxiliary switch block, 2-pole

Size SOO ${ }^{2}$						
3RT2. 1., Ident. No. 10E	21E	right	1	-	-	1
Size S0 to S3						
3RT2. 2, 3RT2. 3 Ident. No. 10E	22E	right	1	-	-	1
Sizes S6 to S12						
$\text { 3RT1. } 4 \text { to }$		right or left	1	-	-	1

3RH2911-2DE11

Second laterally mountable auxiliary switch block, 2-pole
Sizes S6 to S12

3RH1921-2JE11
3RT1. 7
Solid-state compatible auxiliary switch blocks, laterally mountable,
according to EN 50005
Size S00
3RT2. 1.,

Ident. No. 10E
Size S0 to S2
3RT2. 2., 1
3RT2. 3

right or left	1	-	-	1	-
right or left	1	-	-	1	-

3RH2911-2DE11

3RH2921-2DE11

EN50005 and EN50012 designate the markings of the auxiliary terminal numbers.
For position of the terminals see pages 2/202-2/206.
For int. circuit diagrams see pages 2/190-2/195.

1) The 3RH29 11-.NF.. auxiliary switches are also available with ring lug terminal connection. The 8th digit of the order number must be replaced with " 4 ", e. g.: 3RH2911-1NF11 -> 3RH2911-4NF11

Accessories for 3RT contactors / 3RH control relays

Auxiliary switch blocks, delayed

Selection and ordering data

| For
 contactors | Rated control
 supply voltage $U_{s}{ }^{11}$ | Time setting
 range t | Output/auxiliary
 contacts | Screw
 Terminals | Spring
 Terminals |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Type | V | Sec | | Order No. | Order No. |

Time-delay, solid-state auxiliary switch blocks for snapping onto the front according to DIN 46199-5

The electrical connection between the solid-state time-delay auxiliary switch and the contactor underneath is established automatically when it is snapped on and locked into place.
Sizes S00 to S3

ON-delay (varistor integrated)

$24 . .240$ AC/DC	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100, \\ & \text { selectable) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	3RA2813-1AW10 3RA2813-1FW10	3RA2813-2AW10 3RA2813-2FW10
OFF-delay with auxiliary voltage (varistor integrated)				
$24 . .240$ AC/DC	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100, \\ & \text { selectable) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { 3RA28 14-1AW10 } \\ & \text { 3RA28 14-1FW10 } \end{aligned}$	$\begin{aligned} & \text { 3RA28 14-2AW10 } \\ & \text { 3RA28 14-2FW10 } \end{aligned}$

OFF-delay without auxiliary voltage ${ }^{3}$ (varistor integrated)

$24 \ldots 240 \mathrm{AC} / \mathrm{DC}$	$0.05 \ldots 100$ $(1,10,100$, selectable)	1 CO	
			3RA2815-1AW10 3RA2815-1FW10

3RA2815-2AW10
3RA2815-2FW10

Sizes S6 to S12

ON-delay (varistor integrated)

$24 \mathrm{AC} / \mathrm{DC}^{4)}$	$0.05 \ldots 1$	
	$0.5 \ldots 10$	
	$5 \ldots 100$	
$100 \ldots 127 \mathrm{AC}^{4)}$	$0.05 \ldots 1$	1
	$0.5 \ldots 10$	
	$5 \ldots 100$	
$200 \ldots 240 \mathrm{AC}^{4)}$	$0.05 \ldots 1$	1 l
	$0.5 \ldots 10$	
	$5 \ldots 100$	

$24 \mathrm{AC} / \mathrm{DC}^{4)}$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100, \\ & \text { selectable) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	3RT19 26-2FJ11 3RT19 26-2FJ21 3RT19 26-2FJ31	二
$100 . . .127 ~ A C ~ 4) ~$	$\begin{aligned} & 0.05 \ldots 100 \\ & \text { (1, 10, 100, } \\ & \text { selectable) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \hline \end{aligned}$	3RT19 26-2FK11 3RT19 26-2FK21 3RT19 26-2FK31	二
$200 . .240 \mathrm{AC}^{4)}$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100, \\ & \text { selectable) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \hline \end{aligned}$	3RT19 26-2FL11 3RT19 26-2FL21 3RT19 26-2FL31	-
WYE-delta function				
24 AC/DC ${ }^{4}$	1.5 ... 30	each have:	3RT19 26-2GJ51	-
$100 . . .127 ~ A C ~ 4) ~$	$1.5 \ldots 30$	1 NO delayed	3RT19 26-2GC51	-
$200 . .240$ AC ${ }^{4}$	1.5... 30	1 NO instant interval 50 ms	3RT19 26-2GD51	-

For technical data, see pages 2/182-2/183.
For int. circuit diagrams, see page 2/198.
For position of terminals, see page $2 / 206$.
When the solid-state time-delay auxiliary switches are used, no other auxiliary switches are allowed to be mounted on the basic units.

1) AC voltage values apply for 50 Hz and 60 Hz .
2) Cannot be fitted onto coupling relays.
3) Setting of output contacts in as-supplied state not defined (bistable relay). Application of the control supply voltage once results in contact change-over to the correct setting.
4) Terminals A1 and A2 for the rated control supply voltage of the solid-state time-delay auxiliary switch must be connected to the associated contactor by means of connecting leads.
5) Position of the output contacts not defined in the as-delivered state (bistable relay). Applying the control voltage once results in the contacts switching to the correct position.

Accessories for 3RT contactors / 3RH control relays

Function modules, delay blocks

Selection and ordering data

For contactors	Rated control supply voltage $U_{S}{ }^{1)}$	Time setting range t	Screw terminals	(9)	Spring-type terminals	0	Weight
Type	V AC/DC	s	Order No.		Order No.		
Timing relays for mounting on 3RT2 contactors							
Sizes S00 to S3							
	The electrical connection between the timing relay and the contactor underneath is established automatically when it is snapped on and locked.						
	ON-delay Two-wire design, varistor integrated						
$\begin{aligned} & \text { 3RT20..., } \\ & \text { 3RT23... } \\ & \text { 3RT25... } \\ & \text { 3RH212 } \\ & \text { 3RH24 } \end{aligned}$	$24 \ldots 240$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100 ; \text { selectable) } \end{aligned}$	3RA2811-1CW10		3RA2811-2CW10		
3RT203.	$24 . .90$	$0.05 \ldots 100$	3RA2831-1DG10		3RA2831-2DG10		
	90 ... 240	(1, 10, 100; selectable)	3RA2831-1DH10		3RA2831-2DH10		
	OFF-delay with control signal Varistor integrated						
$\begin{aligned} & \text { 3RT20..., } \\ & \text { 3RT23.., } \\ & \text { 3RT25.. } \\ & \text { 3RH21 }), \\ & \text { 3RH24 } \end{aligned}$	$24 . . .240$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100 ; \text { selectable) } \end{aligned}$	3RA2812-1DW10		3RA2812-2DW10		
3RT203.	$24 . . .90$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100 ; \text { selectable }) \end{aligned}$	3RA2832-1DG10		3RA2832-2DG10		
	90... 240		3RA2832-1DH10		3RA2832-2DH10		
1) AC voltage values apply for 50 Hz and 60 Hz . 2) Cannot be fitted onto coupling relays.							

AC voltage values apply for 50 Hz and 60 Hz .
${ }^{2)}$ Cannot be fitted onto coupling relays.

1) AC voltage ratings apply for 50 and 60 Hz .
2) The 3RA28 time-delay blocks are available with spring-type terminals. Replace the 8th digit of the order number with a " 2 ".
3) Cannot be fitted onto coupling relays

Accessories for 3RT contactors / 3RH control relays

Function modules, delay blocks, and mechanical latching blocks

Selection and ordering data

Pneumatic delay blocks, terminal designation according to EN $50005^{4)}$

3RT2926-2PA01	Size S0			3RT2926-2PA01	0.080
	For snapping onto the front of contactors ${ }^{5}$ Auxiliary contacts 1 NO and 1 NC				
77	With ON-delay	-	$0.1 \ldots 30$		
	3RT2. 2		1... 60	3RT2926-2PA11	0.080
	With OFF-delay	-	0.1 ... 30	3RT2926-2PR01	0.080
	3RT2. 2		1... 60	3RT2926-2PR11	0.080

Mechanical latching blocks

3RT2926-3AB31	For mounting onto the front of contactors The contactor remains in the energized state even after voltage failure Size S0				
(1)	Size So 3RT2. 2	24 AC/DC 110 AC/DC 230 AC/DC	- - -	3RT2926-3AB31 3RT2926-3AF31 3RT2926-3AP31	$\begin{aligned} & 0.100 \\ & 0.100 \\ & 0.100 \end{aligned}$

For description, see page 2/119.
For technical data, see page 2/182.
For circuit diagrams, see page 2/198.
4) Versions according to DIN VDE 0116 on request.
5) In addition to these, no other auxiliary contacts are permitted.

Surge suppressors

Selection and ordering data

Surge suppressors

Selection and ordering data

	For contactors	Version	$\begin{aligned} & \text { Rated control supply } \\ & \text { voltage } U_{s}^{1)} \\ & \text { AC operation } \quad \text { DC operation } \end{aligned}$			Order No.	Weight approx.
	Type		V AC	V DC	mW		kg
Surge suppressors without LED (also for spring-type terminals)							
3RT1936-1C. 00	$\begin{aligned} & \text { Sizes S6, } \\ & \text { S10, S12 } \\ & \text { 3RT1. 5, } \\ & \text { 3RT1. } 6 \\ & \text { 3RT1. } 7 \end{aligned}$	For pluggin RC element	al or solid-stat $24 \ldots 48$ 48 ... 127 127... 240 240... 400 400 ... 600	$\begin{aligned} & \text { e coil } \\ & 24 \ldots 70 \\ & 70 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$		3RT1956-1CB00 3RT1956-1CC00 3RT1956-1CD00 3RT1956-1CE00 3RT1956-1CF00	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$

Surge suppressors with LED (also for spring-type terminals)

3RT2916-1J.00	Size SOO 3RT2.1, 3RH2.	For plugging (with and with Varistor	f the contac block) 24... 48 48... 127 127... 240	$\begin{aligned} & 12 \ldots 24 \\ & 24 \ldots 70 \\ & 70 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 20 \ldots 470 \\ & 50 \ldots 700 \\ & 160 \ldots 950 \end{aligned}$	$\begin{aligned} & \text { 3RT2916-1JJ00 } \\ & \text { 3RT2916-1JK00 } \\ & \text { 3RT2916-1JL00 } \\ & \text { 3RT2916-1JP00 } \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$
	$\begin{aligned} & \hline \text { 3RT2.1, } \\ & \text { 3RH2. } \end{aligned}$	Noise suppression diode	—	$\begin{aligned} & 24 \ldots 70 \\ & 50 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$	$\begin{aligned} & 20 \ldots 470 \\ & 50 \ldots 700 \\ & 160 \ldots 950 \end{aligned}$	3RT2916-1LM00 3RT2916-1LNOO 3RT2916-1LP00	$\begin{aligned} & 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$
3RT2926-1MR00	Size SO 3RT2. 2	For plugging (prior to mou Varistor	f the contac switch block $\begin{aligned} & 24 \ldots 48 \\ & 48 \ldots 127 \\ & 127 \ldots 240 \end{aligned}$	$\begin{aligned} & 12 \ldots 24 \\ & 24 \ldots 7 \\ & 70 \ldots 150 \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 20 \ldots 4 \\ & 50 \ldots 700 \end{aligned}$	$\begin{aligned} & \text { 3RT2926-1JJ00 } \\ & \text { 3RT2926-1JK00 } \\ & \text { 3RT2926-1JL00 } \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$
	3RT2. 2	Diode assembly	-	24	$20 . .470$	3RT2926-1MR00	0.010
3RT2936-1J.00	$\begin{aligned} & \text { Size S2 } \\ & \text { and S3 } \\ & \text { 3RT2.3. } \end{aligned}$	For plugging onto the front side of the contactors (prior to mounting of the auxiliary switch block)					
		Varistor	$\begin{aligned} & 24 \ldots 48 \\ & 48 \ldots 127 \\ & 127 \ldots 240 \end{aligned}$	$\begin{aligned} & 12 \ldots 24 \\ & 24 \ldots 70 \\ & 70 \ldots 150 \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 20 \ldots 470 \\ & 50 \ldots 700 \end{aligned}$	$\begin{aligned} & \text { 3RT2936-1JJ00 } \\ & \text { 3RT2936-1JK00 } \\ & \text { 3RT2936-1JL00 } \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$

Selection and ordering data

Links for paralleling

					$56-4 \mathrm{BA} 31$	
Size	For contactors	Maximum resistive current le/AC-1 (at $60^{\circ} \mathrm{C}$) of contactors	Max. conductor cross sections	Screw Terminals Order No.	Standard package quantity	Weight approx.
	Type	A				kg
S00	3RT201.	3-pole, with terminal 1), 2)	4 AWG, stranded	3RT1916-4BB31		0.015
SO	3RT202.		0 AWG, stranded	3RT2926-4BB31		0.042
S2	3RT203.		95 mm 2	3RT1936-4BB31		0.139
S3	3RT104.	3-pole, with through hole (WYE jumpers) 1), 2)	185 mm 2	3RT1946-4BB31		0.205
S6	3RT1. 5		-	3RT1956-4BA31		0.159
S10/S12	$\text { 3RT1. } 6$ $\text { 3RT1. } 7$		-	3RT1966-4BA31		0.541
S00	3RT231. 3RT251.	4-pole, with terminal 1), 2)	4 AWG, stranded	3RT1916-4BB41		0.016

[^15]
Accessories for 3RT contactors / 3RH control relays

Other function blocks, PLC control, load modules, control kit

Selection and ordering data

Sizes S00 to S2

3RH2914-1GP11
Additional load modules

For mounting on the front side of contactors with AC, DC or AC/DC operation
24 V DC control,
17 ... 30 V DC operating range

24 V DC control,
17 ... 30 V DC operating range

For plugging onto the front side of the contactors with or without auxiliary switch blocks
For increasing the permissible residual current and for limiting the residual voltage. It ensures the safe opening of contactors with direct control via 230 VAC semiconductor outputs of SIMATIC controllers. It acts simultaneously as a surge suppressor.
Rated voltage:
$50 / 60 \mathrm{~Hz}, 180$ to 255 V AC
3RT2916-1GA00

LED module for indicating contactor operation

Sizes S00 to S2

	3RT2..	For snapping into the location hole of an inscription label on the front of a contactor either directly on the contactor or on the front auxiliary switch. The LED module is connected to coil terminals A1 and A2 of the contactor and indicates its energized state. Yellow LED. Rated voltage: 24 ... 240 V AC/DC, with reverse polarity protection.	3RT2926-1QT00
Control kit			
Sizes S00 to S2			
-		For manual operation of the contactor contacts for start-up and service	
	$\begin{aligned} & \text { 3RT2.1, } \\ & \text { 3RH2. } \end{aligned}$		3RT2916-4MC00
-	3RT2.2		3RT2926-4MC00
3RT2916-4MC00	3RT2. 3		3RT2936-4MC00

Terminals, covers, adapters, connectors

Selection and ordering data

Accessories for 3RT contactors / 3RH control relays

Terminals, covers, adapters, connectors

Solder pin adapters for contactors up to 7.5 HP / 12 A with mounted 4 -pole auxiliary switch block

Size S00, up to 7.5 HP

3RT1916-4KA2
Safety main current connectors for 2 contactors
Sizes S00 to S2
For series connection of 2 contactors
3RT2.1
3RT2. 2
3RT2. 3

3RA2916-1A
3RA2926-1A
3RA2936-1A

[^16]Terminals, covers, accessories

Selection and ordering data

[^17]3RA13, 3RA23 reversing contactor assemblies

[^18]
Contactor Assemblies for Switching Motors

3RA13, 3RA23 reversing contactor assemblies

Accessories

Sors

1) Use of the 3RA2923-2AA1 assembly kit in conjunction with the 3RT202.-.....-3MA0 contactors is limited because the auxiliary switches in the basic unit are not allowed to be used on account of the permanently mounted auxiliary switch block.
2) Version in size S0 with spring-type terminals: Only the wiring modules for the main circuit are included. No connectors are included for the auxiliary and control circuit.
3) Version in size S2 with spring-type terminals in the auxiliary and control circuits: Only the wiring modules for the main circuit are included. A cable set is included for the auxiliary circuit.

Contactor Assemblies for Switching Motors

3RA13, 3RA23 reversing contactor assemblies

Accessories

Note: Standard package quantities may change. Check Industry Mall for current package quantities.

1) 1 set for 1 contactor. Size SOO \& S0: 1 set includes 2 connectors and 1 interlock. Size S2: The mechanical interlock must be ordered separately. S3-S6: 1 set includes 2 connectors; one connector for top and one connector for bottom.

Contactor Assemblies for Switching Motors

WYE-delta accessories

Accessories

[^19][^20]Current Monitoring Relays

Overview

SIRIUS 3RR2242, 3RR2142 and 3RR2243 current monitoring relays
The SIRIUS 3RR2 current monitoring relays are suitable for the load monitoring of motors or other loads. In two or three phases they monitor the rms value of AC currents for overshooting or undershooting of set threshold values.

Whereas apparent current monitoring is used above all in connection with the rated torque or in case of overload, the active current monitoring option can be used to observe and evaluate the load factor over a motor's entire torque range.
The 3RR2 current monitoring relays can be integrated directly in the feeder by mounting onto the 3RT2 contactor; separate wiring of the main circuit is therefore superfluous. No separate transformers are required.
For a line-oriented configuration or simultaneous use of an overload relay, terminal supports for stand-alone installation are available for separate standard rail mounting

Versions

Basic versions

The basic versions with two-phase apparent current monitoring, a CO contact output and analog adjustability provide a high level of monitoring reliability especially in the rated and overload range.

Standard versions

The standard versions monitor the current in three phases with selectable active current monitoring. They have additional diagnostics options such as residual current monitoring and phase sequence monitoring, and they are also suitable for monitoring motors below the rated torque. These devices have an additional independent semiconductor output, an actual value indicator, and are digitally adjustable.
Both versions are available optionally with screw or spring-type terminals, in each case for sizes SOO and SO. With variants of size S2 the main current paths always have screw terminals; the control current side can have screw or spring-type terminals.

Note:

In addition to the features of the standard versions, 3RR24 monitoring relays for mounting onto 3RT2 contactors for IO-Link also offer the possibility of transmitting the measured values and diagnostics data to a controller via an IO-Link. Furthermore, the devices can be parameterized on the devices themselves or via IO-Link.

Benefits

- Can be mounted directly on 3RT2 contactors and 3RA23 reversing contactor assemblies, in other words, there is no need for additional wiring in the main circuit
- Optimally coordinated with the technical characteristics of the 3RT2 contactors
- No separate current transformer required
- Versions with wide voltage supply range
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Display of ACTUAL value and status messages
- All versions with removable control current terminals
- All versions with screw terminals or spring-type terminals
- Simple determination of the threshold values through direct reference to actually measured values for setpoint loading
- Range monitoring and selectable active current measurement mean that only one device for monitoring a motor is required along the entire torque curve
- In addition to current monitoring it is also possible to monitor for broken cables, phase failure, phase sequence, residual current and motor blocking

Application

- Monitoring of current overshoot and undershoot
- Monitoring of broken conductors
- Monitoring of no-load operation and load shedding, e.g. in the event of a torn V-belt or no-load operation of a pump
- Monitoring of overload, e.g. on conveyor belts or cranes due to an excessive load
- Monitoring the functionality of electrical loads such as heaters
- Monitoring of wrong phase sequence on mobile equipment such as compressors or cranes
- Monitoring of high-impedance faults to ground, e.g. caused by damaged insulation or moisture

Contactor Assemblies for Switching Motors

Current Monitoring Relays

Technical specifications

Function charts of 3RR214.-.A. 30 basic variants, analog dial adjustable
Closed-circuit principle upon application of the control supply voltage

Current overshoot

Current undershoot

Circuit diagrams

3RR2141-1A. 30

Note:
It is not necessary to protect the measuring circuit for device protection. The protective device for line protection depends on the cross-section used.

Range monitoring

3RR2141-2A.30, 3RR2142-.A.30, 3RR2143-.A. 30

Contactor Assemblies for Switching Motors

Current Monitoring Relays

Function charts of 3RR224.-.F. 30 standard versions, digitally adjustable
With the closed-circuit principle selected upon application of the control supply voltage

Current overshoot

Current undershoot with residual current monitoring

Phase sequence monitoring

Range monitoring

Circuit diagrams

3RR2241-1F. 30

Note:

It is not necessary to protect the measuring circuit for device protection. The protective device for line protection depends on the cross-section used

3RR2241-2F.30, 3RR2242-.F.30, 3RR2243-.F. 30

Contactor Assemblies for Switching Motors

Current Monitoring Relays

Selection and ordering data

SIRIUS 3RR21/3RR22 current monitoring relays

- For load monitoring of motors or other loads
- Multi-phase monitoring of undercurrent and overcurrent
- Starting and tripping delay can be adjusted separately
- Tripping delay 0 to 30 s
- Auto or Manual RESET

3RR2141-1AW30

3RR2142-1AW30

3RR2241-1FW30

3RR2242-1FW30

3RR2141-2AA30

3RR2243-3FW30

Size	Measuring range	Hysteresis	Control supply voltage $U_{\text {S }}$	Screw terminals	$($	Spring-type terminals	00
	A	A	V	Order No.		Order No.	
Basic versions							
- Analogically adjustable - Closed-circuit principle - 1 CO contact - 2-phase current monitoring - Apparent current monitoring - Start-up delay 0 ... 60 s							
S00	1.6 ... 16	6.25% of threshold value	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2141-1AA30 } \\ & \text { 3RR2141-1AW30 } \end{aligned}$		$\begin{aligned} & \text { 3RR2141-2AA30 } \\ & \text { 3RR2141-2AW30 } \end{aligned}$	
S0	$4 \ldots 40$	$\begin{aligned} & 6.25 \% \text { of } \\ & \text { threshold value } \end{aligned}$	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \mathrm{AC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { 3RR2142-1AA30 } \\ & \text { 3RR2142-1 AW30 } \end{aligned}$		3RR2142-2AA30 3RR2142-2AW30	
	8 ... 80	6.25 \% of threshold value	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2143-1AA30 } \\ & \text { 3RR2143-1AW30 } \end{aligned}$		3RR2143-3AA30 3RR2143-3AW30	
Standard versions							
- Digitally adjustable - LC display - Open or closed-circuit principle - 1 CO contact - 1 semiconductor output - 3-phase current monitoring - Active current or apparent current monitoring - Phase sequence monitoring - Residual current monitoring - Blocking current monitoring - Reclosing delay time 0 ... 300 min - Start-up delay 0 ... 99 s - Separate settings for warning and alarm thresholds							
S00	1.6 ... 16	$0.1 \ldots 3$	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2241-1FA30 } \\ & \text { 3RR2241-1FW30 } \end{aligned}$		3RR2241-2FA30 3RR2241-2FW30	
S0	$4 \ldots 40$	$0.1 \ldots 8$	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2242-1FA30 } \\ & \text { 3RR2242-1FW30 } \end{aligned}$		3RR2242-2FA30 3RR2242-2FW30	
S2	8... 80	0.2... 16	$\begin{aligned} & 24 \mathrm{AC} / \mathrm{DC} \\ & 24 \ldots 240 \mathrm{AC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { 3RR2243-1FA30 } \\ & \text { 3RR2243-1FW30 } \end{aligned}$		$\begin{aligned} & \text { 3RR2243-3FA30 } \\ & \text { 3RR2243-3FW30 } \end{aligned}$	

Overview

SIRIUS 3RR2441, 3RR2442 and 3RR2443 current monitoring relays
The SIRIUS 3RR24 current monitoring relays for IO-Link are suitable for the load monitoring of motors or other loads. In three phases they monitor the rms value of AC currents for overshooting or undershooting of set threshold values.

Whereas apparent current monitoring is used above all in connection with the rated torque or in case of overload, the active current monitoring option, which is also selectable, can be used to observe and evaluate the load factor over a motor's entire torque range.
The 3RR24 current monitoring relays for IO-Link can be integrated directly in the feeder by mounting onto the 3RT2 contactor; separate wiring of the main circuit is therefore superfluous. No separate transformers are required.
For a line-oriented configuration or simultaneous use of an overload relay, terminal supports for stand-alone installation are available for separate standard rail mounting.
The SIRIUS 3RR24 current monitoring relays for IO-Link also offer many other options based upon the monitoring functions of the conventional SIRIUS 3RR2 monitoring relays:

- Measured value transmission to a controller, including resolution and unit, may be parameterizable as to which value is cyclically transmitted
- Transmission of alarm flags to a controller
- Full diagnosis capability by inquiry as to the cause of the fault in the diagnosis data record
- Remote parameterization is also possible, in addition to or instead of local parameterization
- Rapid parameterization of the same devices by duplication of the parameterization in the controller
- Parameter transmission by upload to a controller by IO-Link call or by parameter server (if IO-Link master from IO-Link Specification V 1.1 and higher is used)
- Consistent central data storage in the event of parameter change locally or via a controller
- Automatic reparameterizing when devices are exchanged
- Blocking of local parameterization via IO-Link possible
- Faults are saved in parameterizable and non-volatile fashion to prevent an automatic start up after voltage failure and to make sure diagnostics data is not lost
- By integration into the automation level the option exists of parameterizing the monitoring relay at any time via a display unit or displaying the measured values in a control room or locally at the machine/control cabinet

Even without communication via IO-Link the devices continue to function fully autonomously:

- Parameterization can take place locally at the device, independently of a controller
- In the event of failure or before the controller becomes available the monitoring relays work as long as the control supply voltage ($24 \mathrm{~V} D \mathrm{D}$) is present
- If the monitoring relays are operated without the controller, the 3RR24 monitoring relays for IO-Link have, thanks to the integrated SIO mode, an additional semiconductor output, which switches when the adjustable warning threshold is exceeded

Thanks to the combination of autonomous monitoring relay function and integrated IO-Link communication, redundant sensors and/or analog signal converters - which previously took over the transmission of measured values to a controller, leading to considerable extra cost and wiring outlay - are no longer needed.
Because the output relays are still present, the monitoring relays increase the functional reliability of the system, since only the controller can fulfill the control tasks if the current measured values are available, whereas the output relays can also be used for the disconnection of the system if limit values that cannot be reached during operation are exceeded.
For further information on the IO-Link communication system, see Chapter 14.

Current Monitoring Relays with IO-Link

Benefits

- Can be mounted directly on 3RT2 contactors and 3RA23 reversing contactor assemblies, in other words, there is no need for additional wiring in the main circuit
- Optimally coordinated with the technical characteristics of the 3RT2 contactors
- No separate current transformer required
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Display of ACTUAL value and status messages
- All versions with removable control current terminals
- All versions with screw or spring-type terminals
- Simple determination of the threshold values through direct reference to actually measured values for setpoint loading
- Range monitoring and selectable active current measurement mean that only one device for monitoring a motor is required along the entire torque curve
- In addition to current monitoring it is also possible to monitor for current unbalance, broken cables, phase failure, phase sequence, residual current and motor blocking
- Integrated counter for operating cycles and operating hours to support requirements-based maintenance of the monitored machine or application
- Simple cyclical transmission of the current measured values, relay switching states and events to a controller
- Remote parameterization
- Automatic reparameterizing when devices are exchanged
- Simple duplication of identical or similar parameterizations
- Reduction of control current wiring
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Integration in TIA means clear diagnostics if a fault occurs
- Cost saving and space saving in control cabinet due to the elimination of AI and IO modules as well as analog signal converters and duplicated sensors

Application

- Monitoring of current overshoot and undershoot
- Monitoring of broken conductors
- Monitoring of no-load operation and load shedding, e.g. in the event of a torn V-belt or no-load operation of a pump
- Monitoring of overload, e.g. on pumps due to a dirty filter system
- Monitoring the functionality of electrical loads such as heaters
- Monitoring of wrong phase sequence on mobile equipment such as compressors or cranes
- Monitoring of high-impedance faults to ground, e.g. caused by damaged insulation or moisture
The use of SIRIUS monitoring relays for IO-Link is particularly recommended for machines and plant in which these relays, in addition to their monitoring function, are to be connected to the automation level for the rapid, simple and fault-free provision of the current measured values and/or for remote parameterization.
The monitoring relays can either relieve the controller of monitoring tasks or, as a second monitoring entity in parallel to and independent of the controller, increase the reliability in the process or in the system. In addition, the elimination of Al and IO modules allows the width of the controller to be reduced despite significantly expanded functionality.

Contactor Assemblies for Switching Motors

Current undershoot with residual current monitoring

Circuit diagrams

3RR2441-1AA40

Note:
It is not necessary to protect the measuring circuit for device protection. The protective device for line protection depends on the cross-section used.

Range monitoring

Phase sequence monitoring

3RR2441-2AA40, 3RR2442-.AA40, 3RR2443-.AA40

Contactor Assemblies for Switching Motors

Current Monitoring Relays

Selection and ordering data

SIRIUS 3RR24 current monitoring relays for IO-Link

- For load monitoring of motors or other loads
- Multi-phase monitoring of undercurrent and overcurrent
- Starting and tripping delay can be adjusted separately
- Tripping delay 0 to 999.9 s
- Auto or Manual RESET

3RR2442-1AA40

3RR2441-2AA40

3RR2442-2AA40

3RR2443-1AA40

3RR2443-3AA40

Size	Measuring range	Hysteresis	Control supply voltage U_{S}	Screw terminals	Spring-type terminals	Order No. \square
A	A	V	Order No.			

- Digitally adjustable
- LC display
- Open or closed-circuit principle
- 1 CO contact
- 1 semiconductor output (in SIO mode)
- 3-phase current monitoring
- Active current or apparent current monitoring
- Current unbalance monitoring
- Phase sequence monitoring
- Residual current monitoring
- Blocking current monitoring
- Operating hours counter
- Operating cycles counter
- Reclosing delay time 0 ... 300 min
- Start-up delay 0 ... 999.9 s
- Separate settings for warning and alarm thresholds

S00	1.6 ... 16	$0.1 \ldots 3$	24 DC	3RR2441-1AA40	3RR2441-2AA40
S0	$4 \ldots 40$	0.1 ... 8	24 DC	3RR2442-1AA40	3RR2442-2AA40
S2	8 ... 80	$0.2 \ldots 16$	24 DC	3RR2443-1AA40	3RR2443-3AA40

Contactor Assemblies for Switching Motors

Current Monitoring Relay Accessories

Accessories

	Use	Sersion	Srder No.

1) The accessories are identical to those of the 3RU21 thermal overload relays and the 3RB3 electronic overload relays, see Chapter 3 "Overload Relays"
2) PC labeling system for individual inscription of unit labeling plates available from:
Systems, Inc.
www.murrplastic.com

Contactor Assemblies for Switching Motors

NEMA 1 Enclosure

Selection and ordering data

* NEMA Type 1 Enclosures
* Lift off cover
* Accepts SIRIUS power control components
* Non-reversing contactors
* Reversing contactors
* Starters with thermal overload relays
* Starters with solid-state overload relays

Application

The 49EC14*B separate enclosures are designed for field assembly of a wide range of Siemens

49EC14EB110705R SIRIUS open style control components and field modification kits as listed in the charts below. Note that certain components require the addition of a DIN Rail kit for proper mounting in the enclosure.

NEMA 1 Enclosures

Max. current	Contactor		Max. current	Overload relay		Required DIN rail kit	NEMA 1 Enclosure
A	Non-reversing	Reversing	A	Thermal	Solid-state	Order No.	Order No.
16	3RT201	3RA231	16	3RU2116	3RB3016	MTR5	49EC14EB110705R
38	3RT202	3RA232	40	3RU2126	3RB3026	MTR5	
50	3RT103		50	3RU1136	3RB2036	-	49EC14GB140807R
12		3RA131	12	3RU1116	3RB2016	MTR5	
25		3RA132	25	3RU1126	3RB2026	MTR5	
50		3RA133	50	3RU1136	3RB2036	-	
95	3RT104		100	3RU1146	3RB2046	-	49EC14IB201208R
95		3RA134	100	3RU1146	3RB2046	-	

Accessories for NEMA 1 Enclosures

[^21]For 3RA reversing, see pages $2 / 37$.
For thermal overloads, see page 3/10.
For solidstate overloads, see pages $3 / 22$.
For enclosure dimensions, see figures 1, 2, and 3 on page 9/150.

Selection and ordering data

For screw, spring-type and ring lug terminal connection

Note:
Contactors with AC and AC/DC coils have different depths. It is only possible to replace the coils on AC contactors with AC coils, and on AC/DC contactors with AC/DC coils. It is not possible to replace the coils on DC contactors in the SO frame.

