CEM (COMPATIBILITE ELECTROMAGNETIQUE)-PERTURBATIONS EMI-RFI ET HF

 DEFINITIONS
BANDE DE BASE

Bande de fréquences ocoupées par un signal avant sa modulation en vue d'une transmission, ou après démodulation. Dans ce cas toute la largeur de bande du câble est utilisée pour véhiculer les informations, les signaux passent diredement dans le câble sans aucune fome de modulation.

BANDE PASSANTE

$20 \mathrm{~Hz}-20 \mathrm{KHz}=$ Audio Analogique (en réalité la gamme des fréquences audibles se situe de 16 Hz à 16 KHz). Atitre indicatif un caisson de grave couvre la gamme de 20 Hz à 200 Hz . Plus on monte en tréquence plus le son devient aigu. La bande passante est la différence entre la note la plus aiguë et la note la plus grave.
300 Hz à $3,1 \mathrm{KHz}=$ Téléphonie.
4 KHz à $1,1 \mathrm{MHz}=$ RNIS-NUMERIS catégorie $2, \mathrm{ADSL}$.
$2,2 \mathrm{MHz}=\mathrm{ADSL} 2$.
$5 \mathrm{MHz}=A_{\text {udio }}$ Numérique AES-EBU, Vidéo et Informatique.
$20 \mathrm{MHz}=$ Réseaux informatiques Ethernet 10 BaseT catégorie 4.
$100 \mathrm{MHz}=$ Réseaux informatiques Ethernet 100 Base T catégorie 5 et 1000 Base T (Gbits/s) catégonie 6 .
$270 \mathrm{MHz}=$ SD SD.
$1,5 \mathrm{GHz}=$ SDI HD 4:2:2.
$2,4 \mathrm{GHz}=$ WíFi norme 802.11 b .
$3 \mathrm{GHz}=$ SDI HD 4:4:4.
$5 \mathrm{GHz}=$ Wi-Fi (baptisé $\mathrm{Wi}-\mathrm{Fi}$) norme 802.11a.

BRUIT

Tout signal parasite venant se superposer au signal utile et de ce fait venart le perturber (souffle sur un ampli, ronflettes etc.)

CEM

Un produit est qualifé de CEM Compaibilité Electromagnétique (en anglais EMC-ElectroMagnetic Compatibility) lorsquil est capable de fonctionner dans son propre champ d'adtion électromagnétique de manière satisfaisarte, c'est à dire sans produire lui-même des perturbations électromagnétiques intolérables pour tout élément situé dans son envirconement. Ce sont principalement les équipements qui définissent la CEM, et non le système de câblage. Le rôle du système de câblage se limite uniquement, dans certains cas ppar exemple lorsquil est blindé), à augmerter l'immunité des équipements teminaux. L'étude de la CEM est complexe car elle met en ceuvre trois composantes: le générateur de perturbations (source), la propagation proprement dite (couplage) et l'élément qui subit la perturbation (victirne). Cette étude théorique est difficile, car elle revient à étudier la propagaion des ondes électromagnétiques régie par un ensemble d'équations différentielles complexes: les équations de Maxwell. Leur résolution est généralemert assez délicate à mettre en ceuvre de fappon exacte dans des structures physiques réelles, même avec des moyens infomatiques très perfomants. En pratique il faut donc traiter les problèmes de compatikilité électromagnétique en faisant un certain nombre d'hypothèses simplificatrices, en utilisant des modèles, et surtout en ayant un recours constant à l'expérimentation et à la mesure.

dIAPHONIE et PARADIAPHONIE

La diaphonie est la transmission du signal entre des fils woisins (par exemple deux fils dans une même gaine). L'effet peut être inductif (par couplage magnétique) ou capacitif (dû à la présence de capacité entre les deux fils). La paradiaphonie est latransmission du signal entre deux pares wisines. L'exemple type de diaphonie se rencontre dans le domaine audio. En conséquence, une partie des signaux transmis sur une ligne apparait sur l'autre et réciproquement.

