

PCI-8134/ PCI-8134A
4-Axis Servo / Stepper
Motion Control Card

User’s Guide

M anual Rev.: 3 .00
Revision Date: Sept 7, 2012
Part No: 50-11173-1000

 Recycled Paper

© Copyright 2012 ADLINK Technology, Inc.

All Rights Reserved.

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to
use the product or documentation, even if advised of the possibility of such
damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks

NuDAQ and PCI-8134/PCI-8134A are registered trademarks of ADLINK
Technology Inc, MS-DOS & Windows 95 are registered trademarks of
Microsoft Corporation., Borland C++ is a registered trademark of Borland
International, Inc. Other product names mentioned herein are used for
identification purposes only and may be trademarks and/or registered
trademarks of their respective companies.

Getting service from ADLINK
♦Customer Satisfaction is always the most important thing for ADLINK Tech

Inc. If you need any help or service, please contact us and get it.
ADLINK Technology Inc.

Web Site http://www.adlinktech.com
Sales & Service service@adlinktech.com
Technical NuDAQ nudaq@adlinktech.com
Support Automation automation@adlinktech.com
 NuIPC nuipc@adlinktech.com
 NuPRO/EBC nupro@adlinktech.com
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan
♦Please inform or FAX us of your detailed information for a prompt,

satisfactory and constant service.
Detailed Company Information

Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX
Web Site

Questions
Product Model
Environment to Use OS
 Computer Brand
 M/B: CPU:
 Chipset: Bios:
 Video Card:
 Network Interface Card:
 Other:

Challenge Description

http://www.adlinktech.com/

Suggestions for ADLINK

Table of Contents • i

Table of Contents

Introduction ..1
1.1 Features ... 4
1.2 Specifications ... 4
1.3 Software Support ... 6

1.3.1 Programming Library ... 6
1.3.2 Motion Creator ... 6

1.4 Compatible Terminal Boards ... 6
Installation ..7

2.1 Package Contents ... 7
2.2 PCI-8134/PCI-8134A Outline Drawing 8
2.3 Hardware Installation ... 9

2.3.1 Hardware configuration .. 9
2.3.2 PCI slot selection ... 9
2.3.3 Installation Procedures .. 10
2.3.4 Troubleshooting: .. 10

2.4 Software Driver Installation .. 10
2.5 Programming Guide Installation .. 11
2.6 CN1 Pin Assignments: External Power Input 11
2.7 CN2 Pin Assignments: Main connector 12
2.8 CN3 Pin Assignments: Manual Pulser Input 13
2.9 CN4 Pin Assignments: Simultaneous Start/Stop 14
2.10 Jumper Setting ... 14
2.11 Switch Setting .. 15

Signal Connections ... 17
3.1 Pulse Output Signals OUT and DIR 18
3.2 Encoder Feedback Signals EA, EB and EZ 20
3.3 Origin Signal ORG ... 22
3.4 End-Limit Signals PEL and MEL ... 23
3.5 Ramping-down Signals PSD and MSD 24
3.6 In-position Signal INP .. 24
3.7 Alarm Signal ALM .. 25
3.8 Deviation Counter Clear Signal ERC 26
3.9 General-purpose Signal SVON ... 27
3.10 General-purpose Signal RDY .. 27

ii • Table of Contents

3.11 Pulser Input Signals PA and PB .. 28
3.12 Simultaneously Start/Stop Signals STA and STP 29

Operations .. 31
4.1 Motion Control Modes.. 31

4.1.1 Pulse Command Output ... 32
4.1.2 Constant Velocity Motion ... 33
4.1.3 Trapezoidal Motion .. 34
4.1.4 S-curve Profile Motion .. 37
4.1.5 Linear Interpolated Motion ... 40
4.1.6 Home Return Mode .. 41
4.1.7 Manual Pulser Mode .. 52

4.2 Motor Drive Interface ... 53
4.2.1 INP ... 53
4.2.2 ALM ... 53
4.2.3 ERC ... 54

4.3 The Limit Switch Interface and I/O Status 55
4.3.1 SD .. 55
4.3.2 EL .. 55
4.3.3 ORG ... 57
4.3.4 SVON and RDY ... 57

4.4 The Encoder Feedback Signals (EA, EB, EZ) 58
4.5 Multiple PCI-8134/PCI-8134A Cards Operation 59
4.6 Change Speed on the Fly .. 60
4.7 Interrupt Control ... 62

Motion Creator ... 63
5.1 Main Menu ... 64
5.2 Axis Configuration Window .. 65
5.3 Axis Operation Windows ... 69

5.3.1 Motion Status Display .. 69
5.3.2 Axis Status Display .. 69
5.3.3 I/O Status Display .. 69
5.3.4 Set Position Control ... 71
5.3.5 Operation Mode Control ... 71
5.3.6 Motion Parameters Control .. 73
5.3.7 Play Key Control .. 73
5.3.8 Velocity Profile Selection ... 74
5.3.9 Repeat Mode ... 74

Function Library (8134.DLL) 75
6.1 List of Functions ... 75

Table of Contents • iii

6.2 C/C++ Programming Library .. 78
6.3 Initialization .. 79
6.4 Pulse Input / Output Configuration 80
6.5 Continuously Motion Move .. 82
6.6 Trapezoidal Motion Mode .. 84
6.7 S-Curve Profile Motion... 87
6.8 Multiple Axes Point to Point Motion 89
6.9 Linear Interpolated Motion ... 91
6.10 Interpolation Parameters Configuring 92
6.11 Home Return ... 93
6.12 Manual Pulser Motion .. 94
6.13 Motion Status ... 95
6.14 Servo Drive Interface ... 96
6.15 I/O Control and Monitoring .. 97
6.16 Position Control ... 98
6.17 Interrupt Control ... 100

Additional Function Library (8134A.DLL) 104
7.1 List of Functions ... 104
7.2 C/C++ Programming Library .. 106
7.3 Initialization .. 107
7.4 Pulse Input / Output Configuration 108
7.5 Continuously Motion Move .. 110
7.6 Trapezoidal Motion Mode .. 112
7.7 S-Curve Profile Motion... 113
7.8 Multiple Axes Point to Point Motion 114
7.9 Linear Interpolated Motion ... 116
7.10 Home Return ... 118
7.11 Manual Pulser Motion .. 120
7.12 Motion Status ... 123
7.13 Servo Drive Interface ... 124
7.14 I/O Control and Monitoring ... 125
7.15 Position Counter Control .. 126
7.16 Interrupt Control ... 128

Connection Example ... 128
8.1 General Description of Wiring .. 128
8.2 Connection Example with Servo Drive 130

Appendix A: Auto Home Return Modes 147

iv • Table of Contents

Appendix B: 8134.DLL vs. 8134A.DLL 157

Warranty Policy ... 166

About This Guide • v

About This Guide
The PCI-8134 was EOL in May, 2011. ADLINK offers the new PCI-
8134A as a line replacement. While most PCI-8134A functions are
fully compatible with legacy PCI-8134 functions, certain differences
require changes in application, as outlined in this document.

Chapter1, "Introduction", gives an overview of the product features,
applications, and specifications.

Chapter2, "Installation", describes how to install the PCI-8134/PCI-
8134A.

Chapter3, "Signal Connection", describes the connectors' pin
assignment and how to connect the outside signal and
devices with the PCI-8134/PCI-8134A.

Chapter4, "Operation Theorem", describes detail operations of the PCI-
8134/PCI-8134A.

Chapter5, “Motion Creator & Motion Creator Pro”, describe how to utilize
a Microsoft Windows based utility program to configure and
test running the PCI-8134/PCI-8134A.

Chapter6, "C/C++ Function Library", describes high-level programming
interface in C/C++ language. It helps programmer to control
PCI-8134/PCI-8134A in high level language style.

Chapter7, "Another Function Library (8134A.lib) ", describes high-
level programming interface. It helps programmer to
control PCI-
8134 in high level language style.

Chapter8, “Connection Example” shows some typical connection
examples between PCI-8134/PCI-8134A and servo driver and
stepping driver.

Introduction • 1

1

Introduction

The PCI-8134/PCI-8134A is a 4-axis motion control card with PCI interface. It
can generate high frequency pulses to drive stepping motors and servo
motors. Multiple PCI-8134/PCI-8134A cards can be used in one system.
Incremental encoder interface on all four axes provide the ability to correct for
positioning errors generated by inaccurate mechanical transmissions. In
addition, mechanical sensor interface, servo motor interface and general
purpose I/O signals are provided for system integration.
Figure 1.1 shows the function block diagram of PCI-8134/PCI-8134A card.
PCI-8134/PCI-8134A uses motion ASIC to perform 4-axis motion control.
These ASICs are incorporate Nippon Pulse Motor. The motion control
functions include linear and S-curve acceleration/deceleration, interpolation
between two axes, continuous motion, in positioning and home return are
done by the ASIC. Since these functions needing complex computations are
done internally on the ASIC, the PC’s CPU is free to supervise and perform
other tasks.
Motion Creator a Microsoft Windows-based application included with the PCI-
8134/PCI-8134A card for supporting application development. Motion Creator
is very helpful for debugging a motion control system during the design phase
of a project. The on-screen monitor shows all installed axis information and
I/O signals status of PCI-8134/PCI-8134A cards. In addition to Motion Creator,
both DOS and Windows version function library are included for programmers
using C++ and Visual Basic language. Several sample programs are given to
illustrate how to use the function library.
The following flowcharts show recommending processes for using this manual
to develop an application. Please also refer to the relative chapters for details
of each step.

2 • Introduction

Figure 1.1 Block Diagram of PCI-8134

CN2

DC/DC

Ext+24V Input

PCI Bus
Controller

PCL 5023
for axes
X & Y

PCL 5023
for axes
Z & U

Pulser .
Input: PA,PB

Simultaneousl
y

CN3

CN4

Isolation

Pulse I/O Mechanical
Interface

Servo
Driver

Interface

General
Purpose

I/O

OUT, DIR,
EA, EB, EZ

+EL, -EL,
+SD,-SD,

ORG

INP, ALM
ERC

SVON
RDY

PCI Bus

Ext +5V out

CN1

Introduction • 3

Figure 1.2 Block Diagram of PCI-8134A

4 • Introduction

1.1 Features

The following lists summarize the main features of the PCI-8134
motion control system.

• 32-bit PCI-Bus, plug and play.
• 4 axes of step and direction pulse output for controlling stepping or

servomotor.
• Maximum output frequency of 2.4 Mpps
• Pulse output options: OUT/DIR, CE/CCW
• Pulse input options: CW/CCW, AB phase x1, x2, x4
• 2-axis linear interpolation.
• 28-bit up/down counter for incremental encoder feedback.
• Home switch, index signal, positive and negative limit switches

interface provided for all axes
• Trapezoidal and S-curve velocity profiles for all modes
• Programmable interrupt sources
• Change Speed on the Fly.
• Simultaneous start/stop motion on multiple axes.
• Manual pulser input interface.
• Software supports maximum up to 12 PCI-8134/PCI-8134A cards (48

axes) operation.
• Compact, half size PCB.
• Motion Creator Microsoft Windows based application development

software.

1.2 Specifications

 Applicable Motors:
 Stepping motors.
 AC or DC servomotors with pulse train input servo-drives.

 Performance:
 Number of controllable axes: 4
 Maximum pulse output frequency: 2.4Mpps, linear, trapezoidal or

S-Curve velocity profile drive.
 Position pulse setting range: 0~268,435,455 pulses (28-bit).
 Ramping-down point setting range: 0 to 16777215
 Acceleration / deceleration rate setting range: 1 to 65535(16bit)
 Up / down counter counting range: 0~268,435,455 (28-bit.) or –

134,217,728 to +134,217,727

Introduction • 5

 Pulse rate setting steps: 0 to 2.4Mpps.

 I/O Signals:
 Input/Output Signals for each axis
 All I/O signal are optically isolated with 2500Vrms isolation voltage
 Command pulse output pins: OUT and DIR.
 Incremental encoder signals input pins: EA and EB.
 Encoder index signal input pin: EZ.
 Mechanical limit/switch signal input pins: ±EL, SD and ORG.
 Servomotor interface I/O pins: INP, ALM and ERC.
 General purpose digital output pin: SVON.
 General purpose digital input pin: RDY.
 Pulser signal input pin: PA and PB.
 Simultaneous Start/Stop signal I/O pins: STA and STP.

 General Specifications
 Connectors: 100-pin SCSI-type connector
 Operating Temperature: 0° C ~ 50° C
 Storage Temperature: -20° C ~ 80° C
 Humidity: 5 ~ 85%, non-condensing
 Power Consumption:
∗ Slot power supply (input): +5V DC ±5%, 900mA max.
∗ External power supply (input): +24V DC ±5%, 500mA max.
∗ External power supply (output): +5V DC ±5%, 500mA, max.
∗ PCI-8134 Dimensions: 164mm(L) X 98.4mm(W)
∗ PCI-8134A Dimensions: 185mm(L) X 100mm(W)

6 • Introduction

1.3 Software Support

1.3.1 Programming Library

Windows® XP/7 DLLs are provided for the PCI-8134 and PCI-8134A. These
function libraries are shipped with the board.

1.3.2 Motion Creator

This Windows-based utility, also bundled with the product, is used to set up
cards, motors, and systems, and can aid in debugging hardware and
software. It allows users to set I/O logic parameters for their own programs.

1.4 Compatible Terminal Boards

ADLINK provides servos & steppers with terminal boards for easy
connection, specifically boards DIN-814M0, DIN-814M-J3A0, DIN-814Y0,
DIN-814P-A40 for connection to dedicated servo drives. Steppers or other
servo brands can be connected with general purpose terminal boards DIN-
814-GP and DIN-100S0. Compatible servos are as follows.

Servo Terminal Board

Mitsubishi J2 Super DIN-814M0

Mitsubishi J3A DIN-814M-J3A0

Yaskawa Sigma II DIN-814Y0

Panasonic MINAS A4 DIN-814P-A40

Other Serovs and Steppers DIN-814-GP (specific for cable selection)
DIN-100S0

Installation • 7

2

Installation

This chapter describes how to install the PCI-8134/PCI-8134A, according to
the following procedure.
• Check Package Contents (Section 2.1)
• Check the PCB (Section 2.2)
• Install the hardware (Section 2.3)
• Install the software driver (Section 2.4)
• Acquaint yourself with the I/O signal connections (Chapter 3) and their

operation (Chapter 4)
• Check the connector pin assignments and wiring

2.1 Package Contents

In addition to this User's Guide, the package includes the following items:
• PCI-8134/PCI-8134A 4-Axis Servo / Stepper Motion Control Card
• ADLINK All-in-one Compact Disc
• User’s Guide Manual

If any of these items are missing or damaged, contact the dealer from
whom you purchased the product. Save the shipping materials and carton
in case you want to ship or store the product in the future.

8 • Installation

2.2 PCI-8134/PCI-8134A Outline Drawing

Figure 2.1 PCB Layout of the PCI-8134

CN1: External Power Input Connector
CN2: Input / Output Signal Connector
CN3: Manual Pulser Signal Connector
CN4: Simultaneous Start / Stop Connector

Installation • 9

Figure 2.2 PCB Layout of the PCI-8134A

CN1: External Power Input Connector
CN2: Input / Output Signal Connector
CN3: Manual Pulser Signal Connector
CN4: Simultaneous Start / Stop Connector
J1-J8: Pulse output type selection
S1: Polarity of end-limited switch selection

2.3 Hardware Installation

2.3.1 Hardware configuration

The PCI-8134/PCI-8134A has a plug and play PCI controller on board. The
memory usage (I/O port locations) of the PCI card is assigned by system
BIOS. The address assignment is done on a board-by-board basis for all
PCI cards in the system.

2.3.2 PCI slot selection

Your computer will probably have both PCI and ISA slots. Do not force the
PCI card into a PC/AT slot. The PCI-8134/PCI-8134A can be used in any
PCI slot.

CN4 CN3
CN2

CN1

J1

|

J8

S1

10 • Installation

2.3.3 Installation Procedures

Read through this manual, and setup the jumper according to your
application

Turn off your computer, Turn off all accessories (printer, modem, monitor,
etc.) connected to computer.

Remove the cover from your computer.

Select a 32-bit PCI expansion slot. PCI slots are short than ISA or EISA
slots and are usually white or ivory.

Before handling the PCI-8134/PCI-8134A, discharge any static buildup on
your body by touching the metal case of the computer. Hold the edge and
do not touch the components.

Position the board into the PCI slot you selected.

Secure the card in place at the rear panel of the system unit using screw
removed from the slot.

2.3.4 Troubleshooting:

If your system won‘t boot or if you experience erratic operation with your
PCI board in place, it’s likely caused by an interrupt conflict (perhaps
because you incorrectly described the ISA setup). In general, the solution,
once you determine it is not a simple oversight, is to consult the BIOS
documentation that comes with your system.

2.4 Software Driver Installation

Please refer to the ADLink All-in-one Compact Disc Manual to install it.

Installation • 11

2.5 Programming Guide Installation
1) From the ADLINK All-In-One CD Choose Driver Installation>Motion

Control>PCI-8134/PCI-8134A
2) Follow the procedures of the installer.
3) After installation is completed, restart Windows.

Note: Please download the latest software from the ADLINK website if
necessary.

2.6 CN1 Pin Assignments: External Power Input

CN1 Pin No Name Description
1 EXGND Grounds of the external power.
2 EX+24V External power supply of +24V DC ± 5%

Note:
 1. CN1 is a plug-in terminal board with no screw.
 2. Be sure to use the external power supply. The +24V DC is used by

external input/output signal circuit. The power circuit is configured
as follows.

 3. Wires for connection to CN1.
 Solid wire: ϕ 0.32mm to ϕ 0.65mm (AWG28 to AWG22)
 Twisted wire: 0.08mm2 to 0.32mm2 (AWG28 to AWG22)
 Naked wire length: 10mm standard.

The following diagram shows the external power supply system of the PCI-
8134/PCI-8134A. The external +24V power must be provided, an on-board
regulator generates +5V for both internal and external usage.

Isolation

DC/DC

+5V
GND

I/O
SIGNALS

EX+5V

EXGND

EX+24V

E
x
t
e
r
n
a
l

P
o
w
e
r

S
u
p
p
l
y

(OUTPUT)

I
n
t
e
r
n
a
l

P
o
w
e
r

S
u
p
p
l
y

f
r
o
m

P
C
I

B
U
S

(Bus Power) (External Power)

I/O SIGNALS

12 • Installation

2.7 CN2 Pin Assignments: Main connector
The CN2 is the major connector for the motion control I/O signals.

No. Name I/O Function(axis/) No. Name I/O Function(axis/)

1 EX+5V O +5V power supply output 51 EX+5V O +5V power supply output

2 EXGND Ext. power ground 52 EXGND Ext. power ground

3 OUT1+ O Pulse signal (+), 53 OUT3+ O Pulse signal (+), 

4 OUT1- O Pulse signal (-), 54 OUT3- O Pulse signal (-),

5 DIR1+ O Dir. signal (+), 55 DIR3+ O Dir. signal (+), 

6 DIR1- O Dir. signal (-), 56 DIR3- O Dir. signal (-), 

7 SVON1 O Multi-purpose signal,  57 SVON3 O Multi-purpose signal, 

8 ERC1 O Dev. ctr, clr. signal,  58 ERC3 O Dev. ctr, clr. signal, 

9 ALM1 I Alarm signal,  59 ALM3 I Alarm signal, 

10 INP1 I In-position signal,  60 INP3 I In-position signal, 

11 RDY1 I Multi-purpose signal,  61 RDY3 I Multi-purpose signal, 

12 EXGND Ext. power ground 62 EXGND Ext. power ground

13 EA1+ I Encoder A-phase (+),  63 EA3+ I Encoder A-phase (+), 

14 EA1- I Encoder A-phase (-),  64 EA3- I Encoder A-phase (-),

15 EB1+ I Encoder B-phase (+),  65 EB3+ I Encoder B-phase (+),

16 EB1- I Encoder B-phase (-),  66 EB3- I Encoder B-phase (-),

17 EZ1+ I Encoder Z-phase (+),  67 EZ3+ I Encoder Z-phase (+),

18 EZ1- I Encoder Z-phase (-),  68 EZ3- I Encoder Z-phase (-),

19 EX+5V O +5V power supply output 69 EX+5V O +5V power supply output

20 EXGND Ext. power ground 70 EXGND Ext. power ground

21 OUT2+ O Pulse signal (+),  71 OUT4+ O Pulse signal (+),

22 OUT2- O Pulse signal (-),  72 OUT4- O Pulse signal (-),

23 DIR2+ O Dir. signal (+),  73 DIR4+ O Dir. signal (+),

24 DIR2- O Dir. signal (-),  74 DIR4- O Dir. signal (-),

25 SVON2 O Multi-purpose signal,  75 SVON4 O Multi-purpose signal, 

26 ERC2 O Dev. ctr, clr. signal,  76 ERC4 O Dev. ctr, clr. signal, 

27 ALM2 I Alarm signal,  77 ALM4 I Alarm signal, 

28 INP2 I In-position signal,  78 INP4 I In-position signal, 

29 RDY2 I Multi-purpose signal,  79 RDY4 I Multi-purpose signal, 

30 EXGND Ext. power ground 80 EXGND Ext. power ground

31 EA2+ I Encoder A-phase (+),  81 EA4+ I Encoder A-phase (+), 

32 EA2- I Encoder A-phase (-),  82 EA4- I Encoder A-phase (-), 

33 EB2+ I Encoder B-phase (+),  83 EB4+ I Encoder B-phase (+), 

34 EB2- I Encoder B-phase (-),  84 EB4- I Encoder B-phase (-), 

Installation • 13

35 EZ2+ I Encoder Z-phase (+),  85 EZ4+ I Encoder Z-phase (+), 

36 EZ2- I Encoder Z-phase (-),  86 EZ4- I Encoder Z-phase (-), 

37 PEL1 I End limit signal (+),  87 PEL3 I End limit signal (+), 

38 MEL1 I End limit signal (-),  88 MEL3 I End limit signal (-), 

39 PSD1 I Ramp-down signal (+),  89 PSD3 I Ramp-down signal (+), 

40 MSD1 I Ramp-down signal (-),  90 MSD3 I Ramp-down signal (-), 

41 ORG1 I Origin signal,  91 ORG3 I Origin signal, 

42 EXGND Ext. power ground 92 EXGND Ext. power ground

43 PEL2 I End limit signal (+),  93 PEL4 I End limit signal (+), 

44 MEL2 I End limit signal (-),  94 MEL4 I End limit signal (-), 

45 PSD2 I Ramp-down signal (+),  95 PSD4 I Ramp-down signal (+), 

46 MSD2 I Ramp-down signal (-),  96 MSD4 I Ramp-down signal (-), 

47 ORG2 I Origin signal,  97 ORG4 I Origin signal, 

48 EXGND Ext. power ground 98 EXGND Ext. power ground

49 EXGND Ext. power ground 99 EX+24V I Ext. power supply, +24V

50 EXGND Ext. power ground 100 EX+24V I Ext. power supply, +24V

2.8 CN3 Pin Assignments: Manual Pulser Input

The signals on CN3 is for manual pulser input.

No. Name Function(Axis)
1 GND Bus power ground
2 PB4 Pulser B-phase signal input, 
3 PA4 Pulser A-phase signal input, 
4 PB3 Pulser B-phase signal input, 
5 PA3 Pulser A-phase signal input, 
6 +5V Bus power, +5V
7 GND Bus power ground
8 PB2 Pulser B-phase signal input, 
9 PA2 Pulser A-phase signal input, 
10 PB1 Pulser B-phase signal input, 
11 PA1 Pulser A-phase signal input, 
12 +5V Bus power, +5V

Note: +5V and GND pins are directly given by the PCI-Bus power.
Therefore, these signals are not isolated.

14 • Installation

2.9 CN4 Pin Assignments: Simultaneous Start/Stop

The signals on CN3 is for simultaneously start/stop signals for multiple axes
and multiple cards.

No. Name Function(Axis)
1 GND Bus power ground
2 STP Simultaneous stop signal input/output
3 STA Simultaneous start signal input/output
4 STP Simultaneous stop signal input/output
5 STA Simultaneous start signal input/output
6 +5V Bus power, +5V

Note: +5V and GND pins are directly given by the PCI Bus power.

2.10 Jumper Setting

The J1~J8 is used to set the signal type of the pulse output signals (DIR
and OUT). The output signal type could be differential line driver output or
open collector output. Please refer to section 3.1 for details of the jumper
setting. The default setting is the differential line driver mode.

Line Driver
Open Collector

Figure 2.3 Illustration of PCI-8134 jumpers

1
2
3

J1 J2 J3 J4 J5 J6 J7 J8

Installation • 15

Line Driver
Open Collector

Figure 2.4 Illustration of PCI-8134A jumpers

2.11 Switch Setting

The switch S1 is used to set the EL limit switch’s type. The default setting
of EL switch type is “normal open” type limit switch (or “A” contact type).
The switch on is to use the “normal closed” type limit switch (or “B” contact
type). The default setting is set as normal open type.

Figure 2.5 Placement of S1 Switch on Board of PCI-8134

J4
J3
J8
J7

J6
J5
J2
J1

 4 3 2 1

ON

Select ‘a’ Contact EL Switch (Normal Open)

 3 2 1

Select ‘b’ Contact EL Switch (Normal Close)

16 • Installation

Figure 2.6 Placement of S1 Switch on Board of PCI-8134A

 1 2 3 4

ON

Select ‘b’ Contact EL Switch (Normal Close)

Select ‘a’ Contact EL Switch (Normal Open)

Signal Connections • 17

3

Signal Connections

The signal connections of all the I/O signals are described in this chapter.
Please refer the contents of this chapter before wiring the cable between
the PCI-8134/PCI-8134A and the motor drivers.

This chapter contains the following sections:

Section 3.1 Pulse output signals OUT and DIR
Section 3.2 Encoder feedback signals EA, EB and EZ
Section 3.3 Origin signal ORG
Section 3.4 End-Limit signals PEL and MEL
Section 3.5 Ramping-down signals PSD and MSD
Section 3.6 In-position signal INP
Section 3.7 Alarm signal ALM
Section 3.8 Deviation counter clear signal ERC
Section 3.9 General-purpose signal SVON
Section 3.10 General-purpose signal RDY
Section 3.11 Pulser input signals PA and PB
Section 3.12 Simultaneous start/stop signals STA and STP

18 • Signal Connections

3.1 Pulse Output Signals OUT and DIR

There are 4-axis pulse output signals on PCI-8134/PCI-8134A. For every
axis, two pairs of OUT and DIR signals are used to send the pulse train and
to indicate the direction. The OUT and DIR signals can also be
programmed as CW and CCW signals pair, refer to section 4.1.1 for details
of the logical characteristics of the OUT and DIR signals. In this section,
the electronic characteristics of the OUT and DIR signals are shown. Each
signal consists of a pair of differential signals. For example, the OUT2 is
consisted of OUT2+ and OUT2- signals. The following table shows all the
pulse output signals on CN2.

