General Description

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 'LS90 and divide-by-eight for the 'LS93.
All of these counters have a gated zero reset and the LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.
To use their maximum count length (decade or four bit binary), the B input is connected to the Q_{A} output. The input
count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical di-vide-by-ten count can be obtained from the 'LS90 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_{A}.

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

Connection Diagrams (Dual-In-Line Packages)

Order Number DM74LS90M or DM74LS90N See NS Package Number M14A or N14A

TL/F/6381-2
Order Number DM74LS93M or DM74LS93N See NS Package Number M14A or N14A

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage (Reset) 7V
Input Voltage (A or B) 5.5 V
Operating Free Air Temperature Range DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM74LS90			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
$\mathrm{IOH}^{\text {I }}$	High Level Output Current				-0.4	mA
lOL	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 1)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
${ }^{\text {tw }}$	Pulse Width (Note 1)	A	15			ns
		B	30			
		Reset	15			
${ }^{\text {tw }}$	Pulse Width (Note 2)	A	25			ns
		B	50			
		Reset	25			
$t_{\text {REL }}$	Reset Release Time (Note 1)		25			ns
$t_{\text {REL }}$	Reset Release Time (Note 2)		35			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
'LS90 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \text { (Note 4) } \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	Reset			0.1	mA
		$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=5.5 V \end{aligned}$	A			0.2	
			B			0.4	

'LS90 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter High Level Input Current	Conditions		Min		Max	Units
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			80	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			9	15	mA

tet All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 3: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 4: Q_{A} outputs are tested at $l_{O L}=$ Max plus the limit value of $l_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.

'LS90 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		20	ns
tPHL	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		24	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48		52	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50		60	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32		36	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35		44	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30		35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to Q_{B}, Q_{C}		40		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Recommended Operating Conditions						
Symbol	Parameter		DM74LS93			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
IOH	High Level Output Current				-0.4	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 1)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		20	
		B to Q_{B}	0		10	
t_{W}	Pulse Width (Note 1)	A	15			ns
		B	30			
		Reset	15			
t_{W}	Pulse Width (Note 2)	A	25			ns
		B	50			
		Reset	25			
$t_{\text {REL }}$	Reset Release Time (Note 1)		25			ns
$t_{\text {REL }}$	Reset Release Time (Note 2)		35			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$
Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.						

'LS93 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \text { (Note 4) } \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}= \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V} \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
IIH	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	

'LS93 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-1.6	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 2)		-20		-100	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			9	15	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $I_{C C}$ is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 4: Q_{A} outputs are tested at $I_{O L}=\max$ plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.

'LS93 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		20	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		24	ns
${ }_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		85	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		90	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		60	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		70	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Function Tables

LS90 BCD Count Sequence (See Note A)				
Count	Output			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

Count	Output			
	$Q_{\text {A }}$	Q_{D}	Q_{C}	Q_{B}
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

LS93 Count Sequence (See Note C)					LS90 Reset/Count Truth Table							
					Reset Inputs				Output			
Count	Output				R0(1)	R0(2)	R9(1)	R9(2)	Q_{D}	Q_{C}		$Q_{\text {A }}$
	Q_{D}	Q_{C}	Q_{B}	$Q_{\text {A }}$	H	H	L	X	L	L	L	L
0	L	L	L	L	H	H	X	L	L	L	L	L
1	L	L	L	H	X	X	H	H	H	L	L	H
2	L	L	H	L	X	L	X	L		COU		
3	L	L	H	H	L	X	L	X		COU	NT	
4	L	H	L	L	L	X	X	L		COU		
5	L	H	L	H	X	L	L	X		COU		
6	L	H	H	L								
7	L	H	H	H								
8	H	L	L	L				LS93				
9	H	L	L	H			eset/C	unt Tru	h Ta			
10	H	L	H	L	Res					put		
11	H	L	H	H		et input						
12	H	H	L	L	R0(1)	R		Q_{D}	Q_{C}	Q_{B}		$Q_{\text {A }}$
13	H	H		H	H			L	L	L		L
14	H	H		L	L					UNT		
15	H	H	H	H	X							

Note A: Output Q_{A} is connected to input B for BCD count.
Note B: Output Q_{D} is connected to input A for bi-quinary count.
Note C: Output Q_{A} is connected to input B.
Note D: H = High Level, L = Low Level, X = Don't Care.

Physical Dimensions inches (millimeters) (Continued)

$\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX DEPTH
OPTION 1

option 02

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS90N or DM74LS93N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