FERRITE

La ferrite est une sorte de céramique oltenue par moulage à forte pression et à haute température (plus de $1000^{\circ} \mathrm{C}$) à partir d'oxyde de fer et d'oxyde ou carbonate de nickel, de manganèse, de zinc... C'est un matériau très dur, difficile à usiner et assez fragile, de couleur grise à noire, dont la résistivité est très élevée. La ferite est très ragile et casse en tombant sur une surface dure. Il est quand même possible de reooller deux morceaux (surtout pour les diamètres aurdessus de 20 mm), en utilisant une mince couche d'Araldite, l'entrefer ainsi créé restant négligeable. La feritte joue le rôle d'une résistance (on parle d'impédance) aux champs haute tréquence en transfomant l'énergie éledrique en énergie calorifque (effet Joule). Les caractéristiques magnétiques (peméabilité, gamme de tréquence...) d'un noyau en ferrite varient beaucoup en fondion non seulement de ses composants mais aussi du processus de fabrication. Le point de Curie (température au-dessus de laquelle l'aimantation spontanée d'un conps ferromagnétique s'annule) de ces matériaux est généramert compris entre 125 et 350°. Parmi ces ferites dites "douces" on distingue deux groupes:

- les ferrites au manganèse-zinc utilisées en BF (en dessous de 1 MHz). Forte perméabilité
- les ferrites au nickel-zinc utilisées en HF entre 1 et 300 MHz . Perméabilité plus faible.

L'autre fantille de ferites est moulée sous pression à partir de poudre de fer extrêmement fine agglomérée avec un liant. Comme les particules magnétiques sont isolées entre elles, les pertes par courant de Foucault sont limitées. L'espace entre les particules constitue une sorte de "micro-entrefer" réparti. Les caradéristiques de ce type de matériau sont plus stables que celles des ferites dites douces, ce qui autonise leur utilisation pour des filtres séledifs. Ce sont les tores en poudre de fer dont la peméabilité est la plus taible qui sont utilisés en HF jusqu'à 500 MHz .
Formes: le tore, c'est un volume qui s'apparerte à un anneau assez épsis, caractérisé par: son diamètre extérieur, son diamètre intérieur et sa hauteur. En empilant plusieurs tores il est possible de former un cirouit en forme de tube, oe qui équivaut à augnenter la section du circuit magnétique.
Autres fomes : perles à un ou plusieurs trous, bâtonnets et bareaux, plaquettes, tubes et bagues, pots, noyaux fildés, tores et cylindres en deux parties (snap-on) pour déparasitage des câbles ronds ou plats.
Applications: EnBF (fréquences irférieures à 1MHz) : transtomateurs à hautes perfomances, selfs (alimentations à découpage), filtres, antiparasite, sel's de choc. EnHF (de $\mathbf{1}$ à $\mathbf{1 0 0 ~ M H z) ~ : ~ s e l f s ~ a ̀ ~ f a c t e u r ~ d e ~ q u a l i t e ́ ~ e ́ l e v e ́ , ~ s e l f s ~ d e ~ c h o c , ~ d e ́ p a r a s i t a g e ~ d e s ~ c a ̂ b l e s , ~ b l o - ~}$ cage des courants sur lignes coaxiales, transtormateurs a alarge bande, baluns, ROS-mètre, pont d'impédance et mélangeurs équilibrés.

LE CABLAGE

- Le câblage classique asymétrique utilise un point chaud (+) pour le transport de la modulation (conducteur central ou âme) et un point froid (-) qui agit comme un boudier (blindage). Les caradéristiques électriques (impédance, résistivité au mère...) des deux liaisons sont très éloignées, il en résulte une impédance différente entre le point chaud (celui de la modulation) et le blindage (celui du retour). Ce déséquilibre fait que le câble se comporte comme une antenne, induit une ronflette d'autant plus audible que le signal est faible, le gain de l'ampli poussé, le câble long et les sources perturbatrices importantes. Plus un câble est long, plus la fréquence à partir de laquelle l'effet d'antenne intervient est basse.
- Le câblage symétrique utilise un point chaud (+), un point froid (-) et une masse correspondant au blindage du câble. Dans ce type de câblage les courants perturbateurs interviennent entre les deux fils, point chaud et point froid.

IMPEDANCE DE TRANSFERT

C'est la mesure de l'efficacité du blindage d'un câble en fondion de la fréquence. Elle représente la résistance que va rencontrer une perturbation pour s'écouler le long du blindage en fonction de la fréquence. La valeur de la résistance doit être la plus faible possible à toutes les fréquences, ce qui va pemettre aux perturbations de s'écouler plus facilemert le long du câble.