The output of the OUT or DIR signals can be configured by jumpers as
either the differential line driver or open collector output. You can select the
output mode either by closing breaks between 1 and 2 or 2 and 3 of
jumpers J1~J8 as follows.

CN2 Pin No. Signal Name Description Axis #
3 OUT1+ Pulse signals (+) 
4 OUT1- Pulse signals (-) 
5 DIR1+ Direction signal(+) 
6 DIR1- Direction signal(-) 

21 OUT2+ Pulse signals (+) 
22 OUT2- Pulse signals (-) 
23 DIR2+ Direction signal(+) 
24 DIR2- Direction signal(-) 
53 OUT3+ Pulse signals (+) 
54 OUT3- Pulse signals (-) 
55 DIR3+ Direction signal(+) 
56 DIR3- Direction signal(-) 
71 OUT4+ Pulse signals (+) 
72 OUT4- Pulse signals (-) 
73 DIR4+ Direction signal(+) 
74 DIR4- Direction signal(-) 

Signal Connections • 19

Output
Signal

For differential line driver
output, close a break
between 1 and 2 of

For open collector
output, close a break
between 2 and 3 of:

OUT1- J1 J1
DIR1- J2 J2
OUT2- J3 J3
DIR2- J4 J4
OUT3- J5 J5
DIR3- J6 J6
OUT4- J7 J7
DIR4- J8 J8

The default setting of OUT and DIR signals are the as differential line driver
mode.

The following wiring diagram is for the OUT and DIR signals of the 4 axes.

NOTE: If the pulse output is set to the open collector output mode, the
OUT- and DIR- are used to send out signals. Please take care
that the current sink to OUT- and DIR- pins must not exceed 20mA.
The current may provide by the EX+5V power source, however,
please note that the maximum capacity of EX+5V power is 500mA.

VCC EX+5V

J1~J8

OUT
DIR

from Motion ASIC

OUT+, DIR+

OUT-, DIR-

EXGND

R

3

1
2

2631

CN2
Inside PCI-8134/PCI-8134A

20 • Signal Connections

3.2 Encoder Feedback Signals EA, EB and EZ

The encoder feedback signals include the EA, EB, and EZ. Every axis has
six pins for three differential pairs of phase-A (EA), phase-B (EB) and index
(EZ) input. The EA and EB are used for position counting; the EZ is used
for zero position index. The relative signal names, pin numbers and the axis
number are shown in the following tables.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
13 EA1+  63 EA3+ 
14 EA1-  64 EA3- 
15 EB1+  65 EB3+ 
16 EB1-  66 EB3- 
31 EA2+  81 EA4+ 
32 EA2-  82 EA4- 
33 EB2+  83 EB4+ 
34 EB2-  84 EB4- 

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #

17 EZ1+  67 EZ3+ 
18 EZ1-  68 EZ3- 
35 EZ2+  85 EZ4+ 
36 EZ2-  86 EZ4- 

The input circuits of the EA, EB, EZ signals are shown as follows.

Please note that the voltage across every differential pair of encoder input
signals (EA+, EA-), (EB+, EB-) and (EZ+, EZ-) should be at least 3.5V or
higher. Therefore, you have to take care of the driving capability when
connecting with the encoder feedback or motor driver feedback. The

Motion ASIC

EA, EB
EZ

EA+, EB+,
EZ+

EA-, EB-
EZ-

R

CN2
Inside PCI-8134/PCI-8134A

Signal Connections • 21

differential signal pairs will be converted to digital signal EA, EB and EZ to
connect to Motion ASIC.

Here are two examples of connecting the input signals with the external
circuits. The input circuits can connect to the encoder or motor driver,
which are equipped with: (1) differential line driver or (2) open collector
output.

 Connection to Line Driver Output

To drive the PCI-8134/PCI-8134A encoder input, the driver output must
provide at least 3.5V across the differential pairs with at least 6 mA driving
capability. The ground level of the two sides must be tight together too.

 Connection to Open Collector Output

To connect with open collector output, an external power supply is
necessary. Some motor drivers also provide the power source. The
connection between PCI-8134/PCI-8134A, encoder, and the power supply
is shown in the following diagram. Please note that the external current
limit resistor R is necessary to protect the PCI-8134/PCI-8134A input circuit.
The following table lists the suggested resistor value according to the
encoder power supply.

Encoder Power(VDD) External Resistor R
+5V 0Ω (None)

+12V 1.8kΩ
+24V 4.3kΩ

If=6mA max.

For more detail operation of the encoder feedback signals, please refer to
section 4.4.

External Encoder / Driver
With line driver output

PCI-8134/PCI-8134A

A,B phase signals
Index signal

EA+,EB+,EZ+

EA-, EB-, EZ-

EXGND GND

22 • Signal Connections

3.3 Origin Signal ORG

The origin signals (ORG1∼ORG4) are used as input signals for origin of the
mechanism. The following table lists the relative signal name, pin number,
and the axis number.

CN2 Pin No Signal Name Axis #
41 ORG1 
47 ORG2 
91 ORG3 
97 ORG4 

The input circuits of the ORG signals are shown as following. Usually, a
limit switch is used to indicate the origin of one axis. The specifications of
the limit switches should with contact capacity of +24V, 6mA minimum. An
internal filter circuit is used to filter out the high frequency spike, which may
cause wrong operation.

EX+24V

If=6mA Max.

Filter
Circuit

Motion ASIC
ORG

4.7K

EXGND

Inside PCI-8134/PCI-8134A CN2

← Switch

VDD
GND

Motor Encoder / Driver
With Open Collector Output

External Power for
Encoder

PCI-8134/PCI-8134A

A, B phase
signals

EA+, EB+,

EA-, EB-,

R

Signal Connections • 23

When the motion controller is operated at the home return mode, the ORG
signal is used to stop the control output signals (OUT and DIR). For the
detail operation of the ORG, please refer to section 4.3.3

3.4 End-Limit Signals PEL and MEL

There are two end-limit signals PEL and MEL for one axis. PEL indicates
end limit signal in plus direction and MEL indicates end limit signal in minus
direction. The relative signal name, pin number and axis number are shown
in the following table.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
37 PEL1  87 PEL3 
38 MEL1  88 MEL3 
43 PEL2  93 PEL4 
44 MEL2  94 MEL4 

The signals connection and relative circuit diagram is shown in the following
diagram. The external limit switches featuring a contact capacity of +24V,
6mA minimum. You can use either ‘A-type’ (normal open) contact switch or
‘B-type’ (normal closed) contact switch by setting the DIP switch S1. The
PCI-8134/PCI-8134A is delivered with all bits of S1 set to OFF, refer to
section 2.10. For the details of the EL operation, please refer to section
4.3.2.

EX+24V

If=6mA Max.

Filter
Circuit

Motion ASIC
PEL
MEL

4.7K

EXGND

Inside PCI-8134/PCI-8134A

CN2

 Switch

24 • Signal Connections

3.5 Ramping-down Signals PSD and MSD

There are two ramping-down (Slow−Down) signals PSD and MSD for one
axis. The relative signal name, pin number and axis number are shown in
the following table.

CN2 Pin No Signal Name Axis #
39 PSD1 
40 MSD1 
45 PSD2 
46 MSD2 
89 PSD3 
90 MSD3 
95 PSD4 
96 MSD4 

The signals connection and relative circuit diagram is shown in the following
diagram. Usually, limit switches are used to generate the slow−down
signals to make motor operating in a slower speed. For more details of the
SD operation, please refer to section 4.3.1.

3.6 In-position Signal INP

The in-position signals INP from the servo motor driver indicate the
deviation error is zero, that is the servo position error is zero. The relative
signal name, pin number and axis number are shown in the following table.

EX+24V

If=6mA Max.

Filter
Circuit

Motion ASIC PSD
MSD

4.7K

EXGND

Inside PCI-8134/PCI-8134A CN2

 Switch

Signal Connections • 25

CN2 Pin No Signal Name Axis #
10 INP1 
28 INP2 
60 INP3 
78 INP4 

The input circuit of the INP signals are shown in the following diagram.

The in-position signals are usually from servomotor drivers, which usually
provide open collector output signals. The external circuit must provide at
least 5 mA current sink capability to drive the INP signal active. For more
details of the INP signal operating, please refer to section 4.2.1.

3.7 Alarm Signal ALM

The alarm signal ALM is used to indicate the alarm status from the servo
driver. The relative signal name, pin number and axis number are shown in
the following table.

CN2 Pin No Signal Name Axis #
9 ALM1 

27 ALM2 
59 ALM3 
77 ALM4 

The input circuit of alarm circuit is shown in the following diagram. The ALM
signals are usually from servomotor drivers, which usually provide open

EX+5V

If=12mA Max.
If=5mA Min. Motion ASIC

INP

R

Inside PCI-8134/PCI-8134A CN2

26 • Signal Connections

collector output signals. The external circuit must provide at least 5 mA
current sink capability to drive the ALM signal active. For more details of
the ALM operation, please refer to section 4.2.2.

3.8 Deviation Counter Clear Signal ERC

The deviation counter clear signal (ERC) is active in the following 4
situations:

1. home return is complete;

2. the end-limit switch is active;

3. an alarm signal stops OUT and DIR signals;

4. an emergency stop command is issued by software (operator).

The relative signal name, pin number and axis number are shown in the
following table.

CN2 Pin No Signal Name Axis #
8 ERC1 
26 ERC2 
58 ERC3 
76 ERC4 

The ERC signal is used to clear the deviation counter of servomotor driver.
The ERC output circuit is in the open collector with maximum 35 V external

EX+5V

If=12mA Max.
If=5mA Min.

Motion ASIC
ALM

R

Inside PCI-8134/.PCI-8134A CN2

Signal Connections • 27

power at 50mA driving capability. For more details of the ERC operation,
please refer to section 4.2.3.

3.9 General-purpose Signal SVON

The SVON signals can be used as servomotor-on control or general-
purpose output signals. The relative signal name, pin number and axis
number are shown in the following table.

CN2 Pin No Signal Name Axis #
7 SVON1 
25 SVON2 
57 SVON3 
75 SVON4 

The output circuit of SVON signal is shown in the following diagram.

3.10 General-purpose Signal RDY

The RDY signals can be used as motor driver ready input or
general−purpose input signals. The relative signal name, pin number and
axis number are shown in the following table.

35V 50mA Maximum
SVON

Motion ASIC

EXGND

Inside PCI-8134/PCI-8134A CN2

35V 50mA Maximum
ERC

Motion ASIC
EXGND

Inside PCI-8134/PCI-8134A CN2

28 • Signal Connections

CN2 Pin No Signal Name Axis #
11 RDY1 
29 RDY2 
61 RDY3 
71 RDY4 

The input circuit of RDY signal is shown in the following diagram

3.11 Pulser Input Signals PA and PB

The PCI-8134/PCI-8134A can accept the input signals from pulser signals
through the following pins of connector CN3. The pulser’s behavior is as an
encoder. The signals are usually used as generate the position information
which guide the motor to follow.

CN3
Pin No

Signal
Name

Axis #
CN3

Pin No
Signal
Name

Axis #

2 PA1  8 PA3 
3 PB1  9 PB3 
4 PA2  10 PA4 
5 PB2  11 PB4 

PA and PB pins of connector CN3 are directly connected to PA and PB pins
of PCL5023. The interfac circuits are shown as follows.

EX+5V

If=12mA Max.
If=5mA Min. Motion ASIC

RDY

R

Inside PCI-8134/PCI-8134A CN2

Signal Connections • 29

If the signal voltage of pulser is not +5V or if the pulser is distantly placed, it
is recommended to put a photo coupler or line driver in between. Also, +5V
and GND power lines of CN3 are direct from the PCI bus. Please carefully
use these signals because they are not isolated.

3.12 Simultaneously Start/Stop Signals STA and
STP

The PCI-8134/PCI-8134A provides the STA and STP signals, which enable
simultaneous start/stop of motions on multiple axes. The STA and STP
signals are on the CN4.

In order to implement axes synchronous control between different cards,
both PCI-8134 and PCI-8134A are able to synchronize the axes control
through simultaneous control signals, STA and STP. User is able to connect
each STA and STP signal via CN4 connector as the following illustration.
Also user would use external signals to trigger the simultaneous axes
control.

VCC VCC

Motion ASIC

STP STP, AXIS 3&4
STA, AXIS 3&4

STP, AXIS 1&2
STA, AXIS 1&2

2
3

4
5

4.7K

4.7K

CN4
Inside PCI-8134/PCI-8134A

STA

STP
STA

VCC

PA,PB

Motion ASIC

PA, PB

30 • Signal Connections

STP

CN4

PCI-8134/PCI-8134A #1 PCI-8134/PCI-8134A #2 PCI-8134/PCI-8134A #3

CN4 CN4

STA
STP
STA

STP
STA
STP
STA

STP
STA
STP
STA

Operations • 31

4

Operations

This chapter describes detailed operation of the PCI-8134/PCI-8134A card.
Contents of the following sections are as following.

Section 4.1: The motion control modes
Section 4.2: The motor driver interface (INP, ERC, ALM, SVON, RDY)
Section 4.3: The limit switch interface and I/O status (SD, EL, ORG)
Section 4.4: The encoder feedback signals (EA, EB, EZ)
Section 4.5: Multiple PCI-8134/PCI-8134A cards operation.
Section 4.6: Change Speed on the Fly
Section 4.7: Interrupt Control

4.1 Motion Control Modes

In this section, the pulse output signals’ configurations, and the following
motion control modes are described.
• Constant velocity motion for one axis
• Trapezoidal motion for one axis
• S-Curve profile motion for one axis
• Linear interpolation for two axes
• Home return mode for one axis
• Manual pulser mode for one axis

32 • Operations

4.1.1 Pulse Command Output

The PCI-8134/PCI-8134A uses pulse command to control the servo /
stepper motors via the drivers. The pulse command consists of two signals:
OUT and DIR. There are two command types: (1) single pulse output
mode (OUT/DIR); and (2) dual pulse output mode (CW/CCW type pulse
output). The software function: set_pls_outmode() is used to program the
pulse command type. The modes vs. signal type of OUT and DIR pins are
as following table:

Mode Output of OUT pin Output of DIR pin

Dual pulse output
Pulse signal in plus (or

CW) direction
Pulse signal in minus (or

CCW) direction
Single pulse output Pulse signal Direction signal (level)

The interface characteristics of these signals could be differential line driver
or open collector output. Please refer to section 3.1 for the jumper setting
of signal types.

Single Pulse Output Mode (OUT/DIR Mode)

In this mode, the OUT signal is represent the pulse (position or velocity)
command. The numbers of OUT pulse represent the motion command for
relative “distance” or “position”, the frequency of the OUT pulse represents
the command for “speed” or “velocity”. The DIR signal represents direction
command of the positive (+) or negative (-). This mode is the most common

used mode. The following diagram shows the output waveform.

Dual Pulse Output Mode (CW/CCW Mode)

In this mode, the waveform of the OUT and DIR pins represents CW
(clockwise) and CCW (counter clockwise) pulse output respectively. Pulses
output from CW pin makes motor move in positive direction, whereas pulse
output from CCW pin makes motor move in negative direction. The

OUT

DIR

Positive Command

Negative Command

Operations • 33

following diagram shows the output waveform of positive (plus,+) command

and negative (minus,-) command.

Relative Function:

 set_pls_optmode(): Refer to section 6.4

4.1.2 Constant Velocity Motion

This mode is used to operate one axis motor at constant velocity motion.
The output pulse accelerates from a starting velocity (str_vel) to the
specified constant velocity (max_vel). The v_move() function is used to
accelerate constantly while the sv_move() function is to accelerate
according to S-curve (constant jerk). The pulse output rate will keep at
maximum velocity until another velocity command is set or stop command is
issued. The v_change() is used to change speed during moving. The
v_stop() function is used to decelerate the motion to zero velocity (stop).
The velocity profile is shown as following. Note that v_stop() function can
be also be applied to stop outputting command pulses during Preset Mode
(both trapezoidal and S-curve Motion) , Home Mode or Manual Pulser
Mode operations.

Relative Functions:

v_move(), v_stop(), sv_move(): Refer to section 6.5

OUT
 DIR
 Negative Command

OUT
DIR
 Positive Command

34 • Operations

4.1.3 Trapezoidal Motion

This mode is used to move one axis motor to a specified position (or
distance) with a trapezoidal velocity profile. Single axis is controlled from
point to point. An absolute or relative motion can be performed. In absolute
mode, the target position is assigned. In relative mode, the target
displacement is assigned. In both absolute and relative mode, the
acceleration and the deceleration can be different. The motion_done()
function is used to check whether the movement is complete.

V
elocity(pps)

str_vel

Tacc
 Tdec

max_vel

v_move()

v_stop()

Time(second)

Operations • 35

The following diagram shows the trapezoidal profile. There are 9 relative
functions. In the a_move(), ta_move() and start_a_move(),
start_ta_move() functions, the absolute target position must be given in
the unit of pulse. The physical length or angle of one movement is
dependent on the motor driver and the mechanism (includes the motor).
Since absolute move mode needs the information of current actual position,
so “External encoder feedback (EA, EB pins)” must be enabled in
set_cnt_src() function. And the ratio between command pulses and
external feedback pulse input must be appropriately set by
set_move_ratio() function.

In the r_move(), t_move() and start_r_move(), start_t_move() functions,
the relative displacement must be given in the unit of pulse. Unsymmetrical
trapezoidal velocity profile (Tacc is not equal Tdec) can be specified in
ta_move() and t_move() functions; where symmetrical profile (Tacc = Tdec)
can be specified in a_move() and r_move() functions

The str_vel and max_vel parameters are given in the unit of pulse per
second (pps). The Tacc and Tdec parameters are given in the unit of
second represent accel./decel. time respectively. You have to know the
physical meaning of “one movement” to calculate the physical value of the
relative velocity or acceleration parameters. The following formula gives the
basic relationship between these parameters.

 max_vel = str_vel + accel*Tacc;

 str_vel = max_vel + decel *Tdec;

where accel/decel represents the acceleration/deceleration rate in unit of
pps/sec. The area inside the trapezoidal profile represents the moving
distance.

The unit of velocity setting is pulses per second (pps). Usually, the unit of
velocity in the manual of motor or driver is in rounds per minute (rpm). A
simple conversion is necessary to match between these two units. Here we
use a example to illustrate the conversion.

For example:

A servo motor with a AB phase encoder is used for a X-Y table. The
resolution of encoder is 2000 counts per phase. The maximum rotating
speed of motor is designed to be 3600 rpm. What is the maximum pulse
command output frequency that you have to set on PCI-8134/PCI-8134A?

36 • Operations

Answer:

max_vel = 3600/60*2000*4

 = 48000pps

The reason why *4 is because there are four states per AB phase (See
Figures in Section 4.4).

Usually, the axes need to set the move ratio if their mechanical resolution is
different from the resolution of command pulse. For example, if an
incremental type encoder is mounted on the working table to measure the
actual position of moving part. A servomotor is used to drive the moving
part through a gear mechanism. The gear mechanism is used to convert the
rotating motion of motor into linear motion.(see the following diagram). If the
resolution of motor is 8000 pulses/round. The resolution of gear mechanism
is 100 mm/round.(i.e., part moves 100 mm if motor turns one round). Then
the resolution of command pulse will be 80 pulses/mm. The resolution of
encoder mounting on the table is 200 pulses/mm. Then users have to set
the move ratio as 200/80=2.5 by the function:

set_move_ratio(axis, 2.5);

V
elocity (pps)

str_vel

Tacc
 Tdec

max_vel

str_vel

Time (second)

Operations • 37

If this ratio is not set before issuing the start moving command, it will cause
problems when running in “Absolute Mode”. Because the PCI-8134/PCI-
8134A can’t recognize the actual absolute position during motion.

Relative Functions:
a_move(), r_move(), t_move(), ta_move(), start_a_move(), start_r_move(),
start_t_move(), start_ta_move() Refer to section 6.6.
motion_done(): Refer to section 6.13.
set_cnt_src(): Refer to section 6.4.
set_move_ratio(): Refer to section 6.10.

4.1.4 S-curve Profile Motion

This mode is used to move one axis motor to a specified position (or
distance) with a S-curve velocity profile. S-curve acceleration profiles are
useful for both stepper and servo motors. The smooth transitions between
the start of the acceleration ramp and the transition to the constant velocity
produce less wear and tear than a trapezoidal profile motion. The smoother
performance increases the life of the motors and mechanics of a system.

There are several parameters needed to be set in order to make a S-curve
move. They are:

pos: target position in absolute mode;
dist: moving distance in relative mode;
str_vel : specify the start velocity;
max_vel : specify the maximum velocity;
Tlacc: specify the time for linear acceleration section
 (constant acceleration).
Tsacc: specify the time for S-curve acceleration section

Motor Gear

Encoder

Table
Moving part

38 • Operations

 (constant jerk).
Tldec: specify the time for linear deceleration section
 (constant deceleration).
Tsdec: specify the time for S-curve deceleration section

 (constant jerk).

Total time of acceleration is: Tlacc+2Tsacc. The following formula gives the
basic relationship between these parameters.

max_vel = str_vel + accel*(Tlacc+Tsacc);
str_vel = max_vel + decel *(Tldec+Tsdec);
accel = Tsacc * jerk1;
decel = Tsdec * jerk2;

where accel/decel represents the acceleration/deceleration rate at linear
accel./decel. section and are in unit of pps/sec. jerk1, jerk2 are in unit of
pps/sec^2. The minimum value for setting time of accel./decel. should be 0.

The S-curve profile motion functions are designed to always produce
smooth motion. If the time for linear/S-Curve acceleration parameters
combined with the final position don’t allow an axis to reach the maximum

Tsacc
Tlacc

Tsacc Tsdec
Tldec

Tsdec

Operations • 39

velocity(i.e.: the moving distance is too small to reach max_vel), the
maximum velocity is automatically lowered and

smooth accel./decel. is made (see the following Figure). This means that
with moves that don’t reach maximum velocity may cause longer than
expected move times. In such a case, the smaller the moving distance, the
shorter the linear accel./decel. section becomes and the S-curve section is
not reduced unless the linear section is decreased to 0.

The following two graphs show the results of experiments after executing
the unsymmetrical absolute S-curve motion command. Graph1 is the typical
result. of S-curve velocity profile. Graph2 is obtained when the amount of
command pulses is failed to let the velocity reach the designated maximum
velocity. The PCI-8134/PCI-8134A automatically lower the maximum
velocity thus provide a smooth velocity profile.

Command of Graph1:

start_tas_move(axis, 500000, 100, 1000000, 0.05, 0.05, 0.2, 0.2);

V
el

oc
ity

 (p
ps

)

Time (sec)

40 • Operations

The total accelerating time = 0.05+2*0.05 = 0.15 (second).
Total decelerating time = 0.2+2*0.2 = 0.6 (second).

Command of Graph2:

start_tas_move(axis, 200000, 100, 1000000, 0.05, 0.05, 0.2, 0.2);

Relative Functions:

s_move(), rs_move(), tas_move(), start_s_move(), start_rs_move(),
start_tas_move() Refer to section 6.7
motion_done(): Refer to section 6.13

4.1.5 Linear Interpolated Motion

In this mode, two axes (″X and Y″ or ″Z and U″ axes) is controlled by linear
interpolation or circular interpolation by designating the number of pulses
respectively. ″Interpolation between two axes″ means the two axes start
simultaneously, and reach their ending points at the same time. For
example, in the Figure below, we want to move the axes from P0 to P1, and
hope the two axes start and stop simultaneously at a period of time ∆t. Then
the moving speed along X-axis and Y-axis will be∆X/∆t., ∆Y/∆t. respectively.

P0

P1

X-Axis

Y
-A

xi
s

∆X

∆Y

Operations • 41

The axis with larger numbers of moving pulses is the main axis, and the
other axis is the secondary axis. When both axes are set at the same
amount of pulses, the ‘X’ or ‘Z’ is the main axis. The speed relation
between main and secondary axes is as follows:

Composite Speed = Speed of main axis x

Relative Functions:
move_xy(), move_zu(),Refer to section 6.9
set_move_speed(), set_move_accel(),set_move_ratio(): Refer to section

6.10

4.1.6 Home Return Mode

In this mode, you can let the PCI-8134/PCI-8134A output pulses until the
conditions to complete the home return is satisfied after writing the
home_move() command. Finish of home return can be checked by
motion_done() function. Or you can check finish of home return
accompanied with the interrupt function by setting bit 5 of int_factor to 1 in
set_int_factor() function.

Moving direction of motors in this mode is determined by the sign of velocity
parameter in home_move() function. A v_stop() command during returning
home can stop OUT and DIR from outputting pulses.

Before writing home_move() command, configuration must be set by
set_home_config() function. . See also Section 4.3.3 for further
description. There are total three home return modes can be selected by

42 • Operations

setting home_mode parameter in set_home_config() function. The
meaning of Home_mode will be described as the following:

CAUTION
Due to differences between the motion chipsets of PCI-8134 and PCI-

8134A, behaviour of home mode 0 and 1 will be inconsistent as
performed previously. Please note differences in timing charts of
each home mode for both PCI-8134 and PCI-8134A when user
wants to use PCI-8134A instead of PCI-8134 with same home
function. To ensure the accuracy of home move process, the
motion chipset on PCI-8134A commands backward motion and
stops at the edge of ORG or EZ precisely.

PCI-8134 Home Mode 0 & Home Mode 1

The timing charts of Home Mode 0 and 1 of PCI-8134/PCI-8134A
follow.

ORG

EL

PCI-8134 Home Mode 0 + ORG DO not latch

Case 1

Case 2

Case 3

Stand still

Negative

Positive

Case 1

Case 2

Case 3

Stand still

*1

*1

*1 In the case 2 of PCI-8134 Home Mode 0, The axis will stand still and reset counter to 0
and issue home interrupt after user commanded a home move operation.

PCI-8134 Home Mode 0 + ORG do not latch @ 8134.DLL
/8134A.DLL

Operations • 43

• Home point is at the first edge of ORG signal when home move executing.
At left or right side of edge depends on home move direction.

• If axis is not at ORG, the axis will search the edge of ORG as home point.

• In Case 1, the axis is stopped immediately when motion detected the
edge of ORG signal but it might stop at anywhere within the range of
ORG signal that means the home position is inaccurate after home move
function was executed many times.

• The feedback counter of PCI-8134 will be reset to zero while the motion
is hitting the edge of ORG signal.

• In Case 2, the axis will stand still and reset counter to 0 and issue home
interrupt.

• After normal home finished like case 1, users have to copy to position
value to command counter and target position counter at the same time.

