
Advance Technologies; Automate the World.

Manual Rev. 2.50

Revision Date: July 1, 2008

Part No: 50-11106-1030

PCI/PCIe/cPCI-7300A
80 MB Ultra-High Speed 32-CH

Digital I/O Boards
User’s Manual

Copyright 2008 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of the manufacturer.

Trademarks

NuDAQ, NuIPC, DAQBench are registered trademarks of ADLINK
TECHNOLOGY INC.

Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

Getting Service from ADLINK
Customer Satisfaction is top priority for ADLINK Technology Inc.
Please contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.
Web Site: http://www.adlinktech.com
Sales & Service: Service@adlinktech.com
TEL: +886-2-82265877
FAX: +886-2-82265717
Address: 9F, No. 166, Jian Yi Road, Chungho City,

Taipei, 235 Taiwan

Please email or FAX this completed service form for prompt and
satisfactory service.

Company Information

Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX:
Web Site

Product Information
Product Model

Environment
OS:
M/B: CPU:
Chipset: BIOS:

Please give a detailed description of the problem(s):

 i

Table of Contents
List of Tables.. iv

List of Figures ... v

1 Introduction .. 1
1.1 Applications ... 2
1.2 Features... 2
1.3 Specifications... 3
1.4 Software Support ... 6

Programming Library .. 6
DAQ-LVIEW PnP: LabVIEW® Driver 6
PCIS-VEE: HP-VEE Driver ... 7
DAQBenchTM: ActiveX Controls 7

2 Installation .. 9
2.1 What You Have.. 9
2.2 Unpacking.. 10
2.3 Device Installation for Windows Systems 10
2.4 cPCI/PCI/PCIe-7300A Layout.. 11
2.5 Hardware Installation Outline... 13
2.6 Connector Pin Assignment .. 14
2.7 Wiring and Termination... 17
2.8 Termination Board Support.. 18

Connect with DIN-100S .. 18
Connect with DIN-502S .. 18

3 Registers... 19
3.1 I/O Port Base Address ... 20
3.2 DI_CSR: DI Control & Status Register 22
3.3 DO_CSR: DO Control & Status Register........................... 24
3.4 Auxiliary Digital I/O Register .. 26
3.5 INT_CSR: Interrupt Control and Status Register............... 27
3.6 DI_FIFO: DI FIFO direct access port 28
3.7 DO_FIFO: DO external data FIFO direct access port........ 29
3.8 FIFO_CR: FIFO almost empty/full register 30
3.9 POL_CNTRL: Control Signal Polarity Control Register 31
3.10 PLX PCI-9080 DMA Control Registers 32

ii

4 Operation Theory .. 33
4.1 I/O Configuration.. 34
4.2 Block Diagram.. 35
4.3 Digital I/O Data Flow.. 36
4.4 Input FIFO and Output FIFO.. 37
4.5 Bus-mastering DMA... 38
4.6 Scatter/gather DMA ... 40
4.7 Clocking Mode ... 41
4.8 Starting Mode... 43
4.9 Active Terminator... 44
4.10 Digital Input Operation Mode ... 45

Digital Input DMA in Internal Clock Mode 45
Digital Input DMA in External Clock Mode 47
Digital Input DMA in Handshaking Mode 49
Continuous Digital Input .. 51

4.11 Digital Output Operation Mode .. 53
Digital Output DMA in Internal Clock Mode 53
Digital Output DMA in Handshaking Mode 54
Digital Output DMA in Burst Handshaking Mode 56
Pattern Generator ... 59

4.12 Auxiliary DIO.. 60

5 C/C++ Libraries ... 61
5.1 Libraries Installation... 62
5.2 Programming Guide... 63
5.3 _7300_Initial .. 64
5.4 _7300_Close.. 66
5.5 _7300_Configure ... 67
5.6 _7300_DI_Mode .. 69
5.7 _7300_DO_Mode... 70
5.8 _7300_AUX_DI .. 72
5.9 _7300_AUX_DI_Channel... 73
5.10 _7300_AUX_DO .. 74
5.11 _7300_AUX_DO_Channel... 75
5.12 _7300_Alloc_DMA_Mem ... 76
5.13 _7300_Free_DMA_Mem.. 77
5.14 _7300_DI_DMA_Start.. 78
5.15 _7300_DI_DMA_Status ... 82
5.16 _7300_DI_DMA_Abort... 83
5.17 _7300_GetOverrunStatus.. 84

 iii

5.18 _7300_DO_DMA_Start.. 85
5.19 _7300_DO_DMA_Status ... 87
5.20 _7300_DO_DMA_Abort... 88
5.21 _7300_DO_PG_Start... 89
5.22 _7300_DO_PG_Stop... 91
5.23 _7300_DI_Timer .. 92
5.24 _7300_DO_Timer .. 93
5.25 _7300_Int_Timer.. 94
5.26 _7300_Get_Sample... 95
5.27 _7300_Set_Sample ... 96
5.28 _7300_GetUnderrunStatus.. 97

Appendix.. 99
The Intel (NEC) 8254 .. 99
The Control Byte ... 99
Mode Definition ... 101

iv List of Tables

List of Tables
Table 2-1: Connector Pin Assignment 14
Table 3-1: I/O Port Base Address .. 20
Table 4-1: I/O Configuration ... 34
Table 5-1: Data Types ... 63

List of Figures v

List of Figures
Figure 2-1: PCI-7300A Layout Diagram..................................... 11
Figure 2-2: cPCI-7300A Layout Diagram................................... 12
Figure 2-3: PCIe-7300A Layout Diagram................................... 12
Figure 2-4: CN1 Pin Assignment ... 16
Figure 4-1: Block diagram.. 35
Figure 4-2: Data flow of digital input .. 36
Figure 4-3: Data flow of digital output .. 36
Figure 4-4: Maximum data throughput....................................... 38
Figure 4-5: Scatter/gather DMA for digital output 40
Figure 4-6: Timer configuration.. 41
Figure 4-7: DIREQ as input data strobe (Rising Edge Active) ... 48
Figure 4-8: DIREQ as input data strobe (Falling Edge Active) .. 49
Figure 4-9: DIREQ & DIACK Handshaking................................ 51
Figure 4-10: DOREQ as output data strobe................................. 54
Figure 4-11: DOREQ & DOACK Handshaking 56

vi List of Figures

Introduction 1

1 Introduction
The cPCI/PCI/PCIe-7300A is cPCI/PCI/PCI Express form factor
ultra-high speed digital I/O card, it consists of 32 digital input or
output channel. High performance designs and the state-of-the-art
technology make this card to be ideal for high speed digital input
and output applications.

The cPCI/PCI/PCIe-7300A performs high-speed data transfers
using bus mastering DMA and scatter/gather via 32-bit PCI bus
architecture. The maximum data transfer rates can be up to 80MB
per second. It is very suitable for interface between high speed
peripherals and your computer system.

The cPCI/PCI/PCIe-7300A is configured as two ports, PORTA and
PORTB, each port controls 16 digital I/O lines. The I/O can config-
ure as either input or output, and 8-bit or 16-bit. According to out-
side device environment, users can configure cPCI/PCI/PCIe-
7300A to meet all high speed digital I/O data transfer.

There are 4 different digital I/O operation modes are supported:

1. Internal Clock: the digital input and output operations
are paced by internal clock and transferred by bus mas-
tering DMA.

2. External Clock: the digital input operation is paced by
external strobe signal (DIREQ) and transferred by bus
mastering DMA.

3. Handshaking: through REQ signal and ACK signal, the
digital I/O data can have simple handshaking data trans-
fer.

4. Pattern Generation: You can output a digital pattern
repeatedly at a predetermined rate. The transfer rate is
controlled by internal timer.

2 Introduction

1.1 Applications
Interface to high-speed peripherals
High-speed data transfers from other computers
Automated test equipment (ATE)
Electronic and logic testing
Interface to external high-speed A/D and D/A converter
Digital pattern generator
Waveform and pulse generation
Parallel digital communication

1.2 Features
The cPCI/PCI/PCIe-7300A Ultra-High Speed DIO cards provide
the following advanced features:

32 digital input/output channels
Extra 4-bit TTL digital input and output channels
Transfer up to 80M Bytes per second
SCSI active terminator for high speed and long distance
data transfer
32-bit PCI bus
Plug and Play
Scatter/gatter DMA
On-board internal clock generator
Internal timer/external clock controls input sampling rate
Internal timer control digital output rate
ACK and REQ for handshaking
TRIG signal controls start of data acquisition/pattern gener-
ation
On-board 64KB FIFO
100-pin SCSI style connector

Introduction 3

1.3 Specifications
Digital I/O (DIO)

Numbers of Channel: 32 TTL compatible inputs and/or out-
puts
Device: IDT 74FCT373
I/O Configurations:

16 DI & 16 DO
32 DI
32 DO

Input Voltage:
Low: Min. 0V; Max. 0.8 V
High: Min. +2.0 V

Input Load:
Terminator OFF:

Low: +0.5 V @ ±20 mA
High: +2.7 V @ ±1 mA max.

Terminator ON:
Termination resistor: 110 Ohms
Termination voltage: 2.9V
Low: +0.5 V @ ±22.4mA
High: +2.7 V @ ±1mA max.