LES EQUIPE ME NTS

Jusqu'à des fréquences de l'ordre de 100 MHz ils sont généralement sensibles aux perturbations et surtout à celles crées par les courants perturbateurs captés par les câbles. Ad-delà de ces tréquences et en fonction des dimensions des équipernents, des couplages direds peuvent intervenir sur les pistes des circuits imprimés et le câblage interne. Les courants en mode commun couplé dans les câbles pénètrent, cannsla mesure où aucune protection riest prévue, dans les équipements et s'acheminent à la terre entraversant toute la circuiterie. Ils engendrent des chutes de tension et des champs perturbateurs qui sont à l'origine de mauvas fonctionnements.

MODULATION

Moduler une onde c'est faire varier un de ses éléments: amplitude, fréquence ou phase, en fonction des variations d'un signal à transmettre. Pour retrouver le signal après transmission, il faut faire une démodulation.

MULTIPLEXAGE et DEMULTIPLEXAGE

C'est le nom de toute technique pemettant de faire passer simultanément sur un même support, plusieurs signaux indépendants sans qu'ils interferent les un sur les autres. Aud départ les différerts signaux sont multiplexés, passent dans un seul condudeur et à l'arivée l'opération inverse est réalisée, le démultiplexage, pemettant ainsi la reconstitution des différents signaux. Exemple : SPDIF (Sony Philips Digital Interface, noté également S.PDIF.

SIGNAUX ANALOGIQUES

Audio, vidéo, signaux industriels, les signaux analogiques peuvert être décomposés en séries de Fourier. Ils apparaissent alors comme des successions d'hamoniques. Pour reconstituer le signal initial l'ensemble de ces hamoniques n'est pas toujours nécessaire, et la partie utile constitue la bande passante ocoupée par le signal. La dégradation du signal est en rège générale progressive.

SIGNAUX NUME RIQUES

Audio numérique $A E S-E B U$, vidéo numérique $\mathrm{DV}, \mathrm{HDMI}, \mathrm{ADC}$ etc., signaux infomatiques. Constitué de bits la dégradation du signal est en règle générale brutale.

SIGNAUX S/PDIF

Sony Philips Digital Interface Format. Format de transfert de données numériques en audio, présent par exemple dans les DAT, évitant Ies conversions analogiques et donc limitant les pertes de qualité.

ATTENUATION

Les signaux utiles transmis à hautes fréquences sont atténués pus ou moins fortement par les composants du système de câblage et par le câble lui-même. L'atténuation d'un câble est donnée en $\mathrm{dB} / 100 \mathrm{~m}$, à une fréquence et à̀ une ternpérature donnée.

BATTEMENT

Le battement de deux ondes est le résultat du mélange de deux ondes de fréquences différentes mais proches. Il est observé en acoustique, en mécanique, en optique etc. Deux sources sonores qui vibrent à des fréquences voisines (d'environ 5 à 10 Hz) donnent lieu à une série de batterments. La fréquence de battement est fonction de la différence de fréquence des deux sources.

BOUCLE DE TERRE

L'amplitude du couplage perturbateur en mode commun dépend essentiellement de la surface de boude constituée entre les câbles et la terre. Dans l'audio leur effet le plus perturbant est une oscillation de basse fréquence connue sous le nom de bourdonnement (ronflette). On résout quelques problèmes en rebranchant correctement les principaux câbles sur une seule terre, habituellernent au secteur d'entrée le plus sensible ou à l'alimentation. De tels problèmes surviennent principalement quand une amplification élevée est nécessaire. En vidéo elles se traduisant àl'écran par des barres parasites. Une boude de terre est créée quand deux éléments dans un circuit ou deux machines différentes reliées ensemble reçoivent leur signal de terre de référence de différentes origines. Une différence de potentiel de terre crée cette boude, interférant avec le signal utile. Des dispositifs spéciaux d'isolennent de la terre sont alors nécessaires pour traiter le problème.

CABLES

Les câbles servent de canaux de transtnission à la fois pour les signaux utiles et pour les signaux perturbateurs générés dans les équiperments. Ils agissent comme des artennes et rayonnent des signaux perturbateurs en mode commun à partir d'une certaine fréquence (en fonction de leur longueur'). Plus le câble est long, plus basse est la réquence à partir de laquelle l'effet d'antenne apparaít.