While the motion hits the edge of ORG or EL
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external)

get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Reset to 0 Doesn’t change Reset to 0
Case 2 Doesn’t change Reset to 0 (stand still) Doesn’t change Reset to 0

(stand still)
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL

position

Counter status after Home Move Completed (Motion Done)
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external) Interrupt?

get_command() get_position() get_command() get_position()
Case
1

Doesn’t change Remain 0 Doesn’t change Stop at a
deceleration
position

Home Int

Case
2

Doesn’t change Reset to 0 Doesn’t change Reset to 0 Home Int

Case
3

Doesn’t change Stop at a EL
position

Doesn’t change Stop at a EL
position

EL Int

44 • Operations

ORG

EL

Case 1

Case 2

Case 3

Negative
Case 1

Case 2

Case 3

PCI-8134 Home Mode 0 + ORG latch

Positive

PCI-8134 Home Mode 0 + ORG Latch @ 8134.DLL/8134A.DLL

• Home point is at the first edge of ORG signal when home move executing.
At left or right side of edge depends on home move direction.

• If axis is not on ORG, the axis will search the edge of ORG as home point.

• In Case 1, the axis will be stopped immediately when axis detected the
edge of ORG signal but it might stop at anywhere within the range of
ORG signal that means the home position is inaccurate after home move
was executed many times.

While the motion hits the edge of ORG or EL
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external)

get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Reset to 0 Doesn’t change Reset to 0
Case 2 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position

Counter status after Home Move Completed (Motion Done)
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external) Interrupt?

get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Remain 0 Doesn’t change Stop at a

deceleration
position

Home Int

Case 2 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position EL Int
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position EL Int

Operations • 45

• The feedback counter of PCI-8134 will be reset to zero while the motion
is hitting the edge of ORG signal.

• In Case 2 & 3, the axis will hit and then stop at the edge of EL signal
anyway because the first edge of ORG signal locates behind the start
point of axis that means the axis won’t detect the edge of ORG signal
anymore.

EZ

EL

PCI-8134 Home Mode 1 + ORG Do not latch

Case 1

Case 2-1

Case 3

Negative

Positive

Case 1

Case 2-2

Case 3

*1 Once user selected “ORG DO NOT LATCH”Mode and pull-up ORG
signal all the time that the PCI-8134 will search first EZ signal edge then stop
immediately once user issued home move command.

ORG
*1

Case 2-2

1st EZ 2nd EZ

PCI-8134 Home Mode 1 + ORG do not latch @ 8134A.DLL
/8134.DLL

While the motion hits the edge of EZ or EL
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external)

get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Reset to 0 Doesn’t change Reset to 0
Case 2-1 Doesn’t change Reset to 0 Doesn’t change Reset to 0
Case 2-2 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position

46 • Operations

• In Case 1, the axis will be stopped immediately when axis detected the
edge of ORG signal but it might stop at anywhere within the range of
ORG signal that means the home position is inaccurate after home move
was executed many times.

• The feedback counter of PCI-8134 will be reset to zero while the motion
is hitting the edge of ORG signal.

• As Do Not Latch mode, the axis will start searching EZ signal after the
ORG signal was detected within 5 clock periods.

• In Case 2-2 & 3, the axis will hit and then stop at the edge of EL signal
anyway because the edge of EZ signal locates behind the start point of
Home Move that the axis won’t detect the edge of EZ signal anymore.

• In Case 2-1, if there are two or more EZ signals in the system, the axis
will search next EZ signal because the ORG signal was turned ON
continuously.

• After normal home finished like case 1, users have to copy to position
value to command counter and target position counter at the same time.

Counter status after Home Move Completed (Motion Done)
 Set_cnt_src()=0 (internal) set_cnt_src ()=1 (external) Interrupt?

Get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Remain 0 Doesn’t change Stop at a deceleration

position
Home Int

Case 2-1 Doesn’t change Remain 0 Doesn’t change Stop at a deceleration
position

Home Int

Case 2-2 Doesn’t change Stop at a EL
position

Doesn’t change Stop at a EL position EL Int

Case 3 Doesn’t change Stop at a EL
position

Doesn’t change Stop at a EL position EL Int

Operations • 47

PCI-8134 Home Mode 1 + ORG latch

ORG

EL

Case 1

Case 2

Negative

Positive

Case 1

EZ

ORG latch

Case 3

Case 2

Case 3

PCI-8134 Home Mode 1 + ORG latch @ 8134.DLL/8134A.DLL

• In Case 1, the axis will be stopped immediately when axis detected the
edge of ORG signal but it might stop at anywhere within the range of
ORG signal that means the home position is inaccurate after home move
was executed many times.

• The feedback counter of PCI-8134 will be reset to zero while the motion
is hitting the edge of ORG signal.

While the motion hits the edge of EZ or EL
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external)

get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Reset to 0 Doesn’t change Reset to 0
Case 2 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position

Counter status after Home Move Completed (Motion Done)
 Set_cnt_src()=0 (internal) set_cnt_src ()=1 (external) Interrupt?

Get_command(
)

get_position() get_command() get_position()

Case 1 Doesn’t change Remain 0 Doesn’t change Stop at a
deceleration
position

Home Int

Case 2 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position EL Int
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position EL Int

48 • Operations

• As Do Not Latch mode, the axis will start searching EZ signal after the
ORG signal was detected within 5 clock periods.

• In Case 2 & 3, the axis will hit and then stop at the edge of EL signal
anyway because the edge of EZ signal locates behind the start point of
Home Move that the axis won’t detect the edge of EZ signal anymore.

• In Case 2 & 3, if there are two or more EZ signals in the system, the axis
never stop if the axis starts from first EZ signal because there is no ORG
signal was triggered prior to EZ searching.

• After normal home finished like case 1, users have to copy to position
value to command counter and target position counter at the same time.

PCI-8134A Home Mode 0 & Home Mode 1

The timing charts of Home Mode 0 and 1 of PCI-8134A follow.

ORG

EL

Case 1

Case 2

Case 3

Negative
Case 1

Case 2

Case 3

PCI-8134A Home Mode 0

Positive

Stand still
*1

*1 In the case 2 of PCI-8134A Home Mode 0, The axis will stand still and reset counter to 0
But won’t issue home interrupt after user issued home move command.

Stand still
*1

PCI-8134A Home Mode 0 @ 8134.DLL/8134A.DLL/8134A.DLL

Operations • 49

• Home point is at the first edge of ORG signal when home move executing.
At left or right side of edge depends on home move direction.

• If axis is not at ORG, the axis will search the edge of ORG as home point.

• In Case 1, the axis will slow down and reverse to search the ORG edge
again and then stop at the edge of ORG signal precisely.

• The feedback counter of PCI-8134A will be reset to zero while the motion
is hitting the edge of ORG signal.

• In Case 2, the axis will be standstill and reset counter to 0 but won’t issue
home interrupt.

• After normal home finished like case 1, users have to copy to position
value to command counter and target position counter at the same time.

While the motion hits the edge of ORG or EL
 Set_cnt_src()=0 (internal) set_cnt_src ()=1 (external)

Get_command(
)

get_position() get_command() get_position()

Case 1 Doesn’t change Reset to 0 Doesn’t change Reset to 0
Case 2 Doesn’t change Stand Still Doesn’t change Stand Still
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position

Counter status after Home Move Completed (Motion Done)
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external) Interrupt?

get_command() get_position() get_command() get_position
()

Case
1

Doesn’t change Remain 0 Doesn’t change Remain 0 Home Int

Case
2

Doesn’t change Reset to 0 Doesn’t change Reset to 0 No Int

Case
3

Doesn’t change Stop at a EL
position

Doesn’t change Stop at a EL
position

EL Int

50 • Operations

EZ

EL

PCI-8134A Home Mode 1

Case 1

Case 2

Case 3

Negative

Positive

Case 1

Case 2

Case 3

ORG

PCI-8134A Home Mode 1 @ 8134.DLL/8134A.DLL

DLL version: 110420, Driver version: 101109

• In Case 1, the axis will search the edge of EZ signal after the ORG signal
and then stop at EZ edge precisely.

While the motion hits the edge of EZ or EL
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external)

get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Reset to 0 Doesn’t change Reset to 0
Case 2 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position
Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL position

Counter status after Home Move Completed (Motion Done)
 set_cnt_src()=0 (internal) set_cnt_src ()=1 (external) Interrupt?

get_command() get_position() get_command() get_position()
Case 1 Doesn’t change Remain 0 Doesn’t change Remain 0 Home Int
Case 2 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL

position
EL Int

Case 3 Doesn’t change Stop at a EL position Doesn’t change Stop at a EL
position

EL Int

Operations • 51

• The feedback counter of PCI-8134 will be reset to zero while the motion
is hitting the edge of EZ or EL signal.

• In Case 2 & 3, the axis will hit and then stop at the edge of EL signal
anyway because the edge of EZ signal locates behind the start point of
Home Move that the axis won’t detect the edge of EZ signal anymore.

• After normal home finished like case 1, users have to copy to position
value to command counter and target position counter at the same time.

(3) Home_mode=2: both ORG and index signal are useful. The ORG
signal lets the PCI-8134/PCI-8134A decelerate to starting velocity
and then EZ signal stops OUT and DIR pins from outputting
pulses to complete the home return.

Note: If the starting velocity is zero, the axis will work properly in home
mode 2.

Relative Function:

set_home_config(), home_move(), v_stop(): Refer to section 6.11

time   

mvel

svel

Velocity
accel

ORG

EZ

52 • Operations

4.1.7 Manual Pulser Mode

For manual operation of a device, you may use a manual pulser such as a
rotary encoder. The PCI-8134/PCI-8134A can input signals from the pulser
and output corresponding pulses from the OUT and DIR pins, thereby
allowing you to simplify the external circuit and control the present position
of axis. This mode is effective between a manu_move() command is
written and a v_stop() command.

The PCI-8134/PCI-8134A receives plus and minus pulses (CW/CCW) or 90
degrees phase difference signals(AB phase) from the pulser at PA and PB
pins. The 90°phase difference signals can be input through multiplication
by 1, 2 or 4. If the AB pahse input mode is selected, the PA and PB signals
should be with 90° phase shifted, and the position counting is increasing
when the PA signal is leasding the PB signal by 90° phase.

Also, one pulser may be used for ‘X’ and ‘Y’ axes while internally
distributing the signals appropriately to two axes. To set the input signal
modes of pulser, use set_manu_iptmode() function. Then write
manu_move() to begin manual operation function. User must write v_stop()
command in order to end this function and begins to operate at another
mode.

The error input of PA and PB can be used to generate IRQ. The following
two situations will be considered as error input of PA and PB signals. (1)
The PA and PB signals are changing simultaneously. (2) The input pulser
frequency is higher than the maximum output frequency 2.4M pps. Set bit
14 of INT factor will enable the IRQ when error happen.

Maximum moving velocity in this mode can be limited by setting max_vel
parameter in manu_move() function.

Relative Function:

set_manu_iptmode(), manu_move(), v_stop(): Refer to section 6.12

Operations • 53

4.2 Motor Drive Interface

The PCI-8134/PCI-8134A provides the INP, ERC and ALM signals for
servomotor driver’s control interface. The INP and ALM are used for
feedback the servo driver’s status. The ERC is used to reset the servo
driver’s deviation counter under special conditions.

4.2.1 INP

Usually, servomotor driver with pulse train input has a deviation (position
error) counter to detect the deviation between the input pulse command and
feedback counter. The driver controls the motion of servomotor to minimize
the deviation until it becomes 0. Theoretically, the servomotor operates
with some time delay from command pulses. Accordingly, when the pulse
generator stops outputting pulses, the servomotor does not stop but keep
running until the deviation counter become zero. At this moment, the servo
driver sends out the in-position signal (INP) to the pulse generator to
indicate the motor stops running.

Usually, the PCI-8134/PCI-8134A stops outputting pulses upon completion
of outputting designated pulses. But by setting inp_enable parameter in
set_inp_logic() function, you can delay the completion of operation to the
time when the INP signal is turned on. Status of motion_done() and INT
signal are also delayed. That is, when performing under position control
mode, the completion of start_a_move(), start_r_move(),
start_s_move()… functions are delayed until INP signal is turned ON.

However, EL or ALM signal or the completion of home return does not
cause the INP signal to delay the timing of completion. The INP signal may
be a pulse signal, of which the shortest width is 5 micro seconds.

The in-position function can be enable or disable. The input logic polarity
isalso programmable by software function:set_inp_logic(). The signal
status can be monitored by software function: get_io_status().

4.2.2 ALM

The ALM pin receives the alarm signal output from the servo driver. The
signal immediately stops the PCI-8134/PCI-8134A from generating pulses
or stops it after deceleration. If the ALM signal is in the ON status at the
start, the PCI-8134/PCI-8134A outputs the INT signal without generating

54 • Operations

any command pulse. The ALM signal may be a pulse signal, of which the
shortest width is a time length of 5 micro seconds.

You can change the input logic by set_alm_logic() function. Whether or not
the PCI-8134/PCI-8134A is generating pulses, the ALM signal lets it output
the INT signal.. The ALM status can be monitored by software function:
get_io_status(). The ALM signal can generate IRQ by setting the bit 2 of
INT. factor in software function: set_int_factor().

4.2.3 ERC

The deviation counter clear signal is inserted in the following 4 situations:

(1) home return is complete;
(2) the end-limit switch is active;
(3) an alarm signal stops OUT and DIR signals;
(4) an emergency stop command is issued by software operator.

Since the servomotor operates with some delay from pulse generated from
the PCI-8134/PCI-8134A, it keeps operating by responding to the position
error remaining in the deviation counter of the driver if the ±EL signal or the
completion of home return stops the PCL5023 from outputting pulses. The
ERC signal allows you to immediately stop the servomotor by resetting the
deviation counter to zero. The ERC signal is output as an one-shot signal.
The pulsewidth is a time length of 10ms. The ERC signal will automatically
output when ±EL signals, ALM signal is turned on to immediately stop the
servomotor. User can set the ERC pin output enable/disable by
set_erc_enable() function. ERC pin output is set output enabled when
initializing.

OFF
ON

ERC Output

Approximate 10ms

Operations • 55

CAUTION

Due to differences between the motion chipsets on the PCI-8134 and PCI-
8134A, ERC output pulse width with the PCI-8134A may be less than
originally output by the PCI-8134.

4.3 The Limit Switch Interface and I/O Status

In this section, the following I/O signals’ operations are described.

• SD: Ramping Down sensor
• ±EL: End-limit sensor
• ORG: Origin position
• SVON and RDY

I/O status readback

In any operation mode, if an ±EL signal is active during moving condition, it
will cause PCI-8134/PCI-8134A to stop output pulses automatically. If an
SD signal is active during moving condition, it will cause PCI-8134/PCI-
8134A to decelerate.

4.3.1 SD

The ramping-down signals are used to slow-down the control output signals
(OUT and DIR) when it is active. The signals are very useful to protect the
mechanism moving under high speed toward the mechanism limit. PSD
indicates ramping-sown signal in plus (+) direction and MSD indicates
ramping-down signal in minus (-) direction.

During varied speed operation in the home return mode or continuous
operation mode, the ramping-down signal in the moving direction lets the
output control signals (OUT and DIR) ramp down to the pre-setting starting
velocity.

The ramping-down function can be enable or disable by software function:
set_sd_logic(). The input logic polarity, level operation mode, or latched
input mode can also be set by this function. The signals status can be
monitored by get_io_status().

4.3.2 EL

56 • Operations

The end-limit signals are used to stop the control output signals (OUT and
DIR) when the end-limit is active. PEL signal indicates end-limit in positive
(plus) direction. MEL signal indicates end-limit in negative (minus) direction.
When the output pulse signals (OUT and DIR) are toward positive direction,
the pulse train will be immediately stopped when the PEL signal is inserted,
while the MEL signal is meaningless in this case, and vise versa. When the
PEL is inserted and the output pulse is fully stop, only the negative (minus)
direction output pulse can be generated for moving the motor to negative
(minus) direction.

The end-limit signals can be used to generate the IRQ by setting the bit 0 of
INT. factor in software function: set_int_factor().

Operations • 57

You can use either 'a' contact switch or 'b' contact switch by setting the dip
switch S1. The PCI-8134/PCI-8134A is delivered from the factory with all
bits of S1 set to OFF.

The signal status can be monitored by software function: get_io_status().

4.3.3 ORG

When the motion controller is operated at the home return mode, the ORG
signal is used to stop the control output signals (OUT and DIR).

There are three home return modes, you can select one of them by setting
“home_mode” argument in software function: set_home_config(). Note that
if home_mode=1 or 2, the ORG signal must be ON or latched during the EZ
signal is inserted (EZ=0). The logic polarity of the ORG signal, level input or
latched input mode are selectable by software function: set_home_config().

After setting the configuration of home return mode by set_home_config(),
a home_move() command can perform the home return function.

The ORG signal can also generate IRQ signal by setting the bit 5 of
interrupt reason register (or INT. factor) in software function:
set_int_factor().

4.3.4 SVON and RDY

The SVON signals are controlled by software function: _8134_Set_SVON().
The function set the logic of SVON signal. The signal status of SVON pins
can be monitored by software function: get_io_status().

RDY pins are dedicated for digital input use The status of this signal can be
monitored by software function get_io_status(). The RDY signal can also
generate IRQ signal by setting the bit 23 of INT. factor in software function:
set_int_factor(). Note that interrupt is generated when RDY signal from
high to low.

The PCI-8134A supports neither RDY signal connection nor interrupt
function.

58 • Operations

4.4 The Encoder Feedback Signals (EA, EB, EZ)

The PCI-8134/PCI-8134A has a 28-bits binary up/down counter for
managing the present position for each axis. The counter counts signals
input from EA and EB pins.

It can accept 2 kinds of pulse input: (1). plus and minus pulses
input(CW/CCW mode); (2). 90° phase difference signals (AB phase mode).
90° phase difference signals may be selected to be multiplied by a factor of
1,2 or 4. 4x AB phase mode is the most commonly used for incremental
encoder input. For example, if a rotary encoder has 2000 pulses per phase
(A or B phase), then the value read from the counter will be 8000 pulses per
turn or –8000 pulses per turn depends on its turning direction. These input
modes can be selected by set_pls_iptmode() function.

To enable the counters counting pulses input from (EA, EB) pins, set
“cnt_src” parameter of software function set_cnt_src() to 1.

Plus and Minus Pulses Input Mode(CW/CCW Mode)

The pattern of pulses in this mode is the same as Dual Pulse Output Mode
in Pulse Command Output section, expect that the input pins are EA and
EB.

In this mode, pulse from EA causes the counter to count up, whereas EB
caused the counter to count down.

90° phase difference signals Input Mode(AB phase Mode)

In this mode, the EA signal is 90° phase leading or lagging in comparison
with EB signal. Where “lead” or “lag’ of phase difference between two
signals is caused by the turning direction of motors. The up/down counter
counts up when the phase of EA signal leads the phase of EB signal.

The following diagram shows the waveform.

Operations • 59

The encoder error interrupt is provided to detect abnormal situation.
Simultaneously changing of EA and EB signals will cause an encoder error.
If bit #14 of the interrupt factor register (INT factor) is set as 1, the IRQ will
be generated when detect encoder error during operation.

The index inputs (EZ) signals of the encoders are used as the “ZERO”
index. This signal is common on most of the rotational motors. EZ can be
used to define the absolute position of the mechanism. The input logic
polarity of the EZ signals is programmable by software function
set_home_config(). The EZ signals status of the four axis can be
monitored by get_io_status().

Relative Function:

set_cnt_src(), set_pls_iptmode(): Refer to section 6.4

4.5 Multiple PCI-8134/PCI-8134A Cards Operation

The software function library support maximum up to 12 PCI-8134/PCI-
8134A Cards that means maximum up to 48 axes of motors can be
controlled. Since PCI-8134/PCI-8134A has the characteristic of Plug-and-
Play, users do not have to care about setting the Based address and IRQ
level of cards. They are automatically assigned by the BIOS of system
when booting up. Users can utilize Motion Creator to check if the plugged
PCI-8134/PCI-8134A cards are successfully installed and see the Base
address and IRQ level assigned by BIOS.

One thing needed to be noticed by users is to identify the card number of
PCI-8134/PCI-8134A when multiple cards are applied. The card number of
one PCI-8134/PCI-8134A depends on the locations on the PCI slots. They

EA

EB

Negative Direction

EA

EB

Positive Direction

60 • Operations

are numbered either from left to right or right to left on the PCI slots. These
card numbers will affect the corresponding axis number on the cards. And
the axis number is the first argument for most functions called in the library.
So it is important to identify the axis number before writing application
programs. For example, if 3 PCI-8134/PCI-8134A cards are plugged in the
PCI slots. Then the corresponding axis number on each card will be:

 Axis No.
Card No.

Axis 1 Axis 2 Axis 3 Axis 4

1 0 1 2 3
2 4 5 6 7
3 8 9 10 11

If we want to accelerate Axis 3 of Card2 from 0 to 10000pps in 0.5sec for
Constant Velocity Mode operation. The axis number should be 6. The code
on the program will be:

v_move(6, 0, 10000, 0.5);

To determine the right card number, Try and Error may be necessary before
application. Motion Creator can be utilized to minimize the search time.

The newest DLL supports the combination of both PCI-8134 and PCI-
8134A in one system.

4.6 Change Speed on the Fly

You can change the velocity profile of command pulse ouput during
operation by v_change() function. This function changes the maximum
velocity setting during operation. However, if you operate under “Preset
Mode” (like start_a_move(),…), you are not allowed to change the
acceleration parameter during operation because the deceleration point is
pre-determined. But changing the acceleration parameter when operating
under “Constant Velocity Mode” is valid. Changing speed pattern on the fly
is valid no matter what you choose “Trapezoidal Velocity Profile” or “S-curve
Velocity Profile”. Here we use an example of Trapezoidal velocity profile to
illustarte this function.

Example: There are 3 speed change sensor during an absolute move for
200000 pulses. Initial maximum speed is 10000pps. Change to 25000pps if

Operations • 61

Sensor 1 is touched. Change to 50000pps if Sensor 2 is touched. Change
to 100000pps if Sensor 3 is touched. Then the code for this application and
the resulting velocity profiles are shown below.

#include “pci_8134.h”

start_a_move(axis, 200000.0, 1000, 10000, 0.02);

while(!motion_done(axis))

{

 // Get Sensor’s information from other I/O card

 if((Sensor1==High) && (Sensor2==Low) && (Sensor3 == Low))
 v_change(axis, 25000, 0.02);
 else if((Sensor1==Low) && (Sensor2==High) && (Sensor3 == Low))
 v_change(axis, 50000, 0.02);
 else if((Sensor1==Low) && (Sensor2==Low) && (Sensor3 == High))
 v_change(axis, 100000, 0.02);

}

Where the informations of three sensors are acquired from other I/O card.
And the resulting velocity profile from experiment is shown below.

Motor

Sensor 2 Sensor 3

Pos=0 Pos=200000

Moving part

Sensor 1

62 • Operations

Relative Function:

v_change(): Refer to section 6.5

4.7 Interrupt Control

The PCI-8134/PCI-8134A motion controller can generate INT signal to host
PC according to 13 types of factors, refer to set_int_factor() function for
more details.. The INT signal is output when one or more interrupt factors
occur on either axis. To judge on which axis the interrupt factors occur, use
get_int_axis() function. The interrupt status is not closed until
get_int_status() function is performed.

Motion Creator • 63

5

Motion Creator

After installing all the hardware properly according to Chapter 2, 3,
configuring cards and checkout are required before running. This chapter
gives guidelines for establishing a control system and manually exercising
the PCI-8134/PCI-8134A cards to verify correct operation. Motion Creator
provides a simple yet powerful means to setup, configure, test and debug
motion control system that uses PCI-8134/PCI-8134A cards.

Note that Motion Creator is available only for Windows XP/7 with the screen
resolution higher than 800x600 environment and can not run on DOS
system.

64 • Motion Creator

5.1 Main Menu

Main Menu will appear when executing Motion Creator. Figure 5.1 shows
the Main Menu.

Figure 5.1 Main Menu of Motion Creator

From main menu window all PCI-8134/PCI-8134A cards and their axes and
the corresponding status can be viewed. First of all, check if all the PCI-
8134/PCI-8134A cards which are plugged in the PCI-Bus can be viewed on
“Select Card” column. Next select the card and axis you want to configure
and operate. Since there are totally four axes on a card, the axis number of
first axis on n-the card will be numbered as 4*(n-1). Base address and IRQ
level of the card are also shown on this window.

Motion Creator • 65

5.2 Axis Configuration Window

Press the “Config Axis” button on the Main Menu will enter the Axis

Configuration window. Figure 5.2 shows the window.

Figure 5.2 Axis Configuration Window

the Axis Configuration window includes the following setting items which
cover most I/O signals of PCI-8134/PCI-8134A cards and part of the
interrupt factors.
• Pulse I/O Mode:

Related functions:

∗ set_pls_outmode() for “Pulse Output Mode” property.
∗ set_cnt_src() for “Pulse Input Active” property.

66 • Motion Creator

∗ set_pls_iptmode() for “Pulse Input Mode” property.

Motion Creator • 67

• Mechanical Signal:

 Related functions:

∗ set_home_config() for “Home Signal” and “Index Signal” property.
∗ set_sd_logic() for “Slow Down Point Signal” property.

• Servo Motor Signal:

 Related functions:

∗ set_alm_logic() for “Alarm Signal” property.
∗ set_inp_logic() for “INP” property.

• Manual Pulser Input Mode:

 Related functions:

∗ set_manu_iptmode() for “Manual Pulser Input Mode” property.
• Interrupt Factor:

 Related functions:

∗ set_int_factor() for “INT Factor” property.
• Home Mode:

 Related functions:

∗ set_home_config() for “Home Mode” property.

The details of each section are shown at its related functions.

After selecting all the items you want to configure, user can choose to push
the “Save Configurations “ button on the right bottom side. If you push this
button, all the configurations you select for system integration will be saved
to a file called “8134.cfg”. This file is very helpful when user is developing
their own application programs. The following example illustrate how to
make use of this function. This example program is shown in C language
form.

Main ()
{
 _8134_intial (); // Initialize the PCI-8134/PCI-

8134A cards
 _8134_Set_Config (); // Configure PCI-8134/PCI-8134A cards

according
 :
 // to 8134.cfg
 :
}

68 • Motion Creator

Where _8134_initial () and _8134_Set_Config () can be called from the
function library we provide. _8134_initial () should be the first function called
within main {} function. It will check all the PCI-8134/PCI-8134A existed and
give the card a base address and IRQ level. _8134_Set_Config () will
configure the PCI-8134/PCI-8134A cards according to “8134.cfg”. That is,
the contents of Axis Configuration Window can be transferred to the

application program by this function called.

Figure 5.3 Axis Operation window

Motion Creator • 69

5.3 Axis Operation Windows

Press the “Operate Axis” button on the Main Menu or Axis Configuration
Menu will enter the Axis Configuration window. Figure 5.3 shows the
window. User can use this window to command motion, monitor all the I/O
status for the selected axis. This window includes the following displays and
controls:

• Motion Status Display,
• Axis Status Display
• I/O Status Display
• Set Position Control
• Operation Mode Control
• Motion Parameter Control
• Play Key Control
• Velocity Profile Selection
• Repeat Mode

5.3.1 Motion Status Display

The Motion Status display provides a real-time display of the axis’s position
in the Command, Actual, Error fields. Motion Creator automatically updates
these command, actual and error displays whenever any of the values
change.