Output Voltage:
Low: Min. 0 V; Max. 0.5V
High: Min. +2.7 V

Driving Capacity:
Low: Max. +0.5 V at 48mA (Sink)
High: Min. 2.4 V at -8 mA (Source)

Hysteresis: 500 mV

4 Introduction

Transfer Characteristic
Mode: Bus Mastering DMA with Scatter/Gather
Data Transfers: 8/16/32-bit input or output (programmable)

DMA Transfer count:
No limitation for chaining mode (scatter/gather) DMA

Max. Transfer rate:
DO: 80M Bytes/sec: 32-bit output @ 20 MHz
DI: 80M Bytes/sec: 32-bit input @ 20 MHz

Programmable Counter:
Device: 82C54-10
Digital Input Pacer: 20 MHz, 10 MHz, or clock output of
Timer #0
Digital Output Pacer: 20 MHz, 10 MHz, or clock output of
Timer #1

General Specifications
Connector: one 100-pin male SCSI-II style cable connector
Operating Temperature: 0°C - 60°C
Storage Temperature: -20°C - 80°C
Humidity: 5 - 95%, non-condensing
Dimensions

PCI-7300A: 179mm (L) X 102mm (H)
PCIe-7300A: 168 mm (L) x 112 mm (H)
cPCI-7300A: 160mm (L) x 100 mm (H)

Introduction 5

Power Consumption:

PCI-7300A:

+5 V @ 830 mA typical (onboard terminator off), 1.0 A
typical (onboard terminator on)

PCIe-7300A:

+12 V @ 119 mA typical (onboard terminator off), 287
mA typical (onboard terminator on)
+3.3 V @ 499 mA typical (onboard terminator off), 543
mA typical (onboard terminator on)

cPCI-7300:

+5 V @ 830 mA typical (onboard terminator off), 1.0 A
typical (onboard terminator on)

6 Introduction

1.4 Software Support
ADLINK provides versatile software drivers and packages for
users’ different approach to built-up a system. We not only pro-
vide programming library such as DLL for many Windows sys-
tems, but also provide drivers for software packages such as
LabVIEW® and HP VEETM.

All the software options are included in the ADLINK CD. Commer-
cial software drivers are protected with serial licensed code. With-
out the software serial number, you can still install them and run
the demo version for two hours for demonstration purposes.
Please contact with your dealer to purchase a license.

1.4.1 Programming Library
For customers who are writing their own programs, we provide
function libraries for many different operating systems, including:

DOS Library: Borland C/C++ and Microsoft C++, the func-
tions descriptions are included in this user’s guide.
Windows 95 DLL: For VB, VC++, Delphi, BC5, the functions
descriptions are included in this user’s guide.
PCIS-DASK: Include device drivers and DLL for Windows
98/NT/2000/XP/Vista. The DLL is binary compatible across
Windows 98/NT/2000/XP/Vista. That means all applications
developed with PCIS-DASK are compatible across Win-
dows 98/NT/2000/XP/Vista. The developing environment
can be VB, VC++, Delphi, BC5, or any Windows program-
ming language that allows calls to a DLL. The user’s guide
and function reference manual of PCIS-DASK are in the
CD. Please refer the PDF manual files under \\Manual\Soft-
ware Package\PCIS-DASK.

The above software drivers are shipped with the board. Please
refer to the “Software Installation Guide” to install these drivers.

1.4.2 DAQ-LVIEW PnP: LabVIEW® Driver
DAQ-LVIEW PnP contains the VIs, which are used to interface
with NI’s LabVIEW® software package. The DAQ-LVIEW PnP
supports Windows 98/NT/2000/XP/Vista. The LabVIEW® drivers

Introduction 7

are free shipped with the board. You can install and use them
without license. For detail information about DAQ-LVIEW PnP,
please refer to the user’s guide in the CD.

(\\Manual\Software Package\DAQ-LVIEW PnP)

1.4.3 PCIS-VEE: HP-VEE Driver
The PCIS-VEE includes the user objects, which are used to inter-
face with HP VEE software package. PCIS-VEE supports Win-
dows 98/NT/2000/XP. The HP-VEE drivers are free shipped with
the board. You can install and use them without license. For detail
information about PCIS-VEE, please refer to the user’s guide in
the CD.

(\\Manual\Software Package\PCIS-VEE)

1.4.4 DAQBenchTM: ActiveX Controls
We suggest the customers who are familiar with ActiveX controls
and VB/VC++ programming use the DAQBenchTM ActiveX Con-
trol components library for developing applications. The
DAQBenchTM is designed under Windows 98/NT/2000/XP. For
more detailed information about DAQBench, please refer to the
user’s guide in the CD.

(\\Manual\Software Package\DAQBench Evaluation)

8 Introduction

Installation 9

2 Installation
This chapter describes how to install the cPCI/PCI/PCIe-7300A. At
first, the contents in the package and unpacking information that
you should be careful are described. Because the cPCI/PCI/PCIe-
7300A is following the PCI design philosophy, it is no more jump-
ers and DIP switches setting for configuration. The Interrupt and I/
O port address are the variables associated with automatic config-
uration, the resource allocation is managed by the system BIOS.
Upon system power-on, the internal configuration registers on the
board interact with the BIOS.

2.1 What You Have
In addition to this User's Manual, the package includes the follow-
ing items:

cPCI/PCI/PCIe-7300A 80 MB Ultra-High Speed 32-CH Digi-
tal I/O Card
ADLINK All-in-one CD
Software Installation Guide

If any of these items is missing or damaged, contact the dealer
from whom you purchased the product. Save the shipping materi-
als and carton in case you want to ship or store the product in the
future.

10 Installation

2.2 Unpacking
Your cPCI/PCI/PCIe-7300A card contains sensitive electronic
components that can be easily damaged by static electricity.

The card should be placed on a grounded anti-static mat. The
operator should be wearing an anti-static wristband, grounded at
the same point as the anti-static mat.

Inspect the card module carton for obvious damage. Shipping and
handling may cause damage to your module. Be sure there are no
shipping and handling damages on the module before processing.

After opening the card module carton, extract the system module
and place it only on a grounded anti-static surface component side
up.

Again inspect the module for damage. Press down on all the sock-
eted IC's to make sure that they are properly seated. Do this only
with the module place on a firm flat surface.

Note: DO NOT APPLY POWER TO THE CARD IF IT HAS BEEN
DAMAGED.

You are now ready to install your cPCI/PCI/PCIe-7300A.

2.3 Device Installation for Windows Systems
Once Windows 98/2000/XP/Vista has started, the Plug and Play
function of Windows system will find the new NuDAQ/NuIPC
cards. If this is the first time to install NuDAQ/NuIPC cards in your
Windows system, you will be informed to input the device informa-
tion source. Please refer to the “Software Installation Guide” for
the steps of installing the device.

\\Manual\Software Package\SoftwareInstallationGuide

Installation 11

2.4 cPCI/PCI/PCIe-7300A Layout

Figure 2-1: PCI-7300A Layout Diagram

12 Installation

Figure 2-2: cPCI-7300A Layout Diagram

Figure 2-3: PCIe-7300A Layout Diagram

167.65

11
1.

15

Installation 13

2.5 Hardware Installation Outline
PCI configuration
The cPCI/PCI/PCIe cards are equipped with plug and play PCI
controller, it can request base addresses and interrupt accord-
ing to PCI standard. The system BIOS will install the system
resource based on the PCI cards’ configuration registers and
system parameters (which are set by system BIOS). Interrupt
assignment and memory usage (I/O port locations) of the PCI
cards can be assigned by system BIOS only. These system
resource assignments are done on a board-by-board basis. It
is not suggested to assign the system resource by any other
methods.

PCI/cPCI/PCIe slot selection
Please note that the PCI/cPCI/PCIe slot must provide bus-
mastering capability to operate this board well.

Installation Procedures
1. Turn off your computer.

2. Turn off all accessories (printer, modem, monitor, etc.)
connected to your computer.

3. Remove the cover from your computer.

4. Select a 32-bit PCI/cPCI/PCIe slot.

5. Before handling the PCI/cPCI/PCIe cards, discharge any
static buildup on your body by touching the metal case of
the computer. Hold the edge and do not touch the com-
ponents.

6. Position the board into the PCI/cPCI/PCIe slot you
selected.

7. Secure the card in place at the rear panel of the system.

14 Installation

2.6 Connector Pin Assignment
The PCI/cPCI/PCIe-7300A comes equipped with one 100-pin
SCSI type connector (CN1) located on the rear mounting plate.
The pin assignment of CN1 is illustrated in the Figure 2-3.

Legend:

Pins Signal Name Signal Type Signa
Direction Description

1…50 GND GND Ground – these lines are the ground ref-
erence for all other signals

51..66 PB15…PB0 DATA I/O PortB bidirectional data liness-PB15 is
the MSB, and PB0 is the LSB.

67 DOACK CONTROL I

Digital output Acknowledge lines – In
handshaking mode, DOACK carries
handshaking status information from the
peripheral.

68 DOREQ CONTROL O
Request line – In handshaking mode,
DOREQ carries handshaking control
information to peripheral.

69 DOTRIG CONTROL I

DO TRIG- can be used to control the
start of data output in all DO modes and
to control the stop of pattern generation
in pattern generation mode.

70…73 AUXDO3…0 DATA O
AUX DO 3…0 – can be used as extra
output data or can be used as extra
control signals.

85..100 PA15…PA0 DATA I/O PortA bidirectional data liness-PA15 is
the MSB, and PA0 is the LSB.

82 DIACK CONTROL O

Digital input Acknowledge lines – In
handshaking mode, DIACK carries
handshaking status information to the
peripheral.

