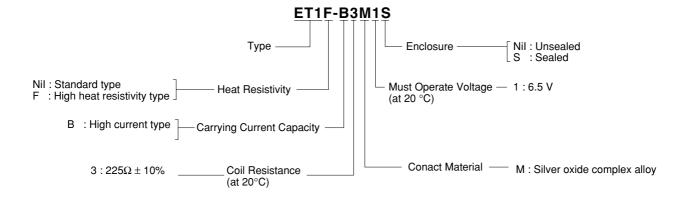
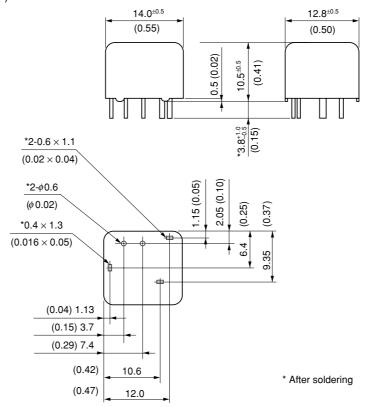
ET1 SERIES

FEATURES

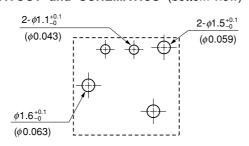
- 50% less relay volume than conventional relay (EP1 Series)
- 75% less relay space than conventional relay (EP1 Series)
- 70% less relay height than conventional relay (EP1 Sereis)
- 50% less relay weight than conventional relay (EP1 Sereis)
- · Contact switching current of 25A max.
- · Flux tight housing
- · Delivered in stick-tube for automatic insertion machine
- · Washable type available

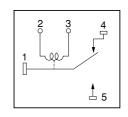


PART NUMBERS AND COIL RATINGS


At 20°C (68°F)

Part Number	Nominal	Coil	Nominal	Must Operate	Must Release	Nominal
	Voltage	Resistance	Current	Voltage	Voltage	Operate Power
	(Vdc)	(Ω±10%)	(mA)	(Vdc)	(Vdc)	(W)
ET1-B3M1S	12	225	53.3	6.5	0.9	0.64


PART NUMBER SYSTEM



DIMENSIONS mm (inch)

PCB PAD LAYOUT and SCHEMATICS (bottom view) mm (inch)

SPECIFICATIONS At 20°C (68°F)

Items		Specification				
		ET1	ET1F			
Contact Form		1 form c				
Contact Material		Silver oxide complex alloy				
Contact Resistance		4 m Ω typical (measured at 7 A) initial				
Contact Switching Voltage		16 Vdc max. 5 Vdc min.				
Contact Switching Current		25 A max. (at 16 Vdc)				
Contact Carrying Current		35 A (2 minutes max. 12 Vdc at 20°C)	40 A (2 minutes max. 12 Vdc at 20°C)			
		30 A (2 minutes max. 12 Vdc at 85°C)	35 A (2 minutes max. 12 Vdc at 85°C)			
			30 A (2 minutes max. 12 Vdc at 125°C)			
Operate Time		2.5 ms typical (at nominal voltage) initial				
Release Time		3.0 ms typical (at nominal voltage. with diode) initial				
Nominal Operate Power		640 mW				
Insulation Resistance		100 M Ω min. at 500 Vdc				
Breakdown Voltage		500 Vac min. for 1 minute				
Shock Resistance		98 m/s ² min. [misoperating]				
Vibration Resistance		10 to 300 Hz, 43 m/s ² min. [misoperating]				
Ambient Temperature		-40°C to +85°C (-40°F to +185°F)	-40°C to +125°C (-40°F to +257°F)			
Coil Temperature Rise		70°C/W (contact carrying current 0 A)				
Life Expectancy	Mechanical	1×10^6 operations				
	Electrical	1×10^5 operations (at 14 Vdc, Motor Loa	ad 20 A/3 A)			
Weight		Approx. 7.5 g				

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC/TOKIN Corporation. NEC/TOKIN Corporation assumes no resposibility for any errors which may appear in this document.

NEC/TOKIN Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC /TOKIN Corporation or others.

While NEC/TOKIN Corporation has been making continuous effort to enhance the reliability of its electronic components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC/TOKIN electronic component, customers must incorporate sufficient safety measures in its design, such as redundancy, firecontainment, and anti-failure features. NEC/TOKIN devices are classified into the following three quality grades:

"Standard," "Special," and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement

equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,

anti-disaster systems, anti-crime systems, safety equipment and medical

equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC/TOKIN devices is "Standard" unless otherwise specified in NEC/TOKIN's Data Sheets or Data Books. If customers intend to use NEC/TOKIN devices for applications other than those specified for Standard quality grade, they should contact an NEC/TOKIN sales representative in advance.

(Note)

- (1) "NEC/TOKIN" as used in this statement means NEC/TOKIN Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC/TOKIN electronic component products" means any electronic component product developed or manufactured by or for NEC/TOKIN (as defined above).

DE0202