Screw terminals and spring-type terminals

3RT2934-5A. 01 \qquad

For contactors	Rated control supply voltage $U_{\text {S }}$				SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
	50 Hz	$50 / 60 \mathrm{~Hz}$	60 Hz	DC						
Type	V	V	V		d					

Solenoid coils • AC operation

Size S2

$\begin{aligned} & \text { 3RT203.-. A, } \\ & \text { 3RT233.-.A, } \\ & \text { 3RT253.-.A } \end{aligned}$	24	--	--	--	5	3RT2934-5AB01	1	1 unit	41 B
	42	--	--	--	5	3RT2934-5AD01	1	1 unit	41B
	48	--	--	--	5	3RT2934-5AH01	1	1 unit	41B
	110	--	--	--	5	3RT2934-5AF01	1	1 unit	41B
	230	--	--	--	5	3RT2934-5AP01	1	1 unit	41B
	400	--	--	--	5	3RT2934-5AV01	1	1 unit	41B
	--	24	--	--	5	3RT2934-5AC21	1	1 unit	41B
	--	42	--	--	5	3RT2934-5AD21	1	1 unit	41B
	--	48	--	--	5	3RT2934-5AH21	1	1 unit	41B
	--	110	--	--	5	3RT2934-5AG21	1	1 unit	41B
	--	220	--	--	5	3RT2934-5AN21	1	1 unit	41B
	--	230	--	--	5	3RT2934-5AL21	1	1 unit	41B
	110	--	120	--	5	3RT2934-5AK61	1	1 unit	41B
	220	--	240	--	5	3RT2934-5AP61	1	1 unit	41B
	--	--	480	--	5	3RT2934-5AV61	1	1 unit	41B
	--	--	600	--	5	3RT2934-5AT61	1	1 unit	41B
	--	100	110	--	5	3RT2934-5AG61	1	1 unit	41B
	--	200	220	--	5	3RT2934-5AN61	1	1 unit	41B
	--	400	440	--	5	3RT2934-5AR61	1	1 unit	41B

Size S3 INEW

3RT2.4.-. A	24	--	--	--	x	3RT2944-5AB01	1	1 unit	41B
	42	--	--	--	X	3RT2944-5AD01	1	1 unit	41B
	48	--	--	--	X	3RT2944-5AH01	1	1 unit	41B
	110	--	--	--	X	3RT2944-5AF01	1	1 unit	41B
	230	--	--	--	X	3RT2944-5AP01	1	1 unit	41B
	400	--	--	--	X	3RT2944-5AV01	1	1 unit	41B
	--	24	--	--	X	3RT2944-5AC21	1	1 unit	41B
	--	42	--	--	X	3RT2944-5AD21	1	1 unit	41B
	--	48	--	--	X	3RT2944-5AH21	1	1 unit	41B
	--	110	--	--	X	3RT2944-5AG21	1	1 unit	41B
	--	220	--	--	X	3RT2944-5AN21	1	1 unit	41B
	--	230	--	--	X	3RT2944-5AL21	1	1 unit	41B
	110	--	120	--	X	3RT2944-5AK61	1	1 unit	41B
	220	--	240	--	X	3RT2944-5AP61	1	1 unit	41B
	--	--	480	--	X	3RT2944-5AV61	1	1 unit	41B
	--	--	600	--	X	3RT2944-5AT61	1	1 unit	41B
	--	100	110	--	X	3RT2944-5AG61	1	1 unit	41B
	--	200	220	--	X	3RT2944-5AN61	1	1 unit	41B
	--	400	440	--	X	3RT2944-5AR61	1	1 unit	41B

Solenoid coils • AC/DC operation, with varistor

Size S2

$\begin{aligned} & \text { 3RT203.-. A, } \\ & \text { 3RT233...A, } \\ & \text { 3RT253.-. A } \end{aligned}$	--	$20 . .33$	--	$20 . .33$	5	3RT2934-5NB31	1	1 unit	41B
	--	$30 . . .42$	--	$30 . . .42$	5	3RT2934-5ND31	1	1 unit	41B
		$48 . . .80$	--	48 ... 80	5	3RT2934-5NE31	1	1 unit	41B
	--	$83 . .155$	--	83 ... 155	5	3RT2934-5NF31	1	1 unit	41B
	--	175 ... 280	--	175 ... 280	5	3RT2934-5NP31	1	1 unit	41B
Size S3 N/EW									
3RT2.4.-. A	--	$20 . .33$	--	$20 . .33$	X	3RT2944-5NB31	1	1 unit	41B
	--	$30 . . .42$	--	$30 . . .42$	X	3RT2944-5ND31	1	1 unit	41B
	--	$48 . . .80$	--	$48 . . .80$	X	3RT2944-5NE31	1	1 unit	41B
	--	$83 . .155$	--	83 ... 155	X	3RT2944-5NF31	1	1 unit	41B
	--	$175 . .280$	--	175 ... 280	X	3RT2944-5NP31	1	1 unit	41B

Note:
It is only possible to replace the coils on $A C$ contactors with $A C$ coils, and on $A C / D C$ contactors with $A C / D C$ coils.

Selection and ordering data

	For contactor		Rated control supply voltage U_{s}	Screw connection	Spring-type connection	Weight	
			Order No.	Order No.			
	Size	Type				kg	
Coils • AC operation							
3RT19 24-5A. 01	S0	3RT10 2 ., 3RT13 2 ., 3RT15 2.		$\begin{aligned} & 24 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 42 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 48 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 110 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 230 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 400 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 42 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 48 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 110 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 208 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 220 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 110 \mathrm{~V}, 50 \mathrm{~Hz} / 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 220 \mathrm{~V}, 50 \mathrm{~Hz} / 240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 277 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 480 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 600 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 100 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 110 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 200 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 220 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 400 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 440 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	3RT19 24-5AB01 3RT19 24-5AD01 3RT19 24-5AH01 3RT19 24-5AF01 3RT19 24-5AP01 3RT19 24-5AV01 3RT19 24-5AC21 3RT19 24-5AD21 3RT19 24-5AH21 3RT19 24-5AG21 3RT19 24-5AM21 3RT19 24-5AN21 3RT19 24-5AL21 3RT19 24-5AK61 3RT19 24-5AP61 3RT19 24-5AU61 3RT19 24-5AV61 3RT19 24-5AT61 3RT19 24-5AG61 3RT19 24-5AN61 3RT19 24-5AR61	3RT19 24-5AB02 3RT19 24-5AD02 3RT19 24-5AH02 3RT19 24-5AF02 3RT19 24-5AP02 3RT19 24-5AV02 3RT19 24-5AC22 3RT19 24-5AD22 3RT19 24-5AH22 3RT19 24-5AG22 3RT19 24-5AM22 3RT19 24-5AN22 3RT19 24-5AL22 3RT19 24-5AK62 3RT19 24-5AP62 3RT19 24-5AU62 3RT19 24-5AV62 3RT19 24-5AT62 3RT19 24-5AG62 3RT19 24-5AN62 3RT19 24-5AR62	0.069
3RT19 24-5A. 02	S2	$\begin{aligned} & \text { 3RT10 } 33 \\ & \text { 3RT10 } 34 \end{aligned}$	```\(24 \mathrm{~V}, 50 \mathrm{~Hz}\) \(42 \mathrm{~V}, 50 \mathrm{~Hz}\) \(48 \mathrm{~V}, 50 \mathrm{~Hz}\) 110 V, 50 Hz \(230 \mathrm{~V}, 50 \mathrm{~Hz}\) \(400 \mathrm{~V}, 50 \mathrm{~Hz}\) \(42 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\) \(48 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\) \(24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\) 110 V, \(50 / 60 \mathrm{~Hz}\) 208 V, 50/60 Hz 220 V, 50/60 Hz 230 V, 50/60 Hz 110 V, \(50 \mathrm{~Hz} / 120 \mathrm{~V}, 60 \mathrm{~Hz}\) \(220 \mathrm{~V}, 50 \mathrm{~Hz} / 240 \mathrm{~V}, 60 \mathrm{~Hz}\) 277 V, 60 Hz 480 V, 60 Hz 600 V, 60 Hz 100 V, \(50 / 60 \mathrm{~Hz} / 110 \mathrm{~V}, 60 \mathrm{~Hz}\) 200 V, \(50 / 60 \mathrm{~Hz} / 220 \mathrm{~V}, 60 \mathrm{~Hz}\) \(400 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 440 \mathrm{~V}, 60 \mathrm{~Hz}\)```	3RT19 34-5AB01 3RT19 34-5AD01 3RT19 34-5AH01 3RT19 34-5AF01 3RT19 34-5AP01 3RT19 34-5AV01 3RT19 34-5AD21 3RT19 34-5AH21 3RT19 34-5AC21 3RT19 34-5AG21 3RT19 34-5AM21 3RT19 34-5AN21 3RT19 34-5AL21 3RT19 34-5AK61 3RT19 34-5AP61 3RT19 34-5AU61 3RT19 34-5AV61 3RT19 34-5AT61 3RT19 34-5AG61 3RT19 34-5AN61 3RT19 34-5AR61	3RT19 34-5AB02 3RT19 34-5AD02 3RT19 34-5AH02 3RT19 34-5AF02 3RT19 34-5AP02 3RT19 34-5AV02 3RT19 34-5AD22 3RT19 34-5AH22 3RT19 34-5AC22 3RT19 34-5AG22 3RT19 34-5AM22 3RT19 34-5AN22 3RT19 34-5AL22 3RT19 34-5AK62 3RT19 34-5AP62 3RT19 34-5AU62 3RT19 34-5AV62 3RT19 34-5AT62 3RT19 34-5AG62 3RT19 34-5AN62 3RT19 34-5AR62	0.088	
3RT19 34-5A. 01		3RT10 35, 3RT10 36, 3RT13 3 ., 3RT15 3.	```\(24 \mathrm{~V}, 50 \mathrm{~Hz}\) \(42 \mathrm{~V}, 50 \mathrm{~Hz}\) \(48 \mathrm{~V}, 50 \mathrm{~Hz}\) 110 V, 50 Hz \(230 \mathrm{~V}, 50 \mathrm{~Hz}\) \(400 \mathrm{~V}, 50 \mathrm{~Hz}\) \(24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\) \(42 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\) \(48 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\) 110 V, \(50 / 60 \mathrm{~Hz}\) 208 V, 50/60 Hz 220 V, 50/60 Hz 230 V, \(50 / 60 \mathrm{~Hz}\) \(110 \mathrm{~V}, 50 \mathrm{~Hz} / 120 \mathrm{~V}, 60 \mathrm{~Hz}\) \(220 \mathrm{~V}, 50 \mathrm{~Hz} / 240 \mathrm{~V}, 60 \mathrm{~Hz}\) \(277 \mathrm{~V}, 60 \mathrm{~Hz}\) \(480 \mathrm{~V}, 60 \mathrm{~Hz}\) 600 V, 60 Hz 100 V, \(50 / 60 \mathrm{~Hz} / 110 \mathrm{~V}, 60 \mathrm{~Hz}\) \(200 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 220 \mathrm{~V}, 60 \mathrm{~Hz}\) \(400 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 440 \mathrm{~V}, 60 \mathrm{~Hz}\)```	3RT19 35-5AB01 3RT19 35-5AD01 3RT19 35-5AH01 3RT19 35-5AF01 3RT19 35-5AP01 3RT19 35-5AV01 3RT19 35-5AC21 3RT19 35-5AD21 3RT19 35-5AH21 3RT19 35-5AG21 3RT19 35-5AM21 3RT19 35-5AN21 3RT19 35-5AL21 3RT19 35-5AK61 3RT19 35-5AP61 3RT19 35-5AU61 3RT19 35-5AV61 3RT19 35-5AT61 3RT19 35-5AG61 3RT19 35-5AN61 3RT19 35-5AR61	3RT19 35-5AB02 3RT19 35-5AD02 3RT19 35-5AH02 3RT19 35-5AF02 3RT19 35-5AP02 3RT19 35-5AV02 3RT19 35-5AC22 3RT19 35-5AD22 3RT19 35-5AH22 3RT19 35-5AG22 3RT19 35-5AM22 3RT19 35-5AN22 3RT19 35-5AL22 3RT19 35-5AK62 3RT19 35-5AP62 3RT19 35-5AU62 3RT19 35-5AV62 3RT19 35-5AT62 3RT19 35-5AG62 3RT19 35-5AN62 3RT19 35-5AR62	0.088	

Selection and ordering data

3RT Contactors

Spare parts for 3RT1 contactors

Selection and ordering data

Withdrawable coils

Solid-state operating mechanism • for DC 24 V PLC output

S6	3RT10 5, 3RT14 5	$\begin{gathered} 21 \ldots \\ 96 \ldots 127 \\ 200 \ldots 277 \\ 20 . . .3 \end{gathered}$	3RT19 55-5NB31 3RT19 55-5NF31 3RT19 55-5NP31	0.49
S10	$\begin{aligned} & \text { 3RT10 6, } \\ & \text { 3RT14 } 6 \end{aligned}$	$\begin{gathered} 21 \ldots \\ 96 \ldots 127.3 \\ 200 \ldots 277 \end{gathered}$	3RT19 65-5NB31 3RT19 65-5NF31 3RT19 65-5NP31	0.65
	3RT12 6 Vacuum contactor	$\begin{gathered} 21 \ldots \\ 96 \ldots 127 \\ 96 \ldots \\ 200 . . .277 \end{gathered}$	3RT19 66-5NB31 3RT19 66-5NF31 3RT19 66-5NP31	
S12	3RT10 7, 3RT14 7, 3RT12 7 Vacuum contactor	$\begin{gathered} 21 \ldots \\ 96 \ldots 127.3 \\ 200 \ldots 277 \end{gathered}$	3RT19 75-5NB31 3RT19 75-5NF31 3RT19 75-5NP31	1.1

Solid-state operating mechanism • for DC 24 V PLC output/PLC relay output, with remaining lifetime indication (withdrawable coil with lateral electronics module)

S6	$\begin{aligned} & \text { 3RT10 5, } \\ & \text { 3RT14 5 } \end{aligned}$	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT19 55-5PF31 3RT19 55-5PP31
S10	$\begin{aligned} & \text { 3RT10 6, } \\ & \text { 3RT14 } 6 \end{aligned}$	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \end{array}$	3RT19 65-5PF31 3RT19 65-5PP31
S12	$\begin{aligned} & \text { 3RT10 7, } \\ & \text { 3RT14 } 7 \end{aligned}$	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT19 75-5PF31 3RT19 75-5PP31

3RT Contactors

Spare parts for 3RT1 contactors

Selection and ordering data

Contacts with fixing parts

- for contactors with 3 main contacts

S2	$\begin{aligned} & \text { 3RT20 } 35 \\ & \text { 3RT20 } 36 \\ & \text { 3RT20 } 37 \\ & \text { 3RT20 } 38 \end{aligned}$	Main contacts (3 NO) for AC-3 utilization category (1 set $=3$ moving and 6 fixed contacts with fixing parts)	3RT29 35-6A 3RT29 36-6A 3RT29 37-6A 3RT29 38-6A		1 set
S3	3RT10 44 3RT10 45 3RT10 46		3RT19 44-6A 3RT19 45-6A 3RT19 46-6A		
S6	3RT10 54 3RT10 55 3RT10 56		3RT19 54-6A 3RT19 55-6A 3RT19 56-6A	0.28	
S10	3RT10 64 3RT10 65 3RT10 66		3RT19 64-6A 3RT19 65-6A 3RT19 66-6A	0.48	
S12	3RT10 75 3RT10 76		3RT19 75-6A 3RT19 76-6A	0.9	
S3	3RT14 46	Main contacts (3 NO) for AC-1 utilization category (1 set = 3 moving and 6 fixed contacts with fixing parts)	3RT19 46-6D		
$\begin{aligned} & \text { S6 } \\ & \text { S10 } \\ & \text { S12 } \end{aligned}$	3RT14 56 3RT14 66 3RT14 76		3RT19 56-6D 3RT19 66-6D 3RT19 76-6D	$\begin{aligned} & 0.28 \\ & 0.48 \\ & 0.9 \end{aligned}$	

- for 3RT12 vacuum contactors

S10	3RT12 64 3RT12 65 3RT12 66	3 vacuum interrupters with fixing parts	3RT19 64-6V 3RT19 65-6V 3RT19 66-6V	1.4	1 set
S12	$\begin{aligned} & \text { 3RT12 } 75 \\ & \text { 3RT12 } 76 \end{aligned}$		$\begin{aligned} & \text { 3RT19 75-6V } \\ & \text { 3RT19 76-6V } \end{aligned}$	1.5	
- for contactors with 4 main contacts					
S2	$\begin{aligned} & \text { 3RT23 } 36 \\ & \text { 3RT23 } 37 \end{aligned}$	Main contacts (4 NO contacts) for utilization category AC-1	$\begin{aligned} & \text { 3RT29 36-6E } \\ & \text { 3RT29 37-6E } \end{aligned}$		1 set
S3	3RT13 44 3RT13 46	(1 set $=4$ moving and 8 fixed contacts with fixing parts)	3RT19 44-6E 3RT19 46-6E		

3TB World Series Contactors

Rated control supply voltages for coils

Selection and ordering data

Coil type		3 TY6 503-0A..	3 TB50	3 TY7 683-0C..	3TF68	
				3TY7 693-0C..	3TF69	
Rated control supply voltage U_{s}	voltage at	3TY6 543 3TY6 566-0A.	$\begin{aligned} & 3 T B 54 \\ & 3 T B 56 \end{aligned}$	зTY7 693-0¢..		

Rated control supply voltages (changes to 10th and 11th positions of the Order No.)
AC operation
Coils for 50 Hz

50 Hz

AC 24 V	AC 39 V	B0
AC 32 V	AC 28 V	-
AC 36 V	AC 42 V	G0
AC 42 V	AC 50 V	D0
AC 48 V	AC 58 V	H0
AC 60 V	AC 72 V	E0
AC 110 V	AC 132 V	F0
AC 125/127 V	AC 150/152 V	LO
AC 230/220 V	AC 277 V	P0
AC 240 V	AC 288 V	U0
AC 400/380 V	AC 480/460 V	V0
AC 415 V	AC 500 V	R0
AC 500 V	AC 600 V	S0

Coils for $50 / 60 \mathrm{~Hz}$
AC 110 V ... 132 V
AC 200 V ... 240 V
AC 230 V ... 277 V
AC 380 V ... 460 V
AC 500 V ... 600 V

Coil type Rated control supply voltage U_{s}	3TY6 503-0B.. 3TY6 523-0B.. 3TY6 543-0B.. 3TY6 563-0B..	$\begin{aligned} & \text { 3TB50 } \\ & \text { 3TB52 } \\ & \text { 3TB554 } \\ & \text { 3TB56 } \end{aligned}$	3TY7 683-0D. 3TY7 693-0D..	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \end{aligned}$
Rated control supply voltages (changes to 10th and 11th positions of the Order No.)				
DC operation				
DC 24 V	B4		B4	
DC 30 V	C4		-	
DC 36 V	V4		-	
DC 42 V	D4		-	
DC 48 V	W4		-	
DC 60 V	E4		-	
DC 110 V	F4		F4	
DC 125 V	G4		G4	
DC 180 V	K4		-	
DC 220 V	M4		M4	
DC 230 V	P4		P4	

Due to the mature nature of some product series, supply cannot be guaranteed on all versions listed on this page.

1) Coil voltage tolerance at 220 V or 380 V
0.85 to $1.15 \times U_{\text {s }}$
lower tolerance range limit acc. to
IEC 60947 .
2) Lower tolerance range limit at 220 V $0.85 \times U_{\mathrm{s}}$ acc. to IEC 60947

3TB World Series Contactors

Spare parts

| Coils, AC1) | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Select Complete Catalog Number From Above ${ }^{\text {' }}$)	
Old Number	New Number
3TY6465-0A $\dagger \dagger$	3TY6463-0A $\dagger \dagger$
3TY6485-0A $\dagger \dagger$	3TY6483-0A $\dagger \dagger$
3TY6505-0A $\dagger \dagger$	3TY6503-0A $\dagger \dagger$
3TY6525-0A $\dagger \dagger$	3TY6523-0A $\dagger \dagger$
3TY6545-0A $\dagger \dagger$	3TY6543-0A $\dagger \dagger$
3TY6565-0A $\dagger \dagger$	3TY6566-0A $\dagger \dagger$

Coil Voltages	
Old Number	New Number
A8	K6
B8	M1
C8	P6
D8	00
E8	S0
F8	C1
G8	P0

Due to the mature nature of some product series, supply cannot be guaranteed on all versions listed on this page.
1)Some old 3TB coil catalog numbers have been superceded. Cross to current catalog number from these tables. 2)Main contact kits for size 3TB47 and larger include springs. Smaller sizes do not.

Coils, AC Type 3TF and CRLtF

3TY7403-0AK6

3TY7483-0AK6

Frame
Size
3TF40-43

3TF
3TF
3TF

3TF44-45,
3TF46-47

3TF46-47
3TF48-49

3TF50-51
3TF52-53
3TF54-55

3TF54-55	3TY7543-0AC2
3TF56	3TY7563-OAC2

3TF56	3T
3TF57	-
3TF68	-
3TF69	-

Catalog No
 Catalog No

3 TY7
3 TY7463-0AC2
3TF69 -
120 V
110 V

$3 T Y 7403-0 A C 2$	$3 T Y 7403-0 A K 6$	$3 T Y 70$

3TF Contactors and 3TH Control Relays

Spare parts

Mechanical Interlocks

Frame Size	Catalog No
3TF44-54	3TX7466-1A

3TX7466-1A

Control Relays, Type 3TH8 Coils, AC								
Type	Frame Size	Catalog No						
		24 V AC	120 V AC	208 V AC	220/240V AC	277 V AC	480 V AC	600 V AC
3TH	3TH80-83	3TY7403-0AC2	3TY7403-0AK6	3TY7403-0AM1	3TY7403-0AP6	3TY7403-0AU1	3TY7403-0AVO	3TY7403-0AS0

Coils, DC

Type	Frame Size	Catalog No						
		12 V AC	24 V AC	42 V AC	48 V AC	110 V AC	125 V AC	240 V AC
3TH	3TH80-83	3TY4803-0BA4	3TY4803-0BB4	3TY4803-0BD4	3TY4803-0BW4	3TY4803-0BF4	3TY4803-0BG4	3TY4803-0BQ4

Due to the mature nature of some product series, supply cannot be guaranteed on all versions listed on this page.

1) Maximum 4 blocks per relay.

3RT contactors, 3-pole, sizes S00 to S3

AC and DC operation

IEC 60 947, EN 60947
(VDE 0660), UL 508

Design

The 3RT contactors are suitable for use in any climate They are safe from touch to DIN VDE 0106 Part 100.

The 3RT contactors are available screw, spring-type, or ring lug connections.
An auxiliary contact is integrated in the basic unit of size SOO contactors. The basic units of sizes S0 to S3 only contain the main conducting paths.
All the basic units can be extended with auxiliary switch blocks. Cabinet units with 2 NO + 2 NC (terminal designations acc. to EN 50 012) are available as of size SO; the auxiliary switch block is removable.

The size S3 contactors have removable box terminals for the main conductor connections. Ring cable lugs or bars can thus also be connected.

Contact reliability

If voltages $\leq 110 \mathrm{~V}$ and currents $\leq 100 \mathrm{~mA}$ are to be switched the auxiliary contacts of 3RT contactors and 3RH contactor relays should be used to ensure good contact stability.
These auxiliary contacts are suitable for electronic circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V .

Short-circuit protection of contactors

For the short-circuit protection of contactors without an overload relay, see the technical data.

For the short-circuit protection of contactors with an overload relay, see section 3.

Motor protection

3RU overload relays can be mounted onto the 3RT contactors for protection against overloads. The overload relays must be ordered separately (see section 3).

Surge suppression

The 3RT contactors can be retrofitted with RC elements, varistors, diodes or diode assemblies (combination of an interference suppression diode and a Zener diode for short tripping times) for suppressing opening surges in the coil.
The surge suppressors are plugged onto the front of size SOO contactors. Space is provided for them next to a snapon auxiliary switch block.
With all size S0 to S3 contactors, varistors and RC elements can be plugged on directly at the coil terminals, either on the top or underneath. Diode assemblies are available in two different designs with different polarities. Depending on the application, they can be attached either only on the bottom (assembly with circuitbreaker) or only on the top (assembly with overload relay).
The plug-in direction of the diodes and diode assemblies is determined by a coding device. Exceptions: 3RT29 26-1E. 00 and 3RT19 36-1T.00; in these cases the plug-in direction is identified by "+" and "-".
Coupling relays are supplied either without surge suppression or with a varistor or diode connected as standard, according to the design.

Note

The opening times of the NO contacts and the closing times of the NC contacts increase if the contactor coils are protected against voltage peaks (interference suppression diode 6 to 10 times; diode assemblies 2 to 6 times; varisfor +2 ms to 5 ms .

3RT20 1. contactors (size S00),
Terminal designations acc. to EN 50012 or DIN 50005

Auxiliary switch blocks

The 3RT basic units can be extended with various auxiliary switch blocks, depending on the application:

Size S00 (3RT201)
Contactors with one NO contact as the auxiliary contact and with either screw or
spring-type connections, identification number 10E, can be extended to obtain contactors with 2,4 or 5 auxiliary contacts in accordance with EN 50012 using auxiliary switch blocks. The identification numbers 11E, $22 E, 23 E$ and $32 E$ on the auxiliary switch blocks apply to the complete contactors. These auxiliary switch blocks cannot be combined with contactors that have an NC contact in their basic unit, identification number 01, as these are coded.

All size SOO contactors with one auxiliary contact, identification number 10E or 01, and the contactors with 4 main contacts can be extended to obtain contactors with 3 or 5 auxiliary contacts (contactors with 4 main contacts: 2 or 4 auxiliary contacts) according to EN 50005 using auxiliary switch blocks
with identification numbers 40 to 02. The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary contacts.
Single or 2-pole auxiliary switch blocks that can be connected on either the top or the bottom facilitate quick, straightforward wiring, especially when assembling feeders. These auxiliary switch blocks are only available with screw-type terminals.
The solid-state compatible 3RH29 11-1NF.. auxiliary switch blocks for size SOO contactors contain two enclosed contact elements. They are ideal for switching low voltages and currents (hard gold-plated contacts) or for use in dusty atmosphere. The contacts do not have positively-driven operation.

All the above-mentioned auxiliary switch variants can be snapped into the location holes on the front of the contactors. The auxiliary switch block has a centrally positioned release lever for disassembly.

3RT20 2. to 3RT20 4. contactors (sizes S0 to S3), single-pole auxiliary switch blocks,
terminal designations acc. to EN 50005 or EN 50012.

Sizes S0 to S3 (3RT202 to 3RT204)
An extensive range of auxiliary switch blocks is available for various applications. The contactors themselves do not have an integrated auxiliary conducting path.
The auxiliary switch variants are identical for all size SO to S3 contactors.
One 4-pole or up to four singlepole auxiliary switch blocks (with screw or spring-type connections) can be snapped onto the front of the contactors. When the contactors are energized, the NC contacts open before the NO contacts close.

The terminal designations of the single-pole auxiliary switch blocks consist of location digits on the basic unit and function digits on the auxiliary switch blocks.

In addition, 2-pole auxiliary switch blocks (screw-type terminals) are provided for cable entries from above or below in the style of a four-connector block (feeder auxiliary switch).
If the available installation depth is restricted, 2-pole auxiliary switch blocks (screw or spring-type connections) can be mounted laterally on the left or right.
The auxiliary switch blocks designed for mounting onto the front can be disassembled with the aid of a centrally positioned release lever; the laterally mountable auxiliary switch blocks can be removed easily by pressing on the fluted grips.
The terminal designations of the individual auxiliary switch blocks comply with EN 50005 or EN 50 012, while those of the complete contactors with an auxiliary switch block with 2 NO +2 NC comply with EN 50012 .

3RT20 2. to 3RT20 4. contactors (sizes S0 to S3), single-pole auxiliary switch blocks,
terminal designations acc. to EN 50005 or EN 50012.

The laterally mountable auxiliary switch blocks to EN 50012 can only be used if no 4-pole auxiliary switch blocks are snapped onto the front. If sin-gle-pole auxiliary switch blocks are used in addition, the location digits on the contactor must be noted.
Two enclosed contact elements and two standard contact elements are available for the 3RH29 21-.FE22 solid-state compatible auxiliary switch block mountable on the front. The laterally mountable 3RH29 21-2DE11 solid-state compatible auxiliary switch block contains 2 enclosed contact elements ($1 \mathrm{NO}+1 \mathrm{NC}$). The enclosed contact elements are ideal for switching low voltages and currents (hard goldplated contacts) or for use in a dusty atmosphere. The contacts are positively driven.

3RT1 contactors, 3-pole, sizes S6 to S12

Overview

Design

- 3RT10 contactors for switching motors
- 3RT12 vacuum contactors for switching motors
- 3RT14 contactors for AC-1 applications

Operating mechanism

Two types of solenoid-operated mechanism are available:

- Conventional operating mechanism
- Solid-state operating mechanism
(with 3 performance levels)

UC operation

The contactors can be AC (40 to 60 Hz) and DC driven.

Withdrawable coils

To allow easy coil changing, for example if the application is changed, the magnetic coil can be pulled out upwards without tools after the release mechanism has been actuated, and can be replaced by any other required coil of the same size.

Auxiliary contact complement

The contactors can be equipped with a maximum of 8 auxiliary contacts, with identical auxiliary switch blocks from S0 to S12. Of these, no more than 4 are permitted to be NC contacts.

- 3RT10 and 3RT14 contactors: auxiliary contacts mounted laterally and on front
- 3RT12 vacuum contactors: auxiliary contact mounted laterallv

Contactors with conventional operating mechanism

3RT1...-.A:

The magnetic coil is switched on and off directly with the control supply voltage U_{s} via terminals A1/A2.

Multi-voltage range for the control supply voltage U_{s} :
Several closely adjacēnt control supply voltages, available around the world, are covered by just one coil, for example UC 110-115-120-127 V or UC 220-230-240 V.

In addition, allowance is also made for a coil voltage tolerance of 0.8 times the lower rated control supply voltage ($U_{\mathrm{s} \text { min }}$) and 1.1 times the upper rated control supply voltage $\left(U_{s \text { max }}\right)$, within which the
contactor switches reliably and no thermal overloading occurs.

Contactors with solid-state operating mechanism

The power required for reliable switching and holding is supplied selectively to the magnetic coil by series-connected control electronics.

Features:

- Extended voltage range for the control supply voltage U_{s} :
Compared with the conventional operating mechanism, the solid-state operating mechanism covers an even broader range of globally available control supply voltages within one coil variant. For example, the globally available voltages 200-208-220-230-240-254-277 V are covered with the coil for UC 200 to $277 \mathrm{~V}\left(U_{\mathrm{s} \text { min }}\right.$ to $\left.U_{\mathrm{s} \text { max }}\right)$.

Extended coil voltage tolerance 0.7 to $1.25 \times U_{s}$:
On account of the broad range for the rated control supply voltage and the additionally allowed coil voltage tolerance of $0.8 \times U_{\text {s min }}$ to 1.1 $\times U_{\text {s max }}$, an extended coil voltage tolerance of at least 0.7 to $1.25 \times U_{s}$, within which the contactors will operate reliably, is available for the most common control supply voltages of 24,110 and 230 V .

- Bridging short-time voltage dips:
Control voltage failures dipping to 0 V (at A1/A2) are bridged for up to approx. 25 ms , therefore preventing unintentional disconnection.
- Defined ON and OFF thresholds:
As of voltages $\geq 0.8 \times U_{\text {s min }}$, the electronics reliably switch the contactor on and as of $\leq 0.5 \times U_{\text {s min }}$ it is reliably switched off. The differential travel in the switching thresholds prevents chattering of the main contacts and hence increased wear or welding when operated in weak, unstable networks. Similarly, thermal overloading of the contactor coil is prevented if the voltage applied is too low - the contactor is not switched on and is operated with overexcitation.
- Low control power consumption when closing and in closed state.

Electromagnetic compatibility (EMC)

The contactors with solid-state operating mechanism conform to the requirements for operation in industrial plants.

- Noise immunity
- Burst (IEC 61 000-4-4): 4 kV
- Surge (IEC 61 000-4-5): 4 kV
-Electrostatic discharge,
ESD (IEC 61 000-4-2): $8 / 15 \mathrm{kV}$
- Electromagnetic field
(IEC 61 000-4-3): $10 \mathrm{~V} / \mathrm{m}$

- Emitted interference

Limiting value class A to EN 55011
Note:
In connection with converters, the control cables should be installed separately from the load cables to the converter.

3RT1...-.N: for DC 24 V PLC output

2 control options:

- Control without an interface directly via a DC $24 \mathrm{~V} / \geq 30$ mA PLC output (EN 61 1312). Connection via a 2-pole plug-in connection; the connector, using screwless spring-force technology, is included in the scope of supply. The control supply voltage for supplying power to the solenoid operating mechanism must be connected to A1/A2.
Note:
Before start-up, the slidingdolly switch for PLC operation must be moved to the "PLC ON" position (setting ex works: "PLC OFF").

(1) Sliding-dolly switch, must be in PLC "ON" position
(2) Plug-in connection, 2-pole
- Conventional control by applying the control supply voltage at A1/A2 via a switching contact.
Note:
The sliding-dolly switch must be in the "PLC OFF" position (= setting ex works).

\$ Sliding-dolly switch, must be in PLC "OFF" position

3RT1 contactors, 3-pole, sizes S6 to S12

Overview

Contactors with solid-state operating mechanism
3RT1...-.P: for DC 24 V PLC output or PLC relay output, with indication of remaining lifetime (Indication of remaining lifetime RLT: see 2/69.)

To supply power to the solenoid operating mechanism and the remaining lifetime indication the control supply voltage U_{s} must be run to terminals A1/A2 of the laterally mounted electronics module. The control inputs of the contactor are brought out to a 7 -pole plug-in connection; the connector, using screwless spring-force technology, is included in the scope of supply.

- The remaining lifetime RLT status signal is available at terminals R1/R2 via a floating relay contact (hard goldplated, enclosed) and can be processed for example via SIMOCODE-DP or PLC inputs or elsewhere.