COUPLAGE

Les perturbations se propagent par le biais de phénomènes de couplage : un câble peut rayonner un champ électromagnétique et irversement un champ peut induire un courant parasite dans un cabble. Le couplage se fait par conduction entre conducteurs, c'est le mode symérique ou différentiel, le courant se propage sur l'un des condudeurs, traverse l'appareil vidime, en le polluant et reviert sur l'autre conducteur en sens inverse (10% des cas), à partir de fréquences de l'ordre du GHz ou entre un conducteur et laterre, c'est le mode asymétrique ou commun le courant se propage en phase sur tous les conducteurs e se reboude par les circuits de masse via les capacités parasites (90% des cas) prépondérant jusqu'à quelques centaines de MHz . II provient de la présence d'un circuit commun entre différents appareils: circuit d'alimentation, circuit de masse, réseau de protedion PE (oondudeur de protedion reliant la prise de terre aux masses métalliques de linstallation). Il peut se faire aussi par rayonnement électromagnétique, si le champ perturbateur est lointain, par exemple une artenne, le couplage est dit inductif, et s'opère en mode différentiel ou en mode commun. Si le couplage est en champ proche il est dit capacitif, très courant dans des chemins de câbles.

HARMONIQUES

La fréquence la plus basse qui produit un système dondes stationnaires dans un milieu à une dimension est appelée fréquence fondamentale ou première harmonique. La deuxième hamonique a une fréquence égale à deux fois celle de la fréquence fondamentale, la troisième trois fois etc. : les harmoniques sont des multiples de la fréquence fondamentale : $\propto 2, \times 3, \times 4$ etc. Les perturbations basse fréquence dues au ronflement 50 Hz par le secteur sont riches en harmoniques, jusqu'aurang $40(2 \mathrm{KHz})$. Les hamoniques de rang impaires sont les pus perturbatrices, notammert l'harmonique 3, qui demeure très audible. Les hamoniques de rang pair n'ont que peu d'effets, de même que celles multiples de 3. L'édairage, par lampes à décharge et tubes fluorescents, est générateur de courants hamoniques. Le taux individuel d'harmonique 3 peut même dépasser 100% pour certaines lampes fluo compactes modernes, d'où une attention particulière à porter à la détermination de la section et de la protedion du conducteur neutre qui, véhioulart la somme des courants d'harmoniques 3 des trois phases, risque un échauffement important.

PERTURBATIONS

Il s'agit de tout phénomène électromagnétique susceptible de dégrader les performances d'un dispositif ou d'un système.

- Soit elles sort d'origine radios électriques (RFI-Radio Frequency Interférence). Elles nécessitent de connaítre la fréquence de l'interférence. Les perturbations des champs hautes fréquences sont provoquées par les émetteurs hautes fréquences qưils soient commerciaux ou amateurs type $C B$, les mobiles, les téléphones sans fil, les Talkie-walkie etc. Chacune requiert une approche différente.
- Soit elles sont d'origine électromagnétiques (EMI-Electromagnetic Magnetically Irterférence). Elles sont provoquées par les appareils électroménagers, les moteurs éledriques, les alimentations à découpage (très répandues), les commandes éledriques et éledroniques, les ordinateurs, les appareils de lumière (néon, tubes fluorescents etc.), les interrupteurs, contads, disioncteurs et relais dans les circuiteries de commandeset les climatiseurs, foudre, décharge électrostaticue, cette liste n'éant pas, bien entendu, exhaustive. Les appareils de cette nature sont très riches en hamoniques qui peuvent produire des pointes dans les hautes et très hautes fréquences. Des courants perturbateurs à haute fréquence peuvent apparaítre n'importe quand et n'importe où. Ainsi, lors de chaque déclenchement d'une charge inductive (bobine de contadeur, bobine de relais, édairage à tubes fluorescents, etc.) quelques dizaines d'impulsions sont érnises sous fome de champs perturbateurs ou couplées par voie capacitive ou indudive. C'est la raison pour laquelle il est absolument indispensable de prévoir des protedions. Les perturbations hamoniques sont situées dans un spectre basse fréquence sétendart jusqu'à quelques kHz et les perturbations haute fréquence se situert dans un spectre s'étencant jusqu'à plusieurs GHz .

RETARD DE PROPAGATION

Les signaux utiles aux hautes fréquences ont besoin d'un certain temps pour transiter de l'émetteur au récepteur à travers le câble. Ce temps, que l'on nomme temps de propagation, dépend entre autres de la vitesse de transtnission et de la longueur du câble. Il limite, en fondion du protocole de transmission utilisé, la longueur admissible du câble.