83 DIREQ CONTROL I

Request line – In handshaking mode,
DIREQ carries handshaking control
information from peripheral. In external
clock mode, DIREQ carries the external
clock input.

Table 2-1: Connector Pin Assignment

Installation 15

84 DITRIG CONTROL I DI TRIG – can be used to control the
start of data acquisition in all DI modes.

78…81 AUXDI3…0 DATA I
AUX DI 3…0 – can be used as extra
input data or can be used as extra con-
trol signals.

74…77 TERMPWR POWER TERMPWR -- 4.7V active terminator
power output

Pins Signal Name Signal Type Signa
Direction Description

Table 2-1: Connector Pin Assignment

16 Installation

Figure 2-4: CN1 Pin Assignment

Installation 17

2.7 Wiring and Termination
Transmission line effects and environment noise, particularly on
clock and control lines, can lead to incorrect data transfers if you
do not take care when running signal wires to and from the
devices.

Take the following precautions to ensure a uniform transformation
line and minimize noise pickup:

1. Use twisted-pair wires to connect digital I/O signals to
the device. Twist each digital I/O signal with a GND line.
In PCI/cPCI/PCIe-7300A, 50 signals are used as GND.

2. Place a shield around the wires connecting digital I/O
signal to device.

3. Route signals to the devices carefully. Keep cabling
away from noise sources, such as video monitor.

For the cPCI/PCI/PCIe-7300A, it is important to terminate your
cable properly to reduce or eliminate signal reflections in the
cable. The PCI/cPCI/PCIe-7300A support active terminator on
board, you can enable or disable the terminator by software selec-
tion. This is a good way to include termination on the signal trans-
mission.

Additional recommendations apply for all signal connection to your
cPCI/PCI/PCIe-7300A are listed as follows:

1. Separate cPCI/PCI/PCIe-7300A device signal lines from
high-current or high-voltage line. These lines are capa-
ble of inducing currents in or voltages on the cPCI/PCI/
PCIe-7300A if they run in parallel paths at a close dis-
tance. To reduce the magnetic coupling between lines,
separate them by a reasonable distance if they run in
parallel, or run the lines at right angles to each other.

2. Do not run signal lines through conducts that also con-
tain power lines.

3. Protect signal lines from magnetic fields.

18 Installation

2.8 Termination Board Support
The cPCI/PCI/PCIe-7300A can be connected with two termination
boards: DIN-100S or DIN-502S. The functionality and connections
are specified as follows.

2.8.1 Connect with DIN-100S
The DIN-100S is a direct connection for the add-on card that is
equipped with SCSI-100 connector. User can connect this daugh-
ter board by a 100-pin SCSI type cable (ACL-102100) to the cPCI/
PCI/PCIe-7300A. It is suitable for the applications of 32-bit digital
input or 32-bit digital output.

2.8.2 Connect with DIN-502S
The DIN-502S with the cable ACL-10252 separates the 100-pin
SCSI connector into two 50-pin SCSI connectors. One 50 pin con-
nector is for pin 1 - 25 and pin 51- 75 of CN1 while the other one is
for pin 26 - 50 and pin 76-100 of CN1. That means the DIN-502S
and the ACL-10252 make users easy to connect the 16-bit digital
inputs and 16-bit digital outputs by using two 50-pin daughter
boards respectively. The independent wiring of 16-bit DI and 16-bit
DO let users convenient to setup and maintain his systems.

Registers 19

3 Registers
In this chapter, the registers’ format of the cPCI/PCI/PCIe-7300A
is described.

This information is quite useful for the programmers who wish to
handle the card by low-level programming. In addition, users can
realize how to use software driver to manipulate this card after
understanding the registers' structure of the cPCI/PCI/PCIe-7300A

The cPCI/PCI/PCIe-7300A functions as a 32-bit PCI master
device on the PCI bus. There are three types of registers on the
cPCI/PCI/PCIe-7300A: PCI Configuration Registers (PCR), Local
Configuration Registers (LCR) and cPCI/PCI/PCIe-7300A’s regis-
ters.

The PCR, which compliant to the PCI-bus specifications, is initial-
ized and controlled by the plug & play (PnP) PCI BIOS. User‘s
can study the PCI BIOS specification to understand the operation
of the PCR. Please contact with PCISIG to acquire the specifica-
tions of the PCI interface.

The LCR is specified by the PCI bus controller PLX PCI-9080,
which is provided by PLX technology Inc. (www.plxtech.com) . It is
not necessary for users to understand the details of the LCR if you
use the software library. The base address of the LCR is assigned
by the PCI PnP BIOS. The assigned address is located at offset
14h of PCR.

20 Registers

3.1 I/O Port Base Address
The registers of the cPCI/PCI/PCIe-7300A are shown in Table 3.1.
The base address of these registers is also assigned by the PCI
P&P BIOS. The assigned base address is stored at offset 18h of
the PCR. Therefore, users can read the PCR to know the base
address by using BIOS function call. Note that the cPCI/PCI/
PCIe-7300A registers are all 32 bits. Users should access these
registers by 32 bits I/O instructions.

The cPCI/PCI/PCIe-7300A occupies 8 consecutive 32-bit I/O
addresses in the I/O address space. Table 3.1 shows the I/O Map
of the cPCI/PCI/PCIe-7300A rev.B.

Address Read Write

Base + 0 DI_CSR DI_CSR
Base + 4 DO_CSR DO_CSR
Base + 8 AUX_DIO AUX_DIO
Base + C INT_CSR INT_CSR
Base + 10 DI_FIFO DI_FIFO
Base + 14 DO_FIFO DO_FIFO
Base + 18 - FIFO_CR
Base + 1C POL_CTRL POL_CTRL
Base + 20 8254_COUNT0 8254_COUNT0
Base + 24 8254_COUNT1 8254_COUNT1
Base + 28 8254_COUNT2 8254_COUNT2
Base + 2C 8254_CONTROL 8254_CONTROL

Table 3-1: I/O Port Base Address

Registers 21

Legend:
DI_CSR: Digital input control & status register
DO_SCR: Digital output control & status register
AUX_DIO: Auxiliary digital I/O port
INT_CSR: Interrupt control and status register
DI_FIFO: DI FIFO direct access port
DO_FIFO: DO FIFO direct access port
FIFO_CR: FIFO almost empty/full programming register
POL_CTRL: Polarity control register for the control signals

Caution:
I/O port is 32-bit width
8-bit or 16-bit I/O access is not allowed.

22 Registers

3.2 DI_CSR: DI Control & Status Register
Digital input control and status checking is done by this register.

Address: BASE + 00
Attribute: READ/WRITE
Data Format:

DI_32 (R/W)
0:Input port is not 32-bit wide (16-bit or 8-bit wide)
1:Input port is 32-bit wide, PORTB is configured as the
extension of PORTA. That means PORTA is input lines
0…15, and PORTB is input lines 16…31. All the PORTB
control signals are disabled.

DI_CLK_SEL (R/W)
00: use timer0 output as input clock
01: use 20MHz clock as input clock
10: use 10MHz clock as input clock
11: use external clock (DI_REQ) as input clock

DI_HND_SHK (R/W)
0: No handshaking
1: REQ/ACK handshaking mode

DI_WAIT_TRIG (R/W)
0: start input sampling immediately
1: delay input sampling until DITRIG is active

PA_TERM_OFF (R/W)
0: PORTA terminator ON
1: PORTA terminator OFF

Bit # 3-0 DI_HND_SHK DI_CLK_SEL DI_32
Bit # 7-4 0 PA_TERM_OFF DI_WAIT_TRIG -- (1)
Bit # 11-8 DI_FIFO_FULL DI_OVER DI_FIFO_CLR DI_EN

Bit # 15-12 - - - DI-FIFO_EMPTY
Bit # 31-16 Don’t Care

Registers 23

DI_EN (R/W)
0: Disable digital inputs
1: Enable digital inputs

DI_FIFO_CLR (R/W)
0: No effect
1: Clear digital input FIFO. If both PORTA and PORTB are
configured as inputs, both FIFO will be cleared. Always get
0 when read.

DI_OVER (R/W)
0: DI FIFO does not full during input sampling
1: DI FIFO full during input sampling, some input data was
lost, write “1” to clear this bit

DI_FIFO_FULL (RO)
0: DI FIFO is not full
1: DI FIFO is full

DI_FIFO_EMPTY (RO)
0: DI FIFO is not empty
1: DI FIFO is empty

24 Registers

3.3 DO_CSR: DO Control & Status Register
Digital input control and status checking is done by this register.

Address: BASE + 04
Attribute: READ/WRITE
Data Format:

(2) This bit is different between Rev.A and Rev.B.

DO_32 (R/W)
0: Output port is not 32-bit wide (16-bit or 8-bit wide)
1: Output port is 32-bit wide, PORTA is configured as the
extension of PORTB. That means PORTB is output lines
(0…15), and PORTA is output lines (16…31). All PORTA
control signals are disabled.