Permissible current carrying capacity of relay output R1/ R2:
$-I_{\mathrm{e}} / \mathrm{AC}-15 / 24$ to $230 \mathrm{~V}: 3 \mathrm{~A}$
$-I_{\mathrm{e}} / \mathrm{DC}-13 / 24 \mathrm{~V}: 1 \mathrm{~A}$

- LED indicators

The following statuses are indicated by LEDs on the laterally mounted electronics module:

- Contactor ON (energized state):
Green LED ("ON")
- Indication of remaining lifetime (see 2/69)

2 control options:

- Contactor control without an interface directly via a DC $24 \mathrm{~V} / \geq 30 \mathrm{~mA}$
PLC output (EN 61 131-2) via terminals $\mathrm{IN}+/ \mathrm{IN}$ -

Electronics module of 3RT1-.P contactor
Plug-in connection, 7 -pole
S1 Changeover switch from automatic control via PLC semiconductor output to local control
S2 Local control option

Possibility of switching from automatic control to local control via terminals $\mathrm{H} 1 / \mathrm{H} 2$, i.e. automatic control via a PLC or SIMOCODE-DP/PROFIBUS-DP can be deactivated, for example during start-up or in the event of a fault, and the contactor can be controlled manually.

- Contactor control via relay outputs, e.g. by
- PLC
- SIMOCODE-DP 3UF5
via terminals $\mathrm{H} 1 / \mathrm{H} 2$
Contact loading:
$U_{s} /$ approx. 5 mA .
When operated via SIMO-CODE-DP, a communication link to PROFIBUS-DP is also provided.

Electronics module of 3RT1 ...-.P contactor
Plug-in connection, 7-pole
S1 Changeover switch from automatic control, e.g. via SIMOCODE-DP or PLC relay output to local control
S2 Local control option
\qquad

3RT12 vacuum contactors

In contrast with the 3RT10 contactors - the main contacts operate in air under atmospheric conditions - the contact gaps of the 3RT12 vacuum contactors are contained in hermetically enclosed vacuum contact tubes. Neither arcs nor arcing gases are produced. The particular benefit of 3RT12 vacuum contactors, however, is that their electrical endurance is at least twice as long as that of 3RT10 contactors.

They are therefore particularly well suited to frequent switching in jogging/mixed operation, for example in crane control systems.
Advantages:

- Very long electrical endurance
- High short-time current-carrying capacity for heavy starting
- No open arcs, no arcing gases, i.e. no minimum clearances from earthed parts required either
- Longer maintenance intervals
- Increased plant availability

Notes on operation:

- Switching motors with rated operational voltages $U_{\text {e_ }}$ $>500 \mathrm{~V}$:
In order to damp overvoltages and protect the motor winding insulation against multiple reignition when switching off three-phase motors, it is recommended to fit the contactors on the outgoing side (T1/T2/T3) with the 3RT19 66-1PV. surge suppression module - RC varistor - (accessory).

Contactor Assemblies for Switching Motors

Contactor assemblies for WYE-delta starting

Overview

The contactor assemblies for star-delta starting can be ordered as follows:

- Sizes SOO-SO as assemblies. (see pages 2/47-2/48)
- Sizes S2-S12 as components for customer assembly

Calculated horsepower ratings at 460 V AC			Size	Line/delta contactor	WYE contactor	Accessories for customer assembly	
	Operat. current $I_{\text {e }}$ A	Motor current A				Time-delay relay	Installation kit A double infeed
30	50	9.5 \ldots 13.8 12.1 \ldots 17.2 15.5 \ldots 21.5 19 \ldots 27.6 24.1 \ldots 34 31 \ldots 43 37.9 \ldots 55.2 48.3 \ldots 65	S2-S2-S0	$3 R T 2028$ 3RT29 35	3RT20 26	3RP15 74-1N. 30	3RA29 33-2C ${ }^{\text {3 }}$)
$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 80 \\ & 86 \end{aligned}$	$\begin{array}{lll} 62.1 & \ldots & 77.8 \\ 69 & \ldots & 86 \end{array}$	S2-S2-S2	3RT20 36	3RT20 35		3RA29 33-2BB13)
75	115	31 \ldots 43.1 37.9 \ldots 55.2 48.3 .. 69 62.1 \ldots 77.6 77.6 \ldots 108.6	S3-S3-S2	3RT20 45	3RT20 35	3RP15 74-1N. 30	3RA29 43-2C ${ }^{3}$)
100	150	$\begin{gathered} 98.3 \ldots 129.3 \\ 120.7 \ldots 150 \end{gathered}$		3RT20 45	3RT10 36		
$\begin{aligned} & 125 \\ & 150 \end{aligned}$	160 195	$\begin{array}{lll} 86 & \ldots & 160 \\ 86 & \ldots . & 195 \end{array}$	S6-S6-S3			3RP15 74-1N. 30	
190	230	86 ... 230		3RT10 55	3RT20 46		
200	280	86 ... 280		3RT10 56	3RT20 46		
$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 350 \\ & 430 \end{aligned}$	$\begin{array}{ll} 95 & \ldots 350 \\ 95 & \ldots 430 \end{array}$	S10-S10-S6	3RT10 64 3RT10 65	3RT10 54 3RT10 56	3RP15 74-1N. 30	
$\begin{aligned} & 400 \\ & 450 \end{aligned}$	$\begin{aligned} & 540 \\ & 610 \end{aligned}$	$\begin{array}{ll} 347 & \ldots \\ 340 \\ 347 & \ldots \\ \hline \end{array}$	S12-S12-S10	3RT10 75	3RT10 64	3RP15 74-1N. 30	
500	690	347 ... 690			3RT10 65		
650	850	347 ... 850		3RT10 76	3RT10 66		

For accessories, see page 2/83.
For circuit diagrams, see page 2/200.

1) The installation kit contains mechanical interlock; 3 connecting clips; wiring connectors on the top (connection between line contactor and delta contactor) and the bottom (connection between delta contactor and star contactor); WYE jumper
2) The installation kit contains 5 connecting clips; wiring connectors on the top (connection between line contactor and delta contactor) and the bottom (connection between delta contactor and WYE contactor); star jumper.

Installation kit B for single infeed	WYE jumper	Baseplates	Overload relay, thermal		Overload relay, solid-state	
			Range of overload relay, thermal [A]	Order No. overload relay, thermal	Range of overload relay, solid-state [A]	Order No. overload relay, solid-state
3RA19 33-3D ${ }^{4}$)	3RT19 26-4BA31	3RA19 32-2E	$\begin{array}{ccc} 5.5 & \ldots & 8 \\ 7 & \ldots & 10 \\ 9 & \ldots & 12.5 \\ 11 & \ldots & 16 \\ 14 & \ldots & 20 \\ 18 & \ldots & 25 \end{array}$	3RU11 36-1HB0 3RU11 36-1JB0 3RU11 36-1KB0 3RU11 36-4AB0 3RU11 36-4BB0 3RU11 36-4DB0	$\begin{array}{lll} \overline{6} & \ldots & 25 \end{array}$	3RB20 36-1QB0
			$\begin{array}{ll} 22 & \ldots \\ 22 \\ 28 & \ldots \\ \hline 0 \end{array}$	$\begin{aligned} & \text { 3RU11 36-4EB0 } \\ & \text { 3RU11 36-4FB0 } \end{aligned}$	13 ... 50	3RB20 36-1UB0
	3RT19 36-4BA31	3RA19 32-2F	$\begin{array}{lll} 36 & \ldots & 45 \\ 40 & \ldots & 50 \end{array}$	$\begin{aligned} & \text { 3RU11 36-4GB0 } \\ & \text { 3RU11 36-4HB0 } \end{aligned}$		
3RA19 43-3D ${ }^{\text {4 }}$	3RT19 36-4BA31	3RA19 42-2E	$\begin{array}{cc} 18 & \ldots \\ 22 & 25 \\ 22 & \ldots .32 \\ 28 & \ldots . \end{array}$	3RU11 46-4DB0 3RU11 46-4EB0 3RU11 46-4FB0	13 ... 50	3RB20 46-1UB0
			$\begin{array}{ll} 36 & \ldots 45 \\ 45 & \ldots .63 \end{array}$	$\begin{aligned} & \text { 3RU11 46-4HB0 } \\ & \text { 3RU11 46-4JB0 } \end{aligned}$	25 ... 100	3RB20 46-1EB0
			$\begin{array}{lll} 57 & \ldots & 75 \\ 70 & \ldots & 90 \end{array}$	$\begin{aligned} & \text { 3RU11 46-4KB0 } \\ & \text { 3RU11 46-4LB0 } \end{aligned}$		
3RA19 53-3D ${ }^{5}$)	3RT19 46-4BA31	3RA19 52-2E	-	-	50 ... 200	3RB20 56-1FG0

4) Wiring connector on top from reversing contactor assembly (note conductor cross-sections). required to use the standard 3RA1954-2A mechanical interlock for the AC version of the S6-S6-S3 WYE-Delta starter. The S6-S6-S3 WYE-Delta DC version would require a special custom build spacer, which is not manufac-
tured, to allow the mechanical interlock to operate.
5) Only use wiring connector on the top from reversing contactor assembly (note conductor cross-sections); order WYE jumper in addition.

Contactor assemblies for WYE-delta starting

Application

WYE-delta starting can only be used either if the motor normally operates in a Δ (delta) connection or starts softly or if the load torque during Y starting is low and does not increase sharply. On the Ystep the motors can carry approximately 50% (class KL 16) or 30% (class KL 10) of their rated torque; the starting torque is approximately $1 / 3$ of that during direct on-line starting. The starting current is approximately 2 to 2.7 times the rated motor current.
The changeover from \mathbf{Y} to Δ must not be effected until the motor has run up to rated speed. Drives which require this changeover to be performed earlier are unsuitable for WYEdelta starting.

The ratings given in the above table are only applicable to motors with a starting current ratio of $I_{\mathrm{A}} \leq 8.4 \times I_{\mathrm{N}}$ and using either a 3RT19 16-2G or 3RT19 26-2G solid-state time-delay auxiliary switch block with a WYE-delta function or a 3RP1574 WYEdelta time-delay relay with a dead interval of approximately 50 ms on reversing.
For the circuit diagrams for the main and control circuits, see page 2/161. The size selected for the installation kits for WYEdelta starting is determined by the line contactor.

Design

Components for customer assembly
Installation kits with wiring connectors and, if necessary, mechanical connectors are available for contactor assemblies for WYE-delta starting. Contactors, overload relays, star-delta time-delay relays and auxiliary switches for the electrical interlock - if required also feeder terminals, mechanical interlocks ${ }^{1}$) and baseplates must be ordered separately.
The wiring installation kits for sizes SOO and SO contain the top and bottom main conducting path connections between the line and delta contactors (top) and between the delta and WYE contactors (bottom).
In the case of sizes S2 to S12 only the bottom main conducting path connection between the delta and WYE contactors is included in the wiring connector, owing to the larger conductor cross-section at the infeed.

Motor protection

Overload relays or thermistor motor protection tripping units can be used for overload protection.

The overload relay can be either mounted onto the line contactor or separately fitted. It must be set to 0.58 times the rated motor current.

Surge suppression

Sizes S00 to S3

All contactor assemblies can be fitted with RC elements, varistors or diode assemblies for damping opening surges in the coil.

As with the individual contactors, the surge suppressors can either be plugged onto the top of the contactors (SOO) or fitted onto the coil terminals on the top or bottom (S0 to S3).

Sizes S6 to S12

The contactors are fitted with varistors as standard.

[^22]
Contactor Assemblies for Switching Motors

Contactor assemblies for WYE-delta starting

Selection and ordering data

Fully wired and tested contactor assemblies • Size S00-S00-S00 • Up to 11 kW
The figure shows the version with screw terminals

Mountable accessories			Fully wired and tested contactor assemblies					
Individual parts	Order No.	Page	Individua	al parts	Order No. Q11 ${ }^{\text {1) }}$	Q13 ${ }^{\text {2) }}$	Q12 ${ }^{2)}$	Page
(16) Three-phase feeder terminal ${ }^{3}$)	3RA29 13-3K	2/83	(1)(2)(3)	Contactor, 5.5 kW	3RT20 15	3RT20 15	3RT20 15	2/8
			(1)(2)(3)	Contactor, 7.5 kW	3RT20 17	3RT20 17	3RT20 15	2/8
			(1)(2)(3)	Contactor, 11 kW	3RT20 18	3RT20 18	3RT20 16	2/8
			(4)(5)(6)	Assembly kit comprising	3RA29 13-2			2/83
				(4) Mechanical inte				
				(5) 4 connecting cl				
				(6) Wiring modules for connecting	the top and main current	bottom paths		
			(7)	Function modules for wye-delta startin	3RA28 16-0	EW20		2/27
1) Use version with 1 NO. 2) Use version with 1 NC . ${ }^{3)}$ Part (16) can only be mounted with contactors with screw terminal.			Note:					
			When the function modules for contactor assemblies for wyedelta starting are used, no other auxiliary switches are allowed to be mounted on the basic units.					

Contactor assemblies for WYE-delta starting

Fully wired and tested contactor assemblies • Size SO-SO-SO • Up to 22 kW
The figure shows the version with screw terminals

Mountable accessories		
Individual parts	Order No.	Page
(16)	Three-phase feeder terminal	
(17)	Three-phase busbar ${ }^{1)}$	3RV19 25-5AB
	3RV19 15-1AB	$2 / 83$

[^23]| Fully wired and tested contactor assemblies | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Individual parts | | Order No. | | | Page |
| | | Q11 | Q13 | Q12 | |
| (1)(2)(3) | Contactor, 11 kW | 3RT20 24 | 3RT20 24 | 3RT20 24 | 2/8 |
| (1)(2)(3) | Contactors, $15 / 18.5 \mathrm{~kW}$ | 3RT20 26 | 3RT20 26 | 3RT20 24 | 2/8 |
| (1)(2)(3) | Contactor, 22 kW | 3RT20 27 | 3RT20 27 | 3RT20 26 | 2/8 |
| (4)(5) (6) | Assembly kit | 3RA29 23-2BB1 | | | 2/83 |
| | The assembly kit contains: | | | | |
| | (4) Mechanical interlock | | | | |
| | (5) Connecting clips | | | | |
| | (6) Wiring modules on the top and bottom for connecting the main current paths | | | | |
| (7) | Function modules for wye-delta starting | 3RA28 16- | EW20 | | 2/27 |
| N | Note: | | | | |
| | When the function mod delta starting are used to be mounted on the | dules for d, no other basic uni | ontactor as auxiliary s | emblies itches are | wyellowed |

Selection and ordering data
Size S2-S2-SO • up to 65 A, 30 HP

For overview, see page 2/110.
For circuit diagrams, see page 2/200.

1) Not included in scope of supply of complete contactor assemblies; available as accessory.
2) Possible in principle

If a solid-state time-delay auxiliary switch block is mounted onto the front of K3, an ordinary auxiliary switch block can only be mounted onto the side.

Contactor Assemblies for Switching Motors

Contactor assemblies for WYE-delta starting

Selection and ordering data

Size S2-S2-S2 • up to 86 A, 60 HP

| Components | Order No.
 K1 | | K3 | K2 |
| :--- | :--- | :--- | :--- | :--- | Page

The installation kit contains the WYE jumper on top and the wiring jumper on bottom for connecting the main conducting paths.

For overview, see page 2/110.
For circuit diagrams, see page 2/200.

1) Not included in scope of supply of complete contactor assemblies; available as accessory.
2) Possible in principle. If a solid-state time-delay auxiliary switch block is mounted onto the front of K3, a standard auxiliary switch block can only be mounted onto the side.

Selection and ordering data

Size S3-S3-S2 • up to 150 A, 100 HP

The installation kit contains the WYE jumper on the top and the wiring jumper on the bottom for connecting the main conducting

1) Not included in scope of supply of the complete contactor assemblies; available as an accessory.
2) Possible in principle If a solid-state time-delay auxiliary switch block is mounted onto the front of K3, a standard auxiliary switch block can only be mounted onto the side.

3RH21 control relays, size S00 with 4 or 8 contacts

AC and DC operation

IEC 60947, EN 60947.
The 3RH2 contactor relays have screw, ring lug terminal or spring-type terminals. Four contacts are available in the basic unit.
The 3RH2 contactor relays are suitable for use in any climate. They are finger-safe according to EN 50274. The devices with ring lug terminal connection comply with degree of protection IP20 when fitted with the related terminal cover.

Contact reliability

High contact stability at low voltages and currents, suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V .

Surge suppression

RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode) can be plugged onto all contactor relays from the front for damping opening surges in the coil. The plug-in direction is determined by a coding device.
Note:
The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Auxiliary switch blocks

The 3RH2 contactor relays can be expanded by up to four contacts by the addition of snap-on auxiliary switch blocks.
The auxiliary switch block can easily be snapped onto the front of the contactors. The auxiliary switch block has a centrally positioned release lever for disassembly.
The contactor relays with 4 contacts according to EN 50011, with the identification number 40E, can be extended with 80 E to 44E auxiliary switch blocks to obtain contactor relays with 8 contacts according to EN 50011. The identification numbers 80 E to 44 E on the auxiliary switch blocks apply to the complete contactors. These auxiliary switch blocks (3RH29 11-1GA..) cannot be combined with contactor relays with identification numbers 31 E and 22E; they are coded.
All contactor relays with 4 contacts according to EN 50011, identification numbers 40 E to 22E, can be extended with auxiliary switch blocks 40 to 02 to obtain contactor relays with 6 or 8 contacts in accordance with EN 50005. The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary switch blocks.

In addition, fully mounted 3RH22 8-pole contactor relays are available; the mounted 4-pole auxiliary switch block in the 2nd tier is not removable. The terminal designations are according to EN 50011.

These versions are built according to special Swiss regulations SUVA and are distinguished externally by a red labeling plate.

Of the auxiliary contacts (integrated plus mountable) possible on the device, no more than four NC contacts are permitted.

3RH24 latched control relays, size S00

Application

$A C$ and $D C$ operation
IEC 60 947, EN 60947
(VDE 0660)

The terminal designations comply with EN 50011 .
The relay coil and the coil of the release solenoid are both designed for continuous duty.

The number of auxiliary contacts can be extended by means of auxiliary switch blocks (up to 4 poles).
RC elements, varistors, diodes or diode assemblies can be plugged onto both coils
from the front for damping opening surges.
The control relay can also be switched on and released manually.

Design
EN 60 947-4-1
(VDE 0660 Part 102).
The 3TF contactors are suitable for use in any climate. They are safe from touch according to DIN VDE 0106 Part 100. Terminal covers (see accessories) may have to be fitted onto the connecting bars, depending on the configuration with other devices.

Main contacts

Contact erosion indication with 3TF68/69 vacuum contactors

The contact erosion of the vacuum interrupters can be monitored in the closed position by means of three white double slides on the contactor base The vacuum interrupter must be replaced if the distance indicated by one of the double slides is less than 0.5 mm while the contactor is in the closed position.
It is advisable to replace all three interrupters in order to ensure maximum reliability.

Surge suppression

Auxiliary contacts

The terminal designations comply with EN 50012
When the contactors are energized, the NC contacts open before the NO contacts close.

Contact reliability

The auxiliary contacts are extremely reliable and as such are suitable for electronic circuits

- with currents $\geq 1 \mathrm{~mA}$,
- at voltages greater than 17 V .

Control circuit

Protection of the coil circuits against surges:
AC operation

- fitted with varistors as standard.
DC operation
Retrofitting options:
- varistors

Electromagnetic compatibility (EMC)
3TF68/69..-. C contactors for AC operation are equipped with an electronically controlled solenoid mechanism with a high level of immunity to interference (see table opposite).

Note:

In operation in installations where it is not possible to observe the emitted interference limits, e.g. as an output contactor in static frequency changers, use of 3TF68/69...-.Q contactors (NS E catalogue, available in German) is recommended, without a main conductor path circuit (for further information refer also to the description below).

Contactor Type	Rated control supply voltage U_{s}	Overvoltage type (IEC 60801)	Severity to IEC 60801	Surge strength
$\begin{aligned} & \text { 3TF68 44-.C... } \\ & \text { 3TF69 44-.C. } \end{aligned}$	110 V ... 132 V	Burst Surge	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \mathrm{kV} \\ & 6 \mathrm{kV} \end{aligned}$
	200 V ... 276 V	Burst Surge	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \mathrm{kV} \\ & 5 \mathrm{kV} \end{aligned}$
	380 V ... 600 V	Burst Surge	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \mathrm{kV} \\ & 6 \mathrm{kV} \end{aligned}$

Circuit of the main conducting paths

An integrated RC varistor circuit in the main conducting paths of the contactors damps the rate of rise of switching overvoltages to uncritical values. Multiple restriking of the switching arcs is thereby prevented.
The operator of an installation can thus assume that the danger to the motor winding arising from switching overvoltages with a high rate of rise is ruled out.

The contactors can therefore be used without reservation for all AC switching applications, including three-phase motors with the demanding AC-4 utilization category.

Important note

The surge suppression circuit is not necessary when 3TF68/69 contactors are used in circuits with e.g. d.c. choppers, frequency converters or variablespeed drives.

It might be damaged by the voltage peaks and harmonics generated. This may also cause phase-to-phase short-circuits in the contactors.
Remedy: Order the special contactor design without surge suppression. In this case the Order No. must be supplemented with "-Z" and the order code "A02". No additional charge is made.

Short-circuit protection of contactors
For assembling fuseless load feeders, please select a circuitbreaker/contactor combination according to the brochure entitled "Verbraucherabzweige in sicherungsloser Bauweise", Order No. E20001-P285-A726 (available in German only).

The timer module, which is available in "ON-delay" and "OFF-delay" designs, allows time-delayed functions up to 100 s (3 distinct delay ranges). It contains a relay with one NO contact and one NC contact; the relay is switched either after an ON-delay or after an OFFdelay.
The timer module with a WYEDELTA function is equipped with one delayed and one instantaneous NO contact, with an interval time of 50 ms between the two (see diagram). The delay time of the NO contact can be set between 1.5 s and 30 s .

WYE-delta function

The contactor on which the solid-state, time-delay auxiliary switch block is mounted operates without a delay.

Size S00 (3RT201)

The solid-state, time-delay auxiliary switch block is fitted onto the front of the contactor. The timer module is supplied with power directly by plug-in contacts via the coil terminals of the contactor, in parallel with A1/A2. The time function is activated by closing the contactor on which the auxiliary switch block is mounted. The OFFdelay variant operates without an auxiliary power supply. Minimum ON period: 200 ms .

A varistor is integrated in the timer module for damping opening surges in the contactor coil.
The solid-state, time-delay auxiliary switch block cannot be mounted on size SOO coupling relays.

Sizes S0 to S12 (3RT202 to 3RT107)
The solid-state, time-delay auxiliary switch block is fitted onto the front of the contactor.
The timer module is supplied with power via two terminals (A1/A2); the time delay of the auxiliary switch block can be activated either by a parallel link to any contactor coil or by any power source.

The OFF-delay variant operates without an auxiliary power supply. Minimum ON period: 200 ms .
A single-pole auxiliary switch block can be snapped onto the front of the contactor in addition to the timer module.
The timer module has no integrated components for damping opening surges.

Solid-state time-delay block with semiconductor output

The timer module, which is available in "ON-delay" and "OFF-delay" with auxiliary power supply designs, allows time-delayed functions up to 100 s (3 distinct delay ranges). Contactors fitted with a timedelay block close or open after a delay according to the set time.
The ON-delay variant of the time-delay relay is connected in series with the contactor coil; terminal A1 of this coil must not be connected.
With the OFF-delay variant of the time-delay relay, the contactor coil is contacted directly via the relay; terminals A1 and A2 of the coil must not be connected.
The time-delay relays are suitable for both AC and DC operation.

Size S00 (3RT201)
The variant for size S00 contactors is fitted onto the front of the contactor (with the supply voltage switched off) and then slid into its latched position; at the same time, the time-delay relay is connected by means of plugin contacts to coil terminals A1 and A2 of the contactor. Any contactor coil terminals which are not required are sealed off by means of covers on the enclosure of the time-delay block, to prevent them from being connected inadvertently (for circuit diagrams, see page 2/149).
A varistor is integrated in the timer module for damping opening surges in the contactor coil.
The solid-state, time-delay block cannot be mounted on size SOO coupling relays.

Sizes SO to S3 (3RT202 to 3RT107)
The time-delay block for size SO to S3 contactors is plugged into coil terminals A1 and A2 on top of each contactor; the timedelay relay is connected both electrically and mechanically by means of pins.
A varistor is integrated in the timer module for damping opening surges in the contactor coil.

Configuration note

Activation of loads parallel to the start input is not permitted with AC operation (see @). The 3RT19 16-2D .../3RT19 262D... time-delay blocks with an OFF delay have a voltage-carrying start input B1. This means that if there is a parallel load on terminal B1, activation can be simulated with AC voltage. In this case, the additional load (e. g. contactor K3) must be wired as shown in (b).

Time-delay block
Contactor

Accessories for 3RT / 3RH Contactors

3-phase EMC interference suppression module for size $\mathbf{S 0 0}$ contactor

A so-called backr-e.m.f. (electromotive force) is produced when motors or various inductive loads are turned off. Voltage peaks of up to 4000 V may occur as a result, with a frequency spectrum from 1 kHz to 10 MHz and a rate of voltage variation from 0.1 to $20 \mathrm{~V} / \mathrm{ns}$.

The connection between the main conducting path and the EMC interference suppression module enables contact arcing, which is responsible for contact erosion and the majority of clicking noises, to be reduced; this in turn is conducive to an electromagnetically compatible design.
Since the EMC interference suppression module achieves a significant reduction in radiofrequency components and the voltage level in three phases, the contact endurance is also improved considerably. This makes an important contribution towards enhancing the reliability and availability of the system as a whole.
There is no need for fine graduations within each performance class, as smaller motors inherently have a higher inductance, so that one solution for all fixed-speed drives up to 7.5 HP is adequate.

Two electrical variants are available:

The advantages of the RC circuit lie mainly in the reduction in the rate of rise and in its RF damping ability. The selected values ensure effective interference suppression over a wide range.

The varistor circuit is able to absorb high energy levels and is also suitable for frequencies from 10 to 400 Hz (variablespeed drives). There is no limiting below the knee-point voltage, however.

OFF-delay device
 for size S00 to S3 contactors

$A C$ and $D C$ operation
 IEC 60 947, EN 60947

For screwing and snapping onto 35 mm standard mounting rail. The OFF-delay devices have screw connections.

Application

The OFF-delay device prevents a contactor from dropping out unintentionally when there is a short-time voltage dip or voltage failure. It supplies the necessary power for a seriesconnected, DC-operated contactor during a voltage dip to ensure that the
contactor does not open. The 3RT19 16/3RT29 16 OFF-delay devices are specifically designed for operation with the 3RT contactors and 3RH contactor relays of the SIRIUS series.

Principle of operation

The OFF-delay device operates without external voltage on a capacitive basis, and can be energized with either AC or DC (24 V version for DC operation only). Voltage matching, which is only necessary with AC operation, is performed using a rectifier bridge.

A contactor opens after a delay when the capacitors of the contactor coil, built into the OFFdelay device, are switched in parallel. In the event of voltage failures, the capacitors are discharged via the coil and thereby delay the opening of the contactor.
If the command devices are upstream of the OFF-delay device in the circuit, the OFF delay takes effect with every opening operation. If the opening operation is downstream of the OFF-delay device, an OFF delay only applies in the event of failure of the mains voltage.

Operation

In the case of the versions for rated control supply voltages of 110 V and 230 V , either AC voltage or DC voltage can be applied on the line side, where as the variant for 24 V is designed for DC operation only.
A DC-operated contactor is connected to the output in accordance with the input voltage that is applied.
The mean value of the OFF delay is approximately 1.5 times the specified minimum time.

Interface for mounting on size S0 to S3 contactors

Application		Functions
DC operation	Design	
IEC 60947 and EN 60 947	System-compatible operation	
The interface is suitable for use	with DC 24 V, coil voltage toler-	
in any climate. It is safe from	ance 17 V to 30 V .	
touch to DIN VDE 0106 Part	Low power consumption in con-	
100. The terminal designations	formity with the technical data	
conform to EN 50 005.	of the electronic systems.	
	A light-emitting diode indicates	
	the circuit state.	

Surge suppression

The 3RH29 24-1GP11 interface has an integrated surge suppressor (varistor) for the contactor coil being switched.

Mounting

The 3RH29 24-1GP11 interface is mounted directly on the contactor coil.

Terminal diagram

3RH19/29 24-1GP1

with surge suppression

(1) Interface
(2) Contactor
(2) Contactor

Connection example

3RH19/29 24-1GP1

with surge suppression

(1) Interface
(2) Contactor

3RT2 contactors

More information

[^24]
Endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching resistive and inductive AC loads (AC-1/AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i. e. not synchronized with the phase angle of the supply system.
The rated operational current I_{e} complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of at least 200,000 operating cycles.
If a shorter endurance is sufficient, the rated operational current $I_{\mathrm{e}} /$ AC-4 can be increased. I_{e}

If the contacts are used for mixed operation, i. e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact en durance can be calculated approximately from the following equation:

$$
x=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation $\left(I_{\mathrm{a}}=I_{\mathrm{e}}\right)$ in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

Size So

Diagram legend

$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 460 V
$I_{2}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

Technical data

Endurance of the main contacts

Size S2

Sizes S6 to S12

Size S3

3RT12 vacuum contactors
Sizes S10 and S12

Legend:
$P_{N}=$ Ratings of
three-phase motors with
squirrel-cage rotor at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\varepsilon}=$ Rated operational current

3RT2 contactors

Contactors	Type Size Width	mm	$\begin{aligned} & \text { 3RT20 } 15 \\ & \text { S00 } \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 16 \\ & \text { S00 } \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 17 \\ & \text { S00 } \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 18 \\ & \text { S00 } \\ & 45 \\ & \hline \end{aligned}$		
(1) and (11) rated data								
Rated insulation voltage		V AC	600					
Uninterrupted current, at $40^{\circ} \mathrm{C}$	- Open and enclosed	A	20					
Maximum horsepower ratings (®1 and (LI) approved values)								
- Rated power for induction motors at 60 Hz			$\begin{aligned} & 1.5 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 10 \\ & 10 \end{aligned}$		
Short-circuit protection ${ }^{1)}$ (contactor or overload relay) - Combination motor controllers type E according to UL 508	- Fuse CLASS J2) At 660 - Circuit breakers with overload protection according to UL 489	$\begin{aligned} & \text { kA } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 40 \\ & 50 \\ & \\ & \hline--3) \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 40 \\ & 50 \\ & \\ & \hline--3) \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 40 \\ & 50 \\ & \\ & \hline-3) \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 40 \\ & 50 \\ & \\ & \hline \end{aligned}$		
NEMA/EEMAC ratings								
NEMA/EEMAC size			--			0		
- Uninterrupted current	- Open - Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	--			$\begin{aligned} & 18 \\ & 18 \end{aligned}$		
- Rated power for induction motors at 60 Hz			$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$			$\begin{aligned} & 3 \\ & 3 \\ & 5 \\ & 5 \end{aligned}$		
Overload relays	- Type - Setting range	A	$\begin{aligned} & \hline \text { 3RU21 } 1 \\ & 0.11 \ldots 16 \end{aligned}$	$\begin{aligned} & \text { / 3RB30 } 1 \\ & \text { / } 0.1 \ldots 16 \end{aligned}$				
Contactors	Type		3RT20 23	3RT20 24	3RT20 25	3RT20 26	3RT20 27	3RT20 28
	Size		S0	S0	S0	So	S0	S0
	Width	mm	45	45	45	45	45	45
(14) and (11) rated data								
Rated insulation voltage		V AC	600				600	
Uninterrupted current, at $40^{\circ} \mathrm{C}$	- Open and enclosed	A	35				42	
Maximum horsepower ratings (®ㅏ and (LL) approved values)								
- Rated power for induction motors at 60 Hz		hp hp hp hp	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 25 \\ & 25 \end{aligned}$
Short-circuit protection ${ }^{1)}$ (contactor or overload relay)	- Fuse CLASS J2) At 660 - Circuit breakers with overload protection according to UL 489	$\begin{aligned} & \text { kA } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 45 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 70 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 110 \\ & 100 \end{aligned}$
NEMA/EEMAC ratings								
NEMA/EEMAC size			--				1	
- Uninterrupted current	- Open - Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$				$\begin{aligned} & 27 \\ & 27 \end{aligned}$	
- Rated power for induction motors at 60 Hz		hp hp hp hp	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$				$\begin{aligned} & 7.5 \\ & 7.5 \\ & 10 \\ & 10 \end{aligned}$	
Overload relays	- Type - Setting range	A	3RU21 2 1.8 ... 40	$\begin{aligned} & \text { / 3RB30 } 2 \\ & 10.1 \ldots 40 \end{aligned}$				