When Pulse Input Active property is Axis Configuration Window is set to
Enable, the Actual Position read will be from the external encoder inputs
(EA, EB). Else, it will display the command pulse output when set to Disable.

5.3.2 Axis Status Display
The Axis Status display provides a real-time display of the axis’s status.

It displays the status (Yes (for logical True) or No (for logical False)) for In
Position or In Motion or displays there is Interrupt Events Occurs. When In
motion, you can check the motion done status in the next column. In
Position range can be specified in the Pos_Err column.

5.3.3 I/O Status Display

Use I/O Status display to monitor the all the I/O status of PCI-8134/PCI-
8134A. The Green Light represents ON status, Red Light represents OFF
status and BLACK LIGHT represents that I/O function is disabled. The

70 • Motion Creator

ON/OFF status is read based on the setting logic in Axis Configuration
window.

Motion Creator • 71

5.3.4 Set Position Control
Use the Set Position Control to arbitrarily change the actual position of
axis.Write the position wanting to specify into the column and click the “Set
Position” button will set the actual position to the specified position.

5.3.5 Operation Mode Control

There are four Operation Modes mentioned in Chapter 4 can be tested in
the Axis Operation window. They are “Continuous Move Mode”, “Preset
Mode Operation”, “Home Mode Operation”, “Manual Mode Operation”.
• Continuous Move Mode:

Press “Continuous Move” button will enable Continuous Velocity motion as
specified by values entered in “Start Velocity” and “Maximum Velocity” 2
fields of Motion Parameters Control. The steady state moving velocity will
be as specified by “Maximum Velocity”. Press → to move forward or ← to
move backward. Press “STOP” to stop moving.
• Preset Mode:

Press “Absolute Mode” to enable absolute motion as specified by values
entered in “Position 1” and “Position 2” 2 fields. When selected, “Distance”
field for “Relative Mode” is disabled. Press → to move to Position 2 or ← to
move to Position 1. Press “STOP” to stop motion.

Also, user can specify repetitive motion in “Absolute Mode” by setting
“Repeat Mode” to “ON” state. When “Repeat Mode” goes “ON” and either
→ or ← is pressed., axis starts repetitive motion between Position 1 and
Position 2 until “Repeat Mode” goes “OFF” as “STOP” are clicked.

Press “Relative Mode” to enable relative motion as specified by values
entered in “Distance” fields. When selected, “Position 1” and “Position 2”
fields for “Absolute Mode” is disabled. Press → to move forward to a
distance relative to present position as specified by “Distance” or ← to
move backward.

Note that both “Absolute Mode” and “Relative Mode” are operated under a
trapezoidal velocity profile as specified by Motion Parameters Control.
• Home Return Mode:

Press “Home Move” button will enable Home Return motion. The home
returning velocity is specified by settings in Motion Parameters Control. The
arriving condition for Home Return Mode is specified in Axis Configuration

72 • Motion Creator

Window. Press → to begin returning home function. Press “STOP” to stop
moving.

Motion Creator • 73

• Manual Pulser Mode:

Press “Manual Pulser Move” button will enable motion controlled by hand
wheel pulser. Using this function, user can manually operate the axis thus
verify operation. The maximum moving velocity is limited as specified by
“Maximum Velocity”. Press “STOP” to end this mode.

Do remember to press “STOP” to end operation under this mode. Otherwise,
operations under other modes will be inhibited.

5.3.6 Motion Parameters Control

Use the Motion Parameters with the Operation Mode Control to command
motion.

• Starting Velocity: Specify the starting moving speed in pulses
per second.

• Maximum Velocity: Specify the maximum moving speed in
pulses per second.

• Acceleration: Specify the acceleration in pulses per second
square.

• Move delay: Specify time in mini seconds between movement.
• S curve Acc/dec Time: Specify time in mini second for S_curve

Movement.

5.3.7 Play Key Control

Use buttons in Play Key Control to begin or end operation.

: click button under this symbol to begin moving to Positions 2 in
Absolute Mode or moving forward in other modes.

: click button under this symbol to begin moving to Positions 1 in
Absolute Mode or moving backward in other modes.

: click button under this symbol to stop motion under any mode.
Note that this button is always in latch mode. Click again to
release “STOP” function.

74 • Motion Creator

5.3.8 Velocity Profile Selection

: Click T_Curve or S_curve to select preset movement velocity profile. The
relative parameter settings are in Motion Parameter Frame.

5.3.9 Repeat Mode

: Repeat mode is only for absolute and relative mode. After choosing a
operation mode and click repeat mode on, you can press play key to make
axis run between position 1 and 2 (in absolute mode) or run between a
range (relative mode). It is useful on demonstrations. Use Stop button to
stop this operation.

Function Library • 75

6

Function Library (8134.DLL)

This chapter describes the supporting software for PCI-8134/PCI-8134A cards.
User can use these functions to develop application program in C or Visual
Basic or C++ language.

6.1 List of Functions

Initialization Section 6.3

W_8134_Initial Card initialization
W_8134_InitialA Card initialization type A
W_8134_Close Card Close
W_8134_Set_Config Configure card according to Motion Creator’s

setting
W_8134_Get_IRQ_Channel Get IRQ channel
W_8134_Get_Base_Addr Get Base Address

Pulse Input/Output Configuration Section 6.4

set_pls_outmode Set pulse command output mode

set_pls_iptmode Set encoder input mode

set_cnt_src

Continuously Motion Mode Section 6.5

v_move Accelerate an axis to a constant velocity with trapezoidal profile
sv_move Accelerate an axis to a constant velocity with S- curve profile

v_change Change speed on the fly

76 • Function Library

v_stop Decelerate to stop

set_sd_stop_mode Set slow down stop mode

fix_max_speed Fix maximum speed setting

unfix_max_speed Unfix maximum speed setting

get_current_speed Get current speed in pps

verify_speed Get the minimum acceleration time under the

speed setting

Trapezoidal Motion Mode Section 6.6

a_move Perform an absolute trapezoidal profile move and wait for
finish
start_a_move Start an absolute trapezidal profile move

r_move Perform a relative trapezoidal profile move and wait for finish
start_r_move Start a relative trapezoidal profile move

t_move Perform a relative non-symmetrical trapezoidal profile move
and wait for finish

start_t_move Start a relative non-symmetrical trapezidal profile
move

start_ta_move Start an absolute non-symmetrical trapezidal profile
move

ta_move Start an absolute non-symmetrical trapezoidal profile move
and wait for finish

wait_for_done Wait for an axis to finish

set_rdp_mode Set Ramping down mode

S-Curve Profile Motion Section 6.7

s_move Perform an absolute S-curve profile move and wait for finish
start_s_move Start an absolute S-curve profile move

rs_move Perform a relative S-curve profile move and wait for finish
start_rs_move Start a relative S-curve profile move

tas_move Perform an absolute non-symmetrical S-curve profile move
and wait for finish

start_tas_move Start an absolute non-symmetrical S-curve profile
move

Multiple Axes Point to Point Motion Section 6.8

start_move_all Start a multi-axis trapezodial profile move

Function Library • 77

move_all Perform a multi-axis trapezodial profile move and
wait for finish

start_sa_move_all Start a multi-axis absolute S-curve profile move wait_for_all
Wait for all axes to finish

Linear Interpolated Motion Section 6.9

move_xy Perform a 2-axis linear interpolated move for X & Y
and wait for finish

move_zu Perform a 2-axis linear interpolated move for Z & U
and wait for finish

start_move_xy Start a 2-axis linear interpolated move for X & Y
start_move_zu Start a 2-axis linear interpolated move for Z & U

Interpolation Parameters Configuring Section 6.10

map_axes Maps coordinated motion axes x, y, z…
set_move_speed Set the vector velocity
set_move_accel Set the vector acceleration
time
set_move_ratio Set the axis resolution ratios

Home Return Mode Section

6.11
set_home_config
home_move

Set or get the home/index
logic configuration
Start a home return
actionulse command output
mode

78 • Function Library

Manual Pulser Motion Section 6.12

set_manu_iptmode Set pulser input mode and operation mode

manu_move Begin a manual pulser movement

Motion Status Section 6.13

motion_done Check if the axis is in motion

Servo Drive Interface Section 6.14

set_alm_logic Set alarm logic and alarm mode
set_inp_logic Set In-Position logic and enable/disable
set_sd_logic Set slow down point logic and
enable/disable set_erc_enable Set the ERC output
enable/disable

I/O Control and Monitoring Section 6.15

W_8134_Set_SVON Set the state of general purpose output
bit get_io_status Get all the I/O staus of PCI-8134

Position Control Section

6.16

Interrupt Control Section
6.17

W_8134_INT_Enable
W_8134_INT_Disable

Set Interrupt Event enable
Set Interrupt Event enable

W_8134_Set_INT_Control
set_int_factor get_int_statusg factors

Get the interrupting status of axis

link_axis_interrupt Link a callback function for
interrupt

6.2 C/C++ Programming Library

This section gives the details of all the functions. The function prototypes and
some common data types are decelerated in PCI-8134.H. These data types
are used by PCI-8134/PCI-8134A library. We suggest you to use these data
types in your application programs. The following table shows the data type
names and their range.

Function Library • 79

Type Name Description Range
U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed long integer -2147483648 to 2147483647
U32 32-bit unsigned long integer 0 to 4294967295

F32
32-bit single-precision floating-
point

-3.402823E38 to 3.402823E38

F64
64-bit double-precision floating-
point

-1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

6.3 Initialization

@ Name
W_8134_Initial – Card Initialization
W_8134_InitialA – Another Card Initialization Method
W_8134_Close – Card Close
W_8134_Set_Config – Configure Card according to Motion Creator
W_8134_Get_IRQ_Channel – Get the card’s IRQ number
W_8134_Get_ Base_Addr – Get the card’s base address

@ Description

W_8134_Initial:
This function is used to initialize PCI-8134 card. It has to be initialized by
this function before calling other functions. The parameter definitions of
this function are different from OS. Please pay attention it.

W_8134_InitialA:
This function is like above one. The only difference is parameter
definition. We suggest that users use this function for card
initialization because this function is OS independent.

W_8134_Close:
This function must be called before the program ends.

W_8134_Set_Config:
This function is used to configure PCI-8134 card. All the I/O
configurations and some operating modes appeared on “Axis
Configuration Window” of Motion Creator will be set to PCI-8134. Click
“Save Configuration” button on the “Axis Configuration Window” if you
want to use this function in the application program. Click “Save
Configuration” button will save all the configurations to a file call
“8134.cfg”. This file will appear in the Windows’ system directory.

W_8134_Get_IRQ_Channel :

80 • Function Library

This function is used to get the PCI-8134 card’s IRQ number.
W_8134_Get_Base_Addr :

This function is used to get the PCI-8134 card’s base address.
@ Syntax

C/C++ (DOS)
U16 _8134_Initial (U16 *existCards, PCI_INFO *info)
U16 _8134_Close(U16 cardNo)
U16 _8134_Set_Config(char* filename)

C/C++ (Windows)
U16 W_8134_Initial(U16 *existCards, PCI_INFO *pciInfo)

(Windows 9x Only)
U16 W_8134_Initial(I32 cardNo) (Windows NT/2K/XP)
U16 W_8134_InitialA(I16 *Totalcard) (All Windows)
U16 W_8134_Close(I32 cardNo) (All Windows)
U16 W_8134_Set_Config(char *fileName)
void W_8134_Get_IRQ_Channel(U16 cardNo, U16 *irq_no)
void W_8134_Get_Base_Addr(U16 cardNo, U16 *base_addr)

Visual Basic (Windows)
W_8134_Initial (existCards As Integer, pciInfo As

PCI_INFO) As Integer (Windows 9x Only)
W_8134_Initial (ByVal cardNo As Long) As Integer

(Windows NT/2K/XP)
W_8134_Close (ByVal cardNo As Long) As Integer

(Windows NT/2K/XP)
W_8134_Set_Config (ByVal fileName As String) As

Integer
W_8134_Get_IRQ_Channel (ByVal cardno As Integer,

irq_no As Integer)
W_8134_Get_Base_Addr (ByVal cardno As Integer,

base_addr As Integer)
@ Argument

existCards: numbers of existing PCI-8134 cards
info: relative information of the PCI-8134 cards
cardNo: The PCI-8134 card index number.

filename: A configuration file from MotionCreator
irq_no: The card’s IRQ channel number
base_addr: The card’s base address

@ Return Code
ERR_NoError
ERR_BoardNoInit
ERR_PCIBiosNotExist

6.4 Pulse Input / Output Configuration

Function Library • 81

@ Name
set_pls_outmode – Set the configuration for pulse command output.
set_pls_iptmode – Set the configuration for feedback pulse input.
set_cnt_src – Enable/Disable the external feedback pulse input

@ Description
set_pls_outmode:

Configure the output modes of command pulse. There are two modes for
command pulse output.

set_pls_iptmode:
Configure the input modes of external feedback pulse. There are four
types for feedback pulse input. Note that this function makes sense only
when cnt_src parameter in set_cnt_src() function is enabled.

set_cnt_src:
If external encoder feedback is available in the system, set the cnt_src
parameter in this function to Enabled state. Then internal 28-bit up/down
counter will count according configuration of set_pls_iptmode() function.
Or the counter will count the command pulse output.

@ Syntax
C/C++ (DOS, Windows)

U16 set_pls_outmode(I16 axis, I16 pls_outmode)
U16 set_pls_iptmode(I16 axis, I16 pls_iptmode)
U16 set_cnt_src(I16 axis, I16 cnt_src)

Visual Basic (Windows)
set_pls_outmode (ByVal axis As Long, ByVal pls_outmode

As Long) As Integer
set_pls_iptmode (ByVal axis As Long, ByVal pls_iptmode

As Long) As Integer
set_cnt_src (ByVal axis As Long, ByVal cnt_src As Long)

As Integer
@ Argument

axis:axis number designated to configure pulse
Input/Output.

pls_outmode: setting of command pulse output mode for
OUT and DIR pins.
pls_outmode=0, OUT/DIR type pulse output.
pls_outmode=1, CW/CCW type pulse output.

pls_iptmode: setting of encoder feedback pulse input
mode for EA and EB pins.

 pls_iptmode=0, 1X AB phase type pulse input.
 pls_iptmode=1, 2X AB phase type pulse input.
 pls_iptmode=2, 4X AB phase type pulse input.

82 • Function Library

pls_iptmode=3, CW/CCW type pulse input.

cnt_src: Counter source
 cnt_src=0, counter source from command pulse
 cnt_src=1, counter source from external input

EA, EB
@ Return Code

ERR_NoError

6.5 Continuously Motion Move

@ Name
v_move – Accelerate an axis to a constant velocity with trapezoidal
profile
sv_move – Accelerate an axis to a constant velocity with S-curve profile
v_change – Change speed on the fly
v_stop – Decelerate to stop

set_sd_stop_mode – Set slow down stop mode
fix_max_speed – Fix maximum speed setting
unfix_max_speed – Unfix maximum speed setting
get_current_speed – Get axis’ current output pulse rate
verify_speed – Get the minimum acceleration time under the speed

setting
_8134_set_sd_stop_mode – Set slow down stop mode

@ Description
v_move:

This function is used to accelerate an axis to the specified constant
velocity. The axis will continue to travel at a constant velocity until the
velocity is changed or the axis is commanded to stop. The direction is
determined by the sign of velocity parameter.

sv_move:
This function is similar to v_stop() but the accelerating is S-curve.

v_change:
You can change the velocity profile of command pulse ouput during
operation by this function. This function changes the maximum velocity
setting during operation.

v_stop:
This function is used to decelerate an axis to stop anytime.

Function Library • 83

set_sd_stop_mode:

Select the motion actions for slow down only or slow down then stop
when SD pin is turned on

fix_max_speed:
This function is used to fix the speed resolution multiplier. The higher it is
set, the coarser speed step is performed but the higher acceleration rate
is obtained. Once it is set, the motion function will use this multiplier
setting instead. Notice that this value will not affect the maximum speed
of the motion command.
unfix_max_speed:

This function is used to unfix the speed resolution multiplier. Once it
is unfixed, all motion command will calculate a optimized multiplier
value according to the maximum speed setting in motion function.

verify_speed:
This function is used to get the minimum acceleration under a
maximum speed setting. This function will not affect any speed or
acceleration setting. It is only for offline checking.

_8134_set_sd_stop_mode:
Select the motion actions for slow down only or slow down then stop
when SD pin is turned on

@ Syntax

C/C++ (DOS, Windows)
U16 v_move(I16 axis, F64 str_vel, F64 max_vel, F64

Tacc)
U16 sv_move(I16 axis, F64 str_vel, F64 max_vel, F64

Tlacc, F64
Tsacc)

U16 v_change(I16 axis, F64 max_vel, F64 Tacc)
U16 v_stop(I16 axis, F64 Tdec)

U16 set_sd_stop_mode(I16 axis,I16 stop_mode)
U16 fix_max_speed(I16 axis, F64 max_vel)
U16 unfix_max_speed(I16 axis)
F64 verify_speed(F64 StrVel, F64 MaxVel, F64 *minAccT, F64

*maxAccT, F64 MaxSpeed)
I16 _8134_set_sd_stop_mode(I16 AxisNo, I16 sd_mode)

Visual Basic (Windows)

v_move (ByVal axis As Integer, ByVal str_vel As Double,
ByVal max_vel As Double, ByVal Tacc As Double) As
Integer

sv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tlacc,
F64 Tsacc) As Integer

v_change(I16 axis, F64 max_vel, F64 Tacc) As Integer

84 • Function Library

v_stop (ByVal axis As Integer, ByVal Tacc As Double)
As Integer set_sd_stop_mode (ByVal axis As Integer, ByVal
stopmode As Integer) As Integer

fix_max_speed(ByVal axis As Integer, ByVal max_vel As Double)

As Integer
unfix_max_speed(ByVal axis As Integer) As Integer
verify_speed(ByVal str_vel As Double, ByVal max_vel As Double,

minAccT As Double, maxAccT As Double, ByVal MaxSpeed
As Double) As Double

_8134_set_sd_stop_mode (ByVal axis As Integer, ByVal stopmode
As Integer) As Integer

@ Argument

axis: axis number designated to move or stop.
str_vel: starting velocity in unit of pulse per second
max_vel: maximum velocity in unit of pulse per second
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second

Tlacc: specified linear acceleration time of S-
curve in unit of second
Tsacc: specified S-curve acceleration time of S-
curve in unit of second
stopmode: 0=slow down to starting velocity, 1=slow
down then stop
*minAccT: calculated minimum acceleration time
*maxAccT: calculated maximum acceleration time
MaxSpeed: The value of maximum speed setting in
motion function or in fix_max_speed function

@ Return Code

ERR_NoError
The return value of verify_speed is the calculated starting velocity

6.6 Trapezoidal Motion Mode

@ Name
start_a_move– Begin an absolute trapezoidal profile motion
start_r_move– Begin a relative trapezoidal profile motion
start_t_move– Begin a non-symmetrical relative trapezoidal profile

motion
start_ta_move – Begin a non-symmetrical absolute trapezoidal profile
motion

Function Library • 85

a_move– Begin an absolute trapezoidal profile motion and wait for
completion
r_move– Begin a relative trapezoidal profile motion and wait for
completion
t_move – Begin a non-symmetrical relative trapezoidal profile motion
and wait for completion
ta_move– Begin a non-symmetrical absolute trapezoidal profile motion
and wait for completion

wait_for_done – Wait for an axis to finish
set_rdp_mode – Set ramping down mode

@ Description
start_a_move() :

This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified absolute
position, immediately returning control to the program. The acceleration
rate is equal to the deceleration rate. a_move() starts an absolute
coordinate move and waits for completion.

start_r_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the relative distance,
immediately returning control to the program. The acceleration rate is
equal to the deceleration rate. r_move() starts a relative move and waits
for completion.

start_ta_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified

absolute position, immediately returning control to the program..
ta_move() starts an absolute coordinate move and waits for
completion.

start_t_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the relative distance,
immediately returning control to the program.. t_move() starts a relative
coordinate move and waits for completion.
The moving direction is determined by the sign of pos or dist
parameter.If the moving distance is too short to reach the specified
velocity, the controller will accelerate for the first half of the distance and
decelerate for the second half (triangular profile). wait_for_done() waits for
the motion to complete.
wait_for_done():

This function will return after the specified axis is not busy for motion.
set_rdp_mode():

Switch the motion slow down mode for auto or manual mode. The
mode is default in manual mode.

@ Syntax
C/C++ (DOS, Windows)

86 • Function Library

U16 start_a_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tacc)

U16 a_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel,
F64Tacc)

U16 start_r_move(I16 axis, F64 distance, F64 str_vel,
F64 max_vel, F64 Tacc)

U16 r_move(I16 axis, F64 distance, F64 str_vel, F64
max_vel, F64Tacc)

U16 start_t_move(I16 axis, F64 dist, F64 str_vel, F64
max_vel, F64 Tacc, F64 Tdec)

U16 t_move(I16 axis, F64 dist, F64 str_vel, F64
max_vel, F64 Tacc, F64 Tdec)

U16 start_ta_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tacc, F64 Tdec)

U16 ta_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64Tacc, F64 Tdec)

U16 wait_for_done(I16 axis)
U16 set_rdp_mode(I16 axisno, I16 mode)

Visual Basic (Windows)
start_a_move (ByVal axis As Integer, ByVal pos As

Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tacc l As Double) As Integer

a_move (ByVal axis As Integer, ByVal pos As Double,
ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tacc As Double) As Integer

start_r_move (ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tacc As Double) As Integer

r_move (ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tacc As Double) As Integer
start_t_move (ByVal axis As Integer, ByVal

distance As Double, ByVal str_vel As Double,
ByVal max_vel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

t_move (ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tacc As Double, ByVal Tdec As Double)
As Integer

start_ta_move(ByVal axis As Integer, ByVal pos As
Double , ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tacc As Double, ByVal Tdec As Double)
As Interger ta_move(ByVal axis As Integer, ByVal
pos As Double , ByVal str_vel As Double, ByVal
max_vel As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

wait_for_done(ByVal axis As Integer) As Integer
set_rdp_mode(ByVal axisno As Integer, ByVal mode As

Function Library • 87

Integer) As Integer
@ Argument

axis: axis number designated to move.
pos: specified absolute position to move
distance or dist: specified relative distance to move
str_vel: starting velocity of a velocity profile in unit of pulse per second
max_vel: starting velocity of a velocity profile in unit of pulse per second
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second Mode: 0=Manual

Mode(default), 1=Auto Mode
@ Return Code

ERR_NoError
ERR_MoveError

6.7 S-Curve Profile Motion

@ Name
start_s_move– Begin a S-Curve profile motion
s_move– Begin a S-Curve profile motion and wait for completion
start_rs_move– Begin a relative S-Curve profile motion
rs_move– Begin a relative S-Curve profile motion and wait for
completion
start_tas_move– Begin a non-symmetrical absolute S-curve profile
motion
tas_move– Begin a non-symmetrical absolute S-curve profile motion
and wait for completion

@ Description
start_s_move() :

This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified absolute
position, immediately returning control to the program. The acceleration
rate is equal to the deceleration rate. s_move() starts an absolute
coordinate move and waits for completion.

start_rs_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the relative distance,
immediately returning control to the program. The acceleration rate is
equal to the deceleration rate. rs_move() starts a relative move and waits
for completion.

start_tas_move() :
This function causes the axis to accelerate from a starting velocity, slew
at constant velocity, and decelerate to stop at the specified absolute
position, immediately returning control to the program. tas_move() starts
an absolute coordinate move and waits for completion.

88 • Function Library

@ Syntax
C/C++ (DOS, Windows)

U16 start_s_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc)

U16 s_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel,
F64 Tlacc, F64 Tsacc)

U16 start_rs_move(I16 axis, F64 distance, F64 str_vel,
F64 max_vel, F64 Tlacc, F64 Tsacc)

U16 rs_move(I16 axis, F64 distance, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc)

U16 start_tas_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc, F64 Tldec, F64 Tsdec)

U16 tas_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tlacc, F64 Tsacc, F64 Tldec, F64 Tsdec)

Visual Basic (Windows)
start_s_move(ByVal axis As Integer, ByVal pos As

Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tlacc As Double, ByVal Tsacc As
Double) As Integer

s_move(ByVal axis As Integer, ByVal pos As Double,
ByVal str_vel As Double, ByVal max_vel As Double
ByVal Tlacc As Double, ByVal Tsacc As Double) As
Integer

start_rs_move(ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tlacc As Double, ByVal Tsacc As
Double) As Integer rs_move(ByVal axis As Integer,
ByVal distance As Double, ByVal str_vel As Double,
ByVal max_vel As Double, ByVal Tlacc As Double,
ByVal Tsacc As Double) As Integer
start_tas_move(ByVal axis As Integer, ByVal pos As
Double, ByVal str_vel As Double, ByVal max_vel As
Double, ByVal Tlacc As Double, ByVal Tsacc As
Double, ByVal Tldec As Double, ByVal Tsdec As
Double) As Integer

tas_move(ByVal axis As Integer, ByVal pos As Double
ByVal str_vel As Double, ByVal max_vel As Double
ByVal Tlacc As Double, ByVal Tsacc As Double, ByVal
Tldec As Double, ByVal Tsdec As Double) As Integer

@ Argument
axis: axis number designated to move.
pos: specified absolute position to move
distance or dist: specified relative distance to move
str_vel: starting velocity of a velocity profile in unit of pulse per second
max_vel: starting velocity of a velocity profile in unit of pulse per second
Tlacc: specified linear acceleration time in unit of second
Tsacc: specified S-curve acceleration time in unit of second
Tldec: specified linear deceleration time in unit of second

Function Library • 89

Tsdec: specified S-curve deceleration time in unit of second
@ Return CodeERR_NoError ERR_MoveError

6.8 Multiple Axes Point to Point Motion

@ Name
start_move_all– Begin a multi-axis trapezoidal profile motion
move_all– Begin a multi-axis trapezoidal profile motion and wait
for completion
wait_for_all– Wait for all axes to finish
start_sa_move_all– Begin a multi-axis S-curve profile motion
move_all– Begin a multi-axis trapezoidal profile motion and wait for

completion
@ Description

start_move_all() :
This function causes the specified axes to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at the specified
absolute position, immediately returning control to the program. The move
axes are specified by axes and the number of axes are defined by
n_axes. The acceleration rate of all axes is equal to the deceleration rate.
move_all() starts the motion and waits for completion. Both functions
guarantee that motion begins on all axes at the same sample time. Note
that it is necessary to make connections according to Section 3.12 on
CN4 if these two functions are needed.
wait_for_done() waits for the motion to complete for all of the specified
axes. start_sa_move_all() is similar to this function.
The following code demos how to utilize these functions. This code
moves axis 0 and axis 4 to position 8000.0 and 120000.0 respectively. If
we choose velocities and acelerations that are propotional to the ratio of
distances, then the axes will arrive at their endpoints at the same time
(simultaneous motion).