DO_MODE (R/W)
00: use timer1 output as output clock
01: use 20MHz clock as output clock
10: use 10MHz clock as output clock
11: REQ/ACK handshaking mode

DO_WAIT_NAE (R/W)
0: do not wait output FIFO not almost empty flag
1: delay output data until FIFO is not almost empty

PAT_GEN(R/W)
0:pattern generation disable (FIFO data do not repeat dur-
ing data output)
1:pattern generation enable (FIFO data repeat themselves
during data output)

DO_WAIT_TRIG (R/W)

Bit # 3-0 DO_WAIT_NAE DO_MODE DO_32
Bit # 7-4 PG_STOP_TRIG PB_TERM_OFF DO_WAIT_TRG PAT_GEN
Bit # 11-8 DO_FIFO_FULL DO_UNDER DO_FIFO_CLR DO_EN

Bit # 15-12 - - BURST_HNDSH (2) DO_FIFO_EMPTY
Bit # 31-16 Don’t Care

Registers 25

0: start output data immediately
1: delay output data until DOTRIG is actived

PB_TERM_OFF (R/W)
0: PORTB terminator ON
1: PORTB terminator OFF

PG_STOP_TRIG (R/W)
0: no effect
1: Stop pattern generation when DOTRIG is deasserted

DO_EN (R/W)
0: Disable digital outputs
1: Enabled digital outputs

DO_FIFO_CLR (R/W)
0:No effect
1:Clear digital output FIFO. If both PORTA and PORTB are
configured as outputs, both FIFO will be cleared. Always get
0 when read.

DI_UNDER (R/W)
0:DO FIFO does not empty during data output
1:DO FIFO is empty during data output, some output data
may be output twice. Write 1 to clear this bit

DO_FIFO_FULL (RO)
0: DO FIFO is not full
1: DI FIFO is full

DO_FIFO_EMPTY (RO)
0: DO FIFO is not empty
1: DO FIFO is empty

BURST_HNDSHK (R/W)
0: disable burst handshaking mode
1: enable burst handshake mode

Note: This bit is for Rev.B only.

26 Registers

3.4 Auxiliary Digital I/O Register
Auxiliary 4-bit digital inputs and 4-bit digital outputs

Address: BASE + 08
Attribute: READ/WRITE
Data Format:

This auxiliary digital I/O is controlled by porgram I/O only.

DO_AUX_3 - DO_AUX_0 (R/W)
4-bit auxiliary output port. Program I/O only.

DI_AUX_3 - DI_AUX_0 (R)
4-bit auxiliary input port. Program I/O only

Bit # 3-0 DO_AUX_3 DO_AUX_2 DO_AUX_1 DO_AUX_0
Bit # 7-4 DI_AUX_3 DI_AUX_2 DI_AUX_1 DI_AUX_0

Bit # 31-8 Don’t Care

Registers 27

3.5 INT_CSR: Interrupt Control and Status Register
The interrupt of cPCI/PCI/PCIe-7300A is controlled and status is
checked through this register.

Address: BASE + 0x0C
Attribute: READ/WRITE
Data Format:

AUXDI_EN (R/W)
0: Disable AUXDI0 interrupt
1: Interrupt CPU on falling edge of AUXDI0

T2_EN (R/W)
0: Disable Timer2 interrupt
1: Interrupt CPU on falling edge of Timer 2 output

AUXDI0_INT (R/W)
0: AUXDI does not generate interrupt
1: AUXDI interrupt occurred. Write “1” to clear

T2_INT (R/W)
0: Timer 2 does not generate interrupt
1: Timer 2 interrupt occurred. Write “1” to clear

Bit # 3-0 T2_INT AUXIO_INT T2_EN AUXDI0_EN
Bit # 7-4 - - Reserved Reserved
Bit # 31-8 Don’t Care

28 Registers

3.6 DI_FIFO: DI FIFO direct access port
The digital input FIFO data can be accessed through this port
directly.

Address: BASE + 0x10
Attribute: READ/WRITE
Data Format:

DI_FIFO_8
Bit 7 - Bit 0 of digital input FIFO

DI_FIFO_16
Bit 15 - Bit 8 of digital input FIFO if the digital input is configured
as 16-bit wide or 32-bit wide.

DI_FIFO_32
Bit 31 - Bit 16 of digital input FIFO if the digital input is config-
ured as 32-bit wide

Note: Although this port is R/W port, write operation should be
avoided in normal operation. If both PORT A and PORT B
are configured as output ports, read/write to this port is
meaningless.

Bits 7 6 5 4 3 2 1 0
Bit # 7-0 DI_FIFO_8

Bit # 15-8 DI_FIFO_16
Bit # 31_16 DI_FIFO_32

Registers 29

3.7 DO_FIFO: DO external data FIFO direct access
port
The digital output FIFO data can be accessed through this port
directly.

Address: BASE + 0x0C
Attribute: READ/WRITE
Data Format:

DO_FIFO_8
Bit 7 - Bit 0 of digital output FIFO

DO_FIFO_16
Bit 15 - Bit 8 of digital output FIFO if the digital output is config-
ured as 16-bit wide or 32-bit wide.

DO_FIFO_32
Bit 31 - Bit 16 of digital output FIFO of the digital output is con-
figured as 32-bit wide

Note: Although this port is R/W port, read operation should be
avoided in normal operation. If both PORTA and PORTB are
configured as input ports, read/write to this port is meaning-
less.

Bits 7 6 5 4 3 2 1 0
Bit # 7-0 DO_FIFO_8

Bit # 15-8 DO_FIFO_16
Bit # 31_16 DO_FIFO_32

30 Registers

3.8 FIFO_CR: FIFO almost empty/full register
The register is used to control the FIFO programmable almost
empty/full flag.

Address: BASE + 0x018
Attribute: WRITE Only
Data Format:

PB_PAE_PAF (WO)
Programmable almost empty/full threshold of PORTB FIFO, 2
consecutive writes are required to program PORTB FIFO. Pro-
grammable almost empty threshold first.

PA_PAE_PAF(WO)
Programmable almost empty/full threshold of PORTA FIFO, 2
consecutive writes are required to program PORTA FIFO. Pro-
grammable almost empty threshold first.

Bits 7 6 5 4 3 2 1 0
Bit 15-0 PB_PAE_PAF

Bit 31_16 PA_PAE_PAF

Registers 31

3.9 POL_CNTRL: Control Signal Polarity Control
Register
The register is used to control the control signals’ polarity. The
control signals include DI_REQ, DI_ACK, DI_TRG, DO_REQ,
DO_ACK and DO_TRG.

Address: BASE + 0x1C
Attribute: READ/WRITE
Data Format:

DI_REQ_NEQ (R/W)
0: DI_REQ is rising edge active
1: DI_REQ is falling edge active

DI_ACK_NEQ (R/W)
0: DI_ACK is rising edge active
1: DI_ACK is falling edge active

DI_TRG_NEQ (R/W)
0: DI_TRG is rising edge active
1: DI_TRG is falling edge active

DO_REQ_NEQ (R/W)
0: DO_REQ is rising edge active
1: DO_REQ is falling edge active

DO_ACK_NEQ (R/W)
0: DO_ACK is rising edge active
1: DO_ACK is falling edge active

DO_TRG_NEQ (R/W)
0: DO_TRG is rising edge active
1: DO_TRG is falling edge active

Bit # 3-0 DO_REG_NEG DI_TRG_NEG DI_ACK_NEG DI_REQ_NEG
Bit # 71-4 - - DO_TRG_NEG DO_ACK_NEG
Bit # 31-8 Don’t Care

32 Registers

3.10 PLX PCI-9080 DMA Control Registers
The registers of bus-mastering DMA as well as the control and
status registers of PCI-bus interrupts are built in the PLX PCI-9080
ASIC. Users can refer to the manual of PLX PCI-9080 for detailed
information.

Operation Theory 33

4 Operation Theory
This chapter provides the detailed operation information for the
cPCI/PCI/PCIe-7300A, including I/O configuration, block diagram,
input/output FIFO, bus-mastering DMA, scatter/gather, clocking
mode, starting mode, termination, I/O transfer mode, and auxiliary
digital I/O.

34 Operation Theory

4.1 I/O Configuration
The 32-bit I/O data path of PCI/cPCI/PCIe-7300A can be config-
ured as 8-bit, 16-bit, or 32-bit, the possible configuration modes
are listed as follows.

Note:

PORTA is default as Input channel; PORTB is default as
output channel.
In DI32 mode, the PORTB has to be configured as the
extension of PORTA, that is, PORTB is the input port
(DI16…DI31). PORTB control signals are disabled.
In DO32 mode, the PORTA has to be configured as the
extension of PORTB, that is, PORTA is the output port
(DO16…DO31). PORTA control signals are disabled.
DI0: input LSB, DI31: input MSB;
DO0:output LSB, DO31:output MSB.
LSB: Least Significant Bit, MSB: Most Significant Bit

Mode Channel Description

DI32 PORTA (DI0…DI15)
PORTB (DI16..DI31)

Both PORTA and PORTB are
configured as input channel

DO32 PORTA (DO16…DO31)
PORTB (DO0…DO15)

Both PORTA and PORTB are
configured as output channel

DI16DO16
(default mode)

PORTA (DI0…DI15)
PORTB (DO0…DO15)

PORTA is 16-CH input
PORTB is 16-CH output

DI16DO8 PORTA (DI0…DI15)
 PORTB (DO0…DO7)

PORTA is 16-CH input
PORTB is 8-CH output

DI8DO16 PORTA (DI0…DI7) PORTB (DO0…DO15) PORTA is 8-CH input
PORTB is 16-CH output

DI8DO8 PORTA (DI0…DI7) PORTB (DO0…DO7) PORTA is 8-CH input PORTB
is 8-CH output

Table 4-1: I/O Configuration

Operation Theory 35

4.2 Block Diagram
Figure 4-1 shows the block diagram of the cPCI/PCI/PCIe-7300A,
it includes the I/O registers, two 16K FIFOs, auxiliary DIO, active
terminators, and so on.