[^25]
Contactors for Switching Motors

3RT20 contactors
(13) and (1) ratings of the contactors

Contactor	$\begin{aligned} & \text { Size } \\ & \text { Type } \end{aligned}$		$\begin{aligned} & \text { S2 } \\ & \text { 3RT20 } 35 \end{aligned}$	$\begin{aligned} & \text { S2 } \\ & \text { 3RT20 } 36 \end{aligned}$	$\begin{aligned} & \text { S2 } \\ & \text { 3RT20 } 37 \end{aligned}$	S2 3RT20 38	S3 3RT20 45	S3 3RT20 46	S3 3RT20 47
Rated Insulation Voltage		AC V	600	600					
Continuous current, at $40^{\circ} \mathrm{C}$ Free air and enclosed		A	55	60	80	90	90	105	
Maximum horsepower ratings	$\begin{aligned} & \text { Ratings at } 115 \mathrm{~V} \\ & \text { single at } 230 \mathrm{~V} \\ & \text { phase motors } \\ & \text { at } 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \text { hp } \end{aligned}$	$\begin{aligned} & 3 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 15 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 15 \end{aligned}$	10
(116 and (4l) approved values									
Ratings of three-phase motors at $50 / 60 \mathrm{~Hz}$	$\begin{aligned} & \text { at } 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	hp hp hp hp	$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 75 \\ & 100 \end{aligned}$
Short-circuit protection	Fuse or circuitbreaker acc. to UL 489	$\begin{aligned} & \text { kA } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 350 \\ & 400 \end{aligned}$
NEMA/EEMAC ratings Conventional thermal current Ratings of three-phase motors at 60 Hz	NEMA/EEMAC Size Free air Enclosed at 200 V 230 V 460 V 575 V	A A hp hp hp hp		$\begin{aligned} & 2 \\ & 45 \\ & 45 \\ & 10 \\ & 15 \\ & 25 \\ & 25 \end{aligned}$	- - - - -				$\begin{aligned} & 3 \\ & 90 \\ & 90 \\ & 25 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$
Overload Relay	Type Setting Range	A	$\begin{aligned} & \text { 3RU213 / 3RB303 } \\ & 11 \ldots 80 \text { / } 12 \ldots 80 \end{aligned}$				$\begin{aligned} & \text { 3RU11 } 4 \\ & 18 \ldots 100 \end{aligned}$		
Contactor Size			SOO - SO Screw and Spring connection Integrated or snap-on aux. switch block		Screw and Spring connection Laterally mountable aux. switch block		S2-S12 Screw and Spring connection Single pole and 4-pole Snap-on aux. switch block		Screw and Spring connection Laterally mountable aux. switch block
(14) and (11) ratings of the auxilary contactors									
Rated Voltage		AC	600		600		600		600
Switching Capacity Uninterrupted current	At 240 VAC	A	$\begin{aligned} & \text { A 600, P } 600 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { A 600, Q } 600 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { A 600, P } 300 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { A 300, Q } 300 \\ & 10 \end{aligned}$

Contactors for Switching Motors

3RT10 contactors

Technical data

Contactor	Size Type	$\begin{aligned} & \text { S6 } \\ & \text { 3RT10 } 54 \end{aligned}$	$\begin{aligned} & \text { S6 } \\ & \text { 3RT10 } 55 \end{aligned}$	$\begin{aligned} & \text { S6 } \\ & \text { 3RT10 } 56 \end{aligned}$	$\begin{aligned} & \hline \text { S10 } \\ & \text { 3RT10 } 64 \end{aligned}$	$\begin{aligned} & \hline \text { S10 } \\ & \text { 3RT10 } 65 \end{aligned}$	$\begin{aligned} & \hline \text { S10 } \\ & \text { 3RT10 } 66 \end{aligned}$

(6) and (1) ratings of the contactors

Contactor	Size Type		$\begin{aligned} & \text { S12 } \\ & \text { 3RT10 } 75 \end{aligned}$	$\begin{aligned} & \text { S12 } \\ & \text { 3RT10 } 76 \end{aligned}$
Rated insulation voltage		AC V	600	
Continuous current, at $40^{\circ} \mathrm{C}$	Free air and enclosed	A	400	540
Maximum horsepower ratings (® and ©-approved values)				
Ratings of three-phase motors at $50 / 60 \mathrm{~Hz}$	$\begin{gathered} \text { at } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{HP} \\ & \text { HP } \\ & \text { HP } \\ & \text { HP } \end{aligned}$	$\begin{aligned} & 125 \\ & 150 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 500 \end{aligned}$
Short-circuit protection	CLASS RK5 fuse Circuit-breaker acc. to UL 489	kA A A	$\begin{array}{r} 18 \\ 1000 \\ \\ 900 \end{array}$	$\begin{array}{r} 30 \\ 1200 \\ 900 \end{array}$
NEMA/EEMAC ratings Conventional thermal current	NEMA/EEMAC SIZE Free air Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$		$\begin{array}{r} 6 \\ 600 \\ 540 \end{array}$
Ratings of three-phase motors at 60 Hz	$\begin{gathered} \text { at } 200 \mathrm{~V} \\ 230 \mathrm{~V} \\ 460 \mathrm{~V} \\ 575 \mathrm{~V} \end{gathered}$	HP HP HP HP		$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 400 \end{aligned}$
Overload relay	Type		3RB20 66	

Contactors for Switching Motors

3RT12 vacuum contactors, 3RT contactors for resistive loads

Technical data

3RT2. 1. contactors

3RT2. 1. contactors

Total break time $=$ Opening delay + Arcing time
) The 3RT29 16-1GA00 additional load module is recommended
The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

[^26]For rated values for various start-up conditions see Section 3 --> "Overload Relays"

3RT2. 1. contactors

Contactors	Type Size Width		mm	$\begin{aligned} & \text { 3RT20 } 15 \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 16 \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 17 \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 18 \\ & \text { S00 } \\ & 45 \end{aligned}$
Main circuit							
AC capacity							
Power loss per conducting path		At $I_{\mathrm{e}} /$ AC-3	W	0.42	0.7	1.24	2.2
Utilization category AC-4 (for $\left.I_{\mathrm{a}}=6 \times I_{\mathrm{e}}\right)^{\text {1 }}$)							
- Rated operational current $I_{\text {e }}$		Up to 400 V	A	6.5	8.5	8.5	11.5
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz		Up to 400 V	kW	3	4	4	5.5
- The following applies to a contact endurance of about 200000 operating cycles:							
- Rated operational currents I_{e}		Up to 400 V 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.4 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz		$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 0.67 \\ & 1.15 \\ & 1.45 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \\ & 3 \\ & 3.5 \end{aligned}$

Switching frequency

Switching frequency \mathbf{z} in operating cycles/hour

- Contactors without overload relays

Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U':
$Z^{\prime}=Z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

- Contactors with overload relays (mean value)

No-load switching frequency AC	h^{-1}	10000
No-load switching frequency DC	h^{-1}	10000
Rated operation		
AC-1 (AC/DC)	h^{-1}	1000
AC-2 (AC/DC)	h^{-1}	750
AC-3 (AC/DC)	h^{-1}	750
AC-4 (AC/DC)	h^{-1}	250
	h^{-1}	15

1) The data only apply to 3RT25 16 and 3RT25 17 (2 NO +2 NC) up to a rated operational voltage of 400 V .

Contactors	Type	mm	$\begin{aligned} & \text { 3RT20 } 15 \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 16 \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 17 \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 18 \\ & \text { S00 } \\ & 45 \end{aligned}$

Conductor cross-sections

Main conductors and auxiliary conductors

(1 or 2 conductors can be connected)

- Solid
- Finely stranded with end sleeve
- AWG cables, solid or stranded
- Terminal screw

	(1) Screw terminals
mm^{2}	$2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)}$ according to IEC 60947; max. $2 \times(0.5$... 4)
mm^{2}	$2 \times(0.5 \ldots 1.5)^{1} ; 2 \times(0.75 \ldots 2.5)^{1}$
AWG	$2 \times(20 \ldots 16)^{1)} ; 2 \times(18 . . .14)^{1)} ; 2 \times 12$
	M3 (for standard screwdriver size 2 and Pozidriv 2)
Nm	0.8 ... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in}$)
	O0 Spring-type terminals
mm	$3.0 \times 0.5 ; 3.5 \times 0.5$
mm^{2}	$2 \times(0.5 \ldots 4)$
mm^{2}	$2 \times(0.5 \ldots 2.5)$
mm^{2}	$2 \times(0.5 \ldots 2.5)$
AWG	$1 \times(20 \ldots 12)$

Main conductors, auxiliary conductors and coil terminals

(1 or 2 conductors can be connected)

- Operating devices
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded

Auxiliary conductors for front and laterally mounted auxiliary switches

(1 or 2 conductors can be connected)

- Operating devices

mm	$3.0 \times 0.5 ; 3.5 \times 0.5$
$\mathrm{~mm}^{2}$	$2 \times(0.5 \ldots 2.5)$
mm^{2}	$2 \times(0.5 \ldots 1.5)$
mm^{2}	$2 \times(0.5 \ldots 1.5)$
AWG	$2 \times(20 \ldots 14)$

- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded

Main conductors and auxiliary conductors

- Terminal screw
- Operating devices
- Tightening torque
- Usable ring terminal lugs
- DIN 46234 without insulation sleeve
- DIN 46225 without insulation sleeve
- DIN 46237 with insulation sleeve
- JIS C2805 Type R without insulation sleeve
- JIS C2805 Type RAV with insulation sleeve
- JIS C2805 Type RAP with insulation sleeve

For tool for opening the spring-type terminals
(see Accessories on page 2/79).
Maximum external diameter of the conductor insulation: 3.6 mm .

Ring lug terminal connection

M3, Pozidriv 2
mm \quad - $5 \ldots 6$
$\mathrm{Nm} \quad 0.8 \ldots 1.2$
$\mathrm{mm} \quad \mathrm{d}_{2}=\mathrm{min} .3 .2$
$\mathrm{mm} \quad \mathrm{d}_{3}=\max .7 .5$

3RT2. 2. contactors

Type

Size
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) for AC operation ${ }^{1}$)

- With mounted auxiliary switch block
- With mounted function block

Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) for DC operation ${ }^{1}$)

- With mounted auxiliary switch block
- With mounted function block

General data

Permissible mounting positions

The contactors are designed for operation on a vertical mounting surface.
Upright mounting position

3RT20 23	3RT20 24	3RT20 25	3RT20 26	3RT20 27	3RT20 28
SO	SO	SO	SO	SO	S0

Short-circuit protection for contactors without overload relays

Main circuit

- Fuse links, operational class gG Type NH 3NA, DIAZED 5SB, NEOZED 5SE
acc. to IEC 60947-4-1/ EN 60947-4-1
- Type of coordination "1"
- Type of coordination "2" Weld-free ${ }^{4)}$
- Miniature circuit breakers with C characteristic (short-circuit current 3 kA , type of coordination "1")

Auxiliary circuit

- Fuse links, operational class gG : DIAZED 5SB, NEOZED 5SE (weld-free protection for $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)
- Miniature circuit breaker with C characteristic (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)
${ }^{\text {1) }}$) Dimensions for devices with screw terminals / spring-type terminals.

2) For endurance of the main contacts see page $2 / 122$.

For short-circuit protection for contactors with overload relays see "Protection Equipment --> Overload Relays". For short-circuit protection for fuseless load feeders see "Motor Starters".

63	100	125
25	35	50
10	16	16
25	32	40

3RT20.2. contactors

Contactors	Type Size Width	mm	$\begin{aligned} & \text { 3RT20 } 23 \ldots \\ & \text { 3RT20 } 25 \\ & \text { S0 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 26 \ldots \\ & \text { 3RT20 } 28 \\ & \text { S0 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 2 . \\ & \text {-.NB3 } \\ & \text { S0 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 2 . \\ & \text {-.NF3.. } \\ & \text { S0 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 } 2 . \\ & \text {-.NP3 } \\ & \text { S0 } \\ & 45 \end{aligned}$
Control							
Solenoid coil operating range	AC/DC		$0.8 \ldots 1.1 \times U_{S}$		$0.7 \ldots 1.3 \times U_{\text {S }}$		
Power consumption of the solenoid coils (when coil is cold and $1.0 \times U_{s}$)							
- AC operation, 50 Hz , standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 65 \\ & 0.82 \\ & 7.6 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 77 \\ & 0.82 \\ & 9.8 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 0.98 \\ & 1.26 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 13.6 \\ & 0.98 \\ & 1.91 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 16.1 \\ & 0.98 \\ & 3.41 \\ & 0.25 \end{aligned}$
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 68 / 67 \\ & 0.72 / 0.74 \\ & 7.9 / 6.5 \\ & 0.25 / 0.28 \end{aligned}$	$\begin{aligned} & 81 / 79 \\ & 0.72 / 0.74 \\ & 10.5 / 8.5 \\ & 0.25 / 0.28 \end{aligned}$	$\begin{aligned} & 6.5 / 5.7 \\ & 0.98 / 0.96 \\ & 1.26 / 1.30 \\ & 0.78 / 0.8 \end{aligned}$	$\begin{aligned} & 13.6 / 13.2 \\ & 0.98 / 0.99 \\ & 1.91 / 1.90 \\ & 0.61 / 0.61 \end{aligned}$	$\begin{aligned} & 16.1 / 15.9 \\ & 0.99 / 0.99 \\ & 3.41 / 3.58 \\ & 0.36 / 0.45 \end{aligned}$
- AC operation, 50 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 65 \\ & 0.82 \\ & 7.6 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 77 \\ & 0.82 \\ & 9.8 \\ & 0.28 \end{aligned}$			
- AC operation, 60 Hz , USA/Canada	- Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 73 \\ & 0.76 \\ & 7.2 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 87 \\ & 0.76 \\ & 9.4 \\ & 0.28 \end{aligned}$			
- DC operation	Closing/closed	W	5.9/5.9	5.9/5.9	6.7/0.8	13.2/1.56	15/1.83
Permissible residual current of the electronics (with 0 signal)							
	- AC operation	mA	$\begin{aligned} & <6 \mathrm{mAx} \\ & \left(230 \mathrm{~V} / U_{\mathrm{s}}\right) \end{aligned}$	$<7 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$			
	- DC operation	mA	$<16 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$				
$\begin{aligned} & \hline \text { Operating times for } 0.8 \ldots 1.1 \times \mathbf{U}_{s}{ }^{1)} \\ & \text { Total break time }=\text { Opening delay + Arcing time } \end{aligned}$							
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{ll} 50 \ldots 170 \\ 15 \ldots & 17.5 \end{array}$	$\begin{array}{lll} 50 & \ldots & 170 \\ 15 & \ldots & 17.5 \end{array}$	$\begin{aligned} & 60 \ldots 75 \\ & 30 \ldots . \end{aligned}$	$\begin{aligned} & 50 \ldots 70 \\ & 35 \ldots . \end{aligned}$	$\begin{aligned} & 50 \ldots 75 \\ & 40 \ldots 50 \end{aligned}$
- Arcing time		ms	10	10	10	10	10
Operating times for $1.0 \times \mathbf{U S}_{\mathrm{s}}{ }^{1)}$ - AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 10 \ldots 18 \\ & 4 \ldots 16 \end{aligned}$	$\begin{aligned} & 10 \ldots 17 \\ & 4 \ldots 16 \end{aligned}$	$\begin{aligned} & 65 \ldots 80 \\ & 30 \ldots 45 \end{aligned}$	$\begin{aligned} & 50 \ldots 70 \\ & 35 \ldots . \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 60 \ldots 80 \\ & 30 \ldots 50 \end{aligned}$
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 55 \ldots 80 \\ & 16 \ldots . \end{aligned}$	$\begin{aligned} & 55 \ldots 80 \\ & 16 \ldots . .17 \end{aligned}$	$\begin{aligned} & 60 \ldots 8 \\ & 30 \ldots 45 \end{aligned}$	$\begin{aligned} & 56 \ldots 70 \\ & 35 \ldots . \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 60 \ldots 80 \\ & 30 \ldots 50 \end{aligned}$

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

3RT20 2. contactors

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

- Contactors without overload relays	No-load switching frequency AC	h^{-1}
	No-load switching frequency	h^{-1}
Dependence of the switching fre- DC		
quency z ' on the operational cur-	AC-1 (AC/DC)	h^{-1}
rent I and operational voltage U^{\prime} :	AC-2 (AC/DC)	h^{-1}
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	AC-3 (AC/DC)	h^{-1}
	AC-4 (AC/DC)	h^{-1}
- Contactors with overload relays (mean value)		h^{-1}

[^27]${ }^{1)}$ Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1

For rated values for various start-up conditions
see Section 3 --> "Overload Relays"

3RT20 2. contactors

Main conductors

Conductor cross-section

- Solid
- Finely stranded with end sleeve
- AWG cables, solid or stranded
- Terminal screws

Tightening torque

Auxiliary conductors

- Solid
- Finely stranded with end sleeve
- Solid or stranded AWG (2 x)
- Terminal screws
- Tightening torque

Main conductors

- Operating devices
- Solid
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded

Auxiliary conductors

- Operating devices
- Solid
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded

Main conductors

- Terminal screw
- Operating devices
- Tightening torque
- Usable ring lug terminals

DIN 46234 without insulation sleeve

- DIN 46225 without insulation sleeve

DIN 46237 with insulation sleeve

- JIS C2805 Type R without insulation sleeve
- JIS C2805 Type RAV with insulation sleeve
- JIS C2805 Type RAP with insulation sleeve

Auxiliary conductors

- Terminal screw
- Operating devices
- Tightening torque
- Usable ring terminal lugs

If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified.
M3, Pozidriv size 2

Screw terminals

```
mm2 2 (1 .. 2.5) 1); 2 < (2.5 .. 10) 1) according to IEC 60947
mm}\mp@subsup{}{}{2}2\times(1\ldots2.5\mp@subsup{)}{}{1});2\times(2.5\ldots6\mp@subsup{)}{}{1});1\times1
```

AWG $2 \times(16 \ldots 12) ; 2 \times(14 \ldots 8)$
M4 (Pozidriv size 2)
Nm 2 ... 2.5 (18 ... 22 lb. in)
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)}$ according to IEC 60947
$\left.\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)^{1}\right) ; 2 \times(0.75 \ldots 2.5)^{1)}$
AWG $2 \times(20 \ldots 16)^{1)} ; 2 \times(18 \ldots 14)^{1)} ; 1 \times 12$
M3
Nm $\quad 0.8$... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in})$

Spring-type terminals

$\mathrm{mm} \quad 3.0 \times 0.5 ; 3.5 \times 0.5$

$\mathrm{mm}^{2} \quad 2 \times(1 \ldots 10)$
$\mathrm{mm}^{2} \quad 2 \times(1 \ldots 6)$
$\mathrm{mm}^{2} 2 \times(1 \ldots 6)$
AWG $2 \times(18 \ldots 8)$
$3.0 \times 0.5 ; 3.5 \times 0.5$
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 2.5)$
$\mathrm{mm}^{2} \quad 2 \times(0.5 \ldots 1.5)$
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)$
AWG $2 \times(20 \ldots 14)$

Ring lug terminal connection

M4, Pozidriv size 2
mm Ø5 ... 6
Nm 2... 2.5
$\mathrm{mm} \quad \mathrm{d}_{2}=\min .4 .3$
$\mathrm{mm} \quad \mathrm{d}_{3}=\max .12 .2$
mm Ø $5 \ldots 6$
Nm 0.8 ... 1.2
$\mathrm{mm} \quad \mathrm{d}_{2}=\min .3 .2$
$\mathrm{mm} \quad \mathrm{d}_{3}=\max .7 .5$

Contactors	Size		S00	S0	
			Screw or spring-type terminals	Screw or spring-type terminals	Screw or spring-type terminals
			Integrated or snap-on auxiliary switch block	1- and 4-pole snap-on auxiliary switch block	Laterally mountable auxiliary switch block
(14. and (1) rated data of the auxiliary contacts					
Rated voltage		V AC	600	600	600
Switching capacity			A 600, Q 600	A 600, Q 600	A 300, Q 300
Uninterrupted current	- At 240 V AC	A	10	10	10

3RT20.3. contactors

Type			3RT2035	3RT2036	3RT2037	3RT2038
Size			S2	S2	S2	S2
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)			$55 \times 114 \times$			
- With mounted auxiliary switch block ${ }^{1)}$		mm	$55 \times 114 \times$	$5 \times 114 \times$		
- With mounted function module ${ }^{1)}$		mm	$55 \times 114 \times$	$5 \times 114 \times$		

General data

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.

Upright mounting position

Special version required

Mechanical endurance

- Basic units Operating cycles 10 million
- Basic units with snap-on auxiliary switch block Operating cycles 10 million
- Solid-state compatible auxiliary switch block Operating cycles 5 million

Electrical endurance		2)
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\mathbf{i m p}}$	kV	6
Protective separation between the coil and the main contacts	V	400

(acc. to IEC 60947-1, Appendix N)

Mirror contacts

A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with an NO main contact.

- Integrated auxiliary switches Yes, acc. to IEC 60947-4-1, Appendix F
- 3RT202., 3RT232. (removable auxiliary switch block) Yes, acc. to IEC 60947-4-1, Appendix F
- 3RT202., 3RT232. (permanently mounted auxiliary switch block) Yes, acc. to IEC 60947-4-1, Appendix F

Permissible ambient temperature

- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
- During storage	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$

Degree of protection acc. to IEC 60947-1, Appendix C IP20
Connection range IP00/open (where applicable, use additional terminal covers)
Touch protection acc. to EN 50274
Finger-safe
Shock resistance rectangular pulse

- AC operation	g / ms	$11.8 / 5$ and $7.4 / 10$
- AC/DC operation	g / ms	$7.7 / 5$ and $4.5 / 10$
Shock resistance sine pulse		
- AC operation	g / ms	$18.5 / 5$ and $11.6 / 10$
- AC/DC operation	g / ms	$12 / 5$ and $7 / 10$
Conductor cross-sections	$3)$	

Short-circuit protection

Main circuit

- Fuse links, operational class gG: LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE according to IEC 60947-4-1/EN 60947-4-1
- Type of coordination "1"
- Type of coordination "2"

Weld-free ${ }^{5)}$

Auxiliary circuit

- Fuse links, operational class gG: DIAZED, type 5SB; NEOZED, type 5SE (weld-free protection $I_{\mathrm{k}} \leq 1 \mathrm{kA}$)
- Miniature circuit breakers 230 V, C characteristic (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)
${ }^{1)}$ Dimensions for devices with screw terminals / spring-type terminals

2) For contact endurance of the main contacts, see page $3 / 17$.
3) For conductor cross-sections, see page 3/28
4) See http://support.automation.siemens.com/WW/view/en/39714188
5) Test conditions according to IEC 60947-4-1.

Short-circuit protection for contactors with overload relays See Configuration Manual "Configuring SIRIUS Innovations" 4) Short-circuit protection for fuseless load feeders See Chapter 8, "Load Feeders and Motor Starters for Use in the Control Cabinet" \rightarrow "SIRIUS 3RA2 Load Feeders"

Control Cabinet" \rightarrow "SIRIUS	3RA2	Load Feeders"	
160	160	250	250
80	80	125	160
On request			

On request

3RT20.3. contactors

Permissible residual current of the electronics (with 0 signal)

- AC operation
$\mathrm{mA}<20$
- DC operation
$\mathrm{mA}<20$

Operating times for $0.8 \ldots 1.1 \times \mathbf{U S}^{11}$
Total break time $=$ Opening delay + Arcing time

-AC operation	- Closing delay
	- Opening delay
- DC operation	- Closing delay
	- Opening delay

- Opening delay
- Arcing time

Operating times for $1.0 \times \boldsymbol{U}_{\mathrm{s}}{ }^{1}$

- AC operation

> - Closing delay

- Opening delay
- DC operation
- Closing delay
- Opening delay

10 ...
10... 1 ms ms --
ms $\quad 10 \ldots 20$
45... 70

35 ... 55
$45 \ldots 60$
35 ... 55
10 ... 20

Main circuit

Load rating with AC

Utilization category AC-1, switching resistive loads

- Rated operational current I
- Rated power for AC loads P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
- Minimum conductor At $40^{\circ} \mathrm{C} \mathrm{mm}{ }^{2}$

cross-section for loads with I_{e}	At $60^{\circ} \mathrm{C}$	mm^{2}	16	25

Utilization categories AC-2 and AC-3

- Rated operational currents I_{e}
- Rated power for slipring or squirrel-cage motors at 50 and 60 Hz

Up to 400 V	A	40	50	65	80
440 V	A	40	50	65	80
500 V	A	40	50	65	80
690 V	A	24	24	47	58
At 230 V	kW	11	15	18.5	22
400 V	kW	18.5	22	30	37
690 V	kW	22	22	37	45
10 s current $\left.{ }^{3}\right)$	A	400	420	520	640
At $I_{\mathrm{e}} /$ AC-3	W	2.2	4	3.8	5.7

Power loss per conducting path
2) Industrial furnaces and electric heaters with resistance heating, etc (increased power consumption on heating up has been taken into account).

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).
2) According to IEC 60947-4-1.

Rated values for various start-up conditions,
see Chapter 7, "Protection Equipment" \rightarrow "Overload Relays".

3RT20.3. contactors

Type Size			3RT2035 S2	$\begin{aligned} & \text { 3RT2036 } \\ & \text { S2 } \end{aligned}$	3RT2037 S2	3RT2038 S2
Main circuit						
Load rating with AC						
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)						
- Rated operational current I_{e} - Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ \text { At } 400 \mathrm{~V} \end{array}$	A kW	$\begin{aligned} & 35 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 41 \\ & 22 \end{aligned}$	$\begin{aligned} & 55 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 30 \end{aligned}$
- The following applies to a contact endur of about 200000 operating cycles:						
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 22 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 6.7 \\ & 11.6 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.3 \\ & 12.6 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 8.5 \\ & 14.7 \\ & 20 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 9.1 \\ & 15.8 \\ & 21.8 \end{aligned}$

Load rating with DC

Utilization category DC-1, switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)

-1 conducting path	Up to 24 V	A	55
60 V	A	23	
	110 V	A	4.5
	220 V	A	1
	440 V	A	0.4
600 V	A	0.25	
-2 conducting paths in series	Up to 24 V	A	55
60 V	A	45	
	110 V	A	25
	220 V	A	5
	440 V	A	1
-3 conducting paths in series	600 V	A	0.8
	Up to 24 V	A	55
60 V	A	55	
	110 V	A	55
	220 V	A	45
	440 V	A	2.9
	600 V	A	1.4

Utilization category DC-3/DC-5,
shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)
- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

Up to 24 V	A	35
60 V	A	6
110 V	A	2.5
220 V	A	2
440 V	A	0.1
600 V	A	0.06
Up to 24 V	A	55
60 V	A	45
110 V	A	25
220 V	A	5
440 V	A	0.27
600 V	A	0.16
Up to 24 V	A	55
60 V	A	55
110 V	A	55
220 V	A	25
440 V	A	0.6
600 V	A	0.35

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency
- Switching frequency z during rated operation ${ }^{1)}$

$-I_{e} /$ AC-1	At 400 V	$\mathrm{~h}^{-1}$	1200
$-I_{\mathrm{e}} /$ AC-2	At 400 V	$\mathrm{~h}^{-1}$	750
$-I_{\mathrm{e}} /$ AC-3	At 400 V	$\mathrm{~h}^{-1}$	1000
$-I_{\mathrm{e}} /$ AC-4	At 400 V	$\mathrm{~h}^{-1}$	300

Contactors with overload relays

- Mean value
$h^{-1} \quad 15$
) Dependence of the switching frequency z ' on the operational current I ' and operational voltage U ', $z^{\prime}=z \times\left(I_{\mathrm{e}} / I^{\prime}\right) \times\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1.5} \times 1 / \mathrm{h}$

Contactors for Switching Motors

3RT20.3. contactors

Type		3RT2035	3RT2036	3RT2037	3RT2038
Size	S2	S2	S2	S2	

Conductor cross-sections (1 or 2 conductors connectable)

Main conductors

- Solid or stranded
- Finely stranded with end sleeve
- AWG cables, solid or stranded
- Terminal screws
- Tightening torque

Screw terminals

Auxiliary and control conductors

- Solid or stranded
- Finely stranded with end sleeve
- Solid or stranded AWG (2 x)
- Terminal screws Tightening torque

Auxiliary and control conductors ${ }^{2)}$

- Operating devices ${ }^{3)}$
$\left.\mathrm{mm}^{2} \quad 2 \times(1 \ldots 35)^{1}\right) ; 1 \times(1 \ldots 50)^{1}$
$\mathrm{mm}^{2} \quad 2 \times(1 \ldots 25)^{1} ; 1 \times(1 \ldots 35)^{1)}$
AWG $2 \times(18 \ldots 2)^{1)} ; 1 \times(18 \ldots 1)^{1)}$
Pozidriv size 2; $\varnothing 5 \ldots 6$
Nm $3 \ldots 4.5$ (27... $40 \mathrm{lb} . \mathrm{in})$
$\begin{array}{ll}\mathrm{mm}^{2} & 2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)} \\ \mathrm{mm}^{2} & 2 \times(0.5 \ldots 1.5)^{11} ; 2 \times(0.75 \ldots 2.5)^{1)}\end{array}$
AWG $\left.2 \times(20 \ldots 16)^{1}\right) ; 2 \times(18 \ldots 14)^{1)}$
M3 (for Pozidriv size 2, $\varnothing 5$... 6)
Nm $\quad 0.8$... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in}$)

0 Spring-type terminals

$\mathrm{mm} \quad 3.0 \times 0.5$
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 2.5)$
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)$
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 2.5)$
AWG $2 \times(20 \ldots 14)$

- AWG cables, solid or stranded

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.
${ }^{2)}$ Max. external diameter of the cable insulation: 3.6 mm . On spring-type terminals with conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$, an insulation stop must be used, see Accessories, page 3/76.
${ }^{3)}$ Tool for opening the spring-type terminals; see "Accessories", page 3/76.

3RT20.4. contactors

Technical data

Contactor	Size	S3	S3	S3
	Type	3RT20 45	3RT20 46	3RT20 47

General data

Permissible mounting position
The contactors are designed for operation on a vertical mounting surface.

AC and DC operation

AC and DC operation

Special design required
Positions 13 to 16 of the Order No. must be changed to-1AA0 Additional charge.

10 million
10 million
5 million
See page $2 / 123$

Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V 1000

Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Safe isolation between coil and main contacts	V	690

(acc. to DIN VDE 0106 Part 101 and A1 [draft 2/89])
Positively driven operation
There is positively driven operation if the NC and
NO contacts cannot be closed at the same time

3RT20 4., 3RT23 4., 3RT24 5. Yes, between main contacts and auxiliary NC contacts and within (removable aux. switch block) the auxiliary switch blocks acc. to ZH 1/457, IEC 60 947-4-1, Annex H (draft 17B/996/DC)
3RT20 4 ., 3RT23 4., 3RT24 5. in accordance with Swiss regulations (SUVA) on request. (permanent aux. switch block)

Main circuit

Fuse links, utilization category gL/gG
NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE

- acc. to IEC 60 947-4/ Type of coord. "1"1) A

EN 60 947-4-4 (VDE 0660 Part 102)

Auxiliary circuit

Type of coord. "2" 1) A
Weld-free ${ }^{2}$) A

Fuse links, utilization category gL/gG
A
10
DIAZED Type 5SB, NEOZED Type 5SE (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)
or miniature circuit-breaker with C-characteristic (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$) A

[^28]Technical data

1) The opening times of the NO contacts and the closing times of the NC contacts increase if the contactor coils are protected against voltage peaks (varistor +2 ms to 5 ms , diode assem-
2) Industrial furnaces and electric heaters with resistance heating, for example (higher current input allowed for during heating up).
3) Acc. to VDE 0660 Part 102.

For rated values for various starting conditions, see Section 3.