#include “pci_8134.h”

I16 axes [2] = {0, 4};
 F64
 positions[2] = {8000.0, 12000.0}; F64 str_vel[2]={0.0, 0.0};
 F64 max_vel[2]={4000.0, 6000.0}; F64 Tacc[2]]={0.04, 0.06};

move_all(2, axes, positions, str_vel, max_vel, Tacc);

@ Syntax
C/C++ (DOS, Windows)

U16 start_move_all(I16 len, I16 *axes, F64 *pos, F64
*str_vel, F64 *max_vel, F64 *Tacc)

90 • Function Library

U16 move_all(I16 len, I16 *axes, F64 *pos, F64
*str_vel, F64 *max_vel, F64 *Tacc)

U16 wait_for_all(I16 len, I16 *axes)
U16 start_sa_move_all(I16 len, I16 *axes, F64 *pos,

F64 *str_vel, F64 *max_vel, F64 *Tlacc, F64 *Tsacc)

Visual Basic (Windows)
start_move_all(ByVal len As Integer, ByRef axis As

Integer , ByRef pos As Double, ByRef str_vel As
Double, ByRef max_vel As Double, ByRef Tacc As
Double) As Integer

move_all(ByVal len As Integer, ByRef axis As Integer,
ByRef pos As Double, ByRef str_vel As Double, ByRef
max_vel As Double, ByRef Tacc As Double) As Integer
wait_for_all(ByVal n_axes As Integer, ByRef axis As
Integer) As Integer

start_move_all(ByVal len As Integer, ByRef axis As
Integer , ByRef pos As Double, ByRef str_vel As
Double, ByRef max_vel As Double, ByRef Tlacc As
Double, ByRef Tsacc As Double) As Integer

@ Argument
n_axes: number of axes for simultaneous motion
*axes: specified axes number array designated to move.
*pos: specified position array in unit of pulse
*str_vel: starting velocity array in unit of pulse per second
*max_vel: maximum velocity array in unit of pulse per second
*Tacc: acceleration time array in unit of second

@ Return Code
ERR_NoError
ERR_MoveError

Function Library • 91

6.9 Linear Interpolated Motion

@ Name
move_xy – Perform a 2-axes linear interpolated motion between X & Y
and wait for finish
move_zu – Perform a 2-axes linear interpolated motion between Z & U
and wait for finish
start_move_xy – Start a 2-axes linear interpolated motion between X &
Y
start_move_zu – Start a 2-axes linear interpolated motion between Z &
U

@ Descriptionmove_xy, move_zu:

These two functions cause a linear interpolation motion between two axes
and wait for completion. The moving speed should be set before
performing these functions. Relations of speed between two axes are
given in Chapter 4.1.4.

start_move_xy, start_move_zu:
These two functions cause a linear interpolation motion between two
axes without waiting for completion. After issuing this function, it will
start to move and leave the function at the same time.

@ Syntax
C/C++ (DOS, Windows)

U16 move_xy(I16 cardNo, F64 x, F64 y)
U16 move_zu(I16 cardNo, F64 z, F64 u)
U16 start_move_xy(I16 cardNo, F64 x, F64 y)
U16 start_move_zu(I16 cardNo, F64 z, F64 u)

Visual Basic (Windows)
move_xy (ByVal cardno As Long, ByVal x As Double,

ByVal y As Double) As Integer
move_zu (ByVal cardno As Long, ByVal z As Double,

ByVal u As Double) As Integer
start_move_xy (ByVal cardno As Long, ByVal x As Double,

ByVal yAs Double) As Integer
start_move_zu (ByVal cardno As Long, ByVal z As
Double, ByVal u As Double) As Integer

@ Argument
cardNo: card number designated to perform interpolating function.
x, y, z, u: absolute target position of linear interpolation motion

@ Return Code
ERR_NoError

92 • Function Library

6.10 Interpolation Parameters Configuring

@ Name
map_axes – Configure the axis map for coordinated motion
set_move_speed – Set the vector velocity
set_move_accel – Set the vector acceleration time
set_move_ratio – Set the axis resolution ratios

_8134_set_move_ratio – Set the axis resolution ratios
@ Description

map_axes:
This function initializes a group of axes for coordinated motion.
map_axes() must be called before any coordinated motion function is
used. For PCI-8134, coordinated motion is made only between two axes.
For example, if the z and u coordinates correspond to axes 2 and 3, the
following code would be used to define the coordinate system:

 int ax[2] = {2, 3};
 map_axes(2, ax);
 set_move_speed(10000.0); // Set vector velocity = 10000pps
 set_move_accel(0.1); // Set vector accel. time = 0.1 sec

set_move_speed, set_move_accel:
The vector velocity and vector acceleration can be specified for
coordinated motion by this two functions. Codes at last samples
demonstrates how to utilize this two function associated with map_axes().

set_move_ratio:
This function configures scale factors for the specified axis. Usually, the
axes only need scale factors if their mechanical resolutions are

different. For example, if the resolution of feedback sensors is two
times resolution of command pulse, then ratio = 2.

_8134_set_move_ratio:

This function configures scale factors for the specified axis. Usually, the
axes only need scale factors if their mechanical resolutions are different.
For example, if the resolution of feedback sensors is two times
resolution of command pulse, then ratio = 2.

@ Syntax
C/C++ (DOS, Windows)

U16 map_axes(U16 n_axes, U16 *map_array)
U16 set_move_speed(F64 str_vel, F64 max_vel)
U16 set_move_accel(F64 Tacc)
U16 set_move_ratio(U16 axis, F64 ratio)
I16 _8134_set_move_ratio(I16 AxisNo, F64 move_ratio)

Visual Basic (Windows)
map_axes (ByVal n_axes As Integer, map_array As

Integer) As Integer

Function Library • 93

set_move_speed (ByVal str_vel As Double, ByVal max_vel
As Double) As Integer

set_move_accel (ByVal accel As Double) As Integer
set_move_ratio (ByVal axis As Integer, ByVal ratio As

Double) As Integer
_8134_set_move_ratio (ByVal axis As Integer, ByVal

ratio As Double) As Integer
@ Argument

axis: axis number designated to configure
n_axes: number of axes for coordinated motion
*map_array: specified axes number array designated to move.
str_vel: starting velocity in unit of pulse per second max_vel: maximum

velocity in unit of pulse per second Tacc: specified acceleration time
in unit of second

ratio: ratio of (feedback resolution)/(command resolution)

@ Return Code
ERR_NoError

6.11 Home Return

@ Name
set_home_config – Set the configuration for home return.
home_move – Perform a home return move.

@ Description
set_home_config:

Configure the logic of origin switch and index signal needed for
home_move() function. If you need to stop the axis after EZ signal is
active(home_mode=1 or 2), you should keep placing ORG signal in the
ON status until the axis stop. If the pulse width of ORG signal is too short
to keep it at ON status till EZ goes ON, you should select the org_latch as
enable. The latched condition is cancelled by the next start or by disabling
the org_latch. Three home return modes are available. Refer to
Chapter4.1.5 for the setting of home_mode control.

home_move:
This function will cause the axis to perform a home return move according
to the setting of set_home_config() function. The direction of moving is
determined by the sign of velocity parameter(svel, mvel). Since the
stopping condition of this function is determined by home_mode setting,
user should take care to select the initial moving direction. Or user should
take care to handle the condition when limit switch is touched or other
conditions that is possible causing the axis to stop. Executing v_stop()
function during home_move() can also cause the axis to stop.

@ Syntax
C/C++ (DOS, Windows 95/NT)

94 • Function Library

U16 set_home_config(I16 axis, I16 home_mode, I16
org_logic, I16 org_latch, I16 EZ_logic)

U16 home_move(I16 axis, F64 svel, F64 mvel, F64 accel)
Visual Basic (Windows)

set_home_config (ByVal axis As Long, ByVal home_mode
As Long, ByVal org_logic As Long, ByVal org_latch
As Long, ByVal EZ_logic As Long) As Integer

home_move (ByVal axis As Long, ByVal str_vel As Double,
ByVal max_vel As Double, ByVal accel As Double) As
Integer

@ Argument
axis: axis number designated to configure and perform home returning
home_mode: stopping modes for home return.
 home_mode=0, ORG active only.
 home_mode=1, ORG active and then EZ active to stop.
 home_mode=2, ORG active and then EZ active slow down to stop.

home_mode=3~7, please refer to the appendix A
org_logic: Action logic configuration for ORG signal
 org_logic=0, active low; org_logic=1, active high
org_latch: Latch state control for ORG signal
 org_latch=0, don’t latch input; org_latch=1, latch input.
EZ_logic: Action logic configuration for EZ signal
 EZ_logic=0, active low; EZ_logic=1, active high.

@ Return Code
ERR_NoError

6.12 Manual Pulser Motion

@ Name
set_manu_iptmode – Set pulser input mode and operation mode
manu_move – Begin a manual pulser movement

@ Description
set_manu_iptmode:

Four types of pulse input modes can be available for pulser or hand
wheel. User can also move two axes simultaneously with one pulser by
selecting the operation mode to common mode. Or move the axes
independently by selecting the operation mode to independent mode.

manu_move:
Begin to move the axis according to manual pulser input as this command
is written. The maximum moving velocity is limited by mvel parameter.
Not until the v_stop() command is written won’t system end the manual
move mode.

@ Syntax
C/C++ (DOS, Windows)

U16 set_manu_iptmode(I16 axis, I16 ipt_mode, I16
op_mode)

Function Library • 95

U16 manu_move(I16 axis, F64 mvel)
Visual Basic (Windows)

set_manu_iptmode (ByVal axis As Long, ByVal
manu_iptmode As Long, ByVal op_mode As Long) As
Integer

manu_move (ByVal axis As Long, ByVal max_vel As Double)
As Integer

@ Argument
axis: axis number designated to start manual move
ipt_mode: setting of manual pulser input mode from PA and PB pins

ipt_mode=0, 1X AB phase type pulse input.
ipt_mode=1, 2X AB phase type pulse input.
 ipt_mode=2, 4X AB phase type pulse input.
 ipt_mode=3, CW/CCW type pulse input.
op_mode: common or independent mode selection
 op_mode=0, Independent for each axis
 op_mode=1,PAX, PBX common for PAY, PBY
 or PAZ, PBZ common for PAU, PBU.
mvel: limitation for maximum velocity

@ Return Code
ERR_NoError

6.13 Motion Status

@ Name
motion_done – Return the status when a motion is done

@ Description
motion_done:

Return the motion status of PCI-8134.
Definition of return value is as following:
 Return value =
 0: the axis is busying.
 1: a movement is finished
 2: the axis stops at positive limit switch
 3: the axis stops at negative limit switch
 4: the axis stops at origin switch
 5: the axis stops because the ALARM signal is active
The following code demonstrates how to utilize this function:

// Begin a trapezoidal velocity profile motion start_a_move(axis_x, pos1,

svel, mvel, Tacc);

// Wait for completion while(!motion_done(axis_x));
@ Syntax

C/C++ (DOS, Windows)
U16 motion_done(I16 axis)

96 • Function Library

Visual Basic (Windows)
motion_done (ByVal axis As Integer) As Integer

@ Argument
axis: axis number of motion status

@ Return Code
 ERR_NoError

6.14 Servo Drive Interface

@ Name
set_alm_logic – Set alarm logic and alarm mode
set_inp_logic – Set In-Position logic and enable/disable
set_sd_logic – Set slow down point logic and enable/disable
set_erc_enable – Set ERC pin output enable/disable
@ Description set_alm_logic:

Set the active logic of ALARM signal input from servo driver. Two
reacting modes are available when ALARM signal is active.

set_inp_logic:
Set the active logic of In-Position signal input from servo driver. Users
can select whether they want to enable this function. Default state is
disabled.

set_sd_logic:
Set the active logic and latch control of SD signal input from mechanical
system. Users can select whether they want to enable this function.
Default state is disabled.

set_erc_enable:
You can set ERC pin output enable/disable by this function. Default state
is enabled.

@ Syntax
C/C++ (DOS, Windows)

U16 set_alm_logic(I16 axis, I16 alm_logic, I16
alm_mode)

U16 set_inp_logic(I16 axis, I16 inp_logic, I16
inp_enable)

U16 set_sd_logic(I16 axis, I16 sd_logic, I16 sd_latch,
I16 sd_enable)

U16 set_erc_enable(I16 axis, I16 erc_enable)
Visual Basic (Windows)

set_alm_logic (ByVal axis As Long, ByVal alm_logic As
Long, ByVal alm_mode As Long) As Integer

set_inp_logic (ByVal axis As Long, ByVal inp_logic As
Long, ByVal inp_enable As Long) As Integer

set_sd_logic (ByVal axis As Long, ByVal sd_logic As
Long, , ByVal sd_latch As Long, ByVal sd_enable As
Long) As Integer

Function Library • 97

set_erc_enable(ByVal axis As Integer, ByVal erc_enable
As Long) As Integer

@ Argument
axis: axis number designated to configure
alm_logic: setting of active logic for ALARM signal
 alm_logic=0, active LOW.
 alm_logic=1, active HIGH.
inp_logic: setting of active logic for INP signal
 inp_logic=0, active LOW.
 inp_logic=1, active HIGH.
sd_logic: setting of active logic for SD signal
 sd_logic=0, active LOW.
 sd_logic=1, active HIGH.
sd_latch: setting of latch control for SD signal
 sd_logic=0, do not latch.
 sd_logic=1, latch.

alm_mode: reacting modes when receiving ALARM signal.
 alm_mode=0, motor immediately stops.
 alm_mode=1, motor decelerates then stops.
inp_enable: INP function enable/disable
 inp_enable=0, Disabled
 inp_enable=1, Enabled
sd_enable: Slow down point function enable/disable
 sd_enable=0, Disabled
 sd_enable=1, Enabled
erc_enable: ERC pin output enable/disable
 erc_enable=0, Disabled
 erc_enable=1, Enabled

@ Return Code
ERR_NoError

6.15 I/O Control and Monitoring

@ Name
W_8134_Set_SVON – Set state of general purpose output pin
get_io_status – Get all the I/O status of PCI-8134

@ Description

W_8134_Set_SVON:
Set the High/Low output state of general purpose output pin SVON.

get_io_status:
Get all the I/O status for each axis. The definition for each bit is as
following:

98 • Function Library

Bit Name Description
0 +EL Positive Limit Switch
1 -EL Negative Limit Switch
2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch
5 EZ Index signal
6 ALM Alarm Signal
7 SVON SVON of PCL5023 pin output
8 RDY RDY pin input
9 INT Interrupt status

10 ERC ERC pin output
11 INP In-Position signal input

@ Syntax

C/C++ (DOS)
U16 _8134_Set_SVON(I16 axis, I16 on_off)
U16 get_io_status(I16 axis, U16 *io_status)

C/C++ (Windows)
U16 W_8134_Set_SVON(I16 axis, I16 on_off)
U16 get_io_status(I16 axis, U16 *io_status)

Visual Basic (Windows)
W_8134_Set_SVON (ByVal axis As Long, ByVal on_off As

Long) As Integer
get_io_status (ByVal axis As Integer, io_sts As

Integer) As Integer
@ Argument

axis: axis number for I/O control and monitoring
on_off: setting for SVON pin digital output
 on_off=0, SVON is LOW.

on_off=1, SVON is HIGH.
*io_status: I/O status word. Where “1’ is ON and

“0” is OFF. ON/OFF state is read based
on the corresponding set logic.

@ Return Code
ERR_NoError

6.16 Position Control

@ Name
set_position – Set the actual position.
get_position – Get the actual position.

Function Library • 99

set_command – Set the current command position.
get_command – Get the current command position.
_8134_get_target_pos – Get the current command position.
_8134_reset_target_pos – Set the current command position.
@ Descriptionset_position()

changes the current actual position to the specified position.
get_position()

reads the current actual position. Note that when feedback signals is not
available in the system, thus external encoder feedback is Disabled in
set_cnt_src() function, the value gotten from this function is command
position.

set_command()
changes the command position to the specified command position. The

command position is the target position of this command, not the
current command position.

get_command()
reads the current command position.

The command position is the target position of this command, not
the current command position.

_8134_get_target_pos()
reads the current command position.
The command position is the target position of this command, not
the current command position.

_8134_reset_target_pos()
changes the command position to the specified command position.
The command position is the target position of this command, not
the current command position.

@ Syntax
C/C++ (DOS, Windows)

U16 set_position(I16 axis, F64 pos)
U16 get_position(I16 axis, F64 *pos)
U16 set_command(I16 axis, F64 pos)
U16 get_command(I16 axis, F64 *pos)
I16 _8134_get_target_pos(I16 AxisNo, F64

*pos)
I16 _8134_reset_target_pos(I16 AxisNo,

F64 pos)
Visual Basic (Windows)

get_position (ByVal axis As Integer, pos As Double)
As Integer

set_position (ByVal axis As Integer, ByVal pos As
Double) As

Integer
get_command (ByVal axis As Integer, pos As Double) As

Integer
set_command (ByVal axis As Integer, ByVal pos As

Double) As

100 • Function Library

Integer
_8134_get_target_pos (ByVal axis As Integer, pos As

Double) As Integer
_8134_reset_target_pos (ByVal axis As Integer, ByVal

pos As Double) As Integer
@ Argument

axis: axis number designated to set and get position.
pos: actual position or command position

@ Return Code
ERR_NoError

6.17 Interrupt Control

@ Name
W_8134_INT_ENABLE – Set interrupt enable
W_8134_INT_Enable – Set interrupt enable
W_8134_INT_Disable – Set interrupt disable
W_8134_Set_INT_Control – Set interrupt event handle

set_int_factor – Set interrupt generating factorsget_int_status – Get the
interrupting status of axis link_axis_interrupt – Create a interrupt callback
function

@ Description
W_8134_INT_Enable:

This function is used to enable interrupt event generating to host PC.
(Window only).

W_8134_INT_Disable:
This function is used to disable interrupt event generating to host PC.

(Window only).
W_8134_Set_INT_Control :

This function is used to control the hardware interrupt channel enable
or disable. Please call this function after the interrupt events are enabled.

set_int_factor:
This function allows users to select factors to initiate the INT signal. PCI-
8134 can generate INT signal to host PC by setting the relative bit as 1.
The definition for each bit is as following:

Bit Interrupt Factor
0 Stop with the EL signal
1 Stop with the SD signal
2 Stop with the ALM signal
3 Stop with the STP signal
4 Should be set to 0
5 Completion of home return

Function Library • 101

6 Completion of preset movement

7
 Completion of interpolating motion for two axes:

(X & Y) or (Z & U)
8~12 X (should be set to 0)

13 when v_stop() function stop the axis
14 EA/EB, PA/PB encoder input error
15 start with STA signal
16 Completion of acceleration
17 Start of deceleration

18~22 Should be Set to 0
23 RDY active (AP3 of PCL5023 change from 1 to 0)

24~31 Should be set to 0

Note: Bit 14: The interrupt is generated when pins EA and EB, or PA and PB
change simultaneously. It means there has an encoder input error.

get_int_axis:
This function allows user to identify which axis generates the INT signal to
host PC. (DOS only)

get_int_status:
This function allows user to identify what kinds of interrupt is generated.
After user gets this value, the status register will be cleared to 0. The
return value is a 32 bits unsigned integer and the definition for each bit is
as following:

Bit Interrupt Type
0 Stop with the +EL signal
1 Stop with the –EL signal
2 Stop with the +SD signal
3 Stop with the –SD signal
4 Stop with the ALM signal
5 Stop with the STP signal
6 Always 0
7 Always 0
8 Stop with v_stop() command
9 Stop with home return completed

10 Always 0
11 Stop with preset movement completed
12 Stop with EA/EB input error
13 Always 0
14 Stop with PA/PB input error

102 • Function Library

15 Start with STA signal
16 Acceleration Completed
17 Deceleration Started

18∼22 Always 0

23 RDY active (AP3 of PCL5023 change from 1 to 0)
24~31 Always 0

link_axis_interrupt:

This function is used to create a callback function in Windows for
interrupt signal receiving. Once the interrupt comes, the callback
function will be called too.

@ Syntax
C/C++ (DOS)

U16 _8134_Set_INT_ENABLE(U16 cardNo, U16 intFlag)
U16 set_int_factor(U16 axis, U32 int_factor)
U16 get_int_axis(U16 *int_axis)
U16 get_int_status(U16 axis, U32 *int_status)

C/C++ (Windows)
U16 W_8134_INT_Enable (I16 cardNo, HANDLE *phEvent)
U16 W_8134_INT_Disable (I16 cardNo)
void W_8134_Set_INT_Control(U16 cardNo, U16 intFlag)
U16 set_int_factor(U16 axis, U32 int_factor)
U16 get_int_status(I16 axis, U32 *int_status)

Additional Function Library • 103

I16 link_axis_interrupt(I16 AxisNo, void (_stdcall

*callbackAddr)(void))
Visual Basic (Windows)

W_8134_INT_Enable (ByVal cardNo As Long, phEvent As
Long)

W_8134_INT_Disable (ByVal cardNo As Long) As Integer
W_8134_Set_INT_Control (ByVal cardno As Integer,

ByVal intFlag As Integer)
set_int_factor (ByVal axis As Integer, ByVal

int_factor As Long) As Integer
get_int_status (ByVal axis As Long, int_status As

Long) As Integer link_axis_interrupt(ByVal AxisNo As Integer,
By Val callbackAddr

as Long) As Integer
@ Argument

cardNo: card number 0,1,2,3…
axis: axis number 0,1,2,3,4…
intFlag: int flag, 0 or 1

phEvent: event or event array for interrupt axis
(For Windows only)
int_factor: interrupt factor, refer to previous

interrupt factor table
int_axis: interrupt axis number (the return value)
int_status: interrupt factor (the return value), refer

to previous interrupt type table
callbackAddr: The call back function address

@ Return Code
ERR_NoError

104 • Additional Function Library

7

Additional Function Library
(8134A.DLL)

This chapter describes the another supporting software for PCI-8134 cards.
It is called 8134A.LIB and 8134A.DLL. Notice that this function library can’t
not be mixed to use with chapter 6, 8134.DLL. Users can use these
functions to develop their application programs in C or Visual Basic or C++
language.

7.1 List of Functions

Initialization Section 7.3

_8134_initial Card initialization
_8134_close Card Close
_8134_config_from_file Configure card according to Motion Creator’s

setting
_8134_get_irq_channel Get IRQ channel
_8134_get_base_addr Get Base Address
_8134_version_info Get card’s hardware and software/driver version

Pulse Input/Output Configuration Section 7.4

_8134_set_pls_outmode Set pulse command output mode
_8134_set_pls_iptmode Set encoder input mode
_8134_set_feedback_src Set feedback counter input source

Continuously Motion Mode Section 7.5

_8134_tv_move Accelerate an axis to a constant velocity with
trapezoidal profile

Additional Function Library • 105

_8134_sv_move Accelerate an axis to a constant velocity with S-
curve profile

_8134_v_change Change speed on the fly
_8134_sd_stop Decelerate to stop
_8134_emg_stop Emergency Stop
_8134_set_sd Set slow down stop mode and SD logic
_8134_fix_speed_range Fix speed range setting
_8134_unfix_speed_range Unfix speed range setting
_8134_get_current_speed Get current speed in pps
_8134_verify_speed Get the minimum acceleration time under the

speed setting

Trapezoidal Motion Mode Section 7.6

_8134_start_ta_move Start an absolute trapezidal profile move
_8134_start_tr_move Start a relative trapezoidal profile move
_8134_set_rdp_mode Set Ramping down mode

S-Curve Profile Motion Section 7.7

_8134_start_sa_move Start an absolute S-curve profile move
_8134_start_sr_move Start a relative S-curve profile move

Multiple Axes Point to Point Motion Section 7.8

_8134_start_move_all Start a multi-axis profile move
_8134_stop_move_all Stop a multi-axis profile move
_8134_set_tr_move_all Set a multi-axis relative trapezoidal profile move
_8134_set_ta_move_all Set a multi-axis absolute trapezoidal profile move
_8134_set_sr_move_all Set a multi-axis relative S-curve profile move
_8134_set_sa_move_all Set a multi-axis absolute trapezoidal profile move

Linear / Circular Interpolated Motion Section 7.9

_8134_start_tr_move_xy Start a 2-axis linear interpolated move for X & Y
_8134_start_ta_move_xy Start a 2-axis linear interpolated move for X & Y
_8134_start_sr_move_xy Start a 2-axis linear interpolated move for X & Y
_8134_start_sa_move_xy Start a 2-axis linear interpolated move for X & Y
_8134_start_tr_move_zu Start a 2-axis linear interpolated move for Z & U
_8134_start_ta_move_zu Start a 2-axis linear interpolated move for Z & U
_8134_start_sr_move_zu Start a 2-axis linear interpolated move for Z & U
_8134_start_sa_move_zu Start a 2-axis linear interpolated move for Z & U

Home Return Mode Section 7.10

_8134_set_home_config Set or get the home/index logic configuration
_8134_home_move Start a home return action
_8134_set_org_offset Set ORG length
_8134_set_org_logic Set ORG logic
_8134_set_bounce_filter Set a bounce filter when homing

Manual Pulser Motion Section 7.11

106 • Additional Function Library

_8134_set_pulser_iptmode Set pulser input mode and operation mode

_8134_pulser_v_move Begin a manual pulser movement

Motion Status Section 7.12

_8134_motion_done Check if the axis is in motion

Servo Driver Interface Section 7.13
_8134_set_alm
8134 set inp

Set alarm logic and alarm mode
Set In-Position logic and enable/disable

_8134_set_erc_enable Set the ERC output enable/disable

I/O Control and Monitoring Section 7.14

_8134_set_servo Set the output pin for servo ON conotrl
_8134_get_io_status Get I/O staus

Position Counter Control Section 7.15

_8134_set_position Set current position counter value
_8134_get_position Get current position counter value
_8134_set_command Set current command target value
_8134_get_command Get current command target value
_8134_get_error_counter Get current error counter value
_8134_reset_error_counter Reset error counter value
_8134_set_feedback_error_detect Set feedback error detect value

Interrupt Control Section 7.16
8134 int enable Set Interrupt Event enable

_8134_int_disable
_8134_int_control
_8134_set_int_factor

Set Interrupt Event enable
Enable/Disable IRQ channel
Set Interrupt generationg factors

_8134_get_int_status
_8134_link_axis_interrupt

Get the interrupting status of axis
Link a callback function for interrupt

7.2 C/C++ Programming Library

This section gives the details of all the functions. The function prototypes and
some common data types are decelerated in PCI-8134.H. These data types are
used by PCI-8134 library. We suggest you to use these data types in your
application programs. The following table shows the data type names and their
range.