Figure 4-1: Block diagram

PORTA: 16 Digital I/O Port, it can be set as terminated
mode or non-terminated mode

PORTB: 16 Digital I/O Port, it can be set as terminated
mode or non-terminated mode

FIFO: Two 16K words FIFO for digital I/O data buffer
AUX DO 3..0: Four auxiliary digital outputs
AUX DI 3..0: Four auxiliary digital inputs

DITRIG: Digital input trigger line
DIACK/DIREQ: Digital input handshaking signals

DOTRIG: Digital output trigger line
DOACK/DOREQ: Digital output handshaking signals

36 Operation Theory

4.3 Digital I/O Data Flow
When applying digital input functions, the data will be sampled into
the input FIFO periodically as we configured and then transfer to
the system memory by the bus mastering DMA of the PCI Bridge.
Figure 4-2 show the data flow of the 16-bit digital input operation.

Figure 4-2: Data flow of digital input

On the other hand, Figure 4-3 shows the data flow of 16-bit digital
output operation. After the bus mastering DMA of the PCI Bridge
transfers the output data to the output FIFO, the cPCI/PCI/PCIe-
7300A will output the data to the external devices in a pre-
assigned period.

Figure 4-3: Data flow of digital output

The width of local data bus on the cPCI/PCI/PCIe-7300A can be
programmable to be 8-bit, 16-bit or 32-bit. The default data width
is 16-bit. Port A is default to be input port, and Port B is default to
be output one. When 8-bit data width is applied, only the lower
byte of the bus will be used. While we program the data width to
be 32-bit, the two ports will operate in the same manner.

Operation Theory 37

4.4 Input FIFO and Output FIFO
Due to the data transfer rate between external devices and the
cPCI/PCI/PCIe-7300A is independent from that between cPCI/
PCI/PCIe-7300A and PCI bus. Two 16K words FIFO are provided
to be I/O buffers.

For digital input operation, data is sampled and transferred to the
input FIFO. When the input FIFO is non-empty, the PCI bridge will
automatically transfer the data from the input FIFO to the system
memory in the background when PCI bus is available.

As the data transfer rate from external device to input FIFO (DI
pre-transfer rate) is lower than that from input FIFO to system
memory (DI post-transfer rate), the input FIFO is usually empty.
On the contrary, when DI pre-transfer rate is higher than DI post-
transfer rate, the FIFO becomes full and the overrun situation
occurs if the data size is larger than the FIFO size, that is 16K
samples. When DI overrun happens, the next input data will lose
until the input FIFO becomes non-full once again. Users can
check the overrun status by using the function
_7300_GetOverrunStatus.

For digital output operation, data is moved from system memory to
the output FIFO by bus mastering DMA, assume the data transfer
rate is DO pre-transfer rate. Then, the data will be transferred to
the external devices periodically as we configured, assume the
transfer rate is DO post-transfer rate. When the DO pre-transfer
rate is higher than the DO post-transfer rate, the DMA transfer
stops as the output FIFO becomes full. On the contrary, if DO pre-
transfer rate is lower than DO post-transfer rate. The underrun sit-
uation occurs as the output FIFO becomes empty. The output data
remains when underrun happens. User can check the underrun
status by using the function _7300_GetUnderrunStatus.

Note: The max data length should be 16K instead of 32K. Users
can send repetitive pattern of 8-/16-/32-bit width with a
length of 16K samples, because of the FIFO depth is as it is
no matter how wide the bus. Users should remember that
the FIFO chip size is 32K bytes with 16-bits width. There-
fore, for each bit, the depth is 16K. If you need more depth
of data, the data have to be in the PC memory and chain the
pattern memory circularly, and then do chaining mode DMA
which will generate the desired pattern repetitively.

38 Operation Theory

4.5 Bus-mastering DMA
Digital I/O data transfer between cPCI/PCI/PCIe-7300A and PC’s
system memory is through bus mastering DMA, which is con-
trolled by PCI bridge chip PLX PCI-9080. The PCI bus master
means the device requires fast access to the bus or high data
throughput in order to achieve good performance.

However, users should note that when more than one bus masters
request the bus ownership, all masters will share the bandwidth of
PCI bus and the performance of each master will unavoidably
drop. Therefore, in order to obtain the maximum data throughput
of the cPCI/PCI/PCIe-7300A, it is recommended to remove or dis-
able the bus mastering function of other bus masters, such as net-
work, SCSI, modem adapters, and so on.

The maximum data throughput of the cPCI/PCI/PCIe-7300A is
also limited by the data throughput of the bridge chipset (North
Bridge: NB) between PCI bus and system memory. The typical
data throughput of NB chipset is 120MB/s for input and 100MB/s
for output. Please refer to the Figure 4-6. User should check the
specs of the chipset on your main-board to determine the cPCI/
PCI/PCIe-7300A‘s maximum data throughput. The 80MB/s data
throughput of the cPCI/PCI/PCIe-7300A is guaranteed in the per-
vious system setup by using the internal 20MHz-sampling rate.

Figure 4-4: Maximum data throughput

From Figure 4-6, we can find that NB chipset is the bottleneck of
the maximum data transfer rate as only one bus master exists.
When the transfer rate users required is smaller than the maxi-
mum transfer rate, by using scatter/gather (see 4.6), users can
transfer the maximum data size as they have on their system
memory. However, if the data should be real-time saved to the

PCI/PCIe/cPCI-7300A

Operation Theory 39

hard-disk rather than memory, the bottleneck would be the data
transfer rate of the hard-disk driver.

40 Operation Theory

4.6 Scatter/gather DMA
The PCI Bridge also supports the function of scatter/gather bus
mastering DMA, which helps the users to transfer a large amount
of data by linking the all memory blocks into a continuous linked
list.

In the multi-user or multi-tasking OS, like Microsoft Windows,
Linux, and so on. It is difficult to allocate a large continuous mem-
ory block to do the DMA transfer. Therefore, the PLX PCI-9080
provides the function of scatter/gather or chaining mode DMA to
link the non-continuous memory blocks into a linked list so that
users can transfer a very large amount of data without limiting by
the fragment of small size memory. Users can configure the linked
list for the input DMA channel or the output DMA channel. Figure
4-7 shows the linked list that is constructed by three DMA descrip-
tors. Each descriptor contains a PCI address, a local address, a
transfer size, and the pointer to the next descriptor. Users can allo-
cate many small size memory blocks and chain their associative
DMA descriptors altogether by their application programs. The
cPCI/PCI/PCIe-7300A’s software driver provides the easy settings
of the scatter/gather function, and some sample programs are also
provided within the ADLINK all-in-one CD. Users can refer to
these sample programs and the function 5.14 and 5.18 for more
detailed description.

Figure 4-5: Scatter/gather DMA for digital output

PCI/PCI Express Bus

Operation Theory 41

4.7 Clocking Mode
The data input to or output from the FIFO is operated in a specific
rate. The specific sampling rate or the pacer rate can be program-
mable by software, by external clock, or by easy handshaking pro-
tocol.

Four clocking modes are provided in the cPCI/PCI/PCIe-7300A to
sample input data to the FIFO or output date from FIFO to the
external devices. They are:

1. Internal Clock: Three sources are available to activate
both digital input and digital output. They are 20 MHz,
10MHz, and programmable timer 82C54. There are
three counters in 82C54, counter 0 is used to generate
sampling clock for digital input, counter 1 is used timer
pacer for digital output, and counter 2 is used for inter-
rupt function. The configuration is illustrated as follows.

Figure 4-6: Timer configuration

2. External Clock: This mode is only applied for digital
input. The digital inputs are handled by the external clock
strobe (DI-REQ). The DI-ACK signal reflects the almost
full status of the input FIFO. The DI-ACK is asserted
when input FIFO is not almost full, which means the
external device can input data. If the input FIFO is
almost full, the DI-ACK is de-asserted, then the external
device should pause data transfer and wait for the asser-

42 Operation Theory

tion of DI-ACK. If the external device follows the rule,
there would be no data lost due to FIFO overrun.

3. Handshaking: For the digital input, through DI-REQ
input signal from external device and DI-ACK output sig-
nal to the external deviec, the digital input can have sim-
ple handshaking data transfer. For the digital output,
through DO-REQ output signal to the dexternal device
and DO-ACK input signal from external device, the digi-
tal output can have simple handshaking data transfer

4. Burst Handshaking: This mode is available for both
digital output and digital input. If the digital output DMA
use internal clock and the burst handshaking mode is
enable, the cPCI/PCI/PCIe-7300A output data only when
DO-ACK is asserted. That is, the external device can
control the data input from the cPCI/PCI/PCIe-7300A by
asserting the DO-ACK pin when it is ready to receive
data.

The software driver functions of 5.6 and 5.7 are provided to setup
the clocking mode of digital input and digital output, respectively.

Note: Due to the internal clock is based on 10MHz clock, some
specific sampling rate or pacer rate cannot be generated by
software, such as 9MHz. For digital input, users can use the
external clock source. However, for digital output, users
should replace the default 40MHz oscillator because the cur-
rent version of cPCI/PCI/PCIe-7300A does not support ex-
ternal clock for digital output.
The frequency of external input clock cannot exceed 40MHz
due to the local bus timing requirement.
When users replace the default oscillator on board, the cor-
responding frequency would be changed, for example, by re-
placement with 36Mhz oscillator, the internal clock selection
would be changed to 18MHz, 9MHz, and 9MHz base timer
output.