Contactors for Switching Motors

3RT20.4. contactors

Technical data

Switching gas discharge lamps with correction, electronic ballast per main conducting path at 230 V

3RT20.4. contactors

Technical data

| Contactor | Size | S3 | S3 | S3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Type | 3RT20 45 | 3RT20 46 | 3RT20 47 |

Main circuit

Load ratings with DC
DC-1 utilization category,
switching resistive load ($\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$)
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)
Number of conducting paths connected in series

d in series		1	2	3	1	2	3	1	2	3
up to 24 V	A	90	90	90	100	100	100	100	100	100
60 V	A	23	90	90	60	100	100	60	100	100
110 V	A	4.5	90	90	9	100	100	9	100	100
220 V	A	1	5	70	2	10	80	2	10	80
440 V	A	0.4	1	2.9	0.6	1.8	1.8	0.6	1.8	4.5
600 V	A	0.26	0.8	1.4	0.4	1	1	0.4	1	2.6

DC-3 and DC-5 utilization categories,
shunt and series motors ($L / R \leq 15 \mathrm{~ms}$)
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)
Number of conducting paths connected in series

up to 24 V	A
60 V	A
110 V	A
220 V	A
440 V	A
600 V	A

1	2	3	1	2	3	1	2	3
40	90	90	40	100	100	40	100	100
6	90	90	6.5	100	100	6.5	100	100
2.5	90	90	2.5	100	100	2.5	100	100
1	7	35	1	7	35	1	7	35
0.15	0.42	0.8	0.15	0.42	0.8	0.15	0.42	0.8
0.06	0.16	0.35	0.06	0.16	0.35	0.06	0.16	0.35

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour			AC	DC	AC	DC	AC	DC
Contactors without overload relays	No-load operating frequency	1/h	5000	1000	5000	1000	5000	1000
Dependence of the operating frequency z ' on the operational current I^{\prime} and the operational voltage U^{\prime} :			AC/DC		AC/DC		AC/DC	
	for AC-1	1/h	1000		900		900	
$I_{e}(400 \mathrm{~V})^{1.5}$	for AC-2	1/h	400		400		350	
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.6} 1 / \mathrm{h}$	for AC-3	1/h	1000		1000		850	
T (U $)$	for AC-4	1/h	300		300		250	
Contactors with overload relays (mean value)		1/h	15		15		15	

Contactor	Size Type		$\begin{aligned} & \text { S3 } \\ & \text { 3RT20 } 4 . \end{aligned}$		
Conductor cross-sections					
Screw connections (1 or 2 conductor connections possible)	Main conductor: With box terminal		Front terminal connected	Back terminal connected	Both terminals connected
	Finely stranded with end sleeve Finely stranded without end sleeve Solid Stranded Ribbon cable (qty. \times width \times thickness) AWG conductor connections, solid and stranded	mm^{2} mm^{2} mm^{2} mm^{2} mm AWG			$\begin{aligned} & \operatorname{max.} 2 \times 35 \\ & \max .2 \times 35 \\ & \max .2 \times 16 \\ & \max .2 \times 50 \\ & 2 \times(6 \times 9 \times 0.8) \\ & 2 \times(10 \ldots 1 / 0) \end{aligned}$
	- Terminal screws - Tightening torque	Nm	M 6 (hexagon socket) 4 ... 6 (36 ... $53 \mathrm{lb} . \mathrm{in}$)		
Connection for drilled copper bars	max. width	mm	10	If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a 3RT19 46-4EA1 terminal cover is to comply with the phase clearance.	
Without box terminal With cable lugs (1 or 2 conductor connections possible)	Finely stranded with cable lug Stranded with cable lug AWG conductor connections, solid or stranded	mm^{2} mm^{2}	$\begin{gathered} \left.10 \ldots 50^{1}\right) \\ 10 \ldots 70^{11} \\ 7 \ldots 1 / 0 \end{gathered}$	If conductors larger nected, a 3RT19 46needed to comply w	an $25 \mathrm{~mm}^{2}$ are conA1 terminal cover is the phase clearance.
	Auxiliary conductor:				
	Solid	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & \operatorname{max.} 2 \times(0.75 \ldots 4) \end{aligned}$	75 ... 2.5) acc. to IEC	$30947 ;$
	Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) ; 2 \times$	75 ... 2.5)	
	AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	AWG Nm	$\begin{aligned} & 2 \times(20 \ldots 16) ; 2 \times(\\ & \text { M } 3 \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \end{aligned}$	$\text { ... 14); } 1 \times 12$	
Cage Clamp connections (1 or 2 conductor connections possible)	Auxiliary conductor:				
	Solid Finely stranded with end sleeve	mm²	$2 \times(0.25 \ldots 2.5)$		
		mm^{2}	$2 \times(0.25 \ldots 1.5)$		
	Finely stranded without end sleeve	mm^{2}	$2 \times(0.25 \ldots 2.5)$		
	AWG conductor connections, solid or stranded	AWG	$2 \times(24 \ldots 14)$		

- For tool for opening the Cage Clamp connection, see on accessories page 2/79
- An "insulation stop" must be used for conductor cross-sections $\leq 1 \mathrm{~mm} 2$, see accessories on page 2/79.
- Max. outer diameter of conductor insulation: 3.6 mm .
- For information about Cage Clamp connections, see Appendix page 19/17.

1) Only crimping cable lugs acc. to DIN 46234

3RT10.5. contactors

Technical data

Contactor $\begin{aligned} & \text { Size } \\ & \text { Type }\end{aligned}$		$\begin{aligned} & \text { S6 } \\ & \text { 3RT10 } 54 \end{aligned}$	S6 3RT10 55	$\begin{aligned} & \text { S6 } \\ & \text { 3RT10 } 56 \end{aligned}$
General data				
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.				
Mechanical endurance	Oper. cycles	10 million		
Electrical endurance		See page 2/123		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	1000		
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8		
Safe isolation between coil, auxiliary contacts and main contacts (acc. to DIN VDE 0106 Part 101 and A1 [draft 2/89])		690		
Positively driven operation There is positively driven operation if the NC and NO contacts cannot be closed at the same time		Yes, between main contacts and auxiliary NC contacts and within the auxiliary switch blocks acc. to ZH 1/457, IEC 60 947-4-1, Annex H (draft 17B/996/DC)		
Permissible ambient temperature $\begin{aligned} \text { in operation } \\ \text { when stored }\end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 /+55 \text { with AS-Interface } \\ & -55 \ldots+80 \end{aligned}$		
Degree of protection acc. to IEC $60947-1$ and DIN 40050		IP 00/open type, coil system IP 20		
Shock resistance Rectangular pulse Sine pulse	g/ms g / ms	$\begin{array}{r} 8.5 / 5 \text { and } 4.2 / 10 \\ 13.4 / 5 \text { and } 6.5 / 10 \end{array}$		
Conductor cross-sections		See page 2/145		
Electromagnetic compatibility (EMC)		See page 2/106		
Short-circuit protection of contactors without overload relays		See Part 4.		
Main circuit Fuse links, utilization category gL/gG NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE - acc. to IEC 60 947-4-1/EN 60 947-4-1 Type of coord. "1"1) Type of coord. "2" 1) Weld-free ${ }^{2}$)	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} 355 \\ 315 \\ 80 \\ \hline \end{array}$	$\begin{array}{r} 355 \\ 315 \\ 160 \\ \hline \end{array}$	
Auxiliary circuit Fuse links, utilization category gL/gG (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) DIAZED Type 5SB, NEOŻED Type 5SE or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)	A	10		

Contactor	Size Type		S6 3RT10 5.		
Control circuit					
Coil voltage tolerance		AC/DC (UC)	$0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{s}$ max		
Power consumption of solenoid mechanism (with coil in cold state and rated range $U_{s \text { min }} \ldots U_{\text {s max }}$)			Conventional op. mechanism	Solid-state op. mechanism	
			$U_{\text {s min }} \quad U_{\text {s max }}$	$U_{\text {s min }}$	$U_{\text {s max }}$
AC operation	Closing p.f. Closed p.f.	VA VA	250 300 0.9 0.9 4.8 5.8 0.8 0.8	$\begin{array}{r} 190 \\ 0.8 \\ 3.5 \\ 0.5 \end{array}$	$\begin{array}{r} 280 \\ 0.8 \\ 4.4 \\ 0.4 \end{array}$
DC operation	Closing Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	300 360 4.3 5.2	$\begin{gathered} 250 \\ 2.3 \end{gathered}$	$\begin{gathered} 320 \\ 2.8 \end{gathered}$
PLC control input (EN 61 131-2/Type 2)			DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$		
Operating times (Break-time $=$ opening time + arcing time $)$			Conventional op. mechanism	Solid-state op. mechanism Operation via A1/A2 PLC inpu	
- at $0.8 \times U_{\mathrm{s} \text { min }} \ldots 1.1 \times U_{\mathrm{s} \text { max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 20 \ldots 95 \\ & 40 \ldots 60 \end{aligned}$	$\begin{array}{r} 95 \ldots 135 \\ 80 \ldots \quad 90 \end{array}$	$\begin{aligned} & 35 \ldots 75 \\ & 80 \ldots 90 \end{aligned}$
- at $U_{s \text { min }} \ldots U_{s \text { max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 50 \\ & 40 \ldots 60 \end{aligned}$	$\begin{array}{rr} 100 \ldots & 120 \\ 80 \ldots & 90 \end{array}$	$\begin{aligned} & 40 \ldots 60 \\ & 80 \ldots 90 \end{aligned}$
Arcing time		ms	$10 . .15$	$10 \ldots 15$	$10 . . .15$

1) According to excerpt from

IEC 60 947-4-1 (VDE 0660 Part 102):
Type of coordination "1":
Destruction of the contactor and the overload relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2":
No damage can be tolerated to the overload relay, but contact welding on the contactor is permitted if the contacts can be easily separated.
2) Test conditions acc. to IEC 60 947-4-1.

3RT10.5. contactors

Technical data

Contactor	Size	S6	S6	S6
	Type	3RT10 54	3RT10 55	3RT10 56

Main circuit
Load ratings with AC
AC-1 utilization category, switching resistive load

Minimum conductor cross-section with $I_{\mathrm{e} \text { load }}$

Rated operational currents I_{e}

Ratings of three-phase loads ${ }^{1}$
p.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)

> at $40^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 1000 V
AC-2 and AC-3 utilization categories

Rated operational currents I_{e}

Ratings of slipring or squirrel-cage motors at 50 Hz and 60 Hz

Technical data

Contactor	Size Type		$\begin{aligned} & \text { S6 } \\ & \text { 3RT10 } 54 \end{aligned}$			S6 3RT10 55	$\begin{aligned} & \text { S6 } \\ & \text { 3RT10 } 56 \end{aligned}$
Main circuit							
Load ratings with DC							
DC-1 utilization category, switching resistive load ($L / R \leq 1 \mathrm{~ms}$)							
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)							
	Number of conducting paths connected in series		1	2	3		
	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} \hline 160 \\ 160 \\ 18 \end{array}$	$\begin{aligned} & 160 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & 160 \end{aligned}$		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3.4 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{gathered} 20 \\ 3.2 \\ 1.6 \end{gathered}$	$\begin{gathered} 160 \\ 1.4 \\ 0.75 \end{gathered}$		
DC-3 and DC-5 utilization categories, shunt and series motors ($\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$)							
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)							
	Number of conducting paths connected in series		1	2	3		
	up to 24 V 60 V 110 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} \hline 160 \\ 7.5 \\ 2.5 \end{array}$	$\begin{aligned} & \hline 160 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 160 \\ & 160 \end{aligned}$		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 0.6 \\ & 0.17 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 160 \\ 11.5 \\ 4 \end{gathered}$		

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour
Contactors without overload relays
Dependence of the operating frequency z ' on the operational current I^{\prime} and the operational voltage U^{\prime} :
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$
Contactors with overload relays (mean value)

No-load operating frequency

Contactor

Conductor cross-sections

Screw connections

Main conductor: with 3RT19 55-4G box terminal (75 HP)		Front terminal connected	Back terminal connected	Both terminals connected
finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid/stranded Ribbon cable (qty. x width \times thickness)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \end{aligned}$	$16 \ldots 70$ $16 \ldots 70$ $16 \ldots 70$ $6 \ldots 2 / 0$ 壁 min. $3 \times 9 \times 0.8$ max. $6 \times 15.5 \times 0.8$		$\max .1 \times 50,1 \times 70$ $\max .1 \times 50,1 \times 70$ $\max .2 \times 70$ $\max .2 \times 1 / 0$ $\max .2 \times(6 \times 15,5 \times 0.8)$
with 3RT19 56-4G box terminal				
Finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid/stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 16 \ldots 120 \\ & 16 \ldots 120 \\ & 16 \ldots 120 \\ & 6 \ldots . .250 \text { kcmil } \end{aligned}$	$\begin{aligned} & 16 \ldots .120 \\ & 16 \ldots 120 \\ & 16 \ldots 120 \\ & 6 \ldots .250 \text { kcmil } \end{aligned}$	$\max .1 \times 95,1 \times 120$ $\max .1 \times 95,1 \times 120$ max. 2×120 $\max .2 \times 3 / 0$
Ribbon cable (qty. \times width \times thickness) - Terminal screws - Tightening torque	mm mm Nm	min. $3 \times 9 \times 0.8$ $\max .10 \times 15.5 \times 0.8$ M 10 (hexagon sock $10 \text {... } 12 \text { (90 ... } 110$	$\begin{aligned} & \min .3 \times 9 \times 0.8 \\ & \max .10 \times 15.5 \times 0.8 \\ & \text { et, A/F4) } \\ & \text { o.in) } \end{aligned}$	$\max .2 \times(10 \times 15.5 \times 0.8)$
Without box terminal/busbar connection				
Finely stranded with cable lug Stranded with cable lug	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 16 \ldots 95 \\ & 25 \ldots 120 \end{aligned}$	If cable lugs acc. to as of a conductor cro 3RT19 56-4EA1 term comply with the phas	DIN 46235 are connected, oss-section of $95 \mathrm{~mm}^{2}$ a inal cover is necessary to se clearance.
AWG conductor connections, solid or stranded	AWG	4 ... 250 kcmil		
Connecting bar (max. width) - Terminal screws - Tightening torque	mm Nm	$\begin{aligned} & 17 \\ & \text { M } 8 \times 25(\text { A/F 13 }) \\ & 10 \ldots 14(89 \ldots 124 \end{aligned}$		
Auxiliary conductor:				
Solid	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times(0) \\ & \max .2 \times(0.75 \ldots 4) \end{aligned}$	75 ... 2.5) acc. to IEC	$\text { C } 60 \text { 947; }$
Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) ; 2 \times$	0.75 ... 2.5)	
AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	AWG Nm	$\begin{aligned} & 2 \times(18 \ldots 14) \\ & M 3(P Z 2) \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \end{aligned}$		

3RT10.6. contactors

Technical data

| Contactor | Size | S10 | S10 | S10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Type | 3RT10 64 | 3RT10 65 | 3RT10 66 |

General data
Permissible mounting position
The contactors are designed for operatio
on a vertical mounting surface.

Mechanical endurance	Oper. cycles	10 million
Electrical endurance		See page 2/123
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	1000
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8
Safe isolation between coil, auxiliary contacts and main contacts (acc. to DIN VDE 0106 Part 101 and A1 [draft 2/89])	V	690
Positively driven operation There is positively driven operation if the NC and NO contacts cannot be closed at the same time		Yes, between main contacts and auxiliary NC contacts and within the auxiliary switch blocks acc. to ZH 1/457, IEC 60 947-4-1, Annex H (draft 17B/996/DC)
$\begin{array}{lc}\text { Permissible ambient temperature } & \text { in operation } \\ \text { when stored }\end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 /+55 \text { with AS-Interface } \\ & -55 \ldots+80 \end{aligned}$
Degree of protection acc. to IEC 60 947-1 and DIN 40050		IP 00/open type, coil system IP 20
Shock resistance Rectangular pulse Sine pulse	g/ms g / ms	$\begin{array}{r} 8.5 / 5 \text { and } 4.2 / 10 \\ 13.4 / 5 \text { and } 6.5 / 10 \end{array}$
Conductor cross-sections		See page 2/148
Electromagnetic compatibility (EMC)		See page 2/106
Short-circuit protection		
Main circuit Fuse links, utilization category gL/gG NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE - acc. to IEC 60 947-4-1/EN 60 947-4-1 Type of coord. "1"1) Type of coord. "2" 1) Weld-free ${ }^{2}$)	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \\ & 250 \end{aligned}$
Auxiliary circuit Fuse links, utilization category gL/gG (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) DIAZED Type 5SB, NEOZED Type 5SE or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)	A	10

Short-circuit protection

Main circuit
Fuse links, utilization category gL/gG
NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE

- acc. to IEC 60 947-4-1/EN 60 947-4-1

$$
\begin{aligned}
& \text { Type of coord. "1" } 1 \text {) } \\
& \text { Type of coord. "2" 1) } \\
& \text { Weld-free }{ }^{2} \text {) }
\end{aligned}
$$A 500$\begin{array}{ll}\text { A } & 400 \\ \text { A } & 250\end{array}$

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 6 . \end{aligned}$		
Control circuit					
Coil voltage tolerance		AC/DC (UC)	$0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$		
Power consumption of solenoid mechanism (with coil in cold state and rated range $U_{\text {s min }} \ldots U_{\text {s max }}$)			Conventional op. mechanism	Solid-state op. mechanism	
			$U_{\text {s min }} \quad U_{\text {s max }}$	$U_{\text {s min }}$	$U_{s \text { max }}$
AC operation	closing p.f. closed p.f.	VA VA	490 590 0.9 0.9 5.6 6.7 0.9 0.9	$\begin{gathered} 400 \\ 0.8 \\ 4 \\ 0.5 \end{gathered}$	$\begin{gathered} 530 \\ 0.8 \\ 5 \\ 0.4 \end{gathered}$
DC operation	closing closed	$\begin{aligned} & W \\ & W \end{aligned}$	540 650 6.1 7.4	$\begin{gathered} 440 \\ 3.2 \end{gathered}$	$\begin{gathered} 580 \\ 3.8 \end{gathered}$
PLC control input (EN 61131	2/Type 2)		DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$		
Operating times (Break-time $=$ opening time +	cing time)		Conventional op. mechanism	Solid-state op. Operation via A1/A2	mechanism PLC input
- at $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{s}$ max	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 95 \\ & 40 \ldots 80 \end{aligned}$	$\begin{array}{r} 105 \ldots 145 \\ 80 \ldots 100 \end{array}$	$\begin{array}{lll} 45 \ldots & 80 \\ 80 \ldots & \ldots 00 \end{array}$
- at $U_{s \text { min }} \ldots U_{\text {s max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$	$\begin{array}{r} 110 \ldots 130 \\ 80 \ldots 100 \end{array}$	$\begin{aligned} & 50 \ldots \\ & 80 \ldots 5 \\ & 80 \ldots \end{aligned}$
Arcing time		ms	10... 15	$10 \ldots 15$	$10 \ldots 15$

1) According to excerpt from

IEC 60 947-4-1 (VDE 0660 Part 102):
Type of coordination "1":
Destruction of the contactor and the overload relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2":
No damage can be tolerated to the overload relay, but contact welding on the contactor is permitted if the contacts can be easily separated.

3RT10.6. contactors

Technical data

Contactor	Size	S10	S10	S10
	Type	3RT10 64	3RT1065	3RT1066

Main circuit
Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents I_{e}

Ratings of three-phase loads ${ }^{1}$)
p.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$

Minimum conductor cross-section with $I_{\text {e load }}$

at $40^{\circ} \mathrm{C}$ up to 690 V	A	275	330
at $60^{\circ} \mathrm{C}$ up to 690 V	A	250	300
at $60^{\circ} \mathrm{C}$ up to 1000 V	A	100	150
at 230 V	kW	94	113
400 V	kW	164	197
500 V	kW	205	246
690 V	kW	283	340
1000 V	kW	164	246
at $40^{\circ} \mathrm{C}$	mm^{2}	150	185
$60^{\circ} \mathrm{C}$	mm^{2}	120	185

AC-6b utilization category, switching low-inductance (low-loss, metallized-dielectric) three-phase capacitors
Ambient temperature $40^{\circ} \mathrm{C}$
Rated operational currents I_{e}

up to 500 V	A	183	220
at 230 V	kvar	73	88
400 V	kvar	127	152
500 V	kvar	159	191
690 V	kvar	127	152

or of capacitor banks (minimum inductance
between parallel capacitors $6 \mu \mathrm{H}$)
500 V kvar
var
127
191
at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and
2) Acc. to VDE 0660 Part 102.

For rated values for various starting conditions, see Section 3

3RT10.6. contactors

Technical data

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 64 \end{aligned}$			$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 65 \end{aligned}$			$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 66 \end{aligned}$
Main circuit									
Load ratings with DC									
DC-1 utilization category, switching resistive load ($\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$)									
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)									
	Number of conducting paths connected in series		1	2	3	1	2	3	
	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ 18 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 300 \\ 300 \\ 33 \end{array}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3.4 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{gathered} 20 \\ 3.2 \\ 1.6 \end{gathered}$	$\begin{gathered} 200 \\ 11.5 \\ 4 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 300 \\ 4 \\ 2 \end{array}$	$\begin{gathered} 300 \\ 11 \\ 5.2 \end{gathered}$	
DC-3 and DC-5 utilization categories, shunt and series motors ($\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$)									
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)									
	Number of conducting paths connected in series		1	2	3	1	2	3	
	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} \hline 200 \\ 7.5 \\ 2.5 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 300 \\ 11 \\ 3 \end{array}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 0.6 \\ & 0.17 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 200 \\ 1.4 \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 0.18 \\ & 0.125 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 300 \\ 1.4 \\ 0.75 \end{gathered}$	

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour
Contactors without overload relays
Dependence of the operating frequency z^{\prime} on the operational current I ' and the operational voltage U^{\prime} ':
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$
Contactors with overload relays (mean value)

No-load operating	
frequency	$1 / h$
for AC-1	$1 / h$
for AC-2	$1 / h$
for AC-3	$1 / h$
for AC-4	$1 / h$
	$1 / h$

Contactor
Conductor cross-sections
Screw connections

3RT10.7. contactors

Technical data

Contactor	Size	S12
	Type	3RT10 75

General data
Permissible mounting position
The contactors are designed for operation
on a vertical mounting surface.
on a vertical mounting surface.

on		
	Oper. cycles	10 million
		See page 2/123
	V	1000
	kV	8
	V	690
[draft 2/89])		

Short-circuit protection
Main circuit
Fuse links, utilization category gL/gG
NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE

Type of coord. "1" 1)	A	630	630
Type of coord. "2" 1)	A	500	500
Weld-free ${ }^{2}$)	A	250	315
	A	10	

- to IEC 60 947-4/EN 60 947-4-4 (VDE 0660 Part 102)

Auxiliary circuit
Fuse links, utilization category gL/gG
$0.8 \times U_{\mathrm{s} \text { min }} \ldots 1.1 \times U_{\mathrm{s} \text { max }}$

1) According to excerpt from IEC 60 947-4-1 (VDE 0660 Part 102): Type of coordination "1":
Destruction of the contactor and the overload
relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2"
No damage can be tolerated to the overload relay, but contact welding on the contactor is permitted if the contacts can be easily separated.
2) Test conditions acc. to IEC 60 947-4-1.

3RT10.7. contactors

Technical data

Contactor	Size	S12	S12
	Type	3RT10 75	3RT10 76

Main circuit
Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents I

Ratings of three-phase loads ${ }^{1}$
p.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)

Minimum conductor cross-section with $I_{\text {elo }}$

AC-2 and AC-3 utilization categories

AC-6b utilization category, switching low-inductance

(low-loss, metallized-dielectric) three-phase capacitors

Ambient temperature $40^{\circ} \mathrm{C}$
Rated operational currents I_{e}
Ratings of single capacitors
or of capacitor banks (minimum inductance
up to 500 V A
at 230 V kvar
between parallel capacitors $6 \mu \mathrm{H}$)
at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and

1) Industrial furnaces and electric heaters
with resistance heating, for example (higher
current input allowed for during heating up).
2) Acc. to VDE 0660 Part 102. For rated values for various starting conditions, see Section 3.
3) Ambient temperature $50^{\circ} \mathrm{C}$ for 3RT10 76-.N contactor
4) Ambient temperature $55^{\circ} \mathrm{C}$ for 3RT10 76-. N contactor

Contactors for Switching Motors

3RT10.7. contactors

Technical data

Contactor	Size	S12	S12
	Type	3RT10 75	3RT10 76

Main circuit

Load ratings with DC
DC-1 utilization category,
switching resistive load ($\mathrm{L} / \mathrm{R} \leq \mathbf{1} \mathbf{~ m s}$)
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour
Contactors without overload relays

Dependence of the operating frequency z ' on the frequency1/h
for AC operational current I^{\prime} and the operational voltage U^{\prime} : for AC-1 for AC-2 for AC-3 1/h
/h
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$
Contactors with overload relays (mean value)

Contactor	Size Type		S12 3RT10 7.		
Conductor cross-sections					
Screw connections	Main conductor: with 3RT19 66-4G box terminal		Front terminal connected	Back terminal connected	Both terminals connected
	Finely stranded with end sleeve	mm²			min. 2×50, max. 2×185 min. 2×50, max. 2×185 min. 2×70, max. 2×240 $\min .2 \times 2 / 0$, $\max .2 \times 500 \mathrm{kcmil}$
	Finely stranded without end sleeve	mm^{2}			
	Stranded	mm²			
	AWG conductor connections, solid or stranded	AWG			
	Ribbon cable (qty. \times width \times thickness)	mm			
	- Terminal screws	mm			$\max .2 \times(20 \times 24 \times 0.5)$
		Nm			
	Without box terminal/busbar connection				
	Finely stranded with cable lug Stranded with cable lug	mm² mm^{2}	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	If cable lugs acc. to DIN 46234 are connected, as of a conductor cross-section of $240 \mathrm{~mm}^{2}$ and acc. to DIN 46235 as of a conductor cross-section of $185 \mathrm{~mm}^{2}$ a 3RT19 664EA1 terminal cover is necessary to comply with the phase clearance.	
	AWG conductor connections, solid or stranded	AWG	2/0 ... 500 kcmil		
	Connecting bar (max. width) - Terminal screws	mm	$\begin{aligned} & 25 \\ & M 10 \times 30(A / F ~ 17) \end{aligned}$		
	- Tightening torque	Nm	$14 \ldots 24$ (124... $210 \mathrm{lb} . \mathrm{in}$)		
	Auxiliary conductor:				
	Solid	mm²	$2 \times(0.5 \ldots 1.5) ; 2 \times(0.75 \ldots 2.5)$ acc. to IEC 60947 ; $\max .2 \times(0.75 \ldots 4)$		
	Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) ; 2 \times$	$0.75 \text {... 2.5) }$	
	AWG conductor connections, solid or stranded - Terminal screws	AWG	$\begin{aligned} & 2 \times(18 \ldots 14) \\ & M 3(P Z 2) \end{aligned}$		
	- Tightening torque	Nm	0.8 ... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in}$)		

3RT12.6. vacuum contactors

Technical data

Short-circuit protection
Main circuit
Fuse links, utilization category gL/gG
NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE - to IEC 60 947-4/EN 60 947-4-4 (VDE 0660Part 102)

Type of coord. "1" 1)	A	500
Type of coord. "2 ${ }^{-1}$)	A	500
Weld-free 2)	A	400

Auxiliary circuit

Fuse links, utilization category gL/gG
A 10
(weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)
DIAZED Type 5SB, NEOZZD Type 5SE
or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)

Control circuit

1) According to excerpt from IEC 60 947-4-1 (VDE 0660 Part 102): Type of coordination "1":
Destruction of the contactor and the overload
relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2":
No damage can be tolerated to the overload relay,
but contact welding on the contactor is permitted if
the contacts can be easily separated.

Contactors for Switching Motors

3RT12.6. vacuum contactors

Technical data

Contactor	Size	S10	S10	S10 Type	3RT12 64

Main circuit
Load ratings with AC

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour
Contactors without overload relays

Dependence of the operating frequency z ' on the operational current I^{\prime} and the operational voltage U^{\prime} :
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$
Contactors with overload relays (mean value)

[^29]2) Acc. to VDE 0660 Part 102.

For rated values for various starting conditions, see Section 3.

Contactors for Switching Motors

3RT12.6. vacuum contactors

Technical data

Contactor	Size Type		S10 3RT12 6.		
Conductor cross-sections					
Screw connections	Main conductor: with 3RT19 66-4G box terminal Finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid or stranded Ribbon cable (qty. \times width \times thickness) - Terminal screws - Tightening torque	mm^{2} mm^{2} mm^{2} AWG mm mm Nm	Front terminal connected $70 \ldots 240$ $70 \ldots 240$ $95 \ldots 300$ $3 / 0 \ldots 600$ kcmil min. $6 \times 9 \times 0.8$ max. $20 \times 24 \times 0.5$ M 12 (hexagon socket, A/F 5$)$ $20 \ldots 22(180 \ldots 195$	Back terminal connected $\begin{aligned} & 120 \ldots 185 \\ & 120 \ldots \\ & \hline \end{aligned} 185$ 250 ... 500 kcmil min. $6 \times 9 \times 0.8$ $\max .20 \times 24 \times 0.5$ b.in)	Both terminals connected min. 2×50, $\max .2 \times 185$ min. 2×50, max. 2×185 min. 2×70, max. 2×240 $\min .2 \times 2 / 0$, max. $1 \times 500 \mathrm{kcmil}$ $\max .2 \times(20 \times 24 \times$ 0.5)
	Without box terminal/busbar connection Finely stranded with cable lug Stranded with cable lug	$\begin{gathered} \mathrm{mm}^{2} \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	If cable lugs acc. to nected, as of a cond $240 \mathrm{~mm}^{2}$ and acc. to ductor cross-section 4EA1 terminal cover with the phase clear	DIN 46234 are conuctor cross-section of DIN 46235 as of a conof $185 \mathrm{~mm}^{2}$ a 3RT19 66 is necessary to comply ance.
	AWG conductor connections, solid or stranded Connecting bar (max. width) - Terminal screws - Tightening torque	AWG mm Nm	```2/0 ... 500 kcmil 25 M 10 < 30(A/F 17) 14 ... 24(124 ... 210```	.in)	
	Auxiliary conductor: Solid Finely stranded with end sleeve AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	mm ${ }^{2}$ mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times(\\ & \max .2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5) ; 2 \times(\\ & 2 \times(18 \ldots 14) \\ & M 3(P Z 2) \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \text { I } \end{aligned}$	$\begin{aligned} & .75 \ldots 2.5) \text { acc. to IEC } \\ & .75 \ldots 2.5) \end{aligned}$	60947

3RT12.7. contactors

Technical data

Contactor	Size Type			$\begin{aligned} & \text { S12 } \\ & \text { 3RT12 } 75 \end{aligned}$	$\begin{aligned} & \text { S12 } \\ & \text { 3RT12 } 76 \end{aligned}$	
General data						
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.						
Mechanical endurance			Oper. cycles	10 million		
Electrical endurance				See page 2/123		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)			V	1000		
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$			kV	8		
Safe isolation between coil, auxiliary contacts and main contacts (acc. to DIN VDE 0106 Part 101 and A1 [draft 2/89])			V	690		
Positively driven operation There is positively driven operation if the NC and NO contacts cannot be closed at the same time				Yes, between main contacts and auxiliary NC contacts and within the auxiliary switch blocks acc. to ZH 1/457, IEC 60 947-4-1, Annex H (draft 17B/996/DC)		
Permissible ambient temperature		in operation when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 /+55 \text { with AS-Interface } \\ & -55 \ldots+80 \end{aligned}$		
Degree of protection acc. to IEC 60 947-1 and DIN 40050				IP 00/open type, coil system IP 20		
Shock resistance	Rectangular pulse Sine pulse		g/ms g / ms	$\begin{array}{r} 8.5 / 5 \text { and } 4.2 / 10 \\ 13.4 / 5 \text { and } 6.5 / 10 \end{array}$		
Conductor cross-sections				See page 2/157		
Electromagnetic compatibility (EMC)				See page 2/106		
Short-circuit protection						
Main circuit Fuse links, utilization category gL/gG NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE - to IEC 60 947-4/EN 60 947-4-4 (VDE 0660Part 102)		Type of coord. "1"1) Type of coord. "2" 1) Weld-free ${ }^{2}$)	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 500 \\ & \hline \end{aligned}$		
Auxiliary circuit Fuse links, utilization category gL/gG (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) DIAZED Type 5SB, NEOZED Type 5SE or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)				10		
Control circuit						
Coil voltage tolerance AC/DC (UC)				$0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$		
Power consumption of solenoid mechanism (with coil in cold state and rated range $U_{s \text { min }} \ldots U_{\text {s max }}$)				Conventional op. mechanism $\begin{array}{l\|l} U_{s \text { min }} & U_{s \text { max }} \end{array}$	Solid-state op. mechanism	
AC operation	closing p.f. closed p.f.		VA VA	700 830 0.9 0.9 7.6 9.2 0.9 0.9	$\begin{array}{r} 560 \\ 0.8 \\ 5.4 \\ 0.8 \end{array}$	$\begin{gathered} 750 \\ 0.8 \\ 7 \\ 0.8 \end{gathered}$
DC operation	closing closed		$\begin{aligned} & W \\ & W \end{aligned}$	770 920 8.5 10	$\begin{array}{r} 600 \\ 4 \end{array}$	$\begin{array}{r} 800 \\ 5 \end{array}$
PLC control input (EN 61 131-2/Type 2)				DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$		
Operating times (Break-time $=$ opening time + arcing time)				Conventional op. mechanism	Solid-state op. mechanism Operation via A1/A2 PLC input	
$\text { - at } 0.8 \times U_{s \min } \ldots 1.1 \times U_{s \max }$	closing time opening time		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{ll} 45 \ldots & 100 \\ 60 \ldots & 100 \end{array}$	$\begin{array}{r} 120 \ldots 150 \\ 80 \ldots .100 \end{array}$	$\begin{aligned} & 60 \ldots 90 \\ & 80 \ldots 100 \end{aligned}$
- at $U_{\text {s min }} \ldots U_{\text {s max }}$	closing time opening time		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 50 \ldots \quad 70 \\ & 70 \ldots 100 \end{aligned}$	$\begin{array}{r} 125 \ldots 150 \\ 80 \ldots 100 \end{array}$	$\begin{aligned} & 65 \ldots 80 \\ & 80 \ldots .100 \end{aligned}$
Arcing time			ms	10 ... 15	$10 \ldots 15$	10 ... 15

[^30]Type of coordination "2":
2) Test conditions acc. to IEC 60 947-4-1.

No damage can be tolerated to the overload relay,
but contact welding on the contactor is permitted if the contacts can be easily separated.