CEM (COMPATIBILITE ELECTROMAGNETIQUE)-PERTURBATIONS EMI-RFI ET HF SOLUTIONS

AD APTATION D'MPE DANCE

Les réseaux câblés pour la transmission de données transmettent des signaux à hautes réquences. L'impédance de tout le système de câblage doit être adaptée à limpédance d'entrée des étages de réception et à celle de sortie des étages d'émission.

BALUNS

Il en faut un à chaque extrénité du câble. Ce sont des transtormateurs symétriseurs constitués d'un enroulement au primaire et de deux enroulements au secondaire avec le point milieu relié à la terre. Le câble est relié au secondaire, les tensions perturbatrices apparaissart sur les deux enroulements, s'annulent car elles sont de polarité opposées. Cedi est valable à condition que les deux erroulements de symétrisation soient parfaitement identiques, ce qui est pratiquement très difficile à réaliser. D'autre part l'impédance entre la comexion de terre du balun et le boítier doit êre. Le rapport de réjection du mode commun subit une forte dégradation en hautes fréquences si cette condition n'est pas respectée. La mise à la terre des baluns aux deux extrémités du câble constitue une boucle de terre. Des courants d'équilibrage de terre à 50 Hz ou des coups de foudre peuvent provoquer la destruction des baluns. Ils présentent l'avantage d'assurer l'adaptation d'impédance.

CABLAGE (règles basiques)

- Plaquer les câbles sur le plan de masse.
- Regrouper dans le même toron des câbles blindés et de même groupe (exemple : puissance +liaisons E : et numérique+analogique), en différenciant les groupes.
- Eloigner au maximum les câbles incompatibles entre eux (câble généant du bruit et câble sensible) et les croiser à angle droit (les champs étant perpendiculaires, ils n'ont aucune interaction).
- Regrouper les liaisons similaires dans un même raccordement (connedeurs, borniers, baie de brassage, barres de patch, etc.) liaisons rumériques regroupées ensemble et pareil poux les liaisons analogiques.
- Dans une tablette il faut regrouper les câbles de même nature en éloignart les groupes ainsi constitués: câbles de puissance ou générateur's de bruit, câbles E / S, câbles de mesure ou sensibles.
- Dans un chemin de câbles métallique la mise à la terre doit être parfíte de bout en bout.
- Dans des gouldtes, cloisonnement des chernins (TV+téléphonie, réseau, sedeur).
- Raccordemert des blindages: à proscrire la queue de cochon, fil de liaison rajouté pour faire la connexion entre le blindage du câble et la masse du connedeur, car il se comporte comme une antenne réduisant woir annulant l'efficacité du blindage. L'idéal est la reprise du blindage sur 360°, confomérnent au principe de la cage de F araday (exemple $\mathrm{BNC}, \mathrm{RCA}$ par vissage) ou sur la totalité du périmètre des connedeurs.
- Mise en ceuve des ittres en boítiers métaliques : sont à proscrire le montage sur isolant, la queue de cochon et les entréesisorties implantées du même oôté.

CABLES BLINDES

Afin qu'un effet protecteur soit constitué en hautes réquences, le blindage dun câble doit être relié à la terre aux deux extrénités. Le blindage réalise alors pratiquement un court-cirouit entre deux équipements ainsi reliés et empêche l'apparition de tensions perturbatrices. La manière de conneder le blindage à la terre doit être réalisée parfaitement. La mise à laterre du blindage avec un bout de fil est à proscrire puisque lincuctivité du fil constitue une impédance élevée aux hautes fréquences et engendre un couplage important sur les conducteurs du câble. Il est important que le blindage entoure les conducteurs sur toute la longueur du câble. Un soin particulier doit être voué aux connedeurs. L'impédance de transtert pemet de mesurer la qualité du blindage des câbles et des connedeurs. Si l'on compare limmunité dun réseau de transmission blindé et celle du même réseau en réalisation non blindée on a, en général, des résultats plus mauvais pour la version blindée si celle-ci est mal installée. On ne peut pas en déduire que les systèmes blindés qui ne travaillert pas correctemert captent plus de perturbations que les non blindés. La diftérence réside davantage dans le fait que ces derniers sort toujours pourvus de baluns et quils sont ainsi protégés dans une certaine mesure. Un système blindé avec de bons connedeurs et installé correctement constitue, selon les cornaissances actuelles de la technique, le meilleur moyen pour protéger un réseau câblé à haut débit de transmission contre les courents perturbateurs en mode commun. Dans le domaine audio (basses fréquences), raccordement du blindage au comecteur à une seude extrémité du câble, pour éviter la ronflette à 50 ou 100 Hz , en reliart à la masse les conducteurs non utilisés.