Operation Theory 43

4.8 Starting Mode
Users can also control the starting mode of digital input and output
by external signals (DITRIG and DOTRIG) with the software pro-
grams. The trigger modes includes NoWait, WaitTRIG, WaitFIFO,
and WaitBoth.

1. NoWait: The data transfer is started immediately when a
I/O transfer command is issued.

2. WaitTRIG: The data transfer will not start until external
trigger signal (DI-TRIG for digital input, DO-TRIG for dig-
ital output) is activated.

3. WaitFIFO: This starting mode is only available for digital
output. The data transfer is started until the output FIFO
is not almost empty. The threshold of FIFO almost empty
is software programmable.

4. WaitBoth: This starting mode is only available for digital
output. The data transfer is started until the output FIFO
is not almost empty and DO-TRIG signal is activated.

The software driver functions of 5.6 and 5.7 are provided to setup
the starting mode of digital input and digital output, respectively.

44 Operation Theory

4.9 Active Terminator
For cPCI/PCI/PCIe-7300A, it is important to terminate your cable
properly to reduce or eliminate signal reflections in the cable. The
PCI/cPCI/PCIe-7300A support active terminator on board, you can
enable or disable the terminator by software selection.

The active terminator is the same as the one used in SCSI 2.
When the terminator is ON, it presents a terminal 110-ohm imped-
ance to the transmission line to match the line impedance. When it
is OFF, it just add a few pF capacitance to the line

Operation Theory 45

4.10 Digital Input Operation Mode

4.10.1Digital Input DMA in Internal Clock Mode
There are three sources to trigger digital input in the internal clock
mode: 20MHz, 10MHz, and programmable timer 82C54. There
are three counters in 82C54, where the counter 0 is used for sam-
pling clock source for digital input. The operations sequence of
digital input with internal clock are listed as follows:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit
data width.

2. Enable or disable the active terminators.

3. Define the input sampling rate to be 20MHz, 10MHz, or
the output of 82C54 counter 0.

4. Define the starting mode to be NoWait or WaitTRIG.

5. The digital input data are stored in the input FIFO after a
DI command is issued and waiting for DI-TRIG signal if
in WaitTRIG mode.

6. The data in the input FIFO will be transferred into system
memory directly and automatically by bus mastering
DMA.

46 Operation Theory

The operation flow is show as below:

Note: When the DMA function of digital input starts, the input data
will be stored in the FIFO of the cPCI/PCI/PCIe-7300A. The
data then transfer to system memory if PCI bus is available.
If the speed of translation from external device to the FIFO
on board is higher than that from FIFO to system memory or
the PCI bus is busy for a long time, the FIFO become full and
overrun situation occurs after the next data being written to
the input FIFO. Users should check the overrun status to see
whether the overrun occurs or not. Some input data will lost
when the input FIFO is overrun.
The overrun occurs when the DMA idle time (from the end of
DMA transfer N to the start of DMA transfer N+1) is longer

Operation Theory 47

than the on-board FIFO buffer time. The FIFO size is 16K
sample, so it has 1.6 ms buffer time for 10MHz sampling rate
if the FIFO is empty when last DMA is complete. Users may
try different DMA buffer size to see how the DMA buffer size
affects the overall performance. Generally, the larger DMA
size the less overhead, however, the process time required
between DMAs also increases.

4.10.2Digital Input DMA in External Clock Mode
The digital input data transfer can be controlled by external strobe,
which is from pin-83 DI-REQ of CN1. The operation sequence is
very similar to Internal Clock. The only difference is the clock
source comes from the outside peripheral devices. The operations
sequence of digital input with external clock are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit
data width.

2. Enable or disable the active terminators.

3. Define the input sampling rate as external clock. Con-
nect the external clock to the input pin DI-REQ.

4. Define the starting mode to be NoWait or WaitTRIG.

5. The digital input data are stored in the input FIFO after a
DI command is issued and waiting for DI-TRIG signal if
in WaitTRIG mode..

6. The data saved in FIFO will transfer to system memory
of your computer directly and automatically by bus mas-
tering DMA.

7. The DI-ACK signal indicates the status of the cPCI/PCI/
PCIe-7300A’s input FIFO is in external clock mode.
When the digital input circuit of cPCI/PCI/PCIe-7300A is
enabled and its FIFO is not almost full, the DIACK signal
will remain asserted. If the external device does not
transfer data according to the status of DI-ACK, the on-
board FIFO could be full and data could be lost.

48 Operation Theory

The operation flow is show as below:

The followings are timing diagrams of the DI-REQ and the input
data. The active edge of DI-REQ can be programmed by the func-
tion 5.5.

Figure 4-7: DIREQ as input data strobe (Rising Edge Active)

Operation Theory 49

Figure 4-8: DIREQ as input data strobe (Falling Edge Active)

Note: From the timing diagram of external clock mode, the maxi-
mum frequency can be up to 40MHz. However, users should
note that when the sampling frequency of digital input is
higher than the PCI bus bandwidth (33Mhz), or the band-
width of chipset (30Mhz typically) from PCI bus to system
memory. Users should check the overrun status when the
DMA block size is larger than 16K samples. If overrun al-
ways happens, users should reduce the DMA block size or
slow down the sampling frequency. For example, the DMA
block size should be smaller than 64K when the external
clock is 40Mhz in the DOS Operation

4.10.3Digital Input DMA in Handshaking Mode
For digital input, through DI-REQ input signal and DI-ACK output
signal, the digital input can have simple handshaking data trans-

50 Operation Theory

fer.The operations sequence of digital input with handshaking are
listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit
data width.

2. Enable or disable the active terminators.

3. Define the input sampling rate as handshaking mode.
Connect the handshaking signals of the external device
to input pin DI-REQ and output pin DI-ACK.

4. Define the starting mode to be NoWait or WaitTRIG.

5. After digital input data is ready on device side, the
peripheral device strobe data into the cPCI/PCI/PCIe-
7300A by asserting a DIREQ signal,

6. The DIREQ signal caused the cPCI/PCI/PCIe-7300A to
latch digital input data and store it into FIFO

7. The cPCI/PCI/PCIe-7300A asserts a DIACK signal when
it is ready for another input, the step 5 to step 7 will be
repeated again.

8. The data saved in FIFO will transfer to system memory
of your computer directly and automatically by bus mas-
tering DMA.

The operation flow is show as below:

Operation Theory 51

The following figure shows the timing requirement of the hand-
shaking mode digital input operation.

Figure 4-9: DIREQ & DIACK Handshaking

Note: DIREQ must be asserted until DIACK asserts, DIACK will be
asserted until DIREQ de-asserted.

4.10.4Continuous Digital Input
If the digital input operation still active after the competition of the
previous DMA transfer and do not clear the data in the input FIFO
when the next DMA starts, the cPCI/PCI/PCIe-7300A can achieve
the continuous digital input function in a high-speed sampling rate.
In this case, the input FIFO buffers the input data and waits for the
next DMA to move the queued data to the system memory. To
avoid the overrun of input FIFO causes the data lost of the contin-
uous digital input, the latency time of the next DMA should be
smaller than the time to overrun the input FIFO. There are some
rules of thumb should be mentioned here:

1. The lower the sampling frequency is, the longer the time
to overrun the input FIFO is. That means the fewer over-
run situations will occur.

2. To reduce the latency time between two DMA transfers,
please disable unnecessary PCI bus mastering devices,

52 Operation Theory

and remove the unnecessary processes in your applica-
tion programs.

3. When high-speed sampling frequency is applied, the
larger block size will improve the efficiency of DMA
transferring, and probability of overrun in the DMA pro-
cess will be reduced.

4. To apply the high-speed continuous digital input, it is rec-
ommended to execute your application programs in the
non-multitask operation system to reduce the latency
time between two DMA transfers.

Note: The latency time between two DMA transfers is different
from the PCI bus latency time mentioned in the previous sec-
tion of “Bus Mastering”. The former means the time differ-
ence between two continuous DMA processes started by the
software. And the latter means the time difference between
two continuously hardware DMA requests on the PCI bus
within a DMA process.

Operation Theory 53

4.11 Digital Output Operation Mode

4.11.1 Digital Output DMA in Internal Clock Mode
There are three sources to trigger digital output: 20MHz, 10MHz,
and programmable timer 82C54. There are three counters in
82C54, where the counter 1 is used timer pacer for digital output.
The operations sequence of digital output with internal clock are
listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit
data width.

2. Enable or disable the active terminators.

3. Define the output timer pacer rate to be 20MHz, 10MHz,
or the output 82C54 timer 1. The timer pacer controls the
output rate.

4. Define the starting mode to be NoWait, WaitTRIG, Wait-
FIFO, or WaitBoth

5. The output data saved in the system memory will be
transferred to output FIFO directly and automatically by
bus mastering DMA.

6. The digital output data will be transferred to the external
device after a DO command is issued and DO-TRIG sig-
nal is activated.

The operation flow is show as below:

54 Operation Theory

As the data output in the internal clock mode, the DOREQ signal
could be use as the output strobe to indicate the output operation
to the external device. The timing diagram of the DOREQ is shown
as follows:

Figure 4-10: DOREQ as output data strobe

4.11.2 Digital Output DMA in Handshaking Mode
For digital output, through DO-REQ output signal and DO-ACK
input signal, the digital output can have simple handshaking data
transfer.