Type Name Description Range

U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767

Additional Function Library • 107

U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed long integer -2147483648 to 2147483647
U32 32-bit unsigned long integer 0 to 4294967295

F32 32-bit single-precision floating-
point

-3.402823E38 to 3.402823E38

F64 64-bit double-precision floating-
point

-1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

7.3 Initialization

@ Name
_8134_initial – Card Initialization
_8134_close – Card Close
_8134_config_from_file – Configure Card according to Motion

Creator’s save file
_8134_get_irq_channel – Get the card’s IRQ number
_8134_get_base_addr – Get the card’s base address
_8134_version_info – Get the card’s version information

@ Description
_8134_initial:

This function is used to initialize PCI-8134 card. It has to be
initialized by this function before calling other functions.

_8134_close:
This function must be called before the program ends.

_8134_config_from_file:
This function is used to configure PCI-8134 card. All the I/O
configurations and some operating modes appeared on “Axis
Configuration Window” of Motion Creator will be set to PCI-8134.
Click “Save Configuration” button on the “Axis Configuration
Window” if you want to use this function in the application program.
Click “Save Configuration” button will save all the configurations to a
file call “8134.cfg”. This file will appear in the Windows’ system
directory.

_8134_get_irq_channel:
This function is used to get the PCI-8134 card’s IRQ number.

_8134_get_base_addr:
This function is used to get the PCI-8134 card’s base address.

_8134_version_info:
This function is used to get the PCI-8134 card’s version information
including hardware, software and device driver.

@ Syntax

108 • Additional Function Library

C/C++ (DOS,Windows)
I16 _8134_initial(I16 *existCards)
I16 _8134_close(void)
I16 _8134_config_from_file(U8 *fileName)
I16 _8134_get_irq_channel(I16 cardNo, U16 *irq_no)
I16 _8134_get_base_addr(I16 cardNo, U16 *base_addr)
I16 _8134_version_info(I16 CardNo, U16 *HardwareInfo, I32

*SoftwareInfo, I32 *DriverInfo)

Visual Basic (Windows)
B_8134_initial (existCards As Integer) As Integer
B_8134_close () As Integer
B_8134_config_from_file (ByVal fileName As String) As Integer
B_8134_get_irq_channel (ByVal cardno As Integer, irq_no As

Integer) As Integer
B_8134_get_base_addr (ByVal cardno As Integer, base_addr As

Integer) As Integer
B_8134_version_info (ByVal CardNo As Integer, HardwareInfo As

Integer, SoftwareInfo As Long, DriverInfo As Long)
@ Argument

existCards: numbers of existing PCI-8134 cards
cardNo: The PCI-8134 card index number.
filename: A configuration file from MotionCreator
irq_no: The card’s IRQ channel number
base_addr: The card’s base address
HardwareInfo: 0x1000 in heximal
SoftwareInfo: Format=OS/YY/MM/DD in decimal

OS=00, Win32
OS=12, WinCE
OS=24, DOS
OS=36, DOSExt
OS=48, Linux

DriverInfor: The same with SoftwareInfo

@ Return Code ERR_NoError
ERR_BoardNoInit
ERR_PCIBiosNotExist

7.4 Pulse Input / Output Configuration

@ Name
_8134_set_pls_outmode – Set the configuration for pulse

command output.
_8134_set_pls_iptmode – Set the configuration for feedback pulse

input.
_8134_set_feedback_src – Select feedback counter source

Additional Function Library • 109

@ Description
_8134_set_pls_outmode:

Configure the output modes of command pulse. There are two
modes for command pulse output.

_8134_set_pls_iptmode:
Configure the input modes of external feedback pulse. There are
four types for feedback pulse input. Note that this function makes
sense only when using external feedback counter source.

_8134_set_feedback_src:
If external encoder feedback is available in the system, set the src
parameter in this function to Enabled state. Then internal 28-bit
up/down counter will count according configuration of
_8134_set_pls_iptmode() function. Or the counter will count the
command pulse output.

@ Syntax
C/C++ (DOS, Windows)

I16 _8134_set_pls_outmode(I16 axis, I16 pls_outmode)
I16 _8134_set_pls_iptmode(I16 axis, I16 pls_iptmode)
I16 _8134_set_cnt_src(I16 axis, I16 src)

Visual Basic (Windows)
B_8134_set_pls_outmode (ByVal axis As Long, ByVal

pls_outmode As Long) As Integer
B_8134_set_pls_iptmode (ByVal axis As Long, ByVal pls_iptmode

As Long) As Integer
B_8134_set_feedback_src (ByVal axis As Long, ByVal src As Long)

As Integer
@ Argument

axis:axis number designated to configure pulse
Input/Output.

pls_outmode: setting of command pulse output mode
for OUT and DIR pins.

pls_outmode=0, OUT/DIR type pulse output.
pls_outmode=1, CW/CCW type pulse output.

pls_iptmode: setting of encoder feedback pulse
input mode for EA and EB pins.

pls_iptmode=0, 1X AB phase type pulse input.
pls_iptmode=1, 2X AB phase type pulse input.
pls_iptmode=2, 4X AB phase type pulse input.

pls_iptmode=3, CW/CCW type pulse input.

src: Feedback Counter source
cnt_src=0, counter source from command pulse
cnt_src=1, counter source from external input
EA, EB

@ Return Code
ERR_NoError

110 • Additional Function Library

7.5 Continuously Motion Move

@ Name
_8134_tv_move – Accelerate an axis to a constant velocity with

trapezoidal profile
_8134_sv_move – Accelerate an axis to a constant velocity with S-

curve profile
_8134_v_change – Change speed on the fly
_8134_sd_stop – Decelerate to stop
_8134_emg_stop – Immediately Stop
_8134_set_sd – Set slow down stop mode and logic
_8134_fix_speed_range – Fix speed range setting
_8134_unfix_speed_range – Unfix speed range setting
_8134_get_current_speed – Get axis’ current output pulse rate
_8134_verify_speed – Get the minimum acceleration time under

the speed setting
@ Description

_8134_tv_move:
This function is used to accelerate an axis to the specified constant
velocity. The axis will continue to travel at a constant velocity until
the velocity is changed or the axis is commanded to stop. The
direction is determined by the sign of velocity parameter.

_8134_sv_move:
This function is similar to v_stop() but the accelerating is S-curve.

_8134_v_change:
You can change the velocity profile of command pulse ouput during
operation by this function. This function changes the maximum
velocity setting during operation.

_8134_sd_stop:
This function is used to decelerate an axis to stop anytime.

_8134_set_sd:
Select the motion actions for slow down only or slow down then stop
when SD pin is turned on

_8134_fix_speed_range:
This function is used to fix the speed resolution multiplier. The higher
it is set, the coarser speed step is performed but the higher
acceleration rate is obtained. Once it is set, the motion function will
use this multiplier setting instead. Notice that this value will not affect
the maximum speed of the motion command.

_8134_unfix_speed_range:
This function is used to unfix the speed resolution multiplier. Once it
is unfixed, all motion command will calculate a optimized multiplier

Additional Function Library • 111

value according to the maximum speed setting in motion function.
_8134_verify_speed:

This function is used to get the minimum acceleration under a
maximum speed setting. This function will not affect any speed or
acceleration setting. It is only for offline checking.

_8134_get_current_speed:
This function is used to get the current speed value in pps of position
counter

@ Syntax

C/C++ (DOS, Windows)
I16 _8134_tv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tacc)
I16 _8134_sv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tlacc,

F64 Tsacc)
I16 _8134_v_change(I16 axis, F64 max_vel, F64 Tacc)
I16 _8134_sd_stop(I16 axis, F64 Tdec)
I16 _8134_emg_stop(I16 axis)
I16 _8134_set_sd(I16 axis,I16 enable, I16 sd_logic, I16 sd_latch,

I16 stop_mode)
I16 _8134_fix_speed_range(I16 axis, F64 max_vel)
I16 _8134_unfix_speed_range(I16 axis)
F64 _8134_verify_speed(F64 StrVel, F64 MaxVel, F64 *minAccT,

F64 *maxAccT, F64 MaxSpeed)

Visual Basic (Windows)
B_8134_tv_move (ByVal axis As Integer, ByVal str_vel As Double,

ByVal max_vel As Double, ByVal Tacc As Double) As Integer
B_8134_sv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tlacc,

F64 Tsacc) As Integer
B_8134_v_change(I16 axis, F64 max_vel, F64 Tacc) As Integer
B_8134_sd_stop (ByVal axis As Integer, ByVal Tacc As Double)

As Integer
B_8134_emg_stop (ByVal axis As Integer) As Integer
B_8134_set_sd (ByVal axis As Integer, ByVal enable As Integer

ByVal sd_logic As Integer ByVal sd_latch As Integer, ByVal
stop_mode As Integer) As Integer

B_8134_fix_speed_range(ByVal axis As Integer, ByVal max_vel As
Double) As Integer

B_8134_unfix_speed_range(ByVal axis As Integer) As Integer
B_8134_verify_speed(ByVal str_vel As Double, ByVal max_vel As

Double, minAccT As Double, maxAccT As Double, ByVal
MaxSpeed As Double) As Double

@ Argument

axis: axis number designated to move or stop.
str_vel: starting velocity in unit of pulse per
second
max_vel: maximum velocity in unit of pulse per

112 • Additional Function Library

second
Tacc: specified acceleration time in unit of
second
Tdec: specified deceleration time in unit of
second

Tlacc: specified linear acceleration time of S-
curve in unit of second
Tsacc: specified S-curve acceleration time of S-
curve in unit of second
stopmode: 0=slow down to starting velocity, 1=slow
down then stop
*minAccT: calculated minimum acceleration time
*maxAccT: calculated maximum acceleration time
MaxSpeed: The value of maximum speed setting in
motion function or in fix_max_speed function
enable: Enable or disable SD function
sd_logic: SD input logic setting
sd_latch: SD latch function on=1/off=0

@ Return Code

ERR_NoError
The return value of verify_speed is the calculated starting velocity

7.6 Trapezoidal Motion Mode

@ Name
_8134_start_ta_move – Begin an absolute trapezoidal profile

motion
_8134_start_tr_move – Begin a relative trapezoidal profile motion
_8134_set_rdp_mode – Set ramping down mode

@ Description
_8134_start_ta_move() :

This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position, immediately returning control to the program. The
acceleration rate is equal to the deceleration rate.

_8134_start_tr_move() :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the relative
distance, immediately returning control to the program. The
acceleration rate is equal to the deceleration rate.

_8134_set_rdp_mode():
Switch the motion slow down mode for auto or manual mode. The
mode is default in manual mode.

@ Syntax

Additional Function Library • 113

C/C++ (DOS, Windows)
I16 _8134_start_ta_move(I16 axis, F64 pos, F64 str_vel, F64

max_vel, F64 Tacc,F64 Tdec)
I16 _8134_start_tr_move(I16 axis, F64 distance, F64 str_vel, F64

max_vel, F64 Tacc,F64 Tdec)
I16 _8134_set_rdp_mode(I16 axisno, I16 mode)

Visual Basic (Windows)
B_8134_start_ta_move (ByVal axis As Integer, ByVal pos As

Double, ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_8134_start_tr_move (ByVal axis As Integer, ByVal distance As
Double, ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tacc As Double, ByVal Tdec As Double) As Integer

B_8134_set_rdp_mode(ByVal axisno As Integer, ByVal mode As
Integer) As Integer

@ Argument
axis: axis number designated to move. pos:
specified absolute position to move distance:
specified relative distance to move
str_vel: starting velocity of a velocity profile in unit of pulse per
second
max_vel: starting velocity of a velocity profile in unit of pulse per
second
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second
Mode: 0=Manual Mode(default), 1=Auto Mode

@ Return Code
ERR_NoError
ERR_MoveError

7.7 S-Curve Profile Motion

@ Name
_8134_start_sa_move– Start an absolute S-curve profile motion
_8134_start_sr_move– Start a relative S-curve profile motion

@ Description
_8134_start_sa_move() :

This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position, immediately returning control to the program.

_8134_start_sr_move() :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
relative distance, immediately returning control to the program.

114 • Additional Function Library

@ Syntax
C/C++ (DOS, Windows)

I16 _8134_start_sa_move(I16 axis, F64 pos, F64 str_vel, F64
max_vel, F64 Tacc, F64 Tdec, F64 SVacc, F64 SVdec)

I16 _8134_start_sr_move(I16 axis, F64 distance, F64 str_vel, F64
max_vel, F64 Tacc, F64 Tdec, F64 SVdec, F64 SVacc)

Visual Basic (Windows)
B_8134_start_sr_move(ByVal axis As Integer, ByVal pos As

Double, ByVal str_vel As Double, ByVal max_vel As Double,
ByVal Tacc As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

B_8134_start_sa_move(ByVal axis As Integer, ByVal pos As
Double ByVal str_vel As Double, ByVal max_vel As Double
ByVal Tacc As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

@ Argument
axis: axis number designated to move. pos:
specified absolute position to move distance:
specified relative distance to move
str_vel: starting velocity of a velocity profile in unit of pulse per
second
max_vel: starting velocity of a velocity profile in unit of pulse per
second
Tacc: specified total acceleration time in unit of second
Tdec: specified total deceleration time in unit of second
SVacc: specified S-curve acceleration range in unit of pps, default is
0
SVdec: specified S-curve deceleration range in unit of pps, default is
0

@ Return Code
ERR_NoError
ERR_MoveError

7.8 Multiple Axes Point to Point Motion

@ Name
_8134_set_tr_move_all – Multi-axis simultaneous operation setup.
_8134_set_ta_move_all – Multi-axis simultaneous operation setup.
_8134_set_sr_move_all – Multi-axis simultaneous operation setup.
_8134_set_sa_move_all – Multi-axis simultaneous operation setup.
_8134_start_move_all – Begin a multi-axis trapezoidal profile

motion
_8134_stop_move_all –Simultaneously stop Multi-axis motion

@ Description
Theses functions are related to simultaneous operations of multi-

Additional Function Library • 115

axes, even in different cards. The simultaneous multi-axis operation
means to start or stop moving specified axes at the same time. The
axes moved are specified by the parameter “AxisArray,” and the
number of axes are defined by parameter “TotalAxes” in
_8134_set_tr_move_all().
When properly setup with _8134_set_xx_move_all(), the function
_8134_start_move_all() will cause all specified axes to begin a
trapezoidal relative movement, and _8134_stop_move_all() will stop
them. Both functions guarantee that motion Start/Stop on all
specified axes are at the same time. Note that it is necessary to
make connections according to Section 3.12 on CN4 if the start/stop
axes are on different cards.

The following code demos how to utilize these functions. This code
moves axis 0 and axis 4 to distance 8000.0 and 120000.0
respectively. If we choose velocities and accelerations that are
proportional to the ratio of distances, then the axes will arrive at their
endpoints at the same time.

I16 axes[2] = {0, 4};
F64 dist[2] = {8000.0, 12000.0};
F64 str_vel[2]={0.0, 0.0};
F64 max_vel[2]={4000.0, 6000.0};
F64 Tacc[2]={0.04, 0.06};
F64 Tdec[2]= {0.04, 0.06};
_8134_set_tr_move_all(2, axes, dist, str_vel, max_vel, Tacc, Tdec);
_8134_start_move_all(axes[0]);

@ Syntax

C/C++ (DOS, Windows)
I16 _8134_set_tr_move_all(I16 TotalAxes, I16 *AxisArray, F64

*DistA, F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA)
I16 _8134_set_sa_move_all(I16 TotalAx, I16 *AxisArray, F64

*PosA, F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA,
F64 *SVaccA, F64 *SVdecA)

I16 _8134_set_ta_move_all(I16 TotalAx, I16 *AxisArray, F64
*PosA, F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA)

I16 _8134_set_sr_move_all(I16 TotalAx, I16 *AxisArray, F64
*DistA, F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA,
F64 *SVaccA, F64 *SvdecA)

I16 _8134_start_move_all(I16 FirstAxisNo)
I16 _8134_stop_move_all(I16 FirstAxisNo)

Visual Basic (Windows)

B_8134_set_tr_move_all(ByVal TotalAxes As Integer, AxisArray As
Integer, DistA As Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double)

116 • Additional Function Library

B_8134_set_sa_move_all(ByVal TotalAxes As Integer, AxisArray
As Integer, PosA As Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double, SVaccA As
double, SVdecA As Double)

B_8134_set_ta_move_all(ByVal TotalAxes As Integer, AxisArray
As Integer, PosA As Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double)

B_8134_set_sr_move_all(ByVal TotalAxes As Integer, AxisArray
As Integer, DistA As Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double, SVaccA As
double, SVdecA As Double)

B_8134_start_move_all(ByVal FirstAxisNo As Integer)
B_8134_stop_move_all(ByVal FirstAxisNo As Integer)

@ Argument

TotalAxes: number of axes for simultaneous motion
*AxisArray: specified axes number array designated to move.
*PosA: specified position array in unit of pulse
*StrVelA: starting velocity array in unit of pulse per second
*MaxVelA: maximum velocity array in unit of pulse per second
*TaccA: acceleration time array in unit of second
*TdecA: acceleration time array in unit of second
*SVaccA: acceleration array of S-curve part in unit of pps
*SVdecA: deceleration array of S-curve part in unit of pps

@ Return Code

ERR_NoError
ERR_MoveError

7.9 Linear Interpolated Motion

@ Name
_8134_start_tr_move_xy – Start a relative 2-axis linear

interpolation for X & Y, with trapezoidal profile,
_8134_start_ta_move_xy –Start an absolute 2-axis linear

interpolation for X & Y, with trapezoidal profile,
_8134_start_sr_move_xy –Start a relative 2-axis linear interpolation

for X & Y, with S-curve profile,
_8134_start_sa_move_xy –Start an absolute 2-axis linear

interpolation for X & Y, with S-curve profile,
_8134_start_tr_move_zu –Start a relative 2-axis linear interpolation

for Z & U, with trapezoidal profile,
_8134_start_ta_move_zu –Start an absolute 2-axis linear

interpolation for Z & U, with trapezoidal profile,
_8134_start_sr_move_zu –Start a relative 2-axis linear interpolation

Additional Function Library • 117

for Z & U, with S-curve profile,
_8134_start_sa_move_zu –Start an absolute 2-axis linear

interpolation for Z & U, with S-curve profile,

@ Description
_8134_start_move_%%_xy, _8134_start_move_%%_zu:

These functions cause a linear interpolation motion between two
axes without waiting for completion. After issuing this function, it will
start to move and leave the function at the same time. Note that xy
means the first two axes of one card and zu means the last two axes
of one card. %% means speed profile combinations.

@ Syntax
C/C++ (DOS, Windows)

I16 _8134_start_tr_move_xy(I16 CardNo, F64 DistX, F64 DistY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8134_start_ta_move_xy(I16 CardNo, F64 PosX, F64 PosY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8134_start_sr_move_xy(I16 CardNo, F64 DistX, F64 DistY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

I16 _8134_start_sa_move_xy(I16 CardNo, F64 PosX, F64 PosY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

I16 _8134_start_tr_move_zu(I16 CardNo, F64 DistX, F64 DistY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8134_start_ta_move_zu(I16 CardNo, F64 PosX, F64 PosY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8134_start_sr_move_zu(I16 CardNo, F64 DistX, F64 DistY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

I16 _8134_start_sa_move_zu(I16 CardNo, F64 PosX, F64 PosY,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc, F64
SVdec);

Visual Basic (Windows)
B_8134_start_tr_move_xy (ByVal CardNo As Integer, ByVal Dist

As Double, ByVal Dist As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

B_8134_start_ta_move_xy (ByVal CardNo As Integer, ByVal Pos
As Double, ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

B_8134_start_sr_move_xy (ByVal CardNo As Integer, ByVal Dist
As Double, ByVal Dist As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

118 • Additional Function Library

B_8134_start_sa_move_xy (ByVal CardNo As Integer, ByVal Pos
As Double, ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_8134_start_tr_move_zu (ByVal CardNo As Integer, ByVal Dist
As Double, ByVal Dist As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

B_8134_start_ta_move_zu (ByVal CardNo As Integer, ByVal Pos
As Double, ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

B_8134_start_sr_move_zu (ByVal CardNo As Integer, ByVal Dist
As Double, ByVal Dist As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

B_8134_start_sa_move_zu (ByVal CardNo As Integer, ByVal Pos
As Double, ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal SVdec As Double)
As Integer

@ Argument

cardNo: card number designated to perform interpolating function.
Pos: Targer position of one axis
Dist: Target Distance of one axis
StrVel: starting velocity of a velocity profile in unit of pulse per
second

MaxVel: starting velocity of a velocity profile in unit of pulse per second
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second
SVacc: specified S-curve acceleration range in unit of pps, default is
0
SVdec: specified S-curve deceleration range in unit of pps, default is
0

@ Return Code
ERR_NoError

7.10 Home Return

@ Name
_8134_set_home_config – Set the configuration for home return.
_8134_home_move – Perform a home return move.

Additional Function Library • 119

_8134_set_org_offset – Set ORG signal’s range
_8134_set_org_logic – Set ORG logic
_8134_set_bounce_filter – Set a bounce filter for homing
_8134_set_org_latch – Enable/diable ORG latch function

@ Description
_8134_set_home_config:

Configure the logic of origin switch and index signal needed for
home_move() function. If you need to stop the axis after EZ signal is
active(home_mode=1 or 2), you should keep placing ORG signal in
the ON status until the axis stop. If the pulse width of ORG signal is
too short to keep it at ON status till EZ goes ON, you should select
the org_latch as enable. The latched condition is cancelled by the
next start or by disabling the org_latch. Three home return modes
are available. Refer to Chapter4.1.5 for the setting of home_mode
control.

_8134_home_move:
This function will cause the axis to perform a home return move
according to the setting of _8134_set_home_config() function. The
direction of moving is determined by the sign of velocity
parameter(svel, mvel). Since the stopping condition of this function
is determined by home_mode setting, user should take care to
select the initial moving direction. Or user should take care to handle
the condition when limit switch is touched or other conditions that is
possible causing the axis to stop. Executing stop function during
home_move() can also cause the axis to stop.

_8134_set_org_offset:
This function is used for setting the ORG length. This parameter is
active when using home mode 4~7. It will escape ORG during some
phases. Please refer to Appendix A.

_8134_set_org_logic:
This function is used for setting the ORG logic. Make sure the ORG
logic is correct before homing.

_8134_set_bounce_filter:
This function is used for extend the ORG checking time to prevent
mechanical input device’s bouncing problem. This parameter is only
useful on home mode 4~7. The meaning of the parameter is the
times of I/O checking.

_8134_set_org_latch:
This function is used for enable and disable ORG latch function.

@ Syntax
C/C++ (DOS, Windows)

I16 _8134_set_home_config(I16 axis, I16 home_mode, I16
org_logic, I16 ez_logic, I16 ez_count, I16 erc_out)

I16 _8134_home_move(I16 axis, F64 svel, F64 mvel, F64 accel)
I16 _8134_set_org_offset(I16 axis, I16 org_latch)
I16 _8134_set_org_logic(I16 axis, I16 org_logic)
I16 _8134_set_bounce_filter(I16 axis, I16 b_value)

120 • Additional Function Library

I16 _8134_set_org_latch(I16 axis, I16 org_latch)
Visual Basic (Windows)

B_8134_set_home_config (ByVal axis As Integer, ByVal
home_mode As Integer, ByVal org_logic As Integer, ByVal
ez_logic As Integer, ByVal ez_count As Integer, ByVal erc_out
As Integer) As Integer

B_8134_home_move (ByVal axis As Integer, ByVal str_vel As
Double, ByVal max_vel As Double, ByVal accel As Double) As
Integer

B_8134_set_org_offset(Byval axis As Integer, ByVal org_latch As
Integer) As Integer

B_8134_set_org_logic(ByVal axis As Integer, ByVal org_logic As
Integer) As Integer

B_8134_set_bounce_filter(ByVal axis As Integer, ByVal b_value As
Integer) As Integer

B_8134_set_org_latch(ByVal axis As Integer, ByVal org_latch As
Integer) As Integer

@ Argument
axis: axis number designated to configure and perform home

returning
home_mode: stopping modes for home return.

home_mode=0, ORG active only.
home_mode=1, ORG active and then EZ active to stop.

home_mode=2, ORG active and then EZ active slow down to stop.
home_mode=3~7, please refer to the appendix A

org_logic: Action logic configuration for ORG signal
org_logic=0, active low; org_logic=1, active high

org_latch: Latch state control for ORG signal
org_latch=0, don’t latch input; org_latch=1, latch input.

EZ_logic: Action logic configuration for EZ signal
EZ_logic=0, active low; EZ_logic=1, active high.

ez_count: 0~15, 0 means count 1 time
erc_out: 0=disable ERC
b_value: Times of I/O checking
org_latch: 0=don’t latch, 1=latch

@ Return Code
ERR_NoError

7.11 Manual Pulser Motion

@ Name
_8134_set_pulser_iptmode – Set pulser input mode and operation

mode
_8134_pulser_vmove – Begin a manual pulser movement
_8134_set_pulser_ratio – Set manual pulser ratio

Additional Function Library • 121

_8134_set_step_unit – Set manual pulser ratio
@ Description

_8134_set_pulser_iptmode:
Four types of pulse input modes can be available for pulser or hand
wheel. User can also move two axes simultaneously with one pulser
by selecting the operation mode to common mode. Or move the
axes independently by selecting the operation mode to independent
mode.

_8134_pulser_vmove:
Begin to move the axis according to manual pulser input as this
command is written. The maximum moving velocity is limited by
Speedlimit parameter. Not until the stop command is written won’t
system end the manual move mode.

_8134_set_pulser_ratio:
Set the unit number of output pulses to one manual input pulse. The
setting range is 0 to 15. If you set n, the unit number is (n+1). That is
when one manual pulse input from PA and PB pins, OUT and DIR
pins will output n+1 pulses at most. If users do not set the pulser ratio,
the default ratio is 0.

_8134_set_step_unit:
Set the unit number of output pulses to one manual input pulse. The
setting range is 0 to 15. If you set n, the unit number is (n+1). That is
when one manual pulse input from PA and PB pins, OUT and DIR
pins will output n+1 pulses at most. If users do not set the pulser ratio,
the default ratio is 0.

@ Syntax
C/C++ (DOS, Windows)

I16 _8134_set_pulser_iptmode(I16 axis, I16 Inputmode, I16
Indep_com)

I16 _8134_pulser_vmove(I16 axis, F64 Speedlimit)
I16 _8134_set_pulser_ratio(I16 AxisNo, I16 Value)
I16 _8134_set_step_unit(I16 AxisNo, I16 unit)

Visual Basic (Windows)
B_8134_set_pulser_iptmode (ByVal axis As Integer, ByVal

Inputmode As Integer, ByVal Indep_com As Integer) As
Integer

B_8134_pulser_vmove (ByVal axis As Integer, ByVal Speedlimit
As Double) As Integer

@ Argument
axis: axis number designated to start manual move
Inputmode: setting of manual pulser input mode from PA and PB
pins

ipt_mode=0, 1X AB phase type pulse input.
ipt_mode=1, 2X AB phase type pulse input.
ipt_mode=2, 4X AB phase type pulse input.
ipt_mode=3, CW/CCW type pulse input.