diAPHONIE et PARADIAPHONIE

Pour atténuer, voir supprimer Les perturbations dues à la daphorie et à la paradiaphonie, on utilise des fils torsadés deux par deux, on parle alors de paires torsadées, twistées ou de câbles appairés. Le fait de les torsader diminue cet effet perturbateur car les vedeurs d'induction créés par les torsades s'annulent du fait qu'ils sont de sens opposé. Ils provoquent ainsi moins de perturbations électromagnétiques autour d'eux, donc moins de daphonie. Cette dernière peut atteindre des niveaux très élevés si les câbles sont accidentellement comprimés ou posés à l'aide dagrafes qui viennent les écraser.

FILTRAGE

Il consiste à insérer un condensateur de faible capacité ou un filtre passe-bas entre tous les conducteurs d'un câble, cela permet aux courants perturbateurs d'être directement évacués vers laterre à l'entrée du boítier. Cette solutionn'est pas applicable pour des bandes passartes élevées (au-delà de 150 MHz).

PROTECTION CONTRE LA FOUDRE

A cause de leur extension généralement importante, les réseaux câblés sont extrêmement exposés aux surtensions engendrées par la foudre. Le courant de foudre peut, si aucune précaution n'est prise, induire des tensions de l'ordre de 100 KV , ou plus, dans les surfaces de boudes entre groupes de câbles ou entre câbles et terre. Ces surtensions pewent être rédutes très fortement avec un systène de câblage blindé et avec un concept de mise à la terre approprié.

REDUCTION DE LA SURFACE DE BOUCLE DE TERRE

L'amplitude du couplage perturbateur en mode commun dépend essentiellement de la surface de boude constituée entre les câbles et la terre. Cette surface doit dans tous les cas, conjointement avec les autres moyens tels que le filtrage, la transmission symétrique ou le blindage, être réduite autant que possible. Le meilleur moyen pour la réduire est de placer les câbles dans des canaux métalliques, reliés à la terre ou dans des gaines thermoretractables écrantées, constituant de véritables cages de Faraday.

RESPECT DE LA CE M (Compatibilité Electromagnétique)

Les perturbations émises par chaque équipement doivent être limitées, de manière à éviter que les autres équipements installés dans leur voisinage ne soient eux-mêmes perturbés. Des normes internationales définissent les riveaux maximums d'émissions perturbatrices. II n'existe pas de nomes à ce jour, seul un projet du CISPR (Comité International Spécial des Perturbations Radioélectriques) en spécifie les limites. De 150 KHz à 30 MHz : tension perturbatrice aux bornes d'alimentation et tension ou courant perturbateur sur les lignes de données. De 30 MHz à 1 GHz : champ perturbateur.

SEPARATION GALVANIQUE

Les produits qui pemettent une séparation galvanique (transfomateurs d'isolemert, optocoupleurs, relais, etc.) empêchent la circulation de courants perturbateurs en mode commun uniquement aux basses fréquences. La capacité parasite entre primaire et secondaire de ces éléments constitue pratiquement un court-dircuit face à ces courants dans le domaine des hautes fréquences.

TORES DE FERRITE

Si l'on augmente l'impédance de la boude constituée par les câbles, les boitiers des équipements terminaux et la terre, le courant perturbateur couplé peut être alors réduit. On y parvient en plaçant sur les câbles des arneaux de ferrites. Selon l'importance des perturbations, si cette solution n'apporte pas de solution radicale, elle devra alors être utilisée en complément avec doutres moyens.

TRANSMSSION DIFFERENTIELE

Le signal est véhiculé sur deux filsà al la fois. Le signal résultant est la différence entre les deux. De ce fait les signaux utiles s'ajoutent et les signaux parasites se retranchent. Cela permet aussi d'atteindre de plus grandes longueurs de câbles. Bien entendu cela suppose que le signal soit envoyé puis reçu par des ampliicateurs différertiels. Exemple: SCSI LVD et HVD.