Operation Theory 55

The operations sequence of digital output in handshaking mode
are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit
data width.

2. Enable or disable the active terminators.

3. Define the output clock mode as handshaking mode.
Connect the handshaking signals of the external device
to output pin DO-REQ and input pin DO-ACK.

4. Define the starting mode to be NoWait, WaitTRIG, Wait-
FIFO, or WaitBoth

5. Digital output data is moved from PC’s system memory
to output FIFO by using bus mastering DMA.

6. After output data is ready. A DO-REQ signal is gener-
ated and sent the output data to the external device.

7. After a DO-ACK signal is gotten, the step 6 and step 7
will be repeated again

The operation flow is show as below:

56 Operation Theory

The timing diagram of the DOREQ and DOACK in the DO hand-
shaking mode is shown as follows:

Figure 4-11: DOREQ & DOACK Handshaking

Note: DOACK must be deserted before DOREQ asserts, DOACK
can be asserted any time after DOREQ asserts, DOREQ will
be reasserted after DOACK is asserted.

4.11.3 Digital Output DMA in Burst Handshaking Mode
The burst handshaking mode is a fast and reliable data transfer
protocol. It has both advantage of handshaking mode, which is
reliable, and the advantage of internal clock mode, which is fast.
When using this mode, the sender has to check the availability of
receiver indicated by the DO-ACK signal before it starts to send
data. Once the DO-ACK is asserted, the receiver has to keep the
DO-ACK signal asserted before its input buffer becomes too small.
When the DO-ACK is de-asserted, indicating the receiver’s buffer
has not much space for new data, the sender is still allowed to
send 4 data to the receiver, and the receiver has to receive these
data. The following figure illustrates the operation of the burst
handshaking mode:

Operation Theory 57

The operations sequence of digital output in burst handshaking
mode are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit
data width.

2. Enable or disable the active terminators.

3. Define the output clock as burst handshaking mode and
decide the timer pacer rate to be 20Mhz, 10Mhz, or the
output of 82C54 timer 1.

4. Connect the handshaking signals of the external device
to output pin DO-REQ and input pin DO-ACK.

5. Define the starting mode to be NoWait, TrigWait, Wait-
FIFO, or WaitBoth

6. Digital output data is moved from PC’s system memory
to output FIFO by using bus mastering DMA.

7. After output data is ready. DO-REQ signals are gener-
ated and sent the output data to the external device
when the DO-ACK is asserted.

58 Operation Theory

The operation flow is show as below:

Note: When the DMA function of digital output starts, the output
data will transfer to the output FIFO of cPCI/PCI/PCIe-7300A
when PCI bus is available. If the speed of translation from
the FIFO on board to the external device is higher than that
from system memory to the output FIFO or the PCI bus is
busy for a long time, the FIFO become empty and under-run
situation occurs after the next data being read from the out-
put FIFO. Users should check the under-run status to see
whether the under-run occurs or not. Some output data will
repeat when the output FIFO is under-run.
To avoid the under-run of output FIFO when digital output
starts and PCI bus is still busy, it is highly recommended to
set the starting mode to be WaitFIFO. The higher the timer
pacer rate is the larger amount of almost empty threshold
should be set to prevent the under-run situation.

Operation Theory 59

4.11.4 Pattern Generator
The digital data is output to the peripheral device periodically
based on the clock signals occur at a constant rate. The digital
pattern are stored in the cPCI/PCI/PCIe-7300A’s on-board FIFO
with the length of pattern less than or equal to 16K samples.

The operations sequence of pattern generator are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit
data width.

2. Enable or disable the active terminators.

3. Define the output timer pacer rate to be 20MHz, 10MHz,
or the output 82C54 timer 1. The timer pacer controls the
output rate.

4. Set the output patterns into the output FIFO by direct
FIFO access

5. Start the pattern generator function.

6. The pattern generator function will not stop until users
stop the process

60 Operation Theory

4.12 Auxiliary DIO
The cPCI/PCI/PCIe-7300A also includes four auxiliary digital
inputs and four digital outputs, which can be applied to achieve the
simple I/O functions. Users can refer to the functions 5.8 - 5.11 for
the detailed information.

C/C++ Libraries 61

5 C/C++ Libraries
This chapter describes the software library for operating this card.
Only the functions in DOS library and Windows 95 DLL are
described. Please refer to the PCIS-DASK function reference
manual, which included in ADLINK CD, for the descriptions of the
Windows 98/NT/2000/Vista DLL functions.

The function prototypes and some useful constants are defined in
the header files LIB directory (DOS) and INCLUDE directory (Win-
dows 95). For Windows 95 DLL, the developing environment can
be Visual Basic 4.0 or above, Visual C/C++ 4.0 or above, Borland
C++ 5.0 or above, Borland Delphi 2.x (32-bit) or above, or any
Windows programming language that allows calls to a DLL. It pro-
vides the C/C++, VB, and Delphi include files.

62 C/C++ Libraries

5.1 Libraries Installation
Please refer to the “Software Installation Guide” for the detail infor-
mation about how to install the software libraries for DOS, or Win-
dows 95 DLL, or PCIS-DASK for Windows 98/NT/2000.

The device drivers and DLL functions of Windows 98/NT/2000 are
included in the PCIS-DASK. Please refer the PCIS-DASK user’s
guide and function reference, which included in the ADLINK CD,
for detailed programming information.

C/C++ Libraries 63

5.2 Programming Guide

Naming Convention
The functions of the NuDAQ PCI cards or NuIPC CompactPCI
cards’ software driver are using full-names to represent the func-
tions' real meaning. The naming convention rules are:

In DOS Environment:
_{hardware_model}_{action_name}. e.g. _7300_Initial().

All functions in cPCI/PCI/PCIe-7300A driver are with 7300 as
{hardware_model}. But they can be used by cPCI/PCI/PCIe-
7300A, cPCI-7300.

In order to recognize the difference between DOS library and Win-
dows 95 library, a capital "W" is put on the head of each function
name of the Windows 95 DLL driver. e.g. W_7300_Initial().

Data Types
We defined some data type in Pci_7300.h (DOS) and Acl_pci.h
(Windows 95). These data types are used by NuDAQ Cards’
library. We suggest you to use these data types in your application
programs. The following table shows the data type names and
their range.

Table 5-1: Data Types

Type Name Description Range

U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed integer -2147483648 to 2147483647
U32 32-bit single-precision floating-point 0 to 4294967295
F32 32-bit single-precision floating-point -3.402823E38 to 3.402823E38

F64 64-bit double-precision floating-point -1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

64 C/C++ Libraries

5.3 _7300_Initial

@ Description
A cPCI/PCI/PCIe-7300A card is initialized according to the card
number. Because the cPCI/PCI/PCIe-7300A is PCI bus architec-
ture and meets the plug and play design, the IRQ and base
address (pass-through address) are assigned by system BIOS
directly. Every cPCI/PCI/PCIe-7300A card has to be initialized by
this function before calling other functions.

Note: Because configuration of cPCI/PCI/PCIe-7300A is handled
by the system, there is no jumpers or DMA selection on the
PCI boards that need to be set up by the users.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Initial (int card_number, int
*pcic_base_addr, int *lb_base_addr, int
*irq_no, int *pci_master)

Visual C/C++ (Windows 95)
W_7300_Initial (ByVal card_number As Long,

pcic_base_addr As Long, lb_base_addr As
Long, irq_no As Long, pci_master As Long) As
Long

C/C++ (DOS)
int _7300_Initial (int card_number, int

*pcic_base_addr, int *lb_base_addr, int
*irq_no, int *pci_master)

@ Argument
card_number:the card number to be initialized, only four cards
can be initialized, the card number must be CARD_1, CARD_2,
CARD_3 or CARD_4.

pcic_base_addr:the I/O port base address of the PCI controller
on card, it is assigned by system BIOS.

lb_base_addr:the I/O port base address of the card, it is
assigned by system BIOS.

C/C++ Libraries 65

irq_no:system will give an available interrupt number to this card
automatically.

pci_master:TRUE: BIOS enabled PCI bus mastering

 FALSE: BIOS did not enable PCI bus mastering

@ Return Code
NoError, PCICardNumErr
PCIBiosNotExistPCICardNotExist
PCIBaseAddrErr

66 C/C++ Libraries

5.4 _7300_Close

@ Description
Close a previously initialized cPCI/PCI/PCIe-7300A card.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Close (int card_number)
Visual Basic (Windows 95)

W_7300_Close (ByVal card_number As Long) As Long
C/C++ (DOS)

int _7300_Close (int card_number)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

C/C++ Libraries 67

5.5 _7300_Configure

@ Description
Set the port DI/O configuration, terminator control, and control sig-
nal polarity for the cPCI/PCI/PCIe-7300A card.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Configure (int card_number, int
dio_config, int term_cntrl, int cntrl_pol)

Visual Basic (Windows 95)
W_7300_Configure (ByVal card_number As Long,

ByVal dio_config As Long, ByVal term_cntrl
As Long, ByVal cntrl_pol As Long) As Long

C/C++ (DOS)
int _7300_Configure (int card_number, int

dio_config, int term_cntrl, int cntrl_pol)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

dio_config:The port configuration

DI32: input port is 32-bit wide, PORTB is configured as the
extension of PORTA.
DO32: output port is 32-bit wide, PORTA is configured as the
extension of PORTB.
DI8DO8: PORTA is 8-bit input and PORTB is 8-bit output
DI8DO16: PORTA is 8-bit input and PORTB is 16-bit output
DI16DO8: PORTA is 16-bit input and PORTB is 8-bit output
DI16DO16: PORTA is 16-bit input and PORTB is 16-bit out-
put

term_cntrl:the terminator control

PAOFF_PBOFF: PORTA terminator OFF, PORTB termina-
tor OFF
PAOFF_PBON: PORTA terminator OFF, PORTB terminator
ON

