
900 Hart Street Rahway, NJ 07065, U.S.A.

http://www.elexp.com (email: electron@elexp.com)

Part No. 08MFOD72

Plastic Fiber Optic Phototransistor

APPLICATIONS

- ► Low-Speed Digital Data Links
- ► Motor Controller Triggering
- ► Audio Links
- ► Medical Instruments
- ► Automotive Electronics
- ► Robotics Communications
- ► EMC/EMI Signal Isolation
- ► Electronic Games
- ► Process Control

DESCRIPTION

The IF-D92 is a high-sensitivity phototransistor detector housed in a "connector-less" style plastic fiber optic package. Optical response of the IF-D92 extends from 400 to 1100 nm, making it compatible with a wide range of visible and near-infrared LEDs and laser diode sources. This includes 650 nm visible red LEDs used for optimum transmission in PMMA plastic optic fiber. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 μ m core plastic fiber cable.

APPLICATION HIGHLIGHTS

The IF-D92 is suitable for digital data links at rates up to 25 kbps. Analog bandwidths greater than 15 kHz are possible making the IF-D92 usable for high frequency audio transmission. Phototransistor operation provides high internal gain – reducing the amount of post-amplification required in many circuits. The integrated design of the IF-D92 makes it a simple, cost-effective solution in a variety of analog and digital applications.

FEATURES

- High Optical Sensitivity
- Mates with Standard 1000 um Core Jacketed Plastic Fiber Optic Cable
- ◆ No Optical Design Required
- ◆ Inexpensive but Rugged Plastic Connector Housing
- ◆ Internal Micro-Lens for Efficient Optical Coupling
- Connector-Less Fiber Termination
- Light-Tight Housing provides Interference Free Transmission

MAXIMUM RATINGS

$(T_{A} = 25^{\circ}C)$
Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (T _J)85°C
$\begin{array}{l} \mbox{Soldering Temperature} \\ (2 \mbox{ mm from case bottom}) \\ (T_S) \ t \leq 5 \ s 240 \ ^\circ \ C \end{array}$
Collector Emitter Voltage (V_{CEO})30 V
Emitter Collector Voltage (V_{ECO})5 V
Collector Current (I_C)50 mA
Collector Peak Current (I_{CM}) t = 1 ms100 mA
Power Dissipation (P_{TOT}) $T_A = 25^{\circ}C$ 100 mW
De-rate Above 25°C1.33 mW/°C

CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Min	Тур	Max	Unit
Wavelength for Maximum Photosensitivity	λ_{PEAK}	-	870	-	nm
Spectral Bandwidth (S=10% of S _{MAX})	Δλ	400	-	1100	nm
Switching Times (10% to 90% and 90% to 10%) (RL=1 k $\Omega,~I_C$ =1.0 mA, VCE=5 V, λ =950 nm)		-	20	-	μs
Responsivity min. @ 880 nm @ 632 nm	R	-	100 50	-	μΑ/μW μΑ/μW
Collector Dark Current (V _{CE} =15 volts)	I _{CEO}	-	-	100	nA
Breakdown Voltage (I _C =100 µA)	BV _{CEO}	30	-	-	V
Breakdown Voltage (I _C =100 µA)	BV _{ECO}	5	-	-	V
Saturation Voltage (I _C =250 μ A, H=100 μ W)	V _{CE sat}	-	0.15	-	V

IF-D92

Plastic Fiber Optic Phototransistor

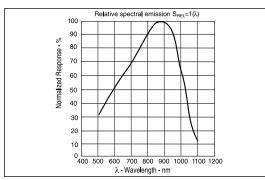


FIGURE 1. Typical detector response versus wavelength.

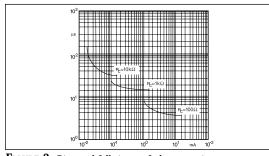


FIGURE 2. Rise and fall times of phototransistor.

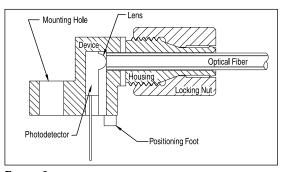


FIGURE 3. Cross-section of fiber optic device.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

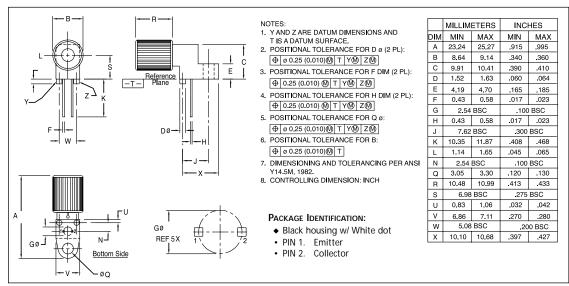


FIGURE 4. Case outline.