Indep_com: common or independent mode selection

122 • Additional Function Library

op_mode=0, Independent for each axis
op_mode=1,PAX, PBX common for PAY, PBY

or PAZ, PBZ common for PAU, PBU.
Speedlimit: limitation for maximum velocity
Value: pulser ratio, its value n should satisfy the following relations,

PA & PB Input Mode Applicable Range
1 times multiplied 90° phase difference signal fP<fH/(n+1)
2 times multiplied 90° phase difference signal fP<fH/[(n+1)×2]
4 times multiplied 90° phase difference signal fP<fH/[(n+1)×4]
2-pulse input fP<fH/(n+1)

where fP is the maximum input frequency (pps) of pulser signals and
fH is the frequency (pps) of the output signals. If the pulser ratio is
not set by these rules, the output pulses will not appear in the cycle
of one manul input pulse or in the rising edge of the output pulses.
unit: pulser ratio

@ Return Code
ERR_NoError

@ Coding Example in C Language
1. Satisfication of fP<fH/[(n+1)×m]

_8134_set_pulser_iptmode(0,1,0); // set pulser input mode
_8134_set_pulser_ratio(0,5); // set pulser ratio
_8134_pulser_vmove(0,40);

8

From the above figure, Ch1 is the input signal of the pulsers, and
Ch2 is the relative output signal from OUT and DIR pins. Obviously,
the output signal frequency satisfies the relationship,
FP(=1.978Hz) < fH(=40Hz)/[(5+1)×2].

2. Dissatisfication of fP<fH/[(n+1)×m]
_8134_set_pulser_iptmode(0,1,0); // set pulser input mode
_8134_set_pulser_ratio(0,15); // set pulser ratio
_8134_pulser_vmove(0,40);

Additional Function Library • 123

3. Dissatisfication of fP<fH/[(n+1)×m]

_8134_set_pulser_iptmode(0,1,0); // set pulser input mode
_8134_set_pulser_ratio(0,5); // set pulser ratio
_8134_pulser_vmove(0,20);

7.12 Motion Status

@ Name
_8134_motion_done – Return the status when a motion is done

@ Description
_8134_motion_done:

Return the motion status of PCI-8134. position.
Definition of return value is as following:

Return value =
0: Motion Stop.
1: Waiting STA
2: Waiting INP
3: In Accelerating
4: In Target Speed

124 • Additional Function Library

5: In Decelerating
6: In Start Speed
7: Waiting other axes

The following code demonstrates how to utilize this function:

// Begin a trapezoidal velocity profile motion

_8134_start_ta_move(axis_x, pos1, svel, mvel, Tacc,Tdec);

// Wait for completion
while(motion_done(axis_x) !=0) ;

If the axis is running under home mode 4~7, this function will return
the homing phase. Please refer to Appendix A for details.

@ Syntax
C/C++ (DOS, Windows)

I16 _8134_motion_done(I16 axis)
Visual Basic (Windows)

B_8134_motion_done (ByVal axis As Integer) As Integer
@ Argument

axis: axis number of motion status
@ Return Code

ERR_NoError

7.13 Servo Drive Interface

@ Name
_8134_set_alm – Set alarm logic and alarm mode
_8134_set_inp – Set In-Position logic and enable/disable
_8134_set_erc_enable – Set ERC pin output enable/disable

@ Description
_8134_set_alm:

Set the active logic of ALARM signal input from servo driver. Two
reacting modes are available when ALARM signal is active.

_8134_set_inp:
Set the active logic of In-Position signal input from servo driver.
Users can select whether they want to enable this function. Default
state is disabled.

_8134_set_erc_enable:
You can set ERC pin output enable/disable by this function. Default
state is enabled.

@ Syntax
C/C++ (DOS, Windows)

I16 set_alm(I16 axis, I16 alm_logic, I16 alm_mode)

Additional Function Library • 125

I16 set_inp(I16 axis, I16 inp_enable, I16 inp_logic)
I16 set_erc_enable(I16 axis, I16 erc_enable)

Visual Basic (Windows)
B_8134_set_alm_logic (ByVal axis As Integer, ByVal alm_logic As

Integer, ByVal alm_mode As Integer) As Integer
B_8134_set_inp_logic (ByVal axis As Integer, ByVal inp_enable As

Integer, ByVal inp_logic As Integer) As Integer
B_8134_set_erc_enable(ByVal axis As Integer, ByVal erc_enable

As Integer) As Integer
@ Argument

axis: axis number designated to configure
alm_logic: setting of active logic for ALARM

signal
alm_logic=0, active LOW.
alm_logic=1, active HIGH.

inp_logic: setting of active logic for INP signal
inp_logic=0, active LOW.
inp_logic=1, active HIGH.

alm_mode: reacting modes when receiving ALARM
signal.

alm_mode=0, motor immediately stops.
alm_mode=1, motor decelerates then stops.

inp_enable: INP function enable/disable
inp_enable=0, Disabled
inp_enable=1, Enabled

erc_enable: ERC pin output enable/disable
erc_enable=0, Disabled
erc_enable=1, Enabled

@ Return Code
ERR_NoError

7.14 I/O Control and Monitoring

@ Name
_8134_set_servo – Set the output pin for servo ON control
_8134_get_io_status – Get all the I/O status

@ Description
_8134_set_servo:

Set the High/Low output state of general purpose output pin SVON.
Ususally, users can connect this pin to AC servo’s Servo ON pin.

_8134_get_io_status:
Get all the I/O status for each axis. The definition for each bit is as
following:

126 • Additional Function Library

Bit Name Description
0 +EL Positive Limit Switch
1 -EL Negative Limit Switch
2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch
5 EZ Index signal
6 ALM Alarm Signal
7 SVON SVON of PCL5023 pin output
8 RDY RDY pin input
9 INT Interrupt status
10 ERC ERC pin output
11 INP In-Position signal input

@ Syntax

C/C++ (DOS,Windows)
I16 _8134_set_servo(I16 axis, I16 on_off)
I16 _8134_get_io_status(I16 axis, U16 *io_status)

Visual Basic (Windows)
B_8134_set_servo (ByVal axis As Integer, ByVal on_off As Integer)

As Integer
B_8134_get_io_status (ByVal axis As Integer, io_sts As Integer)

As Integer
@ Argument

axis: axis number for I/O control and monitoring
on_off: setting for SVON pin digital output

on_off=0, SVON is LOW.
on_off=1, SVON is HIGH.
*io_status: I/O status word. Where “1’ is ON and “0”

is OFF. ON/OFF state is read based on the
corresponding set logic.

@ Return Code
ERR_NoError

7.15 Position Counter Control

@ Name
_8134_set_position – Set the actual position
_8134_get_position – Get the actual position
_8134_set_command – Set the current command target value
_8134_get_command – Get the current command target value
_8134_get_error_counter – Get current error counter value
_8134_reset_error_counter – Reset error counter value
_8134_set_feedback_error_detect – Set feedback error detect

value

Additional Function Library • 127

@ Description

_8134_set_position:
Changes the current actual position to the specified position.

_8134_get_position:
Reads the current actual position. Note that when feedback signals
is not available in the system, thus external encoder feedback is
Disabled in _8134_set_feedback_src() function, the value gotten
from this function is command position.

_8134_set_command:
Changes the command position to the specified command position.
The command position is the target position of this command, not
the current command position counter’s value.

_8134_get_command:
Reads the current command position.
The command position is the target position of this command, not
the current command position counter’s value.

_8134_get_error_counter:
Read the error counter value which is calculated from command and
feedback counter.

_8134_reset_error_counter:
Reset the error counter value to 0.

_8134_set_feedback_error_detect:
Set the error counter detect value. if the error counter is greater than
this value, the out-of-step interrupt will be issued.

@ Syntax
C/C++ (DOS, Windows)

I16 _8134_set_position(I16 axis, F64 pos)
I16 _8134_get_position(I16 axis, F64 *pos)
I16 _8134_set_command(I16 axis, F64 cmd)
I16 _8134_get_command(I16 axis, F64 *cmd)
I16 _8134_get_error_counter(I16 axis, I16 *error_c)
I16 _8134_reset_error_counter(I16 axis)
I16 _8134_set_error_feedback_detect(I16 axis, I32 max_error)

Visual Basic (Windows)
B_8134_get_position (ByVal axis As Integer, pos As Double) As

Integer
B_8134_set_position (ByVal axis As Integer, ByVal pos As Double)

As Integer
B_8134_get_command (ByVal axis As Integer, cmd As Double) As

Integer
B_8134_set_command (ByVal axis As Integer, ByVal cmd As

Double) As Integer
B_8134_get_error_counter(ByVal axis As Integer, error_c As

Integer) As Integer
B_8134_reset_error_counter(ByVal axis As Integer) As Integer
B _8134_set_error_feedback_detect(ByVal axis As Integer, ByVal

128 • Additional Function Library

max_error As Long) As Integer

@ Argument
axis: axis number designated to set and get position.
pos: actual position or command position
cmd: target command position value
*error_c: error counter value
max_error: error detect value setting

@ Return Code
ERR_NoError

7.16 Interrupt Control

@ Name
_8134_int_enable – Set interrupt event enable
_8134_int_disable – Set interrupt event disable
_8134_int_control – Enable/Disable IRQ channel
_8134_set_int_factor – Set interrupt generating factors
_8134_get_int_status – Get the interrupting status of axis
_8134_link_axis_interrupt – Link a interrupt callback function

@ Description
_8134_int_enable:

This function is used to enable interrupt event generating to host PC.
(Window only).

_8134_int_disable:
This function is used to disable interrupt event generating to host PC.
(Window only).

_8134_int_control :
This function is used to control the hardware interrupt channel
enable or disable. Please call this function after the interrupt events
are enabled.

_8134_set_int_factor:
This function allows users to select factors to initiate the INT signal.
PCI-8134 can generate INT signal to host PC by setting the relative
bit as 1. The definition for each bit is as following:

Bit Interrupt Factor
0 Stop with the EL signal
1 Stop with the SD signal
2 Stop with the ALM signal
3 Stop with the STP signal
4 Should be set to 0
5 Completion of home return
6 Completion of preset movement (PTP move)

Additional Function Library • 129

7 Completion of interpolating motion for two axes
(X & Y) or (Z & U)

8~12 Should be set to 0
13 When stop function stop the axis
14 EA/EB, PA/PB encoder input error
15 start with STA signal
16 Completion of acceleration
17 Start of deceleration

18~22 Should be Set to 0
23 RDY active (AP3 of PCL5023 change from 1 to 0)

24~31 Should be set to 0

Note: Bit 14: The interrupt is generated when pins EA and EB, or PA
and PB change simultaneously. It means there has an encoder
input error.

_8134_get_int_axis:

This function allows user to identify which axis generates the INT
signal to host PC. (DOS only)

_8134_get_int_status:
This function allows user to identify what kinds of interrupt is
generated.
After user gets this value, the status register will be cleared to 0. The
return value is a 32 bits unsigned integer and the definition for each
bit is as following:

Bit Interrupt Type
0 Stop with the +EL signal
1 Stop with the –EL signal
2 Stop with the +SD signal
3 Stop with the –SD signal
4 Stop with the ALM signal
5 Stop with the STP signal
6 Always 0
7 Always 0
8 Stop with v_stop() command
9 Stop with home return completed

10 Always 0
11 Stop with preset move completed (PTP move)
12 Stop with EA/EB input error
13 Always 0
14 Stop with PA/PB input error
15 Start with STA signal
16 Acceleration Completed
17 Deceleration Started

18∼22 Always 0

130 • Additional Function Library

23 RDY active (AP3 of PCL5023 change from 1 to 0)
24~31 Always 0

_8134_link_axis_interrupt:

This function is used to create a callback function in Windows for
interrupt signal receiving. Once the interrupt comes, the callback
function will be called too.

@ Syntax
C/C++ (DOS,Windows)

I16 _8134_get_int_axis(U16 *int_axis) (DOS only)
I16 _8134_int_enable (I16 cardNo, HANDLE *phEvent)
I16 _8134_int_disable (I16 cardNo)
I16 _8134_int_control(I16 cardNo, I16 intFlag)
I16 _8134_set_int_factor(I16 axis, U32 int_factor)
I16 _8134_get_int_status(I16 axis, U32 *int_status)
I16 _8134_link_axis_interrupt(I16 AxisNo, void (_stdcall

*callbackAddr)(void))
Visual Basic (Windows)

B_8134_int_enable (ByVal cardNo As Integer, phEvent As Long)
B_8134_int_disable (ByVal cardNo As Integer) As Integer
B_8134_int_control (ByVal cardno As Integer, ByVal intFlag As

Integer)
B_8134_set_int_factor (ByVal axis As Integer, ByVal int_factor As

Long) As Integer
B_8134_get_int_status (ByVal axis As Integer, int_status As Long)

As Integer

Additional Function Library • 131

B_8134_link_axis_interrupt(ByVal AxisNo As Integer, By Val
callbackAddr as Long) As Integer

@ Argument
cardNo: card number 0,1,2,3…
axis: axis number 0,1,2,3,4…
intFlag: int flag, 0:disable or 1:enable
phEvent: event or event array for interrupt axis

(For Windows only)
int_factor: interrupt factor, refer to previous

interrupt factor table
int_axis: interrupt axis number (the return value)
int_status: interrupt factor (the return value),

refer to previous interrupt type table
callbackAddr: The call back function address

@ Return Code
ERR_NoError

128 • Connection Example

8

Connection Example

This chapter shows some connection examples between PCI-8134/PCI-8134A
and servo drivers and stepping drivers.

8.1 General Description of Wiring

Figure 8.1 is a general description of all the connectors of PCI-8134. Only
connection of one of 4 axes is shown.

CN1: Receives +24V power from external power supply.

CN2: Main connection between PCI-8134/PCI-8134A and pulse input
servo driver or stepping driver.

CN3: Receive pulse command from manual pulser.

CN4: Connector for simultaneously start or stop multiple PCI-8134/PCI-
8134A cards.

Figure 8.2 shows how to integrate PCI-8134/PCI-8134A with a physical system.

Connection Example • 129

Figure 8.1 General Description of Wiring

Description of PCI-8134/PCI-8134A Indexer Pinouts

To other
PCI-8134/PCI-8134A

Cards

From Manual
Pulse Generator

From external
Power Supply

To Axis
1 ~ 4

PCI-8134/PCI-8134A
Terminal Block

3

4

5

6

98

99

7

8

9

10

13

14

15

16

17

18

20

37

38

39

40

41

OUT1 +

OUT1 -

DIR +

DIR -

EX GND

EX +24V

SVON 1

ERC 1

ALM 1

INP 1

EA1 +

EA1 -

EB1 +

EB1 -

EZ1 +

EZ1 -

EX GND

PEL1

MEL1

PSD1

MSD1

ORG1

RDY 1

EX GND

11

12

EX +5V19

CN 2
AXIS

CN 3
MPG

CN 4
START

CN 1
POWER

24 V
GND

P A
P B

GND

STP
STA
STP
STA

1

2

3

4

Machine
DI / DO

Pulse
Output

Pulse
Input

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Driver
DI / DO

Only Axis 1
is indicated.

130 • Connection Example

Wiring of PCI-8134 with Servo Driver

Figure 8.2 System Integration with PCI-8134/PCI-8134A

8.2 Connection Example with Servo Drive

In this section, we use Panasonic Servo Drive as an example to show how to
connect it with PCI-8134/PCI-8134A. Figure 8.3 show the wiring.

Note that:

 Wiring of PCI-8134/PCI-8134A with Servo Driver

3
4
5
6

98
99
7
8
9

10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

CN 2
AXIS

CN 1
POWER

24 V
GND

1
Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

2

3

4

Motion
Creator 8134.dll

Win2000/WinXP/Win7

ME

Linear Encoder with EA/EB/EZ Output

Driver with
Pulse Input

1

2

3

A

B

1

2

3

A

B

PCI_8134/PCI-8134A to Driver

Encoder to PCI_8134/PCI-
8134A

PCI_8134/PCI-8134A to Machine I/O

Rotary Encoder

Linear Encoder

Connection Example • 131

1. For convenience’ sake, the drawing shows connections for one axis only.

2. Default pulse output mode is OUT/DIR mode; default input mode is 4X
AB phase mode. Anyway, user can set to other mode by software
function.

3. Since most general purpose servomotor driver can operates in Torque
Mode; Velocity Mode; Position mode. For linking with PCI-8134/PCI-
8134A, user should set the operating mode to Position Mode. By setting
servo driver to this mode, user can use PCI-8134/PCI-8134A to perform
either Position Control or Velocity Control.

4. The Deviation Counter Clear input for Panasonic Drive is line drive type
where ERC output of PCI-8134/PCI-8134A is open collector type. So a
little circuit is required for interfacing.

Figure 8.3 Interface circuit between ERC and (CL+, CL-)

EX+5

26LS3

Inside PCI-8134/PCI-8134A Inside Panasonic Drive

CL+

390

2.2K

2.2K

CL-
ER

EXGN

132 • Connection Example

Wiring of PCI-8134/PCI-8134A with Panasonic MSD

3
4
5
6

98
99
7
8
9

10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

PCI-8134/CPI-8134A
Axis 1 Servo Driver

Panasonic
MSC CNI/F
(50-200 W)

Table

MEL OR
G MSD PS

D PEL

E

M

6
5
8
7

PULS +
PULS -
SIGN +
SIGN -

28
11
12

COM -
COM +

SRV-ON

26
25

ALM
COIN

27SRDY
3

19
GND
OA +

20OA -
21
22

OB +
OB -

1OZ +
2OZ -

13CL

Figure 8.4 Connection of PCI-8134 with Panasonic Drive

Connection Example • 133

Warning
The DIN-814M is used for wiring between Mitsubishi J2S series servo
drivers and ADLINK PCI-8134/PCI-8134A, PCI-8164, or MPC-8164
motion controller card ONLY.

8.3 Wiring with DIN-814M

Note:
1. The DIN-814M provides 2 connection methods for every axis. The first

is through the CNA & CNB connectors. This is for Mitsubishi J2S series
servo driver. The second is through SJ connector. This is for stepping
driver or other servo drivers (for Panasonic MINAS MSD driver, please
use DIN-814P). Keep in mind that the signals in SJ and CNA & CNB of

4th Axis
To Mitsubishi

J2S Driver

3rd Axis
To Mitsubishi

J2S Driver

A B B

GND
+24V

Mechanical I/O
Interface

CNA-(4) CNB-(4) CNB-(3)

CN1

HD-(4) HD-(3)

IOIF-(4)
A

To
PCI-8134/8164

IOIF-(3)

IOIF-(2)

A
IOIF-(1)

LED indecater

To stepping

driver

J1~J4 HD-(1) HD-(2)

-(1) : for 1st axis
-(2) : for 2nd axis

CNA-(1) CNB-(1) CNB-(2) -(3) : for 3rd axis
A B B -(4) : for 4th axis

1st Axis

To Mitsubishi
J2S Driver

2nd Axis

To Mitsubishi J2S
Driver

the same axis are directly shorted. DO NOT use both connectors at the
same time.

2. Two one-to-one 20-PIN cables are required for connection between the
CNA & CNB and the Mitsubishi J2S driver. It is available from ADLINK,
or users may contact the local dealer or distributor to get cable
information.

134 • Connection Example

3. Depending on which PCI-8134/PCI-8134A or PCI-8164/MPC-8164
card used, some signals (PSD and MSD) in the IOIF connector will
function differently. When PCI-8134 is used, The PSD and MSD are for
positive slow down and negative slow down signal respectively. While
PCI-8164 is used, PSD is for CMP and LTC and MSD is for SD. For
more detail s, please refer to the PCI-8134 and PCI-8164 user manuals.

4. Ext EMG and EMG: Due to the existence of EMG (Emergence stop
signal) in the Mitsubishi J2S driver, users may select either of the
following two operations by setting jumpers (J1-J4, J1 for 1st axis, J2 for
2nd axis, etc.).

• 1-2 shorted: The EMG is shorted to GND, so Ext. EMG of IOIF
pin 2 is not used.

• 2-3 shorted: The Ext. EMG of IOIF pin 2 is connected to EMG
at the driver; so, to externally stop the motor set Ext. EMG open
to GND.

Mechanical Dimensions:

Connection Example • 135

PIN
Assignment:
CNA1~CN

A4
No. Name I/O Function No. Name I/O Function

1 IGND -- Isolated Ground 2 DIR+ O Direction Signal (+)
3 OUT+ O Pulse Signal (+) 4
5 EZ+ I Encoder Z-phase (+) 6 EA+ I Encoder A-phase (+)
7 EB+ I Encoder B-phase (+) 8 ERC O Error counter Clear
9 +24V O Voltage output 10 IGND -- Isolated Ground

11 12 DIR- O Direction Signal (-)
13 OUT- O Pulse Signal (-) 14
15 EZ- I Encoder Z-phase (-) 16 EA- I Encoder A-phase (-)
17 EB- I Encoder B-phase (-) 18 INP I Servo In Position
19 RDY I Servo Ready 20 IGND -- Isolated Ground

CNB1~CNB4
No. Name I/O Function No. Name I/O Function

1 IGND -- Isolated Ground 2
3 4
5 Servo ON O Servo On 6
7 8
9 10 IGND -- Isolated Ground

11 12
13 +24V O Voltage output 14
15 EMG I Internal EMG Signal 16 IGND -- Isolated Ground
17 IGND -- Isolated Ground 18 ALM I Servo Alarm
19 20 IGND -- Isolated Ground

IOIF1~IOIF4
No. Name I/O Function No. Name I/O Function

1 +24V O Voltage output 6 MSD I Negative Slow Switch (+)
2 EX_EMG I External EMG Signal 7 ORG I
3 PEL I Positive Limit (+) 8 IGND --
4 MEL I Negative Limit (-) 9 IGND --
5 PSD I Positive Slow Switch (+)

SJ1~SJ4
No. Name I/O Function No. Name I/O Function

1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O Voltage output
3 DIR+ O Direction Signal (+) 8 Servo ON O Servo On
4 DIR- O Direction Signal (-) 9 +5V O Voltage output
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

CN1
No. Name I/O Function

1 EX+24V I External Power Supply Input (+24V DC ± 5%)
2 EXGND -- External Power Supply Ground.

HD1~HD4
No. Name I/O Function No. Name I/O Function

1 +24V O Voltage output 4 EX_EMG I External EMG Signal

136 • Connection Example

2 Servo ON O Servo On 5 ALM I Servo Alarm
3 RDY I Servo Ready 6 IGND -- Isolated Ground

Jumper
J1~J4 1: GND 2: EMG4 3: EX_EMG

How to
wire
PEL, MEL, ORG, SD, PSD, MSD, Ext.EMG (in IOIF):

CMP, LTC (in IOIF)
CMP is a TTL 5V or 0V output (vs. Ext GND) LTC is a
TTL 5V or 0V input (vs. Ext. GND)

CNA & CNB, CN2

SJ: Please refer to PCI-8134/PCI-8134A/PCI-8164 user manual for
wiring.

CN1:

Connection Example • 137

C
N

IF-(3)

IOIF-(1)

IOIF-(2)

IOIF-(3)

IOIF-(4)

C
N

IF-(2)

8.4 Wiring with DIN-814P

Warning
The DIN-814M is used for wiring between the Panasonic MINAS MSD
series servo driver and ADLINK PCI-8134/PCI-8134A, PCI-8164
motion controller cards

To stepping
driver

4th Axis
To Panasonic
Driver - CN1

LED indecater

GND
+24V

CN
1

CNIF-(4)

3rd Axis

To Panasonic
Driver - CN1

To
PCI-8134/8164

2nd Axis To
Panasonic
Driver - CN1

1st Axis

To Panasonic
Driver - CN1

CNIF-(1)

Mechanical I/O

Interface

-(1) : for 1st axis
-(2) : for 2nd axis
-(3) : for 3rd axis
-(4) : for 4th axis

Note:

1. The DIN-814P provides 2 connection methods for every axis. The first
is through the CNIF connector for the Panasonic MINAS MSD series
servo driver. The second is through SJ connector for stepping drivers
or other servo drivers (for the Mitsubishi J2S driver, please use DIN-
814M). Keep in mind that the signals in SJ and CNIF of the same axis
are directly shorted. DO NOT use both connectors at the same time.

2. A one-to-one 36-PIN cable is required to connect between the CNIF
and the Panasonic MINAS MSD driver. It is available from ADLINK, or
users may contact a local dealer or distributor to get cable information.

138 • Connection Example

3. Depending on the PCI-8134/PCI-8134A or PCI-8164 card used,
some signals (PSD & MSD) in the IOIF connector will function differently.
When PCI-8134/PCI-8134A is used, the PSD and MSD signals are for
positive slow down and negative slow down signal respectively. When PCI-
8164 is used, PSD is for CMP and LTC, and MSD is for SD. For more
details, please refer to the PCI-8134/PCI-8134A and PCI-8164 user manuals.

Mechanical Dimensions:

145 • Appendix A

PIN Assignment:

CNIF1~CNIF4
No. Name I/O Function No. Name I/O Function
1 EZ+ I Encoder Z-phase (+) 2 EZ- I Encoder Z-phase (-)
3 IGND -- Isolated Ground 4
5 OUT+ O Pulse Signal (+) 6 OUT- O Pulse Signal (-)
7 DIR+ O Direction Signal (+) 8 DIR- O Direction Signal (-)
9 IGND -- Isolated Ground 10
11 +24V O Voltage output 12 Servo ON O Servo On
13 ERC O Error counter Clear 14
15 IGND -- Isolated Ground 16
17 18
19 EA+ I Encoder A-phase (+) 20 EA- I Encoder A-phase (-)
21 EB+ I Encoder B-phase (+) 22 EB- I Encoder B-phase (-)
23 24
25 INP I Servo In Position 26 ALM I Servo Alarm
27 RDY I Servo Ready 28 IGND -- Isolated Ground
29 30
31 32
33 34
35 36

IOIF1~IOIF4
No. Name I/O Function No. Name I/O Function
1 +24V O Voltage output 6 MSD I Negative Slow Switch (+)
2 +24V O Voltage output 7 ORG I
3 PEL I Positive Limit (+) 8 IGND --
4 MEL I Negative Limit (-) 9 IGND --
5 PSD I Positive Slow Switch (+)

SJ1~SJ4
No. Name I/O Function No Name I/O Function
1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O Voltage output
3 DIR+ O Direction Signal (+) 8 Servo ON O Servo On
4 DIR- O Direction Signal (-) 9 +5V O Voltage output
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

CN1
No. Name I/O Function
1 EX+24V I External Power Supply Input (+24V DC ± 5%)
2 EXGND -- External Power Supply Ground

CMP, LTC (in IOIF)

CMP is a TTL 5V or 0V output (vs. Ext GND) LTC is a TTL
5V or 0V input (vs. Ext. GND)

CNA & CNB, CN2

Appendix A • 146

SJ: Please refer to PCI-8134/PCI-8134A/PCI-8164 user manual for wiring.
CN1:

8.5 Wiring with DIN-814PA

DIN-814PA is a termination board for Panasonic MINAS A series servo
drivers. The connectors are 50-pins

147 • Appendix A

Appendix A: Auto Home Return
Modes

PCI-8134/PCI-8134A provides 5 extra home return modes from 3 to 7
which are implemented in an independent thread under Win32 system.
These modes are based on original 3 basic modes and can achieve auto
searching jobs during homing. Users do not worry about the end-limit case
and starting position when homing.
The following figures show the timing charts of these extra home modes.
Users should take notice of the timing charts and be aware of the
limitations.

home_mode = 3 : Based on home mode 0
It can search the ORG edge signal at a specific direction automatically.
_8134_motion_done() function will return a phase code during homing.