3RT12.7. vacuum contactors

Technical data

Contactor	Size	S12
	Type	3RT12 75

Main circuit

Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents I_{e}

Ratings of three-phase loads ${ }^{1}$)
p.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$

at $40^{\circ} \mathrm{C}$ up to 1000 V	A	610
at $60^{\circ} \mathrm{C}$ up to 1000 V	A	550
at 230 V	kW	208
400 V	kW	362
500 V	kW	452
690 V	kW	624
1000 V	kW	905
at $40^{\circ} \mathrm{C}$	mm^{2}	2×185
$60^{\circ} \mathrm{C}$	mm^{2}	2×185

AC-2 and AC-3 utilization categories

Rated operational currents I_{e}
Ratings of slipring or squirrel-cage
motors at 50 Hz and 60 Hz motors at 50 Hz and 60 Hz
up to 1000 V

3RT12.7. vacuum contactors

Technical data

Contactor	Size Type		$\begin{aligned} & \text { S12 } \\ & \text { 3RT12 } 7 . \end{aligned}$		
Conductor cross-sections					
Screw connections	Main conductor: with 3RT19 66-4G box terminal Finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid or stranded Ribbon cable (qty. \times width \times thickness) - Terminal screws - Tightening torque	mm^{2} mm^{2} mm^{2} AWG mm mm Nm	Front terminal connected $3 / 0 \ldots 600 \mathrm{kcmil}$ min. $6 \times 9 \times 0.8$ $\max .20 \times 24 \times 0.5$ M 12 (hexagon socket, A/F 5) 20... 22 (180 ... 195	Back terminal connected 120 ... 185 120 \qquad 185 120... 240 250 ... 500 kcmil min. $6 \times 9 \times 0.8$ $\max .20 \times 24 \times 0.5$ lb.in)	Both terminals connected min. 2×50, max. 2×185 min. 2×50, max. 2×185 $\min .2 \times 70$, max. 2×240 $\min .2 \times 2 / 0$, max. $2 \times 500 \mathrm{kcmil}$ $\max .2 \times(20 \times 24 \times 0.5)$
	Without box terminal/busbar connection Finely stranded with cable lug Stranded with cable lug	$\begin{gathered} \mathrm{mm}^{2} \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	If cable lugs acc. to nected, as of a con $240 \mathrm{~mm}^{2}$ and acc. to ductor cross-section 4EA1 terminal cover with the phase clear	DIN 46234 are conuctor cross-section of DIN 46235 as of a conof $185 \mathrm{~mm}^{2}$ a 3RT19 66is necessary to comply ance.
	AWG conductor connections, solid or stranded Connecting bar (max. width) - Terminal screws - Tightening torque	AWG mm Nm	$\begin{aligned} & 2 / 0 \ldots 500 \mathrm{kcmil} \\ & 25 \\ & \mathrm{M} 10 \times 30(\mathrm{~A} / \mathrm{F} 17) \\ & 14 \ldots 24(124 \ldots 210 \end{aligned}$	lb.in)	
	Auxiliary conductor: Solid Finely stranded with end sleeve AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & \max 2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & 2 \times(18 \ldots 14) \\ & M 3(P Z 2) \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \end{aligned}$	0.75 ... 2.5) acc. to $0.75 \ldots .2 .5)$	$\text { C } 60 \text { 947; }$

Contactors for Switching Motors

3RT24 contactors，3－pole，for switching resistive loads（AC－1）

Technical data

1）The opening times of the NO contacts and the closing times of the NC contacts increase if the contactor coils are protected against voltage peaks：varistor +2 ms to 5 ms ，diode assem－ blies 2 to 6 times

2）According to excerpt from
IEC 60 947－4－1（VDE 0660 Part 102）
Type of coordination＂1＂：
Destruction of the contactor and the overload relay is permissible．The contactor and／or over－ load relay must be replaced if necessary．

Type of coordination＂2＂：
No damage can be tolerated to the overload relay，but contact welding on the contactor is permitted if the contacts can be easily sepa－ rated．

Contactors for Special Applications

3RT24 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

3RT24 contactors, 3-pole, for switcing resistive loads (AC-1)

Technical data

Contactors for Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Load ratings with DC

DC-1 utilization category, switching resistive load (L/R $\leq 1 \mathrm{~ms}$) Number of conducting paths connected in series		1	2	3
Rated operational currents $I_{\mathrm{e}}\left(\right.$ at $60^{\circ} \mathrm{C}$) $\begin{array}{rl} \\ \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V}\end{array}$	A A A	$\begin{array}{r} 315 \\ 315 \\ 18 \end{array}$	$\begin{aligned} & 315 \\ & 315 \\ & 315 \end{aligned}$	$\begin{aligned} & 315 \\ & 315 \\ & 315 \end{aligned}$
$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 3.4 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{gathered} 20 \\ 3.2 \\ 1.6 \end{gathered}$	$\begin{gathered} 315 \\ 11.5 \\ 4 \end{gathered}$
DC-3 and DC-5 utilization categories, shunt and series motors $(\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms})$ Number of conducting paths connected in series		1	2	3
	A A A A A A	$\begin{gathered} \hline 315 \\ 7.5 \\ 2.5 \\ 0.6 \\ 0.17 \\ 0.12 \end{gathered}$	$\begin{aligned} & \hline 315 \\ & 315 \\ & 315 \\ & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 315 \\ 315 \\ 315 \\ 315 \\ 1.4 \\ 0.75 \end{gathered}$

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour
Contactors without overload relays

No-load op. frequency	$1 / \mathrm{h}$	2000
for AC-1	$1 / \mathrm{h}$	600
for AC-3	$1 / \mathrm{h}$	1000

Dependence of the operating frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} :
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$

Conductor cross-sections

Screw connections

Main conductor:
with 3RT19 55-4G box terminal
Finely stranded with end sleeve
Finely stranded without end sleeve
Stranded
AWG conductor connections, solid or
stranded
Ribbon cable (qty. \times width \times thickness)
with 3RT19 56-4G box terminal
Finely stranded with/without end sleeve
Stranded
AWG conductor connections,
solid or stranded
Ribbon cable (qty. \times width \times thickness)

- Terminal screws
- Tightening torque

Without box terminal/busbar connection
Finely stranded with cable lug
Stranded with cable lug
AWG conductor connections, solid or stranded
Connecting bar (max. width)

- Terminal screws
- Tightening torque

Auxiliary conductor:

Solid
Finely stranded with end sleeve
AWG conductor connections, solid or stranded

- Terminal screws
- Tightening torque

	Front terminal connected	Back terminal connected	Both terminals connected
$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$			
$\underset{\mathrm{mm}}{\mathrm{~mm}}$	$\begin{aligned} & \min .3 \times 9 \times 0.8 \\ & \max .6 \times 15.5 \times 0.8 \end{aligned}$	$\begin{aligned} & \min .3 \times 9 \times 0.8 \\ & \max .6 \times 15.5 \times 0.8 \end{aligned}$	$\max .2 \times(6 \times 15.5 \times 0.8)$
$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 16 \ldots 120 \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 16 \ldots 120 \end{aligned}$	$\max .1 \times 95,1 \times 120$ $\max .2 \times 120$
AWG	6 ... 250 kcmil	6 ... 250 kcmil	max. $2 \times 3 / 0$
mm mm Nm	min. $3 \times 9 \times 0.8$ $\max .10 \times 15.5 \times 0.8$ M 10 (hexagon socket, A/F4) $10 \ldots 12(90 \ldots 110$	$\min .3 \times 9 \times 0.8$ $\max .10 \times 15.5 \times 0.8$.in)	$\max .2 \times(10 \times 15.5 \times 0.8)$
mm^{2} mm^{2} AWG mm Nm	$16 \ldots 95$ If cable lugs acc. to DIN 46235 are $25 \ldots 120$ connected, as of a conductor cross-section of $4 \ldots 250$ kcmil $95 \mathrm{~mm}^{2}$ a 3RT19 56-4EA1 terminal cover is nec 17 essary to comply with the phase clearance. M 8×25 (A/F 13) $10 \ldots 14$ (89 $\ldots 124 \mathrm{lb} . \mathrm{in})$		
mm^{2}	$2 \times(0.5 \ldots 1.5) ; 2 \times(0.75 \ldots 2.5)$ acc. to IEC 60947 ; max. $2 \times(0.75 \ldots 4)$		
$\begin{aligned} & \mathrm{mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times(0.75 \ldots 2.5) \\ & 2 \times(18 \ldots 14) \end{aligned}$		
	$\begin{aligned} & 2 \times(18 \ldots 14) \\ & \mathrm{M} 3(\mathrm{PZ} 2) \end{aligned}$		
Nm	0.8 ... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in})$		

Contactors for Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

$\begin{array}{ll}\text { Contactor } & \begin{array}{c}\text { Size } \\ \text { Type }\end{array}\end{array}$		$\begin{aligned} & \text { S10 } \\ & \text { 3RT14 } 66 \end{aligned}$	$\begin{aligned} & \text { S12 } \\ & \text { 3RT14 } 76 \end{aligned}$
General data			
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.			
Mechanical endurance	Oper. cycles	10 million	
Electrical endurance AC-1 utilization category at I_{e}	Oper. cycles	0.5 million	
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	1000	
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8	
Safe isolation between coil, auxiliary contacts and main contacts (acc. to DIN VDE 0106 Part 101 and A1 [draft 2/89])	V	690	
$\begin{array}{ll}\text { Permissible ambient temperature } & \begin{array}{c}\text { in operation } \\ \text { when stored }\end{array}\end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 /+55 \text { with AS-Interface } \\ & -55 \ldots+80 \end{aligned}$	
Degree of protection acc. to IEC 60 947-1 and DIN 40050		IP 00/open type, coil system IP 20	
Shock resistance			
Rectangular pulse Sine pulse	g/ms g / ms	$\begin{array}{r} 8.5 / 5 \text { and } 4.2 / 10 \\ 13.4 / 5 \text { and } 6.5 / 10 \end{array}$	
Conductor cross-sections		See page 2/165	
Electromagnetic compatibility (EMC)		See page 2/106	
Short-circuit protection			
Main circuit			
Fuse links, utilization category gL/gG, NH, Type 3NA Type of coordination "1"	A	500	800
Fuse links, utilization category gR, SITOR, Type 3NE Type of coordination "2"	A	500	710
Auxiliary circuit Fuse links, utilization category gL/gG (weld-free protection at $I_{k} \geq 1 \mathrm{kA}$) DIAZED Type 5SB, NEOẐED Type 5SE or miniature circuit-breaker with C-characteristic ($I_{k}<400 \mathrm{~A}$)	A	10	

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT14 } 66 \end{aligned}$		
Control circuit					
Coil voltage tolerance		AC/DC (UC)	$0.8 \times U_{\mathrm{s} \text { min }} \ldots 1.1 \times U_{\mathrm{s} \text { max }}$		
Power consumption of solenoid mechanism (with coil in cold state and rated range $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$)			Conventional op. mechanism	Solid-state op. mechanism	
			$U_{\text {s min }} \quad U_{\text {s max }}$	$U_{s \text { min }}$	$U_{\text {s max }}$
AC operation	closing p.f. closed p.f.	VA VA	490 590 0.9 0.9 5.6 6.7 0.9 0.9	$\begin{gathered} 400 \\ 0.8 \\ 4 \\ 0.5 \end{gathered}$	$\begin{gathered} 530 \\ 0.8 \\ 5 \\ 0.4 \end{gathered}$
DC operation	closing closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	540 650 6.1 7.4	$\begin{gathered} 440 \\ 3.2 \end{gathered}$	$\begin{gathered} 580 \\ 3.8 \end{gathered}$
PLC control input (EN 61131	2)		DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$		
Operating times (Break-time $=$ opening time +			Conventional op. mechanism	Solid-state op Operation vi A1/A2	mechanism PLC input
- at $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$	closing time opening time	ms ms	$\begin{aligned} & 30 \ldots 95 \\ & 40 \ldots 80 \end{aligned}$	$\begin{array}{r} 105 \ldots 145 \\ 80 \ldots 200 \end{array}$	$\begin{aligned} & 45 \ldots \\ & 80 \ldots \\ & 80 \end{aligned}$
- at $U_{s \text { min }} \ldots U_{s \text { max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$	$\begin{array}{r} 110 \ldots 130 \\ 80 \ldots 100 \end{array}$	$\begin{array}{ll} 50 \ldots & 65 \\ 80 \ldots & 100 \end{array}$
Arcing time		ms	$10 . .15$	$10 \ldots 15$	$10 \ldots 15$

Contactors for Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Main circuit

Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents $I_{\text {e }}$

Load ratings with DC

DC-1 utilization category, switching resistive load (L/R $\leq 1 \mathrm{~ms}$) Number of conducting paths connected in series		1	2	3	1	2	3
Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$) \quad up to 24 V	A A A	$\begin{array}{r} 380 \\ 380 \\ 33 \end{array}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{array}{r} 500 \\ 500 \\ 33 \end{array}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 380 \\ 4 \\ 2 \end{array}$	380 11 5.2	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 500 \\ 4 \\ 2 \end{array}$	$\begin{gathered} 500 \\ 11 \\ 5.2 \end{gathered}$
DC-3 and DC-5 utilization categories, shunt and series motors $(\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms})$ Number of conducting paths connected in series		1	2	3	1	2	3
Rated operational currents $I_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$ up to 24 V 60 V 110 V 220 V 440 V 600 V	A A A A A A	$\begin{gathered} \hline 380 \\ 11 \\ 3 \\ 0.6 \\ 0.18 \\ 0.125 \end{gathered}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \\ & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 380 \\ 380 \\ 380 \\ 380 \\ 1.4 \\ 0.75 \end{gathered}$	500 11 3 0.6 0.18 0.125	$\begin{aligned} & \hline 500 \\ & 500 \\ & 500 \\ & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 500 \\ 500 \\ 500 \\ 500 \\ 1.4 \\ 0.75 \end{gathered}$

[^31]
Contactors for Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Contactor	$\begin{aligned} & \text { Size } \\ & \text { Type } \end{aligned}$		$\begin{aligned} & \text { S10 } \\ & \text { 3RT14 } 66 \end{aligned}$	$\begin{aligned} & \text { S12 } \\ & \text { 3RT14 } 76 \end{aligned}$	
Main circuit					
Operating frequency					
Contactors without ov	No-load op. frequency for AC-1 for AC-3	$\begin{aligned} & 1 / h \\ & 1 / h \\ & 1 / h \end{aligned}$	$\begin{array}{r} 2000 \\ 600 \\ 1000 \end{array}$		
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$					
Conductor cross-sections					
Screw connections	Main conductor: with 3RT19 66-4G box terminal Finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid or stranded Ribbon cable (qty. \times width \times thickness) - Terminal screws - Tightening torque	mm^{2} mm^{2} mm^{2} mm mm Nm	Front terminal connected 70 ... 240 70 ... 240 95 ... 300 3/0 ... 600 kcmil min. $6 \times 9 \times 0.8$ $\max .20 \times 24 \times 0.5$ M 12 (hexagon socket, A/F 5) 20 ... 22 (180 ... 195	Back terminal connected 120 ... 185 120 ... 185 120 ... 240 250 ... 500 kcmil min. $6 \times 9 \times 0.8$ $\max .20 \times 24 \times 0.5$ in)	Both terminals connected min. 2×50, max. 2×185 $\min .2 \times 50$, max. 2×185 min. 2×70, $\max .2 \times 240$ $\min .2 \times 2 / 0$, $\max .2 \times 500 \mathrm{kcmil}$ $\max _{0.5)} 2 \times(20 \times 24 \times$
	Without box terminal/busbar connection				
	Finely stranded with cable lug Stranded with cable lug AWG conductor connections, solid or stranded Connecting bar (max. width) - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG mm Nm	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 2 / \ldots \ldots 500 \mathrm{kcmil} \\ & 25 \\ & \text { M } 10 \times 30(\text { A/F 17 }) \\ & 14 \ldots 24 \\ & (124 \ldots 210 \mathrm{lb} . \mathrm{in}) \end{aligned}$	If cable lugs acc. to are connected, as tion of $240 \mathrm{~mm}^{2}$ and ductor cross-sectio 3RT19 66-4EA1 term to comply with the p	IN 46234 conductor cross-secIN 46235 as of a con$185 \mathrm{~mm}^{2}$, a al cover is necessary ase clearance.
	Finely stranded with end sleeve AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & \max 2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & 2 \times(18 \ldots 14) \\ & M 3(P Z 3) \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \end{aligned}$	$\begin{aligned} & .75 \ldots 2.5) \text { acc. to } \operatorname{IEC} \\ & 75 \text {... 2.5) } \end{aligned}$	$60 \text { 947; }$

Contactors for Special Applications

3RT23 contactors, 4-pole (4NO), switching resistive loads

More information

Contactors	Type		3RT23 16 3RT23 17	3RT23 25	3RT23 26	3RT23 27
	Size		S00	S0		
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D})^{3}$)	Width	mm	$45 \times 57.5 \times 73$	$60 \times 85 \times 97$		
General data						
Permissible mounting position ${ }^{1)}$ Mechanical endurance		Operating cycles	30 million	10 million		
Electrical endurance at $I_{\mathrm{e}} / \mathrm{AC}-1$		Operating cycles	Approx. 0.5 million			
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)		V	690			
Permissible ambient temperature	- During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$			
Degree of protection Acc. to EN 60947-1, Appendix C	Device Connection range		IP20			$\begin{aligned} & \hline \text { IP20 } \\ & \text { IP00 } \\ & \hline \end{aligned}$
Touch protection acc.to EN 50274			Finger-safe			
Short-circuit protection of contactors without overload relays						
Main circuit Fuse links, gG operational class: LV HRC 3NA, DIAZED 5SB, NEOZED 5SE according to IEC 60947-4-1/ EN 60947-4-1	- Type of coordination "1"1) - Type of coordination "2"1) - Weld-free	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 63 \\ & 20 \\ & 16 \end{aligned}$		

Control

Solenoid coil operating range

- DC operation - At $50^{\circ} \mathrm{C}$
- At $60^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 0.8 \ldots 1.1 \times U_{\mathrm{S}} \\
& 0.85 \ldots 1.1 \times U_{\mathrm{S}} \\
& 0.8 \ldots 1.1 \times U_{\mathrm{S}} \\
& 0.85 \ldots 1.1 \times U_{\mathrm{S}}
\end{aligned}
$$

- AC/DC operation

--
-
--
-

Power consumption of the solenoid coils (when coil is cold and $1.0 \times U_{S}$)

1) In accordance with the corresponding 3-pole 3RT2. contactors.
2) With size $\mathrm{SOO}, \mathrm{DC}$ operation: Operating times at $0.85 \ldots 1.1 \times U$
${ }^{3)}$ Dimensions for devices with screw terminals. Size SO for AC operation. DC operation: Depth +10 mm .

Contactors for Special Applications

3RT23 contactors, 4-pole (4 NO), for switching resistive loads

Technical specifications

${ }^{1)}$ In accordance with the corresponding 3-pole 3RT1 contactors.
2) With size $\mathrm{SOO}, \mathrm{DC}$ operation: Operating times for $0.85 \ldots 1.1 \times U_{\mathrm{S}}$

Contactors for Special Applications

3RT25 contactors，4－pole（2 NO＋ 2 NC），for switching motors

Technical specifications

Type	3RT2516	3RT2517	3RT2518	3RT2526	3RT2535	3RT2536
Size	S00			SO	S2	

General technical specifications

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface．

| Type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Size |
| Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})^{1)}$ |
| \bullet with mounted auxiliary switch block |

1）Dimensions for devices with screw terminals／spring－type terminals
2）For size SO，devices for AC and DC operation differ in depth．The following applies：Depth（DC）$=$ Depth $(A C)+10 \mathrm{~mm}$ ．

Contactors for Special Applications

3RT25 contactors, 4-pole (2 NO + 2 NC), for switching motors

Load rating with DC

Utilization category DC-1
Switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)
- 1 conducting path
- 2 conducting paths in series

up to 24 V	A	16	20	35	55	60
60 V	A	16	20	20	23	
110 V	A	2.1	2.1	4.5	4.5	
220 V	A	0.8	0.8	1	1	
440 V	A	0.6	0.6	0.4	0.4	
up to 24 V	A	16	20	35	55	
60 V	A	16	20	35	45	
110 V	A	12	12	35	45	
220 V	A	1.6	1.6	5	5	
440 V	A	0.8	0.8	1	1	

Utilization category DC-3/DC-5 ${ }^{2)}$

Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)

up to 24 V	A	16	20	20	35
60 V	A	0.5	0.5	5	6
110 V	A	0.15	0.15	2.5	2.5
220 V	A	0.75	0.75	1	1
440 V	A	--	--	0.09	0.1
up to 24 V	A	16	20	35	55
60 V	A	5	5	35	45
110 V	A	0.35	0.35	3	25
220 V	A	--	--	5	5
440 V	A	--	--	0.27	0.27

1) Values for devices with AC and DC operation: for $3 R T 2526$ with DC operation, different values apply to AC-2 and AC-3 for the NC.
${ }^{2)}$ For $U_{\mathrm{S}}>24 \mathrm{~V}$, the rated operational currents I_{e} for the NC contact conducting paths are 50% of the values for the NO contact conducting paths.

Contactors for Special Applications

3RT16 capacitor contactors

Technical specifications

All technical specifications not mentioned in the table below are identical to those of the 3RT10 17 contactors for size S00, to
those of the 3RT10 26 contactors for size S0 and to those of the 3RT10 45 contactors for size S3.

1) 3 RV19 25-5AB feeder terminal for $16 \mathrm{~mm}^{2}$.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Contactors for Special Applications

3RT20 coupling relays (interface) for switching motors

More information

All technical specifications not mentioned in the table below are identical to those of the 3RT20 contactors for switching motors (see 2/128-2/130)

Contactors	Type Size Width	mm	$\begin{aligned} & \text { 3RT20 1.-.HB4. } \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 1.-.JB4. } \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 1.-. KB4. } \\ & \text { S00 } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 3RT20 2.-.KB4. } \\ & \text { S0 } \\ & 45 \end{aligned}$
General data						
Mechanical endurance		Operating cycles	30 million			10 million
Protective separation between the coil and the main contacts acc. to EN 60947-1, Appendix N			400			
Control						
			$0.7 \ldots 1.25 \times U_{\text {S }}$			
Power consumption of the solenoid At $U_{\mathrm{S}} 17 \mathrm{~V} \mathrm{~W}$ coil 24 V W (for cold coil) 30 V W Closing = Closed			$\begin{aligned} & 1.6 \\ & 2.8 \\ & 4.4 \end{aligned}$			$\begin{aligned} & 2.3 \\ & 4.5 \\ & 7 \end{aligned}$
Permissible residual current of the electronics (for 0 signal)			$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$			$<6 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$
Overvoltage configuration of the solenoid coil			Without overvoltage damping	With diode	With suppressor diode \qquad	With varistor

Operating times of the coupling contactors

- Closing

- At 17 V	ON-delay NO OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 40 \ldots 130 \\ & 30 \ldots 80 \end{aligned}$		$\begin{aligned} & 70 \ldots 270 \\ & 60 \ldots 250 \end{aligned}$
- At 24 V	ON-delay NO OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 60 \\ & 25 \ldots .40 \end{aligned}$		$\begin{aligned} & 65 \ldots 90 \\ & 55 \ldots 8 \end{aligned}$
- At 30 V	ON-delay NO OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 50 \\ & 15 \ldots 30 \end{aligned}$		$\begin{aligned} & 52 \ldots 65 \\ & 43 \ldots 5 \end{aligned}$
- Closing at $17 \ldots 30 \mathrm{~V}$	OFF-delay NO ON-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$7 \ldots 20$ 38 $20 \ldots 30$ 55	65 $7 \ldots 20$ 75 $20 \ldots 30$	$\begin{aligned} & 19 \ldots 21 \\ & 25 \ldots .31 \end{aligned}$
Contactors	Type		3RT20 1.-1MB4.-OKT0	3RT20 1.-1VB4.	3RT20 1.-1WB4.
	Size		S00	S00	S00
	Width	mm	45	45	45

Mechanical endurance	Operating cycles	30 million		
Protective separation between the coil and the main contacts acc. to EN 60947-1, Appendix N		400		
Control				
Solenoid coil operating range		$0.85 \ldots 1.85 \times U_{S}$		
Power consumption of the solenoid coil (for cold coil) Closing = Closed $U_{\mathrm{s}} 24 \mathrm{~V}$ W	At $\mathrm{U}_{\mathrm{s}} 24 \mathrm{~V}$ W	1.6		
Permissible residual current, upright mounting position		On request		
Overvoltage configuration of the solenoid coil		Without overvoltage damping	With diode	With suppressor diode

Operating times of the coupling contactors

- Closing

- At 20.5 V	ON-delay NO
- At 24 V	OFF-delay NC
	ON-delay NO
- At 44 V	OFF-delay NC
	ON-delay NO
- Opening	OFF-delay NC
	OFF-delay NO
	ON-delay NC

ms	$30 \ldots 120$
ms	$20 \ldots 110$
ms	$25 \ldots 90$
ms	$15 \ldots 80$
ms	$15 \ldots 60$
ms	$10 \ldots 50$
ms	$5 \ldots 20$
ms	$10 \ldots 30$

$20 \ldots 80$
$30 \ldots 90$
5... 20

ON-delay NC
10 ... 30

10 ... 30

3TF68 and 3TF69 Vacuum contactors

Overview

Standards

IEC 60947-1, EN 60947-1,
IEC 60947-4-1, EN 60947-4-1,
IEC 60947-5-1, EN 60947-5-1 (auxiliary switches)
The 3TF68/69 contactors are climate-proof.
They are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices (see Accessories and Spare Parts on page 2/54).

Main contacts

Contact erosion indication with 3TF68/69 vacuum contactors
The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base. If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, then the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters simultaneously.

Auxiliary contacts

Contact reliability
These auxiliary contacts are particularly suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage $\geq 17 \mathrm{~V}$.

Electromagnetic compatibility

The 3TF68/69. .-. C contactors for AC operation are fitted with an electronically controlled solenoid operating mechanism with a high interference immunity (for EMC values see page 3/115). The solenoid coil is connected to varistors for protection against overvoltages.

The 3TF68/69..-. Q.. contactors for AC operation are designed for operation in systems with AC control supply voltage which is subject to strong interference. The solenoid systems of these contactors are configured in the DC economy circuit with rectification. The rectifier bridge is connected to varistors for protection against overvoltages.

Protection of the main current paths

An integrated RC varistor connection for the main current paths dampens the switching overvoltage rises to safe values. This prevents multiple restricting. It can therefore be assumed that the motor winding cannot be damaged by switching overvoltages with steep voltage rises.
Note:
During operation in installations in which the emitted interference limits cannot be observed, e.g. when used for output contactors in converters, 3TF68/69..-. Q contactors without a main current path circuit are recommended.

Technical specifications

Contactor	Type	3TF68 and 3TF69		
Rated data of the auxiliary contacts		Acc. to IEC 60947-5-1		
Rated insulation voltage U_{i} (pollution degree 3)	V	690		
Conventional thermal current $I_{\text {th }}=$ Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-12	A	10		
AC load Rated operational current $I_{\mathrm{e}} /$ AC-15/AC-14 - For rated operational voltage U_{e}				
- At 24 V - At 110 V - At 125 V - At 220 V - At 230 V	$\begin{aligned} & A \\ & A \\ & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$		
- At 380 V - At 400 V - At 500 V - At 660 V - At 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \\ & 2.3 \end{aligned}$		
DC load Rated operational current $I_{e} /$ DC-12 - For rated operational voltage U_{e}				
- At 24 V - At 60 V - At 110 V - At 125 V	A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \end{aligned}$		
- At 220 V - At 440 V - At 600 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.33 \\ & 0.22 \end{aligned}$		
Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-13 - For rated operational voltage U_{e}			Auxiliary contacts with delayed NC contact:	NS = No specification
- At 24 V - At 60 V - At 110 V - At 125 V	A A A A	$\begin{aligned} & 10 \\ & 5 \\ & 1.14 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 6 \\ & \text { NS } \\ & 0.98 \\ & \text { NS } \end{aligned}$	
- At 220 V - At 440 V - At 600 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.13 \\ & 0.07 \\ & \hline \end{aligned}$	NS NS 0.07	
(13 and (1) rated data of the auxiliary contacts				
Rated voltage, max.	V AC	600		
Switching capacity		$\text { A 600, P } 600$		

3TF68 and 3TF69 Vacuum contactors

Contactor

3TF68 and 3TF69
Contact endurance of the auxiliary contacts
The contact endurance for utilization category AC-12 or AC-15/AC-14 depends mainly on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The characteristic curves apply to 230 V AC.

3TF68 and 3TF69

Contact erosion indication with vacuum contactors

The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base.
If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.
Contact endurance of the main contacts

Diagram legend:
$P_{\text {rated }}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

3TF68 and 3TF69 Vacuum contactors

${ }^{1)}$ To easily replace the laterally mounted auxiliary switches it is recommended to maintain a minimum distance of 30 mm between the contactors.
2) If mounted at a 90° angle (conducting paths are horizontally above each other), the switching frequency is reduced by 80% compared with the normal values.
3) See "Endurance of the auxillary contacts", page 2/173.
4) Test conditions according to IEC 60947-4-1.
5) For ambient temperatures $>55^{\circ} \mathrm{C}$, only 3TF6.33-.Q..-Z A02 contactors (= without connection of the main current path circuits) can be used.
Then derating is also possible with these contactors:

- AC-1: $I_{\mathrm{e}}=782 \mathrm{~A}, 644$ operating cycles/h;
- AC-3: operating range $0.85-1.05 \times$ Us, 460 operating cycles/hour,
mechanical endurance 5 million operating cycles, lateral clearance 10 mm

3TF68 and 3TF69 Vacuum contactors

1) At 24 V DC; for further voltages, deviations of up to $\pm 10 \%$ are possible.
2) Including reversing contactor.
${ }^{3)}$ Values in brackets apply to contactors with reduced operating times.

Contactor	Type	3TF6. 44.CF7	$\begin{aligned} & \text { 3TF6. 44- } \\ & \text {.CM7 } \end{aligned}$	3TF6. 44.CP7	3TF6. 44.CQ7	$\begin{aligned} & \text { 3TF6. 44- } \\ & . C S 7 \end{aligned}$
Electromagnetic compatibility						
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V AC	110... 132	200... 240	$230 \ldots 277$	$380 . . .460$	$500 \ldots 600$
Overvoltage type acc. to IEC 60801		Burst/Surge				
Degree of severity acc. to IEC 60801						
- Burst		3	4	4	4	4
- Surge		4	4	4	4	4
Overvoltage resistance						
- Burst	kV	2	4	4	4	4
- Surge	kV	6	5	5	6	6

3TF68 and 3TF69 Vacuum contactors

Contactor	Type		

${ }^{1)}$ Max. permissible rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4=I_{\mathrm{e}} / \mathrm{AC}-3$ up to 500 V , for reduced contact endurance and reduced switching frequency.

3TF68 and 3TF69 Vacuum contactors

Contactor	Type Size	$\begin{aligned} & \text { 3TF68 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { 3TF69 } \\ & 14 \end{aligned}$
Conductor cross-sections			
Main conductors:		Screw terminals	
- Busbar connections			
- Finely stranded with cable lug - Stranded with cable lug - Solid or stranded - Connecting bar (max. width)	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 2 / 0 \ldots 500 \mathrm{MCM} \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \ldots 240 \\ & 50 \ldots 240 \\ & 2 / 0 \ldots 500 \mathrm{MCM} \\ & 60\left(U_{e} \leq 690 \mathrm{~V}\right) \\ & 50\left(U_{e}>690 \mathrm{~V}\right) \end{aligned}$
- Terminal screw - Tightening torque	Nm	$\begin{aligned} & \text { M10 x } 30 \\ & 14 \ldots 24(124 \ldots 210 \text { lb.in }) \end{aligned}$	$\begin{aligned} & \text { M12 } \times 40 \\ & 20 \ldots 35 \text { (177 ... } 310 \text { lb.in) } \end{aligned}$
- With box terminal ${ }^{1)}$			
- Connectable copper bars - Width - Max. thickness - Terminal screw - Tightening torque	mm mm Nm lb.in	$\begin{aligned} & 15 \ldots 25 \\ & 1 \times 26 \text { or } 2 \times 11 \\ & \text { A/F } 6 \text { (hexagon socket) } \\ & 25 \ldots 40 \\ & 221 \ldots 354 \end{aligned}$	$\begin{aligned} & 15 \ldots 38 \\ & 1 \times 46 \text { or } 2 \times 18 \\ & \text { A/F } 8 \text { (hexagon socket) } \\ & 35 \ldots 50 \\ & 266 \ldots 443 \end{aligned}$
Auxiliary conductors:			
- Solid - Finely stranded with end sleeve - Pin-end connector acc. to DIN 46231 - Solid or stranded - Tightening torque	mm^{2} mm^{2} mm^{2} AWG Nm lb.in	$\begin{aligned} & 2 \times(0.5 \ldots 1)^{2} / 2 \times(1 \ldots 2.5)^{2)} \\ & 2 \times(0.5 \ldots 1)^{2} / 2 \times(0.75 \ldots 2.5)^{2)} \\ & 2 \times(1 \ldots 1.5) \\ & 2 \times(18 \ldots 12) \\ & 0.8 \ldots 1.4 \\ & 7 \ldots 12 \end{aligned}$	

1) See "Accessories and Spare Parts", page $2 / 54$.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Contactor	Type		3TF69
	Size	14	14
(1) and (1) rated data			
Rated insulation voltage	V AC	600	600
Uninterrupted current			
- Open and enclosed	A	630	820
Maximum horsepower ratings (⑱ and (IL) approved values)			
- Rated power for induction motors at 60 Hz			
- At 200 V - At 230 V - At 460 V - At 575 V	hp hp hp hp	$\begin{aligned} & 231 \\ & 266 \\ & 530 \\ & 664 \end{aligned}$	$\begin{aligned} & 290 \\ & 350 \\ & 700 \\ & 860 \end{aligned}$
NEMA/EEMAC ratings			
- Uninterrupted current			
- Open - Enclosed	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 600 \\ & 540 \end{aligned}$	$\begin{aligned} & 820 \\ & 810 \end{aligned}$
- Rated power for induction motors at 60 Hz			
- At 200 V - At 230 V - At 460 V - At 575 V	hp hp hp hp	$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 300 \\ & 600 \\ & 600 \end{aligned}$
Overload relays - Setting range	Type	$\begin{aligned} & \text { 3RB12 . } \\ & 200 \ldots 820 \end{aligned}$	

Overview

3TC4 and 3TC5

IEC 60947-1, EN 60947-1,
IEC 60947-4-1, EN 60947-4-1
The contactors are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.
The DC motor ratings given in the tables are applicable to the DC-3 and DC-5 utilization categories with two-pole switching of the load or with the two conducting paths of the contactor connected in series.