CEM (COMPATIBILITE ELECTROMAGNETIQUE)-PERTURBATIONS EMI-RFI ET HF

FERRITES

Nous allons nous attarder sur I'utilisation des tores de ferite. Les champs HF perturbateurs ont une influence plus ou moins importante sur tous les appareils des domaines audio et vidéo ainsi que les moniteurs infomatiques et de façon générale tout appareil à base d'éledronique, appareils de contrôle, de mesures (oscillographes, analyseur de spedre...), etc. L'utilisation de tores de ferrite permet de lutter avec plus ou moins d'efficacité contre ces perturbations des champs HF. Ce sont des courants circulant dans des câbles coaxiaux ou multibrins dont le retour ne seffectue pas par un des condudeurs du câble mais sur la surface extérieure des condudeurs à cause de l'effet de peau. Dans le cas d'un câble coaxial elle se fait sur la sứace extérieure du blindage. Ainsi les câbles captent ou rayonnent des champs magnétiques HF et se comportent comme de véritables antennes. Bien entendu ces champs magnétiques HF engendrent des signaux indésirables, les tores de ferrite les réduisent fortement, en présentant une impédance plus ou moins élevée face à ces signaux. Plus la taille de la ferrite est importante plus son impédance est élevée at plus elle est efficace, et son efficacité croít avec la fréquence. L'impédance augrmente en fonction du carré du nombre de tours du câble dans la territe. Elles sont plus efficaces près des équipernents, là où se situe le point de faible impédance au niveau du câble. Les principaux câbles concernés sont les câbles d'antennes, de réseau, de haut-parleur, de microphone, de commandes multicondudeurs, téléphoniques, d'ordinateurs, internes et externes d'alimentation.
Le choix dune ferrite ne se fait pas au hasard. Sont à prendre en compte

- La fréquence perturbatrice où le maximum d'atténuation est requis. La ferrite la plus appropriée oftrira l'impédance la plus élevée dans une plage de fréquence optirnisée (exernple : 1 à $10 \mathrm{MHz}, 10$ à $30 \mathrm{MHz}, 30$ à $300 \mathrm{MHz}, 300 \mathrm{MHz}$ et plus).
- La forme de la ferrite déteminée par le type de câble (rond ou pla).
- Les spécifications de l'installation conduisant à des ferites cylindriques (à monter sur le câble avant mise en place des connecteurs) ou demi-cylindriques montées sur coques avec femeture snap-on (à monter sur câble déà áquipé des connecteurs).
- Les caractéristiques de la ferrite au regard de l'environnement, son impédance pouvart varier avec la température ou le niveau de courant.
Malgré tout, le choix d'une ferrite n'est pas chose aisée car il reste empirique. Cela explique que près de 80% des ferrites ne sont pas adaptées à l'environnement dans lequel elles travaillent, d'autant que les spécications techniques des ferrites vendues ne sont pas touiours documentées par les vendeurs.
Où placer la ferrite? Son emplacement sur le câble est essentied pour un maximum d'efficacité.
- Elle doit être placée le plus près possible de l'équipement générant les signaux perturbateurs.
- Dans le cas d'un câble intégré à un boítier et ressortant vers l'extérieur, la ferrite doit être installée en interne au niveau de la sortie du câble.
- Si le câble réunit deux éléments générateurs de signaux indésirables, il en faut deux, chacune d'elles placée de chaque côté du câble le plus près possible des équipements.

CEM (COMPATIBILITE ELECTROMAGNETIQUE)-PERTURBATIONS EMI-RFI ET HF CONCLUSION

Le domaine des perturbations électromagnétiques est un domaine qui fait intervenir plusieurs variables dépendantes du milieu ambiant. On peut pratiquernent dire que chaque cas est un cas spécifque à résoudre. Cela explique la complexité du sujet pour lequel il n'existe pas de solutions standard, et auquel on ne peut apporter que des solutions empiriques. Ce qui complique aussi le sujet est la génération d'hamoniques de plusieurs rangs autour de l'amonique fondamentale pour oe qui concerne les signaux analogiques. Par contre, il est évident qu'il faut impérativement respeder un certain nombre de règles basiques, dont la mise en ceuve va éliminer dofice une grande majorité des perturbations.