ORG

EL

Case 1

Case 2

Reset

Reset

Case 3

ORG Offset

Reset

Appendix A • 148

home_mode = 4 : Based on home mode 2

ORG

EZ

EL

Case 1

Case 2

Case 3

Reset

Reset

ORG Offset
Reset

149 • Appendix A

Reset

home_mode = 5 : Based on home mode 1

EZ

EL

Case 1

Reset

home_mode = 6 : Based on home mode 0

ORG

EL Reset

Case 1

Case 2

Case 3

Reset

Appendix A • 150

home_mode = 7 : Based on home mode 2

ORG

EZ

EL Reset

Case 1

Case 2

Case 3

Reset

Reset

151 • Appendix A

home_mode = 8 : Based on home mode 0
No limit switches and ORG is always ON at one direction

ORG

Reset

Case 1

Case 2

Reset

Appendix A • 152

home_mode = 9 : Based on home mode 0
It can search the ORG edge signal at a specific direction automatically.

ORG

EL

Case 1

Case 2

Reset

Reset

Case 3

ORG Offset Reset

153 • Appendix B

home_mode = 11 : Based on home mode 2

ORG

EZ

EL Reset

Case 1

Case 2

Case 3

Reset

Reset

Appendix A • 154

Abnormal stop when using these modes

During auto homing phases, there could be a stop command from limit
switch, alarm switch or users’ stop command. When it happened, the
homing procedure will be terminated and return an error code in
_8134_motion_done(). These error codes show the reason of termination.
Notice that these codes will be cleared when users’ program read it.

Normally, the _8134_motion_done() will show the phase codes during
home searching. When it returns 0, it means homing is stopped. If there is
no homing error codes returned on this duration, it means homing is
successfully done. If there is an error code after stop, users must check the
error code and the previous code from _8134_motion_done() to judge the
reason of error and the phase of stop.

Please follow the sample program to read the return code correctly.
// Start home move
_8134_home_move(Axis);
while(1)
{

// polling motion status
Ret=_8134_motion_done(Axis)
if(Ret >= 200) // Abnormal Stop during homing
{

// ALM_ON = 200
// PEL_ON = 201

// MEL_ON = 202
// Stop command = 203
// EMG command = 204
// Unknow Stop =205
// Other Stop = 206

// This status will not be latched, it will be cleared after read
break;

}
else if(Ret > 100) // Normal case : home phase returned
{

// Keep Homing Phase for debug when abnormal stop happen

LastRet=Ret;

// Auto homing Status (phase will change during homing)
// START = 100
// END = 101
// REVERSE = 102
// FIND ORG = 103
// ESCAPE ORG = 104
// OFFSET ORG = 105
// LEAVE ORG = 106
// First MOVE = 107

155 • Appendix B

// Second MOVE =108
// FIND EL = 109
// FIND EZ = 110

}
else if(Ret == 0)
{

// Normal End
break;

}

} // end of while

Relative return codes of auto home return modes
return codes of _8134_motion_done(), defined in 8134err.h

HOME_Error_ALM= 200
HOME_Error_PEL = 201

HOME_Error_MEL= 202
HOME_Error_SDSTOP= 203
HOME_Error_STOP = 204
HOME_Unknow_STOP = 205
HOME_Other_STOP = 206

HOME_START = 100
HOME_END = 101
HOME_REVERSE = 102
HOME_FIND_ORG = 103
HOME_ESCAPE_ORG = 104
HOME_OFFSET_ORG = 105
HOME_LEAVE_ORG = 106
HOME_ MOVE = 107
HOME_MOVE2 =108
HOME_FIND_EL = 109
HOME_FIND_EZ = 110

Appendix A • 156

Bouncing Problem in I/O Switch
Sometimes, end-limit and ORG switches are mechanical type. Although

there is a low pass filter in our input circuit, it could exist a bouncing
problem if the bouncing frequency is very low. PCI-8134 provides a
bouncing problem filter function, _8134_set_bounce_filter(AxisNo, Value).
The default value is 10. It means this card will check 10 times during the
switches changing their states. Every check is about 1ms~10ms depends
on PC’s performance. If users get any unknown error code(205) during
homing, try to increase this value for optimization. In each phase of homing,
PCI-8134 will place this checking after the phase is finished. There could
be a motion pause situation during homing if the setting value is too high.
That’s normal situation.

Ideal Case:

Switch
Active
Level

Time

Real Case:

Hardware Recognized (Motion Stop Active)

Switch
Active
Level

User’s Software Check (IO Status not active)

Time

Stable Time

157 • Appendix B

Appendix B: 8134.DLL vs.
8134A.DLL

PCI-8134/PCI-8134A has two kinds of function library. They can’t be
mixed to use. If you are the first time or your project is a new created
one, use the 8134a.DLL for development. The new library, 8134a.DLL,
has many new functions and it also avoids function naming problem
when co-working with other cards like PCI-8372/66. Of course, the
old function library, 8134.DLL will continuously be maintenaned but
will not support new functions in the future.
If users want to porting old codes to new function library. Please read the
following comparation table for details.

B.1 Initialization

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 W_8134_Initial(I32

card_number);
U16 W_8134_InitialA(I16

*TotalCard);

I16 _8134_initial(I16 *existCards);(1)

U16 W_8134_Close(I32
card_number);

I16 _8134_close(void); (1)

U16 W_8134_Set_Config(U8
*fileName);

I16 _8134_config_from_file(U8
*fileName);

Void
W_8134_Get_IRQ_Chann
el(U16 cardNo, U16
*irq_no);

I16 _8134_get_irq_channel(I16 CardNo,
U16 *irq_no);

void W_8134_Get_Base_Addr(U16
cardNo, U16
*base_addr);

I16 _8134_get_base_addr(I16 CardNo,
U16 *base_addr);

I16 version_info(I16 CardNo, U16
*HardwareInfo, I32
*SoftwareInfo, I32
*DriverInfo);

I16 _8134_version_info(I16 CardNo,
U16 *HardwareInfo, I32
*SoftwareInfo, I32 *DriverInfo);

Appendix B • 158

B.2 Pulse Input/Output Configuration

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 set_pls_outmode(I32 axis, I32

pls_outmode);
I16 _8134_set_pls_outmode(I16

AxisNo, I16 pls_outmode);

U16 set_pls_iptmode(I32 axis, I32
pls_iptmode);

I16 _8134_set_pls_iptmode(I16 AxisNo,
I16 pls_iptmode);

U16 set_cnt_src(I32 axis, I32
cnt_src);

I16 _8134_set_feedback_src(I16
AxisNo, I16 src);(3)

B.3 Continuously Motion Mode

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 v_move(I16 axis, F64 str_vel,

F64 max_vel, F64 accel);
I16 _8134_tv_move(I16 AxisNo, F64

StrVel, F64 MaxVel, F64 Tacc);

U16 sv_move(I16 axis, F64 str_vel,
F64 max_vel, F64 Tlacc,
F64 Tsacc);

I16 _8134_sv_move(I16 AxisNo, F64
StrVel, F64 MaxVel, F64 Tacc,
F64 SVacc);

U16 v_change(I16 axis, F64
max_vel, F64 accel);

I16 _8134_v_change(I16 AxisNo, F64
Vel, F64 Time);

U16 v_stop(I16 axis, F64 decel); I16 _8134_emg_stop(I16 AxisNo);
I16 _8134_sd_stop(I16 AxisNo,F64

Tdec);
U16 set_sd_stop_mode(I16 axisno,

I16 stop_mode);
I16 _8134_set_sd_stop_mode(I16

AxisNo, I16 sd_mode);
U16 fix_max_speed(I16 axis, F64

max_vel);
I16 _8134_fix_speed_range(I16 AxisNo,

F64 MaxVel);(3)
U16 unfix_max_speed(I16 axis); I16 _8134_unfix_speed_range(I16

AxisNo);(3)

I16 get_current_speed(I16 AxisNo,
F64 *speed);

I16 _8134_get_current_speed(I16
AxisNo, F64 *speed);

F64 verify_speed(F64 StrVel,F64
MaxVel,F64
*minAccT,F64 *maxAccT,
F64 MaxSpeed);

F64 _8134_verify_speed(F64
StrVel,F64 MaxVel,F64
*minAccT,F64 *maxAccT, F64
MaxSpeed);

B.4 Trapezoidal Motion Mode

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 start_a_move(I16 axis, F64

pos, F64 str_vel, F64
I16 _8134_start_ta_move(I16 AxisNo,

F64 Pos, F64 StrVel, F64

159 • Appendix B

max_vel, F64 accel); MaxVel, F64 Tacc, F64 Tdec);

U16 start_r_move(I16 axis, F64
distance, F64 str_vel, F64
max_vel, F64 accel);

I16 _8134_start_tr_move(I16 AxisNo,
F64 Dist, F64 StrVel, F64
MaxVel, F64 Tacc, F64 Tdec);

U16 start_t_move(I16 axis, F64
distance, F64 str_vel, F64
max_vel, F64 accel, F64
decel);

I16 _8134_start_tr_move(I16 AxisNo,

F64 Dist, F64 StrVel, F64
MaxVel, F64 Tacc, F64 Tdec);

U16 start_ta_move(I16 axis, F64
pos, F64 str_vel, F64
max_vel, F64 Tacc, F64
Tdec);

I16 _8134_start_ta_move(I16 AxisNo,

F64 Pos, F64 StrVel, F64
MaxVel, F64 Tacc, F64 Tdec);

U16 a_move(I16 axis, F64 pos,
F64 str_vel, F64 max_vel,
F64 accel);

Obsolete

U16 r_move(I16 axis, F64
distance, F64 str_vel, F64
max_vel, F64 accel);

Obsolete

U16 t_move(I16 axis, F64 distance,
F64 str_vel, F64 max_vel,
F64 accel, F64 decel);

Obsolete

U16 ta_move(I16 axis, F64 pos,
F64 str_vel, F64 max_vel,
F64 Tacc, F64 Tdec);

Obsolete

U16 wait_for_done(I16 axis); Obsolete(use motion_done instead)
I16 set_rdp_mode(I16 AxisNO, I16

Mode);
I16 _8134_set_rdp_mode(I16 AxisNO,

I16 Mode);

B.5 S-Curve Profile Motion

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 start_s_move(I16 axis, F64

pos, F64 str_vel, F64
max_vel, F64 Tlacc, F64
Tsacc);

I16 _8134_start_sa_move(I16 AxisNo,
F64 Pos, F64 StrVel, F64
MaxVel, F64 Tacc, F64 Tdec,
F64 SVacc, F64 SVdec);

U16 s_move(I16 axis, F64 pos,
F64 str_vel, F64 max_vel,
F64 Tlacc, F64 Tsacc);

Obsolete

U16 start_rs_move(I16 axis, F64
distance, F64 str_vel, F64
max_vel, F64 Tlacc, F64

I16 _8134_start_sr_move(I16 AxisNo,
F64 Dist, F64 StrVel, F64
MaxVel, F64 Tacc, F64 Tdec,

Appendix B • 160

Tsacc); F64 SVacc, F64 SVdec);

U16 rs_move(I16 axis, F64
distance, F64 str_vel, F64
max_vel, F64 Tlacc, F64
Tsacc);

Obsolete

U16 start_tas_move(I16 axis, F64
pos, F64 str_vel, F64
max_vel, F64 Tlacc, F64
Tsacc, F64 Tldec, F64
Tsdec);

I16 _8134_start_sa_move(I16 AxisNo,
F64 Pos, F64 StrVel, F64
MaxVel, F64 Tacc, F64 Tdec,
F64 SVacc, F64 SVdec);(2)(4)

U16 tas_move(I16 axis, F64 pos,
F64 str_vel, F64 max_vel,
F64 Tlacc, F64 Tsacc,
F64 Tldec, F64 Tsdec);

Obsolete

B.6 Multiple Axes Point to Point Motion

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 start_move_all(I16 TotalAxes,

I16 *map_array, F64 *pos,
F64 *str_vel, F64
*max_vel, F64 *Tacc);

Obsolete(use set_ta_move_all and
start_move_all instead)

U16 wait_for_all(I16 TotalAxes, I16
*map_array);

Obsolete

U16 move_all(I16 TotalAxes, I16
*map_array, F64 *pos,
F64 *str_vel, F64
*max_vel, F64 *Tacc);

Obsolete

U16 start_sa_move_all(I16 len, I16
*map_array, F64 *pos,
F64 *str_vel, F64
*max_vel, F64 *Tlacc, F64
*Tsacc);

Obsolete(use set_sa_move_all and
start_move_all instead)

B.7 Linear Interpolated Motion

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 move_xy(I32 cardNo, F64 x,

F64 y);

Obsolete (use 2D function instead)

U16 move_zu(I32 cardNo, F64 z,
F64 u);

Obsolete (use 2D function instead)

U16 start_move_xy(I32 cardNo, I16 _8134_start_ta_move_xy(I16
CardNo, F64 PosX, F64 PosY,

161 • Appendix B

F64 x, F64 y); F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec);

U16 start_move_zu(I32 cardNo,
F64 z, F64 u);

I16 v_8134_start_ta_move_zu(I16
CardNo, F64 PosZ, F64 PosU,
F64 StrVel, F64 MaxVel, F64
Tacc, F64 Tdec);

B.8 Interpolaiton Parameters Configuring

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 map_axes(I16 n_axes, I16

*map_array);
Obsolete

U16 set_move_speed(F64 str_vel,
F64 max_vel);

Obsolete

U16 set_move_accel(F64 accel); Obsolete

U16 set_move_ratio(I16 axis, F64
ratio);

I16 _8134_set_move_ratio(I16 AxisNo,
F64 move_ratio);

B.9 Home Return Mode

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)

U16 set_home_config(I32 axis,I32
home_mode,I32
org_logic,I32 org_latch,I32
EZ_logic);

I16 _8134_set_home_config(I16
AxisNo, I16 home_mode, I16
org_logic, I16 ez_logic, I16
ez_count, I16 erc_out);(1)

U16 home_move(I32 axis,F64
str_vel,F64 max_vel,F64
accel);

I16 _8134_home_move(I16 AxisNo, F64
StrVel, F64 MaxVel, F64 Tacc);

I16 set_org_offset(I16 AxisNo, F64
Offset);

I16 _8134_set_org_offset(I16 AxisNo,
F64 Offset);

B.10 Manaul Pulser Motion

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)

U16 set_manu_iptmode(I32 axis,
I32 manu_iptmode, I32
op_mode);

I16 _8134_set_pulser_iptmode(I16
AxisNo, I16 InputMode, I16
Indep_Com);(1)(3)

U16 manu_move(I32 axis, F64
max_vel);

I16 _8134_pulser_vmove(I16
AxisNo,F64 SpeedLimit);(3)

U16 set_step_unit(I16 axisno, I16
unit);

I16 _8134_set_step_unit(I16 AxisNo,
I16 UnitNo);

Appendix B • 162

B.11 Motion Status

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)

U16 motion_done(I16 axis); I16 _8134_motion_done(I16 AxisNo);

B.12 Servo Drive Interface

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)

U16 set_alm_logic(I32 axis, I32
alm_logic, I32 alm_mode);

I16 _8134_set_alm(I16 AxisNo, I16
alm_logic, I16 alm_mode);

U16 set_inp_logic(I32 axis, I32
inp_logic, I32 inp_enable);

I16 _8134_set_inp(I16 AxisNo, I16
inp_enable, I16 inp_logic);

U16 set_erc_enable(I32 axis, I32
erc_enable);

I16 _8134_set_erc_enable(I16 AxisNo,
I16 erc_enable);

U16 set_sd_logic(I32 axis, I32
sd_logic, I32 sd_latch, I32
sd_enable);

I16 _8134_set_sd(I16 AxisNo, I16
enable, I16 sd_logic, I16
sd_latch, I16 sd_mode);(1)

U16 set_erc_enable(I32 axis, I32
erc_enable);

I16 set_erc_enable(I16 axis, I16
erc_enable);

B.13 I/O Control and Monitoring

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 W_8134_Set_SVON(I32 axis,

I32 on_off);
I16_8134_set_servo(I16 AxisNo, I16

on_off);
U16 get_io_status(I16 axis, U16

*io_sts);
I16 _8134_get_io_status(I16 AxisNo,

U16 *io_sts);

B.14 Position Control

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 get_position(I16 axis, F64

*pos);
I16 _8134_get_position(I16 AxisNo, F64

*pos);

U16 set_position(I16 axis, F64
pos);

I16 _8134_set_position(I16 AxisNo, F64
pos);

U16 get_command(I16 axis, F64
*pos);

I16 _8134_get_target_pos(I16 AxisNo,
F64 *pos);(3)

U16 set_command(I16 axis, F64
pos);

I16 _8134_reset_target_pos(I16 AxisNo,
F64 Pos);(3)

B.15 Interrupt Control

163 • Appendix B

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 W_8134_INT_Enable(I32

card_number);
I16 _8134_int_enable(I16

CardNo,HANDLE *phEvent);
U16 W_8134_INT_Disable(I32

card_number);
I16 _8134_int_enable(I16 CardNo);

Void
W_8134_Set_INT_Control
(U16 cardNo, U16
intFlag);

I16 _8134_int_control(I16 CardNo, I16
intFlag);

U16 set_int_factor(U16 axis, U32
int_factor);

I16 _8134_set_int_factor(I16 AxisNo,
U32 int_factor);

U16 get_int_status(I32 axis, U32
*int_status);

I16 _8134_get_int_status(I16 AxisNo,
U32 *int_factor);

I16 link_axis_interrupt(I16
AxisNo,void (stdcall
*callbackAddr)(void));

I16 _8134_link_axis_interrupt(I16
AxisNo,void (stdcall
*callbackAddr)(void));

Appendix B • 164

B.16 Soft-limit Checking

PCI8134.h (8134.lib) PCI8134a.h (8134a.lib)
U16 set_sw_limit(I16 axisno,F64

p_limit, F64 n_limit);
I16 _8134_set_sw_limit(I16 axisno,F64

p_limit, F64 n_limit);
U16 unset_sw_limit(I16 axisno); I16 _8134_unset_sw_limit(I16 axisno);

Note:
(1) The input arguments have been changed.
(2) The arguments in motion commands are different from last library. Users

have to pay more attention to the mapping relations. The acceleration
and deceleration arguments in s-curve motion command are changed a
lot. The old ones use Tlacc, Tldec, Tsacc, and Tsdec as input arguments.
However, the motion commands in new library adopt Tacc, SVacc, Tdec,
and SVdec as input arguments.

VM
SVacc

Vs

Tacc

SVacc

(3) The library name has been changed entirely, but its function is the same

with the old one.
(4) The motion commands in left side are simplified to the ones in the right

side.

New Functions in PCI8134a.h (8134a.lib)
I16 _8134_set_org_latch(I16 AxisNo, I16 org_latch);
I16 _8134_start_move_all(I16 FirstAxisNo);
I16 _8134_stop_move_all(I16 FirstAxisNo);
I16 _8134_set_sync_option(I16 AxisNo, I16 sync_stop_on, I16

165 • Appendix B

cstop_output_on);
I16 _8134_set_tr_move_all(I16 TotalAx, I16 *AxisArray, F64 *DistA,

F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA);
I16 _8134_set_ta_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA,

F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA);
I16 _8134_set_sr_move_all(I16 TotalAx, I16 *AxisArray, F64 *DistA,

F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8134_set_sa_move_all(I16 TotalAx, I16 *AxisArray, F64 *PosA,
F64 *StrVelA, F64 *MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8134_set_to_single_mode(I16 AxisX,I16 AxisY);
I16 _8134_set_org_logic(I16 AxisNo, I16 org_logic);
I16 _8134_set_feedback_error_detect(I16 AxisNo, I32 max_error);
I16 _8134_get_error_counter(I16 AxisNo, I16 *error_counter);
I16 _8134_reset_error_counter(I16 AxisNo);
I16 _8134_set_bounce_filter(I16 AxisNo, I16 Value);

166 • Warranty Policy

Warranty Policy

Thank you for choosing ADLINK. To understand your rights and enjoy all
the after-sales services we offer, please read the following carefully.

1. Before using ADLINK’s products, please read the user manual and
follow the instructions exactly. When sending in damaged products
for repair, please attach an RMA application form.

2. All ADLINK products come with a two-year guarantee,free of repair
charge.

• The warranty period starts from the product’s shipment date
from ADLINK’s factory

• Peripherals and third-party products not manufactured by
ADLINK will be covered by the original manufacturers’
warranty

• End users requiring maintenance services should contact their
local dealers. Local warranty conditions will depend on the
local dealers

3. Our repair service does not cover two-year guarantee while
damages are caused by the following:

a. Damage caused by not following instructions on user menus.
b. Damage caused by carelessness on the users’ part during product

transportation.
c. Damage caused by fire, earthquakes, floods, lightening, pollution

and incorrect usage of voltage transformers.
d. Damage caused by unsuitable storage environments with high

temperatures, high humidity or volatile chemicals.
e. Damage caused by leakage of battery fluid when changing

batteries.
f. Damages from improper repair by unauthorized technicians.
g. Products with altered and damaged serial numbers are not entitled

to our service.

Warranty Policy • 167

h. Other categories not protected under our guarantees.

4. Customers are responsible for the fees regarding transportation of
damaged products to our company or to the sales office.

5. To ensure the speed and quality of product repair, please
download an RMA application form from our company website
www.adlinktech.com. Damaged products with RMA forms
attached receive priority.

For further questions, please contact our FAE staff.

ADLINK: service@adlinktech.com

Test & Measurement Product Segment: NuDAQ@adlinktech.com

Automation Product Segment: Automation@adlinktech.com

Computer & Communication Product Segment: NuPRO@adlinktech.com ;
NuIPC@adlinktech.com

http://www.adlinktech.com/
mailto:service@adlinktech.com
mailto:utomation@adlinktech.com
mailto:NuPRO@adlinktech.com
mailto:NuIPC@adlinktech.com

	Introduction
	1.1 Features
	1.2 Specifications
	1.3 Software Support
	1.3.1 Programming Library
	1.3.2 Motion Creator

	1.4 Compatible Terminal Boards

	Installation
	2.1 Package Contents
	2.2 PCI-8134/PCI-8134A Outline Drawing
	2.3 Hardware Installation
	2.3.1 Hardware configuration
	2.3.2 PCI slot selection
	2.3.3 Installation Procedures
	2.3.4 Troubleshooting:

	2.4 Software Driver Installation
	2.5 Programming Guide Installation
	2.6 CN1 Pin Assignments: External Power Input
	2.7 CN2 Pin Assignments: Main connector
	2.8 CN3 Pin Assignments: Manual Pulser Input
	2.9 CN4 Pin Assignments: Simultaneous Start/Stop
	2.10 Jumper Setting
	2.11 Switch Setting

	Signal Connections
	3.1 Pulse Output Signals OUT and DIR
	3.2 Encoder Feedback Signals EA, EB and EZ
	3.3 Origin Signal ORG
	3.4 End-Limit Signals PEL and MEL
	3.5 Ramping-down Signals PSD and MSD
	3.6 In-position Signal INP
	3.7 Alarm Signal ALM
	3.8 Deviation Counter Clear Signal ERC
	3.9 General-purpose Signal SVON
	3.10 General-purpose Signal RDY
	3.11 Pulser Input Signals PA and PB
	3.12 Simultaneously Start/Stop Signals STA and STP

	Operations
	4.1 Motion Control Modes
	4.1.1 Pulse Command Output
	4.1.2 Constant Velocity Motion
	4.1.3 Trapezoidal Motion
	4.1.4 S-curve Profile Motion
	4.1.5 Linear Interpolated Motion
	4.1.6 Home Return Mode
	PCI-8134 Home Mode 0 & Home Mode 1
	PCI-8134A Home Mode 0 & Home Mode 1

	4.1.7 Manual Pulser Mode

	4.2 Motor Drive Interface
	4.2.1 INP
	4.2.2 ALM
	4.2.3 ERC

	4.3 The Limit Switch Interface and I/O Status
	4.3.1 SD
	4.3.2 EL
	4.3.3 ORG
	4.3.4 SVON and RDY

	4.4 The Encoder Feedback Signals (EA, EB, EZ)
	4.5 Multiple PCI-8134/PCI-8134A Cards Operation
	4.6 Change Speed on the Fly
	4.7 Interrupt Control

	Motion Creator
	5.1 Main Menu
	5.2 Axis Configuration Window
	5.3 Axis Operation Windows
	5.3.1 Motion Status Display
	5.3.2 Axis Status Display
	5.3.3 I/O Status Display
	5.3.4 Set Position Control
	5.3.5 Operation Mode Control
	5.3.6 Motion Parameters Control
	5.3.7 Play Key Control
	5.3.8 Velocity Profile Selection
	5.3.9 Repeat Mode

	Function Library (8134.DLL)
	6.1 List of Functions
	C/C++ Programming Library
	Initialization
	Pulse Input / Output Configuration
	Continuously Motion Move
	Trapezoidal Motion Mode
	S-Curve Profile Motion
	Multiple Axes Point to Point Motion
	Linear Interpolated Motion
	Interpolation Parameters Configuring
	Home Return
	Manual Pulser Motion
	Motion Status
	Servo Drive Interface
	I/O Control and Monitoring
	Position Control
	Interrupt Control

	Additional Function Library (8134A.DLL)
	List of Functions
	7.2 C/C++ Programming Library
	Initialization
	Pulse Input / Output Configuration
	Continuously Motion Move
	Trapezoidal Motion Mode
	S-Curve Profile Motion
	Multiple Axes Point to Point Motion
	Linear Interpolated Motion
	Home Return
	Manual Pulser Motion
	Motion Status
	Servo Drive Interface
	I/O Control and Monitoring
	Position Counter Control
	Interrupt Control

	Connection Example
	General Description of Wiring
	8.2 Connection Example with Servo Drive

	Appendix A: Auto Home Return Modes
	Appendix B: 8134.DLL vs. 8134A.DLL