One contactor conducting path can switch full power up to 220 V . The ratings for higher voltages are available on request.

3 TC7

IEC 60947-4-1, EN 60947-4-1.
The contactors are suitable for use in any climate. They are suitable for switching and controlling DC motors as well as all other DC circuits.
The solenoid excitation is configured for a particularly large operating range. It is between 0.7 or 0.8 to $1.2 \boxtimes x U_{S}$.
3 TC74 contactors can be used at up to $750 \mathrm{~V} / 400 \mathrm{~A}$ and 50 Hz in AC-1 operation.

Application

The contactors are suitable for switching and controlling DC motors as well as all other DC circuits.
A version with an especially large coil operating range is available for operation in electrically driven vehicles and in switchgears with significant fluctuations in the actuating voltage

Technical specifications

Contactors Type 3TC4 and 3TC7 Rated data of the auxiliary contacts 3TC5				
Rated insulation voltage \boldsymbol{U}_{i} (pollution degree 3)		V	690	
Conventional thermal current $I_{\mathrm{th}}=$ Rated operational current $I_{\mathrm{e}} /$ AC-12		A	10	10
AC load Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-15/AC-14 - For rated operational voltage U_{e}	$\begin{gathered} 24 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 230 \mathrm{~V} \\ 380 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 660 \mathrm{~V} \\ 690 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { } \end{aligned}$	10 10 10 6 5.6 4 3.6 2.5 2.5 --	10 10 10 6 5.6 4 3.6 2.5 2.5 --
DC load Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-12 - For rated operational voltage U_{e}	$\begin{gathered} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{gathered}$	A	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \\ & 0.9 \\ & 0.33 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 8 \\ & 6 \\ & 2 \\ & 0.6 \\ & 0.4 \end{aligned}$
Rated operational current $I_{e} / D C-13$ - For rated operational voltage U_{e}	$\begin{gathered} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{gathered}$	A A A A A A A	$\begin{aligned} & 10 \\ & 5 \\ & 1.14 \\ & 0.98 \\ & 0.48 \\ & 0.13 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \\ & 2.4 \\ & 2.1 \\ & 1.1 \\ & 0.32 \\ & 0.21 \end{aligned}$

3TC contactors

Contactors	Type Size	$\begin{aligned} & 3 T C 44 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 T C 48 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \text { TC52 } \\ & 8 \end{aligned}$	3TC56 12

General technical specifications

Permissible mounting positions

The contactors are designed for operation on a vertical mounting surface.

Mechanical endurance

Electrical endurance

Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)
Protective separation between the coil and the main contacts
Operating cycles 10 million
acc. to IEC 60947-1, Appendix N

Mirror contacts ${ }^{2}$)

A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with a NO main contact

Permissible ambient temperature

- During operation
${ }^{\circ} \mathrm{C} \quad-25 \ldots+55$
- During storage
${ }^{\circ} \mathrm{C} \quad-50 \ldots+80$

Degree of protection acc. to IEC 60947-1, Appendix C
Shock resistance Rectangular pulse
Short-circuit protection

Main circuit

Fuse links, operational class gG:
LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE

- Type of coordination "1"

A	50	160	250	400

- Type of coordination "2"

A $\quad 35$
IP00/open, for AC operation, coil assembly IP40

Auxiliary circuit

- Short-circuit test with fuse links of gG operational class:

A 16 DIAZED, type 5SB; NEOZED, type 5SE

A

- Test with miniature circuit breaker up to 230 V with C characteristic:

10 Short-circuit current $I_{\mathrm{k}}=400 \mathrm{~A}$ acc. to IEC 60947-5-1

1) See the endurance diagram above.
2) For 3TC44, one NC contact each must be connected in series for the right and left auxiliary switch block respectively

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

AC/DC operation

- With resistive load DC-1
- For inductive load DC-3/DC-5

h^{-1}	750	1000
	600	

Conductor cross-sections (1 or 2 conductors connectable)

Main conductors:

- Solid
- Finely stranded with end sleeve
- Stranded with cable lug
- Pin-end connector acc. to DIN 46231
- Busbars
- Terminal screw

Auxiliary conductors:

- Solid

$$
\mathrm{mm}^{2} \quad 2 \times(1 \ldots 2.5)
$$

- Finely stranded with end sleeve

Screw terminals			
$\begin{aligned} & 2 \times(2.5 \ldots 10) \\ & 2 \times(1.5 \ldots 4) \\ & 2 \times 16 \\ & 2 \times(1 \ldots 6) \\ & --\quad 1 . \\ & \text { M5 } \end{aligned}$	$\begin{aligned} & 2 \times(6 \ldots 16) \\ & -- \\ & 2 \times 35 \\ & - \\ & 15 \times 2.5 \\ & M 6 \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & 2 \times 120 \\ & -- \\ & 25 \times 4 \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & -- \\ & -2 \times 150 \\ & -- \\ & 2 \times(25 \times 3) \\ & \text { M10 } \end{aligned}$

1) The opening delay times can increase if the contactor coils are damped against voltage peaks. Only 3TC44 contactors are allowed to be fitted with diodes.

3TC contactors

Main circuit

Load rating with DC
Utilization category DC-1, switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-1$ (at $55^{\circ} \mathrm{C}$)
- Minimum conductor cross-section
- Rated power
- Critical currents, without arc extinction

	A	500	500
	$\mathrm{~mm}^{2}$	2×150	2×150
At 220 V	kW	110	110
440 V	kW	220	220
600 V	kW	300	300
750 V	kW	375	375
1200 V	kW	-	600
1500 V	kW	-	750
At 440 V	A	≤ 7	-
600 V	A	≤ 13	-
750 V	A	≤ 15	≤ 7
$\leq 800 \mathrm{~V}$	A	-	≤ 13
1200 V	A	-	≤ 15
1500 V	A	-	

Utilization categories DC-3 and DC-5, switching DC motors
Permissible rated current for regenerative braking At 110 ... 600 V

h^{-1}	750	1000
h^{-1}	500	500

Switching frequency
 Switching frequency \boldsymbol{z} in operating cycles/hour

AC/DC operation

- With resistive load DC-1
- For inductive load DC-3/DC-5

1) Endurance see page $2 / 179$.
2) See Selection and ordering data.

Accessories－3RT1 contactors

Technical specifications

Accessories - 3RT1 contactors

| Function | Function chart |
| :--- | :--- | :--- | :--- |

Accessories-3RT1 contactors

Control Relays

3RH2 control relays - size S00

Technical specifications

Contactor relays	Type Size
Permissible mounting positions	
The contactor relays are designed for operation on a	
vertical mounting surface.	

Positively-driven operation of contacts in contactor relays

3RH2:

Yes, in the basic unit and the auxiliary switch block as well as between the basic unit and the front-mounted auxiliary switch block (removable)
acc. to:

- ZH 1/457
- IEC 60947-5-1, Appendix L

3RH22:
Yes, in the basic unit and the auxiliary switch block as well as between the basic unit and the snap-on auxiliary switch block (permanently
mounted) acc. to:

- ZH 1/457
- IEC 60947-5-1, Appendix L

Note:
3RH29 11-. NF. solid-state compatible auxiliary switch blocks have no positively-driven contacts.

Contact reliability

Contact reliability at $17 \mathrm{~V}, 1 \mathrm{~mA}$ acc. to IEC 60947-5-4
Explanations:
There is positively-driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time.

ZH1/457

Safety Rules for Controls on Power-Operated Metalworking Presses.
IEC 60947-5-1, Appendix L
Low-Voltage Controlgear, Controls and Contact Blocks. Special requirements for positively-driven contacts

Contact endurance for AC-15/AC-14 and

DC-13 utilization categories

The contact endurance is mainly dependent on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
If magnetic circuits other than the contactor coil systems or solenoid valves are present, e.g. magnetic brakes, protective measures for the load circuits are necessary, e.g. in the form of RC elements and freewheel diodes.
The characteristic curves apply to:

- 3RH21/3RH22 contactor relays
- 3RH24 latched contactor relays
- 3RH29 11 auxiliary switch blocks ${ }^{11}$
- Auxiliary switch blocks for snapping onto the front, max. 4-pole and for mounting onto the side in size SOO

3RH2 control relays - size S00

Type Size Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) with screw terminals - With mounted auxiliary switch block	mm mm	3RH21 SOO $\begin{aligned} & 45 \times 57.5 \times 73 \\ & 45 \times 57.5 \times 116 \end{aligned}$	3RH22 S00 $45 \times 57.5 \times 116$	3RH24 SOO $90 \times 57.5 \times 73$
General technical specifications				
Mechanical endurance - Basic units	Operating cycles	30 million		5 million
- Basic unit with snap-on auxiliary switch block	Operating cycles	10 million		
- Solid-state compatible auxiliary switch block	Operating cycles	5 million		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690		
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6		
Protective separation between the coil and the contacts in the basic unit acc. to IEC 60947-1, Appendix N	V	400		
Permissible ambient temperature				
- During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \\ & \hline \end{aligned}$		
Degree of protection acc. to IEC 60947-1, Appendix C		IP20, coil assemb		
Touch protection acc. to EN 50274		Finger-safe		
Shock resistance				
- Rectangular pulse - AC operation - DC operation	g / ms g / ms	$\begin{aligned} & 7.3 / 5 \text { and } 4.7 / 10 \\ & >10 / 5 \text { and }>5 / 10 \end{aligned}$		
- Sine pulse - AC operation - DC operation	g / ms g / ms	$\begin{aligned} & 11.4 / 5 \text { and } 7.3 / 10 \\ & >15 / 5 \text { and }>8 / 10 \end{aligned}$		
Short-circuit protection				
- Short-circuit test with fuse links of gG operational class: DIAZED, type 5SB; NEOZED, type 5SE with short-circuit current $I_{\mathrm{k}}=1 \mathrm{kA} \mathrm{acc}$. to IEC 60947-5-1	A	10		
- Test with miniature circuit breaker up to 230 V with C characteristic: Short-circuit current $I_{\mathrm{k}}=400 \mathrm{~A}$ acc. to IEC 60947-5-1	A	6		

Conductor cross-sections

Auxiliary conductors and coil terminals

(1 or 2 conductors can be connected)

- Solid
- Finely stranded with end sleeve
- AWG cables, solid or stranded
- Terminal screw - Tightening torque

Auxiliary conductors and coil terminals

(1 or 2 conductors can be connected)

- Operating devices
- Solid
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded

Auxiliary conductors for front and laterally mounted auxiliary switches

- Operating devices
- Solid
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded

Auxiliary conductor and coil terminals

- Terminal screw
- Operating devices
- Tightening torque
- Usable ring terminal lugs - DIN 46234 without insulation sleeve
- DIN 46225 without insulation sleeve
- DIN 46237 with insulation sleeve
- JIS C2805 Type R without insulation sleeve - JIS C2805 Type RAV with insulation sleeve - JIS C2805 Type RAP with insulation sleeve

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Note:

Max. external diameter of the cable insulation: 3.6 mm .
(9) Screw terminals

$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)} \text { according to IEC 60947; } \\ & \operatorname{max.} 2 \times(0.5 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)} \\ & \left.2 \times(20 \ldots 16)^{1)} ; 2 \times(18 \ldots 14)^{1}\right)^{2} \end{aligned}$
M3 (for standard screwdriver size 2 or Pozidriv 2) $0.8 \ldots 1.2 \text { (} 7 \ldots 10.3 \mathrm{lb} . \mathrm{in} \text {) }$
O0 Spring-type terminals
$\begin{aligned} & 3.0 \times 0.5 ; 3.5 \times 0.5 \\ & 2 \times(0.5 \ldots 4) \\ & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(20 \ldots 12) \end{aligned}$
$\begin{aligned} & 3.0 \times 0.5 ; 3.5 \times 0.5 \\ & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 1.5) \\ & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(20 \ldots 14) \end{aligned}$
Ring terminal lug connection
M3, Pozidriv size 2 $\begin{aligned} & \varnothing 5 \ldots 6 \\ & 0.8 \ldots 1.2 \\ & d_{2}=\min .3 .2 \\ & d_{3}=\operatorname{max.} 7.5 \end{aligned}$

Tool for opening the spring-type terminals
see Accessories, page 2/79.
An insulation stop must be used for conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$, see Accessories, page 2/79.

Control Relays

3RH2 control relays－size S00

Permissible residual current of the electronics

（with 0 signal）
peration $<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$

Operating times ${ }^{2)}$

Values apply with coil in cold state and at operating temperature for operating range
AC operation
－Closing
－ON－delay of NO contact
－OFF－delay of NC contact
－Opening
－OFF－delay of NO contact WRH24 minimum operating time
$4.5 \ldots 15$
≥ 30
With $1.0 \times U_{\mathrm{s}}$
．．． 15
DC operation
－Closing
－ON－delay of NO contact
－OFF－delay of NC contact
－Opening
－OFF－delay of NO contact
－ON－delay of NC contact
on the operational current I^{\prime} and operational voltage U^{\prime} ：
$z^{\prime}=z \cdot I_{\mathrm{e}} / I^{\prime} \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$
1）The 3RT29 16－1GA00 additional load module is recommended for higher residual currents（see page 2／74）．
2）The OFF－delay of the NO contact and the ON－delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks （noise suppression diode 6 to 10 times；
diode assembly 2 to 6 times，varistor +2 to 5 ms ）．

Coupling Relays

3RH2 control relays - size S00

Contactor relays	Type Size		$\begin{aligned} & \text { 3RH2. } \\ & \text { S00 } \end{aligned}$
Load side			
AC capacity Rated operational currents I_{e} AC-12		A	10
AC-15/AC-14 for rated operational voltage $U_{\text {S }}$	$\begin{array}{r} \text { Up to } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	A A A A	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 1 \\ & \hline \end{aligned}$

Load rating with DC

Rated operational currents I_{e}

DC-12 for rated operational voltage U_{S}

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 3.6 \\ & 2.5 \\ & 1.8 \end{aligned}$
DC-13 for rated operational voltage $U_{\text {s }}$			
- 1 conducting path	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A	$\begin{aligned} & 6 \\ & 2 \\ & 1 \\ & 0.3 \\ & 0.14 \\ & 0.1 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 10 \\ & 3.5 \\ & 1.3 \\ & 0.9 \\ & 0.2 \\ & 0.1 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 10 \\ & 4.7 \\ & 3 \\ & 1.2 \\ & 0.5 \\ & 0.26 \end{aligned}$

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

- For rated operation

For utilization category

- No-load switching frequency

AC-12/DC-12 $h^{-1} 1000$
$\begin{array}{lll}\text { AC-15/AC-14 } & h^{-1} & 1000\end{array}$
DC-13 h $h^{-1} 1000$
$h^{-1} 10000$

Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot I_{\mathrm{e}} / I^{\prime} \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

(1) and (1) rated data

Basic units and auxiliary switch blocks

- Rated control supply voltage
- Rated voltage
- Switching capacity
- Uninterrupted current at 240 V AC

VAC max. 600
V AC 600
A 600, Q 600
A 10

Control Relays

SIRIUS 3RH21 coupling relays for switching auxiliary circuits, 4-pole

Technical specifications

All technical specifications not mentioned in the table below are identical to those of the 3RH21 contactor relays (see page 5/6).

Contactor type Size		$\begin{aligned} & \text { 3RH21 ..-. HB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21 ..-.JB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21KB40 } \\ & \text { S00 } \end{aligned}$
Control circuits				
Coil operating range		$0.7 \ldots 1.85 \times U_{S}$		
Power consumption of the solenoid coil (for cold coil) Closing $=$ Closed				
- At $U_{\mathrm{s}}=17 \mathrm{~V}$	W	1.4		
- At $U_{\mathrm{S}}=24 \mathrm{~V}$	W	2.8		
- At $U_{\mathrm{S}}=30 \mathrm{~V}$	W	4.4		
Permissible residual current of the electronics for 0 signal		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Overvoltage configuration of the solenoid coil		No overvoltage damping C^{-1}	With diode	With suppressor diode
Operating times				
- Closing at 17 V ON-delay NO OFF-delay NC	ms	$\begin{aligned} & 40 \ldots 130 \\ & 30 \ldots 80 \end{aligned}$		
- At 24 V - ON-delay NO - OFF-delay NC	ms	$\begin{aligned} & 35 \ldots 60 \\ & 25 \ldots 40 \end{aligned}$		
- At 30 V - ON-delay NO - OFF-delay NC	ms	$\begin{aligned} & 25 \ldots 50 \\ & 15 \ldots 30 \end{aligned}$		
- Opening at $17 \ldots 30 \mathrm{~V}$ - OFF-delay NO - ON-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 7 \ldots 20 \\ & 20 \ldots . .30 \end{aligned}$	$\begin{aligned} & 38 \ldots 65 \\ & 55 \ldots 75 \end{aligned}$	$\begin{aligned} & 7 \ldots .20 \\ & 20 \ldots .30 \end{aligned}$
Upright mounting position		Request required		
Contactor type Size		$\begin{aligned} & \text { 3RH21 ..-.MB40-0KT0 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21 ..-.VB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21 WB40 } \\ & \text { S00 } \end{aligned}$
Control circuits				
Coil operating range		$0.85 \ldots 1.85 \times U_{S}$		
Power consumption of the solenoid coil (for cold coil) Closing $=$ Closed at $U_{\mathrm{S}}=24 \mathrm{~V}$	W	1.6		
Permissible residual current of the electronics for 0 signal		$<8 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Overvoltage configuration of the solenoid coil		Diode, varistor or RC element, attachable	Built-in diode	Built-in suppressor diode
Control circuits				
Operating times - Closing at 20.5 V - ON-delay NO - OFF-delay NC	ms	$\begin{aligned} & 30 \ldots 120 \\ & 20 \ldots 110 \end{aligned}$		
- At 24 V - ON-delay NO - OFF-delay NC	ms	$\begin{aligned} & 25 \ldots 90 \\ & 15 \ldots 80 \end{aligned}$		
- At 44 V - ON-delay NO - OFF-delay NC	ms	$\begin{aligned} & 15 \ldots 60 \\ & 10 \ldots . \\ & \hline \end{aligned}$		
- Closing at $17 \ldots 30 \mathrm{~V}$ - OFF-delay NO - ON-delay NC	ms	$\begin{aligned} & 5 \ldots 20 \\ & 10 \ldots 30 \end{aligned}$	$\begin{aligned} & 20 \ldots 80 \\ & 30 \ldots 90 \end{aligned}$	$\begin{aligned} & 5 \ldots 20 \\ & 10 \ldots . .30 \end{aligned}$
Upright mounting position		Request required		

3RT Contactors

3RT2 and 3RH2 contactors and relays

Terminal designations and identification numbers for auxiliary contacts

Terminal designations
The terminal designations are 2-digit, e.g. 13, 14, 21, 22 :

- Tens digit: Sequence digit
- Related terminals have the same sequence digit
- Units digit: Function digit
- 1-2 for normally closed contacts (NC)
- 3-4 for normally open contacts (NO)

The auxiliary switch blocks of the 3RH29 series for mounting on the front and side can be used for power contactors as well as for contactor relays.

Identification numbers

The identification number indicates the number and type of the auxiliary contacts, e.g. 40, 31, 22, 13:

- 1st digit: number of normally open contacts (NO)
- 2nd digit: number of normally closed contacts (NC)

Examples:

- $31=3 \mathrm{NO}+1 \mathrm{NC}$
- $40=4 \mathrm{NO}$

Selection guide for mountable auxiliary switch blocks for power contactors and contactor relays

The possible combinations of basic unit and mounted auxiliary switch block can be found in the tables below.

1) Combinations according to EN 50012, EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005

Where the columns and lines intersect (blue and green in the example) you will find the identification number for the combination of basic unit (column) and auxiliary switch block (line).

3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxiliary switch blocks

Auxiliary contacts Version NO NC	3-pole contactors		
	soo 3RT20 1 10	$\begin{aligned} & \text { 3RT20 } 1 \\ & 01 \end{aligned}$	
14	$-\left.\right\|_{14} ^{13}$ $\text { 2. 3. } 4 .$ 5.	$\stackrel{\mid}{21}$ 5. 6. 7. 8.	$\left\|\left.\right\|_{14} ^{13}\right\|_{22}^{21}$
Front auxiliary switches	According to EN 500121)		

Without NO contact

		$\left.\right\|_{-2} ^{1}$	11	02	12	01	01	12	12	41X	32X	23X	3RH29 11-.HA01
--			12	03	13	02	02	13	--	42E	$33 X$	24	3RH29 11-.HA02
--	3		13	04	14	03	--	--	--	43	34	--	3RH29 11-.HA03
--	4		14	--	--	--	--	--	--	44E	--	--	3RH29 11-.FA04

With 1 NO contact

$\begin{array}{lll} 1 & -- & -\left.\right\|^{\cdot 3} \\ \hline-4 \end{array}$	20	11	21	10	10	21	21	50E	41E	32E	3RH29 11-.HA10
	21	12	22	11	11	22	22	51X	42X	33X	3RH29 11-.HA11
	22	13	23	12	12	23	--	52	43	34	3RH29 11-.HA12
	23	14	24	13	--	--	--	$53 X$	44X	--	3RH29 11-.HA13
With 2 NO contacts											
$\begin{array}{lll} 2 & -- & \left.\right\|_{-4} ^{\cdot 3}-\left.\right\|_{.4} ^{.3} \end{array}$	30	21	31	20	20	31	31	60E	51X	42X	3RH29 11-.HA2O
	31	22	32	21	21	32	32	61	52	43	3RH29 11-.HA21
	32	23	33	22	22	33	--	62X	53	44X	3RH29 11-.HA22
	32	23	33	22	22	33	--	62X	53	44X	3RH29 11-.FA22

[^32]
3RT Contactors

Additional auxillary switch blocks

[^33]
3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxillary switch blocks

Auxiliary contacts Version NO NC	3-pole contactors			4-pole contactors			
	SOO 3RT20 1 10	3RT20 1 01	So 3RT20 2 11	SOO 3RT23 1	3RT25 1	$\begin{array}{\|l} S 0 / S 2 \\ 3 R T 23 \\ 11 \end{array}$	$\begin{array}{\|l\|} \hline \text { 3RT25 } \\ 11 \end{array}$
14	$-\left.\right\|_{14} ^{13}$	$\underbrace{21}_{-}$	$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{21}$			$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{21}$	$\left.\right\|_{14} ^{\left.1_{22}^{13}\right\|_{22} ^{21}}$
	2. 3. 4. 5. Acc. to	$\begin{gathered} 5.6 .7 .8 . \\ \text { N } 50005 \end{gathered}$	3.4.5.6.	1.2.3.4. Acc. to	$\begin{gathered} \text { 1. 2. 3.4. } \\ \text { N 50005 } \end{gathered}$	3.4.5.6.	3.4.5.6.

Front auxiliary switches with complete inscription (for contactor relays)

$4 \text {-- } \left.\left\|\begin{array}{c\|c\|c\|c} 53 & \|c\| c\|c\| & 63 & 73 \\ 54 & 83 & & 74 \end{array}\right\| 84 \right\rvert\,$	--	--	--	--	--	--	--	80E	--	--	3RH29 11-.GA40
	--	--	--	--	--	--	--	71E	--	--	3RH29 11-.GA31
	--	--	--	--	--	--	--	62E	--	--	3RH29 11-.GA22
	--	--	--	--	--	--	--	53E	--	--	3RH29 11-.GA13
	--	--	--	--	--	--	--	44E	--	--	3RH29 11-.GA04
Front auxiliary switches with complete inscription, special version											
	50	41	51	40	40	51	51	80E	71X	62X	$\begin{aligned} & \text { 3RH29 11-.XA40 } \\ & \text {-OMAO } \end{aligned}$
	41	32	42	31	31	42	42	71E	62X	53	$\begin{aligned} & \text { 3RH29 11-XA31 } \\ & \text {-OMAO } \end{aligned}$
	32	23	33	22	22	33	--	62E	53	44X	$\begin{aligned} & \text { 3RH29 11-.XA22 } \\ & \text {-OMAO } \end{aligned}$
	14	--	--	--	--	--	--	44E	--	--	$\begin{aligned} & \text { 3RH29 11-.XA04 } \\ & \text {-OMAO } \end{aligned}$
Front auxiliary switches, Solid-state compatible											
-- 2	12	03	13	02	02	13	--	42	33	24	3RH29 11-.NF02
	21	12	22	11	11	22	22	51	42	33	3RH29 11-.NF11
	30	21	31	20	20	31	31	60	51	42	3RH29 11-.NF20

[^34]
3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxillary switch blocks

[^35]
3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxillary switch blocks

Auxiliary contacts Version NO NC	$\left.\begin{array}{\|l\|} \text { 3-pole co } \\ \text { S00 } \\ \text { 3RT20 } 1 \\ 10 \end{array} \right\rvert\,$	$\begin{aligned} & \text { ontactors } \\ & \left\lvert\, \begin{array}{l} 3 R T 201 \\ 01 \end{array}\right. \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SO } \\ & 3 R T 202 \\ & 11 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { 4-pole co } \\ & \text { S00 } \\ & \text { 3RT23 } 1 \\ & -- \end{aligned}\right.$	ntactors 3RT25 1 --	$\begin{aligned} & \text { So/S2 } \\ & 3 R T 23 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { 3RT25 } \\ & 11 \end{aligned}$	$\begin{array}{\|l} \text { Con } \\ \text { S00 } \\ \text { 3RH } \\ \text { 40E } \end{array}$	ays 4 31E	22E	
14	f_{14}^{13}	$\stackrel{+}{21}+$									
Left Right	2. 3. 4. 5. Accordin	$\text { 5. 6. 7. } 8 .$ $\text { g to EN } 5$	3.4.5.6. 00121)	$\begin{array}{\|l\|} \text { 1. 2. 3. } 4 . \\ \text { Accordin } \end{array}$	1. 2. 3.4. g to EN 50	3.4.5.6. 0121)	3.4.5.6.		5. 6. 7.8 EN 500111)	5.6.7.8	Order No.
Lateral auxiliary switches for size S0, S00											
$\left.\left.\left.\left.\left.\left.\begin{array}{lll} 2 & -- \\ 1 & 1 \end{array}\right\|_{54} ^{-}\right\|_{64} ^{53}\right\|_{32} ^{63}\right\|_{44} ^{31}\right\|_{i} ^{3}\right\|_{43} ^{43}$	41	32	42	31	31	42	42	--	--	--	$\begin{aligned} & \text { 3RH29 21-.DA20 + } \\ & \text { 3RH29 21-.DA11 } \end{aligned}$
$\begin{array}{ll\|l\|ll} 2 & -- \\ -- & 2 \end{array}\left\|\begin{array}{ll} 53 \\ - \\ 54 \end{array}\right\|_{64}^{63} \begin{array}{ll} 31 & \left.\right\|_{32} ^{41} \\ - & \left.\right\|_{42} ^{4} \end{array}$	32	23	33	22	22	33	--	--	--	--	$\begin{aligned} & \hline \text { 3RH29 21-.DA20 + } \\ & \text { 3RH29 21-.DA02 } \end{aligned}$
	23	14	24	13	--	--	--	--	--	--	$\begin{aligned} & \text { 3RH29 21-.DA11 + } \\ & \text { 3RH29 21-.DA02 } \end{aligned}$
Lateral auxiliary switches for contactor relays											
	--	--	--	--	--	--	--	$42 Z$	$33 X$	24	3RH29 21-.DA02
$\begin{array}{lll} 1 & 1 & \left\|\begin{array}{l} 51 \\ f \\ 52 \\ 51 \end{array}\right\|_{64}^{63} \end{array}{ }^{63}$	--	--	--	--	--	--	--	51X	42X	33X	3RH29 21-.DA11
$\begin{array}{ll} \hline 2 & -- \\ 54 \end{array}\left\|\begin{array}{l} 53 \\ -- \end{array}\right\|_{64}^{63}$	--	--	--	--	--	--	--	$60 Z$	51X	42X	3RH29 21-.DA20
Lateral auxiliary switches, Solid-state compatible for size S00											
11	21	--	--	11	11	--	--	--	--	--	3RH29 11-2DE11
	32	--	--	22	22	--	--	--	--	--	3RH29 11-2DE11
Lateral auxiliary switches, Solid-state compatible for size S0, S00											
11 $\left.\left.\right\|_{34} ^{33}\right\|_{42} ^{41}$	21	12	22	11	11	22	22	--	--	--	3RH29 21-2DE11
	32	23	33	22	22	33	--	--	--	--	3RH29 21-2DE11
Lateral auxiliary switches, Solid-state compatible for contactor relays											
$\left.\left.11 \begin{array}{lll}51 \\ \vdots \\ \vdots \\ 52\end{array}\right\|_{64}\right\|_{63}$	--	--	--	--	--	--	--	51X	42X	33X	3RH29 21-.DE11

[^36]
3RT Contactors

3RT1 contactors and accessories

Internal circuit diagrams (applicable to screw, spring and ring lug connection)

Sizes S3 to S12
Terminal designations according to EN 50012
3RT10 4 to 3RT10 7, 3RT12, 3RT14 contactors

Contactors with 4 main contacts, sizes S3 Terminal designations acc. to EN 50005
3RT13/23 and 3RT15/25 contactors
4 NO $2 \mathrm{NO}+2 \mathrm{NC}$

(3RH19 21 auxiliary switch blocks acc. to EN 50005 can be snapped on)

3RT26 capacitor contactors

Size S00

Sizes S0 and S2

3RH19 21-. DA11, 3RH19 21-2DE11 first laterally mountable auxiliary switch block (solid-state compatible)

3RH19 21-. JA11, 3RH19 21-2JE11 second laterally mountable auxiliary switch block (solid-state compatible)
(only for sizes S3 to S12)

$1 \mathrm{NO}+1 \mathrm{NC}$ left	$\underset{\text { right }}{1 \mathrm{NO}+1 \mathrm{NC}}$
161 153	171 \|83
$(-1)_{54} \frac{0}{\mathbf{o}}$	$\binom{-1}{72}_{84} \stackrel{0}{0_{0}^{0}}$

Surge suppressor (plug-in direction coded; exception: marked +/- for 3RT19 16-1T... diode assembly) for sizes S2 to S3

Diode	Diode assembly	Varistor	RC element	Diode with LED	Varistor with LED
$\overleftarrow{C}^{-\bar{o}_{0}^{\circ}}$					

[^37]
3RT1 Contactors

3RT1 contactors and accessories

Internal circuit diagrams (applicable to screw connection and Spring-type terminal connection)
Accessories for size S6 ${ }^{1)}$ to S12 contactors
Terminal designations acc. to EN 50005
3RH19 21-.F..., 4-pole,
for snapping onto the front ${ }^{1}$

$2 \mathrm{NO}+2 \mathrm{NC}$
22 U

make-before-break
(terminal designations according to EN 50005 or EN 50 012)

Accessories for size S0 to S12 contactors
Terminal designations acc. to EN 50005
3RH19 21-1LA.. and 3RH19 21-1MA.. auxiliary switch block, 2-pole, for snapping onto the front ${ }^{1}$)
cable entry from above or below

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC

Internal wiring

Example: $1 \mathrm{NO}+1 \mathrm{NC}$, cable entry from below

3RH19 21-. FE22 solid-state compatible auxiliary switch block, 4-pole,
for snapping onto the front ${ }^{1}$)
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. no. 22

3RH19 21-. EA.. first laterally mountable auxiliary switch blocks (left)

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC

3RH19 21-. KA.. second laterally mountable auxiliary switch blocks (left) (only for sizes S3 to S12)

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC
$\left.\left.\right\|^{153}\right\|^{163} \pm$	$\left.{ }^{151}\right\|^{163}$	$\left.{ }^{151}\right\|^{161}$
$\left.\sum_{154}^{-1}\right\|_{164} \stackrel{\text { 崮 }}{2}$		152162

2 base devices.
3RH19 auxiliaries are intended to be used only with 3RT1 or 3RH1 base devices.
2) Not for 3RT12. vacuum contactors

3RT Contactors and 3RH2 Control Relays

Accessories for size S00 to S3

Circuit diagrams
Accessories for size S3 contactors and control relays

Solid-state time-delay blocks

(see configuring aid on page 2/38)

3RT19 16-2C.
 ON-delay Size SOO

3RT19 26-2C..
ON-delay
Sizes S0 to S3

3RT19 16-2D...
OFF-delay (with auxiliary voltage)
Size SOO

3RT19 26-2D...
OFF-delay (with auxiliary voltage)
Sizes S0 to S3

relay.
x don't connect
(2) Contactor

Sizes S2 to S12
3RT19 16-2E.../2F.../2G... solid-state, time-delay auxiliary switch blocks
$1 \mathrm{NO}+1 \mathrm{NC}$

1 NO + 1 NC
ON-delay

2 NO
WYE-delta function

(Integrated varistors not shown)

A2 can only be connected
to $N(L-)$ via the time-delay
(1) Time-delay block

A2 can be connected to
$N\left(L_{-}\right)$via either the contac-
tor or the time-delay relay.
--- optional connection
Designation
3RA2811-.CW10
ON-delay

3RT29 accessories are intended to be used only with 3RT2 or 3RH2 base devices.
3RT19 auxiliaries are intended to be used only with 3RT1 or 3RH1 base devices.

