OK, so 1 mole $=6.02 \times 10^{23}$. Now, there is an interesting relationship between the mole and the atomic mass of an element, such that 1 mole of an element's atoms is equal to the element's atomic mass expressed in grams. As an example, lithium is atomic number 3 and has an atomic mass of 6.94. The mass of 1 mole of lithium atoms is equal to its atomic mass expressed in grams, so 1 mole of lithium has a mass of 6.94 g , which means that if I had a chunk of lithium whose mass was exactly 6.94 g , it would be composed of 6.02×10^{23} lithium atoms. Likewise, 1 mole of antimony - which is 6.02×10^{23} antimony atoms - has a mass of 121.76 g . 1 mole of any element has a mass equal to its atomic mass in grams.

Atomic mass and mole relationship

This relationship is known as the molar mass. From a definition standpoint, molar mass is the mass of a substance divided by the amount of the substance in moles, so the units of molar mass are $\mathrm{g} / \mathrm{mol}$. However, practically, the molar mass of an element is its atomic mass expressed in $\mathrm{g} / \mathrm{mol}$. For the two examples above, 6.94 g of Li is 1 mole of lithium, so the molar mass of Li is $6.94 \mathrm{~g} \div 1 \mathrm{~mol}=6.94 \mathrm{~g} / \mathrm{mol}$. For antimony, 121.76 g of antimony is equal to 1 mol of Sb , so its molar mass is $121.86 \mathrm{~g} \div 1 \mathrm{~mol}=$ $121.76 \mathrm{~g} / \mathrm{mol}$.