Circuit diagrams
Size S00 to So
Main circuit

The 3RA2913-2AA. (S00) and 3RA2913-2AA (S0) installation kit contains wiring connectors for connecting the main conducting paths, the mechanical interlock and two connecting clips for the contactors.

Sizes S2 to S3
Main circuit

The 3RA19 .3-2A installation kits contain, among other things, the wiring connectors on the top and bottom for connecting the main conducting paths.

Control circuit (sizes S00 and S0)
(terminal designations of contactors according to EN 50 012)

Control circuit
(terminal designations of contactors according to EN 50 005)
for momentary-contact operation for maintained-contact operation

The 3RA19 24-2B mechanical interlock contains one NC contact for the NC contact interlock for each contactor

Position of terminals

Sizes S2 to S3

Terminal designations according to EN 50005
3RA19 24-2B mechanical interlock (laterally mountable),
integrated in reversing contactor assemblies (reversing starters),
contains one NC contact for the electrical interlock for each contactor
2 NC

[^38]Circuit diagrams
Size S00 / So
Main circuit

Sizes S2 to S3
Main circuit

Sizes S2 and S3

SO "OFF" button
S1 "ON" button
S Maintained-contact switch
K1 Line contactor
K2 Star contactor
K3 Delta contactor
K4 Solid-state, time-delay auxiliary switch block or time-delay relay
FO Fuses
F1 Overload relay

Control circuits
with 3RA2816-0EW20 function module (set of three) snapped onto the front

3RA2816-0EW20

Control circuits
with 3RP15 7. time-delay relay,
laterally mounted (typical circuits)
for momentary-contact operation

Contact element $17 / 18$ is only closed on the star step; the contact element is open on the delta step and when de-energized.

3T Contactors

3TF68 and 3TF69 vacuum contactors

Internal circuit diagrams

3TF68 44 and 3TF69 44 contactors

4 NO + 4 NC

AC operation
max. complement of auxiliary switches

3TF68 33 and 3TF69 33 contactors
3 NO + 3 NC
DC operation
max. complement of auxiliary
switches

Auxiliary switch blocks 3TY7 681-1G	Auxiliary switch blocks 3TY7 561-1AA00		Auxiliary switch blocks 3TY7 561-1KA00		Auxiliary switch blocks 3TY7 561-1EA00	
for coil reconnection, 3TF68 and 3TF69, DC economy circuit	first auxiliary switch block	ch block	second auxiliary switch block left or right		with make-befor	-break contacts mounted on right
${ }^{\circ} \mathrm{B} 1 \underbrace{25}_{T}{ }_{26}^{25}$	$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{21} \frac{0}{\stackrel{0}{6}}$	$\left.\left.\left.\right\|_{32} ^{31}\right\|_{44} ^{43}\right\|_{4} ^{43} \stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{2}}$			$\left.\left.\right\|_{14} ^{13}\right\|_{26} ^{25} \stackrel{\text { ow }}{25}$	

Auxiliary switch blocks

3TY7 561-1.
solid-state compatible aux. switch block
mounted on left mounted on right

Interface for control by PLC
3TX7 090-0D
with surge suppression

Circuit diagrams for DC economy circuit • maintained-contact operation
3TF68 33 and 3TF69 33 contactors

[^39]
Coupling Relays

3RH21 coupling for switcing auxillary circuits

Terminal diagrams

DC operation

L+ is to be connected to coil terminal A1
3RH21 coupling relays for auxiliary circuits,
size SOO
Terminal designations according to EN 50011
(it is not possible to snap on an auxiliary switch block)
Surge suppressor can be mounted

4 NO	$3 \mathrm{NO}+1 \mathrm{NC}$	$2 \mathrm{NO}+2 \mathrm{NC}$
Ident no.: 40 E	31 E	22 E

Suppressor Diode integrate

4 NO Ident no.:40E	$\begin{aligned} & 3 \mathrm{NO}+1 \mathrm{NC} \\ & 31 \mathrm{E} \end{aligned}$	$\begin{aligned} & 2 \mathrm{NO}+2 \mathrm{NC} \\ & 22 \mathrm{E} \end{aligned}$

Diode integrated	
4 NO	
Ident $\mathrm{no}: 4 \mathrm{EOE}$	$3 \mathrm{NO}+1 \mathrm{NC}$
31 E	

Position of terminals

Size S00

3RH21 coupling relays

[^40]
3RH2 Control \& Latching Relays

3RH2 Terminal Designations

Terminal designations according to EN 50011
3RH21 control relays

3RH21 40 control relays
with 3RH19 11-1GA.. auxiliary switch blocks snapped onto the front

8 NO Ident no.:80E		
O_{0}^{13}	$\begin{array}{ll} 23 & 33 \\ 0 \end{array}$	$\stackrel{43}{ }{ }_{\bigcirc}^{\mathrm{A} 1} \mathrm{O}$
${ }^{53}$	$\bigcirc^{63} \quad 73$	0_{0}^{83}
$\begin{array}{r} 0 \\ 54 \\ \hline \end{array}$	$\begin{array}{ll} \bigcirc & \bigcirc \\ 64 & 74 \\ \hline \end{array}$	$\begin{aligned} & \bigcirc \\ & 84 \\ & \hline \end{aligned}$
\bigcirc	$\begin{array}{ll}\bigcirc & \bigcirc \\ 24 & \\ \end{array}$	\bigcirc

$\begin{aligned} & 13 \\ & 0 \end{aligned}$	$\begin{aligned} & 23 \\ & 0 \end{aligned}$	${ }^{33}$	${ }^{43}$	$\begin{aligned} & \mathrm{A}^{1} \\ & \mathrm{O} \end{aligned}$
53	O_{0}^{61}	0^{73}	83	
\bigcirc	$\begin{array}{r} \bigcirc \\ 62 \\ \hline \end{array}$	$\begin{aligned} & \bigcirc \\ & \hline 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline \end{aligned}$	
O	${ }_{24}$	\bigcirc	\bigcirc	C°

$6 \mathrm{NO}+2 \mathrm{NC}$

0_{0}^{13}	${ }^{23}$	${ }^{33}$	${ }^{43}$	$\mathrm{O}^{\text {¢ }}$
\bigcirc	\bigcirc	${ }^{71}$	$)^{83}$	
$\begin{aligned} & 0 \\ & 54 \end{aligned}$	\bigcirc	\bigcirc	$\underset{84}{\circ}$	
\bigcirc	\bigcirc	\bigcirc	${ }_{44}$	\bigcirc

$5 \mathrm{NO}+3 \mathrm{NC}$ 5 NO
53 E
$4 \mathrm{NO}+4 \mathrm{NC}$
Ident no.:44E

13	23	33	43	$\mathrm{A1}$
0	0	0	0	0
51	61	71	81	
0	0	0	0	
0	0	0	0	
52	62	72	82	
0	0	0	0	0
14	24	34	44	A2

3RH24 latched control relays

4 NO

Ident no.: 40E

$2 \mathrm{NO}+2 \mathrm{NC}$
Ident no.: 22 E

$3 \mathrm{NO}+1 \mathrm{NC}$
31E

3RT Contactors and 3RH Control Relays

Position of terminals (applicable to screw connection and Cage Clamp connection)

Size SOO
Terminal designations according to EN 50012
3RT20 1 contactors, 3RT20 1 coupling relays,
1 NO
Ident. no. 10E

1	3	5	13	A 1
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc

1 NC
01

3RT20 1 contactors (with 1 NO)
with auxiliary switch blocks snapped onto the front 3RH19 11-. H..
$1 \mathrm{NO}+1 \mathrm{NC}$
Ident. no.: 11

${ }^{1}$	${ }_{3}^{3}$	${ }^{5}$	${ }^{13}$	${ }^{3}$	$\underbrace{\text { A1 }}_{0}$
	\bigcirc^{1}				
	\bigcirc				
\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	

$2 \mathrm{NO}+3 \mathrm{NC}$
Ident. no.: 23

Size So
Terminal designations according to EN 50012
3RT20 2 Contactors with 1NO + 1NC 3RT20 2 Contactors 3RT20 2 Coupling Relays with $3 \mathrm{NO}+3 \mathrm{NC}$

$1 / \mathrm{L} 1$	$3 / \mathrm{L} 2$	$5 / \mathrm{L} 3$
O	O	O
O	21	A 1
O	O	O
O	O	O
14	22	A 2
O	O	O
2/T1	4/T2	$6 / \mathrm{T} 3$

$2 \mathrm{NO}+2 \mathrm{NC}$
22

$3 \mathrm{NO}+2 \mathrm{NC}$
32

Sizes S3 to S12
Terminal designations according to EN 50012

3RT 20 3,
3RT20 4, 3RT124 46 contactos,

$\bigcirc \mathrm{A} 1 \quad \mathrm{~A} 2 \bigcirc$	
	35
	$\bigcirc \bigcirc$
1. 2. 3. 4.	
1.	2. 3. 4.
	\bigcirc
OA1	$\mathrm{A} 2 \bigcirc$

3RT20 3, 3RT20 4

contactors

with 4-pole auxiliary switch block for snapping onto the front
3RH19 21-.HA31
3 NO + 1 NC
Ident. no. 31 E

3RT 20 3, 3RT 204

contactors

3RH19 21-.HA22
4-pole auxiliary switch block
snapped onto the front
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. no. 22 E

3RT20 3, 3RT20 4
contactors
with 4-pole auxiliary switch block for snapping onto the front
3RH19 21-. HA13
$1 \mathrm{NO}+3 \mathrm{NC}$
13 E

Size S2
Terminal designations according to EN 50012
3RT20 3 Contactors with 1NO + 1NC 3RT20 3 Contactors 3RT20 3 Coupling Relays with 3NO + 3NC

3RT Contactors

3RT1/2 contactors and accessories

Position of terminals (applicable to screw connection and Spring-type connection)
Accessories for size S3 to S12 contactors
Terminal designations acc. to EN 50005
3RH19 21-. F... auxiliary switch blocks, 4-pole,
for snapping onto the front

3RH19 21-1LA.. auxiliary switch blocks, 2-pole,
for snapping onto the front, cable entry from above

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$ 2 NC

4 NC
04

$2 \mathrm{NO}+2 \mathrm{NC}$
22 U

make-before-break

3RH19 21-1MA.. auxiliary switch blocks, 2-pole,
for snapping onto the front, cable entry from below

3RH19 21-. FE22 solid-state compatible auxiliary switch block, 4-pole, for snapping onto the front
$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. no. 22

Terminal designations according to EN 50005 or EN 50012 3RH19 21-. CA.. auxiliary switch blocks, single-pole, for snapping onto the front

3RT1/2

Position of terminals

Accessories for size S2 to S12 contactors
Terminal designations acc. to EN 50005
3RH19 21-. EA.. first laterally mountable auxiliary switch blocks (left) 2 NO $1 \mathrm{NO}+1 \mathrm{NC} \quad 2 \mathrm{NC}$

$53 \bigcirc \downarrow 2$
$63 \bigcirc \downarrow 8$
$64 \bigcirc \varepsilon 8$
$54 \bigcirc \varepsilon L$

$51 \bigcirc z L$
$63 \bigcirc \downarrow 8$ $64 \bigcirc \varepsilon 8$
$52 \bigcirc し \sim$

$51 \bigcirc \mathrm{zL}$
$61 \bigcirc 28$
$62 \bigcirc 18$
$52 \bigcirc し \sim$

3RH19 21-. KA.. second laterally mountable auxiliary switch blocks (left) (only for sizes S3 to S12; can only be used if no auxiliary switches are snapped onto the front)

2 NO

2 NC

Accessories for size S3 to S12 contactors
Terminal designations acc. to DIN 46199 Part 5
3RT19 26-2E.../2F.../2G... solid-state, time-delay auxiliary switch blocks

$1 \mathrm{NO}+1 \mathrm{NC}$ ON-delay	$1 \mathrm{NO}+1 \mathrm{NC}$ OFF-delay	2 NO Star-delta function
$\begin{array}{ccc}-7 & -5 & \text { A1 } \\ \bigcirc \bigcirc & \bigcirc & \bigcirc\end{array}$	$\begin{array}{ccc}-7 & -5 & \text { A1 } \\ \bigcirc \bigcirc & \bigcirc & \bigcirc\end{array}$	$\begin{array}{ccc}-7 & -7 & A 1 \\ \bigcirc & \bigcirc & \bigcirc\end{array}$
$\begin{array}{ccc} 0 & \bigcirc & 0 \\ -8 & -6 & \text { A2 } \\ \hline \end{array}$	$\begin{array}{\|ccc} 0 & 0 & 0 \\ -8 & -6 & \mathrm{~A} 2 \\ \hline \end{array}$	

3RT26 capacitor contactors

Size $\mathbf{S 0 0}$

with 4-pole auxiliary switch block mounted on the front

The auxiliary switch block comprises 3 leading contacts (not shown) and one unassigned NO contact.

3RH19 21-. EA.. first laterally mountable auxiliary switch blocks (right)

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$
2 NC

3RH19 21-.KA.. second laterally mountable auxiliary switch blocks (right) (only for sizes S3 to S12; can only be used if no auxiliary switches are snapped onto the front)

2 NO

2 NC

Sizes S2 and S3
with 4-pole auxiliary switch block mounted on the front

The auxiliary switch block comprises 3 leading contacts (not shown) and one unassigned NO contact.

3RT1 Contactors

3RT1 contactors and accessories

Position of terminals (applicable to screw connection and Spring-type terminal connection)
Sizes S6 to S12
3RT1.5, 3RT1.6, 3RT1.7 contactors

- with conventional op. mechanism (3RT1...-. A...)
with laterally mountable auxiliary switch blocks 3RH19 21-1DA11 (for $2 \mathrm{NO}+2 \mathrm{NC}$, incl. in contactor) 3RH19 21-1JA11
(expandable to $4 \mathrm{NO}+4 \mathrm{NC}$)
$2 \mathrm{NO}+2 \mathrm{NC}$ or $4 \mathrm{NO}+4 \mathrm{NC}$

- with solid-state op. mechanism (3RT1.....N...)
with laterally mountable auxiliary switch blocks 3RH19 21-1DA11 (for $2 \mathrm{NO}+2 \mathrm{NC}$, incl. in contactor) 3RH19 21-1JA11
(expandable to $4 \mathrm{NO}+4 \mathrm{NC}$)
$2 \mathrm{NO}+2 \mathrm{NC}$ or $4 \mathrm{NO}+4 \mathrm{NC}$

Contactors with 4 main contacts, size S00
Terminal designations acc. to EN 50005
3RT23 and 3RT25 contactor s

4 NO

$2 \mathrm{NO}+2 \mathrm{NC}$

- with solid-state op. mechanism (3RT1...-.P...)
with laterally mountable auxiliary switch blocks 3RH19 21-1DA11
(for $1 \mathrm{NO}+1 \mathrm{NC}$, incl. in contactor)
3RH19 21-1JA11
(expandable to $2 \mathrm{NO}+2 \mathrm{NC}$)
$1 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$

Contactors with 4 main contacts, sizes S2 to S3 Terminal designations acc. to EN 50005

3RT13 and 3RT15 contactors

4 NO

$2 \mathrm{NO}+2 \mathrm{NC}$

3T Contactors

3TF68 and 3TF69 vacuum contactors, 3-pole

Position of terminals

AC operation
3TF68 and 3TF69 contactors $4 \mathrm{NO}+4 \mathrm{NC}$

DC operation
3TF68 and 3TF69 contactors
$3 \mathrm{NO}+3 \mathrm{NC}$
max. complement of auxiliary switches

Solid-state compatible auxiliary switch blocks
3TY7 561-1 . for lateral mounting onto
size 6 to 14 contactors

mounted on left	mounted on right
55_{0}	$\begin{gathered} 62 \\ 0 \\ 61 \\ 61 \\ 0 \end{gathered}$
[151 0 52 0	

3RT20 contactors, 3-pole

Dimension drawings
3RT2.1.-1 contactor and 3RH21..-1 contactor relays

Size S00 and NEMA Size 0, screw connection
with surge suppressor and auxiliary switch block

Lateral clearance from earthed parts $=6 \mathrm{~mm}$

1) Laterally mountable auxiliary switch block 3RH2911-1DA.. / -1DE.. / -1EE..
2) Auxiliary switch block for mounting on the front 3RH2911-1FA.. /-1GA.. / -1HA.. / -1NF.

3RT2.1.-2 contactor and 3RH21..-2 contactor relay
Size S00, Spring-type terminal connection
with auxiliary switch block

1) Laterally mountable auxiliary switch block 3RH2911-2DA.. / -2DE.. / -2EE.
2) Auxiliary switch block for mounting on the front 3RH2911-2FA.. / -2GA.. / -2HA.. / -2NF..

3RT2.2.-1 contactors Size S0 and NEMA Size 1,
(screw-type connection system) with auxiliary switch blocks mounted and other accessories

1) Laterally mountable auxiliary switch block 3RH2921-1DA.. / -1DE..
2) Auxiliary switch block for mounting on the front 3RH2911-1FA.. / -1GA.. / -1HA.. / -1NF..
3) 3-phase infeed terminal 3RV2925-5AB

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Dimension drawings

3RT2.2.-2 and 3RT202.-....-OLA2 contactors
Size S0 (spring-loaded connection) with auxiliary switch blocks mounted

For size S0:

1) Laterally mountable auxiliary switch block 3RH2921-2DA.. / -2DE..
2) Auxiliary switch block for mounting on the front 3RH2911-2FA.. / -2GA.. / -2HA.. / -2NF.

3RT20 3 contactors

Size S2 and NEMA Size 2, screw connection
with surge suppressor, auxiliary switch blocks and mounted overload relay

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax
For size S2:
a $=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$, diode assembly
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor > 240 V
$\mathrm{a}=17 \mathrm{~mm}$ with RC element
b = DC 15 mm deeper than AC

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front (1, 2 and 4-pole)
3) Surge suppressor
4) Drilling pattern

3RT20 and 3RT24 contactors, 3-pole

Dimension drawings

3RT20 3 contactors
Size S2, Spring-type terminal connection
with surge suppressor, auxiliary switch blocks and mounted overload relay

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

3RT20 4, 3RT24 46 contactors
Size S3 and NEMA Size 3, screw connection with surge suppressor, auxiliary switch blocks and mounted overload relay

Lateral clearance from earthed parts $=6 \mathrm{~mm}$

For size S2:
a $=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$, diode assembly
$a=3.5 \mathrm{~mm}$ with varistor > 240 V
a $=17 \mathrm{~mm}$ with RC element
b = DC 15 mm deeper than AC

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front
(1, 2 and 4 -pole)
3) Surge suppressor
4) Drilling pattern

a $=0 \mathrm{~mm}$ with varistor, diode assembly and $<240 \mathrm{~V}$
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor and $>240 \mathrm{~V}$
$a=17 \mathrm{~mm}$ with RC element
$\mathrm{b}=\mathrm{DC} 13 \mathrm{~mm}$ deeper than AC
5) Auxiliary switch block, laterally mountable
6) Auxiliary switch block, mountable on the front (1, 2 and 4-pole), same dimensions for designs with screw or Spring-type connection
7) Surge suppressor
8) Drilling pattern
9) For mounting on 35 mm standard mounting rail (15 mm deep) acc. to EN 50022 or 75 mm standard mounting rail acc. to EN 50023
10) Hexagon socket screw 4 mm

3RT20 contactors, 3-pole

Dimension drawings

3RT20 4 contactors,
Size S3, Spring-type terminal connection
with surge suppressor, auxiliary switch blocks
and mounted overload relay

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

For size S3:

a $=0 \mathrm{~mm}$ with varistor, diode assembly and < 240 V
a $=3.5 \mathrm{~mm}$ with varistor and $>240 \mathrm{~V}$
$\mathrm{a}=17 \mathrm{~mm}$ with RC element
b = DC 13 mm deeper than AC

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front (1, 2 and 4 -pole), same dimensions for designs with screw or Spring-type terminal connection
3) Surge suppressor
4) Drilling pattern
5) For mounting on 35 mm standard mounting rail (15 mm deep) acc. to EN 50022 or 75 mm standard mounting rail acc. to EN 50023
6) Hexagon socket screw 4 mm

3RT10 and 3RT14 contactors, 3-pole

Dimension drawings

3RT10 5, 3RT14 5 contactors

Size S6 and NEMA Size 4

with auxiliary switch block, laterally mountable and mountable on the front,
mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Clearance from earthed parts with
directly mounted overload relay:
lateral: 10 mm
front: 20 mm

For size S6:

$\mathrm{k}=120 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) Second auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front
3) RC element
4) 3RB10 overload relay, mounted
5) 3RT19 55-4G box terminal block (hexagon socket 4 mm)
6) 3RT19 56-4G box terminal block (hexagon socket 4 mm)
7) PLC connection DC 24 V and changeover switch (with 3RT1...-.N)
8) Electronics module with remaining lifetime indication (auxiliary switch block not mountable on righthand side)

3RT10 and 3RT14 contactors, 3-pole

Dimension drawings

3RT10 6, 3RT14 6 contactors

Size S10

with auxiliary switch block, laterally mountable and mountable on the front, mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

3RT10 7, 3RT14 7 contactors

Size S12

with auxiliary switch block, laterally mountable and mountable on the front, mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

For sizes S10 and S12
Clearance from earthed parts with directly mounted overload relay:
lateral: 10 mm
front: $\quad 20 \mathrm{~mm}$

For sizes S10 and S12

$k=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) Second auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front
3) RC element
4) 3RB10 overload relay, mounted
5) Box terminal block (hexagon socket 6 mm)
6) PLC connection DC 24 V and changeover switch (with 3RT1...-.N)
7) Electronics module with remaining lifetime indication (auxiliary switch block not mountable on righthand side)

3RT12 vacuum contactors, 3-pole

Dimension drawings

3RT12 6 vacuum contactors

Size S10

with auxiliary switch block, laterally mountable
mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

3RT12 7 vacuum contactors

Size S12
with auxiliary switch block, laterally mountable
mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

For sizes S10 and S12:

$\mathrm{k}=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) Second auxiliary switch block, laterally mountable
2) Position and contact erosion indicator
3) RC element
4) 3RB10 overload relay, mounted
5) Box terminal block (hexagon socket 6 mm)
6) PLC connection DC 24 V and changeover switch (with 3RT1...-.N)
7) Electronics module with remaining lifetime indication (auxiliary switch block not mountable on righthand side)

Dimension drawings

3RT23 1 and 3RT25 1 contactors

Size S00, screw connection
with surge suppressor and auxiliary switch block

3RT23 2 and 3RT25 2 contactors
Size S0 with coil terminal module
and auxiliary switch block

For size S0:

4) 4-pole contactor for switching 4 resistive loads 3RT232. 4-pole pole-changing contactor for changing the polarity of hoisting gear motors (2 NO contacts and 2 NC contacts) 3RT252.
5) Coil terminal module 3RT2926-4RA11/-4RB11
6) Auxiliary switch block for mounting on the front 3RH2911-1AA.. / -1BA

3RT23 3 and 3RT25 3 contactors

For sizes S2 and S3:
a $=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor > 240 V
$a=17 \mathrm{~mm}$ with RC element and diode assembly
b = S2: DC 15 mm deeper than AC S3: DC 13 mm deeper than $A C$

1) Auxiliary switch block, laterally mountable (right or left)
2) Auxiliary switch block, mountable on the front, (1, 2 and 4-pole, also 3RH19 21-1FE22 solid-state compatible design)
3) Surge suppressor
4) Drilling pattern
5) For mounting on 35 mm standard mounting rail (15 mm deep) acc. to EN 50022 or, in the case of size S3, 75 mm standard mounting rail acc. to EN 50023
6) Hexagon socket screw 4 mm

3RT23 4 contactors

Size S3 with surge suppressor and auxiliary switch block

[^41]3RT16 capacitor contactors

Dimension drawings
3RT16 17 capacitor contactors
Size S00

3RT16 27 capacitor contactors
Size S0

3RT16 47 capacitor contactors
Size S3

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Dimension drawings

Size S00 / 3RA231

Size S0 / 3RA232

Size S2 / 3RA233

Size S3 / 3RA234

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

3RA13 contactor assemblies for reversing

Dimension drawings

Size S6

Size S10

[^42]3RA13 contactor assemblies for reversing

Dimension drawings

3TF68 and 3TF69 vacuum contactors, 3TC4 and 3TC5 DC contactors

Dimension drawings
3TF68 vacuum contactors

Detail
A = Contact erosion indicator for vacuum interrupter contacts

3TC4 and 3TC5 contactors
3TC44 contactors
Size 2, AC and DC operation

$t=$ minimum clearance from insulated components: $15 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)
from grounded components: $30 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	a	b
DC operation	109	141
AC operation	68	100

3TC52 contactors
Size 8, AC and DC operation

$t=$ minimum clearance from insulated components: $20 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)
from grounded components: $70 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	a	b
DC operation	147	232
AC operation	115	200

[^43]3TF69 vacuum contactors

3TC48 contactors
Size 4, AC and DC operation

$t=$ minimum clearance from insulated components:
$15 \mathrm{~mm}(600 \mathrm{~V})$, $20 \mathrm{~mm}(750 \mathrm{~V}$) $35 \mathrm{~mm}(600 \mathrm{~V})$, $55 \mathrm{~mm}(750 \mathrm{~V})$

	a	b	c
DC operation	112	180	21.5
AC operation	86	154	23.5

3 TC56 contactors
Size 12, AC and DC operation

$t=$ minimum clearance from insulated components: $25 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	from grounded components: $80 \mathrm{~mm}(600 \mathrm{~V})$	
$100 \mathrm{~mm}(750 \mathrm{~V})$		

[^44]Accessories for 3RT2 contactors

Dimension drawings

Terminal cover for box terminals
for size S2,
3RT29 36-4EA2

Terminal cover for box terminals
for size S3,
3RT19 46-4EA2

Auxiliary conductor terminal, 3-pole
3RT19 46-4F
Size S3
mounted on contactor

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Accessories for 3RA1 contactor assemblies

Dimension drawings

3RA19.2-2A baseplates for reversing contactor assemblies

3RA19.2-2E, 3RA19.2-2F
baseplates for star-delta assemblies

	A	B	C	D	E
S6-S6-S3	316	205	376	229	9
S6-S6-S6	343	205	403	229	9
S10-S10-S6	393	250	453	275	11
S10-S10-S10	423	250	483	275	11
S12-S12-S10	450	250	510	275	11
S12-S12-S12	465	250	525	275	11

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

3RH21 and 3RH24 control relays

Dimension drawings

3RH21 control relays

Size S00, with screw connections

Lateral clearance from earthed parts $=6 \mathrm{~mm}$

3RH24 latched control relays
Size S00

3RH21 coupling relay

Dimension drawings
Size S00, with screw connections,
with surge suppressor

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

[^0]: Note: MSPs and Contactors of the same frame size are made to easily fit together with the use of a link module or can be purchased pre-assembled as 3RA starter assemblies. See section 4.
 Note: Contactors and Overloads of the frame size SOO - S3 are made to easily fit together without the use of accessories.
 Note: This is only a guide to decode the model number. All possible combinations of these are not available.

[^1]: For further vacuum contactors, 500 Hp and
 700 Hp (3TF68/69), see page 2/53.
 For auxiliaries and accessories, see page 2/68
 For spare parts, see page 2/98-2/99.
 For technical data, see page 2/152-2/157.
 For int. circuit diagrams, see page 2/196
 For dimension drawings, see page 2/215.

[^2]: All specs and technical specs not mentioned here are identical
 to those of the standard contactors for switching motors.

[^3]: For technical data, see page 2/171
 For int. circuit diagrams, see page 2/190-2/195
 For dimension drawings, see page 2/209.

[^4]: 1) Use of the communication-capable function modules for IO-Link or AS-Interface requires contactors with communication interface (see pages 2/26).
 2) The modules for the control current wiring, which are included in the wiring kit, are not required.
 kit, are not required
[^5]: Note:
 When the function modules are used, no other auxiliary switches are allowed to be mounted on the basic units.

[^6]: Availability signal through voltage pick-off

[^7]: 1) Suitable only for communication through IO-Link.

 For manuals, see
 http://support.automation.siemens.com/WW/view/en/39319600.

[^8]: Availability signal through voltage pick-off

[^9]: The selection of contactor types refers to fused configurations.

[^10]: The wye-delta starters listed here are assembled from individual ${ }^{1)}$ Coil operating range contactors which are UL Listed. The overall assembly Catalog

[^11]: The wye-delta starters listed here are assembled from individual ${ }^{11}$ Coil operating range at 50 Hz : contactors which are UL Listed. The overall assembly Catalog

[^12]: 1) The link for paralleling can be reduced by one pole
[^13]: 1) Main contact kits for size 3 TC48 and larger include springs. Smaller sizes do not.
 2) On DC operated contactors the maximum number of auxiliary contacts is $2 \mathrm{NO}, 2 \mathrm{NC}$.
 3) For use in dusty atmosphere and electronic circuits with rated operational currents $\mathrm{I}_{\mathrm{e}} \mathrm{AC}-14$ and DC -13 from 1 mA to 300 mA at 3 V to 60 V . With 1 changeover contact.
 4) Discount Code: DC Contactors
 5) Can only be mounted on AC-operated contactors.
[^14]: 1) The connection piece for mounting the surge suppressor must be bent slightly.
 2) Includes the peak value of the alternating voltage on the $D C$ side.
 3) Not for DC economy circuit.
[^15]: 1) Can be used for AC operation for $50 / 60 \mathrm{~Hz}$.

 Please inquire about further voltages.

[^16]: 1) Exception: contactors and contactor relays with auxiliary switch block mounted onto the front.
[^17]: 1) Refer to the note on page $2 / 142$, conductor cross-sections
[^18]: 1) Can also be used for size S3 4-pole contactors.
[^19]: 1) Size $S 00, S 0$ and $S 2$ installation kits for paralleling are available in spring-type terminals. Change the last digit of the order number to a " 2 ".
 2) When using the function modules for wye-delta starting, the wiring modules for the auxiliary current are not required. See page $2 / 45$ for more information.
[^20]: 3) Also requires quantity (1) 3RA2816-0EW20 function module set for all control functions. See page 2/45.
 4) The 3RT19 56-4EA1 (S6) or 3RT19 66-4EA1 (S10, S12) cover can be used for shock-hazard protection.
[^21]: For 3RT contactors, see page $2 / 8$.

[^22]: 1) Exception:

 The mechanical interlock between the delta and WYE contactors is included in the installation kit for size SOO contactor assemblies.

[^23]: 1) The parts (16) and (17) can only be mounted with contactors with screw terminal.
[^24]: 1) Integrated auxiliary contacts in size S0, auxiliary switches for snapping onto the front and for mounting onto the side in size SOO and $\mathrm{SO}: I_{\mathrm{e}}=6 \mathrm{~A}$ at AC-14/AC-15.
[^25]: 1) For more information about short-circuit values,
 e. g. for protection against short-circuit currents, see UL reports
 (http://support.automation.siemens.com) for the individual devices.
 2) Values for RK5 fuses on request.
 3) Values on request.
[^26]: (increased power andection account).

[^27]: 750

[^28]: 2) Test conditions acc. to IEC 60 947-4-1
 3) According to excerpt from

 Type of coordination "2":
 No damage can be tolerated to the overload relay,
 IEC 60 947-4-1 (VDE 0660 Part 102):
 Type of coordination "1":
 Destruction of the contactor and the overload
 relay is permissible. The contactor and/or over-
 inad rolar must he ronlared if nerescary
 but contact welding on the contactor is permitted if the contacts can be easily separated

[^29]: 1) Industrial furnaces and electric heaters with resistance heating, for example (higher current input allowed for during heating up).
[^30]: 1) According to excerpt from

 IEC 60 947-4-1 (VDE 0660 Part 102): Type of coordination "1":
 Destruction of the contactor and the overload relay is permissible. The contactor and/or overload relay must be replaced if necessary.

[^31]: 1) Ambient temperature $50^{\circ} \mathrm{C}$ for 3RT14 76-.N contactor
[^32]: 1) Combinations according to EN 50012, EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005.
[^33]: 1) Combinations according to EN 50012, EN 50011 and IEC 60947- 2) Terminals from the top or bottom.
 $5-1$ are in bold print. All combinations comply with EN 50005.
[^34]: 1) Combinations according to EN 50012, EN 50011 and IEC 60947-5-1
 are in bold print. All combinations comply with EN 50005.
[^35]: 1) Combinations according to EN 50012, EN 50011 and IEC 60947-$5-1$ are in bold print. All combinations comply with EN 50005.
[^36]: 1) Combinations according to EN 50012 , EN 50011 and IEC 60947-
 $5-1$ are in bold print. All combinations comply with EN 50005.
[^37]: 1) 3RH29 auxiliaries are intended to be used only with 3RT2 or 3RH2 base devices 3RH19 auxiliaries are intended to be used only with 3RT1 or 3RH1 base devices.
 2) Not for 3RT12. vacuum contactors
[^38]: SO "OFF" button
 S1 "Clockwise ON" button
 S2 "Counterclockwise ON" button
 S "CW-OFF-CCW" button
 K1 Clockwise contactor
 K2 Counterclockwise contactor
 F1 Fuses for main circuit
 F3 Fuses for control circuit
 F2 Overload relay

[^39]: Terminal designations according to EN 50012

[^40]: 1) Note the location digit

 Can only be used if no 4-pole auxiliary
 switch block is snapped onto the front.

[^41]: For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

[^42]: The assemblies shown on this page are for customer assembly with individual components.

[^43]: 1) With box terminals for laminated copper bars (accessories).
[^44]: 2) DC operation only