68 C/C++ Libraries

PAON_PBOFF: PORTA terminator ON, PORTB terminator
OFF
PAON_PBON: PORTA terminator ON, PORTB terminator
ON

Note: term_cntrl is used to control the ON/OFF of the active termi-
nators, not terminal power output: TERMPER)

cntrl_pol:The polarity configuration. This argument is an inte-
ger expression formed from one or more of the manifest constants
defined in 7300.h. There are six groups of constants:

@ Return Code
NoError PCICardNumErr
PCICardNotInitInvalidDIOConfigure

(1) DIREQ
DIREQ_POS: DIREQ signal is rising edge active
DIREQ_NEG: DIREQ signal is falling edge active

(2) DIACK
DIACK_POS: DIACK signal is rising edge active
DIACK_NEG: DIACK signal is falling edge active

(3) DITRIG
DITRIG_POS: DITRIG signal is rising edge active
DITRIG_NEG: DITRIG signal is falling edge active

(4) DOREQ
DOREQ_POS: DOREQ signal is rising edge active
DOREQ_NEG: DOREQ signal is falling edge active

(5) DOACK
DOACK_POS: DOACK signal is rising edge active
DOACK_NEG: DOACK signal is falling edge active

(6) DOTRIG
DOTRIG_POS: DOTRIG signal is rising edge active
DOTRIG_NEG: DOTRIG signal is falling edge active

C/C++ Libraries 69

5.6 _7300_DI_Mode

@ Description
Set the clock mode and start mode for the cPCI/PCI/PCIe-7300A
DI operation.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DI_Mode (int card_number, int
clk_mode, int start_mode)

Visual Basic (Windows 95)
W_7300_DI_Mode (ByVal card_number As Long, ByVal

clk_mode As Long, ByVal start_mode As Long)
As Long

C/C++ (DOS)
int _7300_DI_Mode (int card_number, int clk_mode,

int start_mode)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

clk_mode:DI_CLK_TIMER: use timer0 output as input clock
DI_CLK_20M: use 20MHz clock as input clock
DI_CLK_10M: use 10MHz clock as input clock
DI_CLK_REQ: use external clock (DI_REQ) as input clock
DI_CLK_REQACK: REQ/ACK handshaking mode

start_mode:DI_WAIT_TRIG: delay input sampling until DITRIG
is active

DI_NO_WAIT: start input sampling immediately

@ Return Code
NoError
PCICardNumErr
PCICardNotInit
InvalidDIOMode

70 C/C++ Libraries

5.7 _7300_DO_Mode

@ Description
Set the clock mode and start mode for the cPCI/PCI/PCIe-7300A
DO operation.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DO_Mode (int card_number, int
clk_mode, int start_mode, int
fifo_threshold)

Visual Basic (Windows 95)
W_7300_DO_Mode (ByVal card_number As Long, ByVal

clk_mode As Long, ByVal start_mode As Long,
ByVal fifo_threshold As Long) As Long

C/C++ (DOS)
int _7300_DO_Mode (int card_number, int clk_mode,

int start_mode, int fifo_threshold)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

clk_mode:DO_CLK_TIMER: use timer1 output as output clock

DO_CLK_20M: use 20MHz clock as output clock
DO_CLK_10M: use 10MHz clock as output clock
DO_CLK_ACK: REQ/ACK handshaking
DO_CLK_TIMER_ACK: burst handshaking mode by using
timer1 output as output clock
DO_CLK_10M_ACK: burst handshaking mode by using
10MHz clock as output clock
DO_CLK_20M_ACK: burst handshaking mode by using
20MHz clock as output clock

start_mode:DO_WAIT_TRIG: delay output data until DOTRIG is
active

DO_NO_WAIT: start output data immediately

C/C++ Libraries 71

DO_WAIT_FIFO: delay output data until FIFO is not almost
empty
DO_WAIT_BOTH: delay output data until DOTRIG is active
and FIFO is not almost empty.

fifo_threshold:programmable almost empty threshold of both
PORTB FIFO and PORTA FIFO (if PORTA is set as output). It is
avaliavle only when start_mode is DO_WAIT_FIFO

@ Return Code
NoError
PCICardNumErr
PCICardNotInit
InvalidDIOMode

72 C/C++ Libraries

5.8 _7300_AUX_DI

@ Description
Read data from auxiliary digital input port. You can get all 4 bits
input data by using this function.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_AUX_DI (int card_number, int *aux_di)
Visual Basic (Windows 95)

W_7300_AUX_DI (ByVal card_number As Long, aux_di
As Long) As Long

C/C++ (DOS)
int _7300_AUX_DI (int card_number, int *aux_di)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

aux_di:returns 4-bit value from auxiliary digital input port.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

C/C++ Libraries 73

5.9 _7300_AUX_DI_Channel

@ Description
Read data from auxiliary digital input channel. There are 4 digital
input channels on the cPCI/PCI/PCIe-7300A auxiliary digital input
port. When performs this function, the auxiliary digital input port is
read and the value of the corresponding channel is returned.

* channel means each bit of digital input port.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_AUX_DI_Channel (int card_number, int
di_ch_no, int *aux_di)

Visual Basic (Windows 95)
W_7300_AUX_DI_Channel (ByVal card_number As Long,

ByVal di_ch_no As Long, aux_di As Long) As
Long

C/C++ (DOS)
int _7300_AUX_DI_Channel (int card_number, int

di_ch_no, int *aux_di)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

di_ch_no: the DI channel number, the value has to be set within
0 and 3.

aux_di:return value, either 0 or 1.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit
InvalidDIOChNum

74 C/C++ Libraries

5.10 _7300_AUX_DO

@ Description
Write data to auxiliary digital output port. There are 4 auxiliary dig-
ital outputs on the cPCI/PCI/PCIe-7300A.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_AUX_DI (int card_number, int do_data)
Visual Basic (Windows 95)

W_7300_AUX_DI (ByVal card_number As Long, ByVal
do_data As Long) As Long

C/C++ (DOS)
int _7300_AUX_DI (int card_number, int do_data)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

do_data:value will be written to auxiliary digital output port

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

C/C++ Libraries 75

5.11 _7300_AUX_DO_Channel

@ Description
Write data to auxiliary digital output channel (bit). There are 4 aux-
iliary digital output channels on the cPCI/PCI/PCIe-7300A. When
performs this function, the digital output data is written to the cor-
responding channel.

* channel means each bit of digital output port.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_AUX_DO_Channel (int card_number, int
do_ch_no, int do_data)

Visual Basic (Windows 95)
W_7300_AUX_DO_Channel (ByVal card_number As Long,

ByVal do_ch_no As Long, ByVal do_data As
Long) As Long

C/C++ (DOS)
int _7300_AUX_DO_Channel (int card_number, int

do_ch_no, int do_data)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

do_ch_no: the DO channel number, the value has to be set within
0 and 3.

do_data:either 0 (OFF) or 1 (ON).

@ Return Code
NoError
PCICardNumErr
PCICardNotInit
InvalidDIOChNum
InvalidDOData

76 C/C++ Libraries

5.12 _7300_Alloc_DMA_Mem

@ Description
Contact Windows 95 system to allocate a memory for DMA trans-
fer. This function is only available in Windows 95 version.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Alloc_DMA_Mem (U32 buf_size, HANDLE
*memID, U32 *linearAddr)

Visual Basic (Windows 95)
W_7300_Alloc_DMA_Mem (ByVal buf_size As Long,

memID As Long, linearAddr As Long) As Long

@ Argument
buf_size:Bytes to allocate. Please be careful, the unit of this
argument is BYTE, not SAMPLE.

memID:If the memory allocation is successful, driver returns the ID
of that memory in this argument. Use this memory ID in
W_7300_DI_DMA_Start or W_7300_DO_DMA_Start function call.

linearAddr:The linear address of the allocated DMA memory.
You can use this linear address as a pointer in C/C++ to access
(read/write) the DMA data.

@ Return Code
NoError
AllocDMAMemFailed

C/C++ Libraries 77

5.13 _7300_Free_DMA_Mem

@ Description
Deallocate a system DMA memory under the Windows 95 envi-
ronment. This function is only available in the Windows 95 version.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Free_DMA_Mem (HANDLE memID)
Visual Basic (Windows 95)

W_7300_Free_DMA_Mem (ByVal memID As Long) As
Long

@ Argument
memID:The memory ID of the system DMA memory to deallocate.

@ Return Code
NoError

78 C/C++ Libraries

5.14 _7300_DI_DMA_Start

@ Description
The function will perform digital input by DMA data transfer.

It will take place in the background which will not stop until the N-th
input data is transferred or your program execute the
_7300_DI_DMA_Abort function to stop the process.

After executing this function, it is necessary to check the status of
the operation by using the function _7300_DI_DMA_Status. The
cPCI/PCI/PCIe-7300A bus mastering DMA is different from tradi-
tional PC style DMA. Its description is as follows:

Bus Mastering DMA mode of cPCI/PCI/PCIe-7300A:
PCI bus mastering offers the highest possible speed available
on the cPCI/PCI/PCIe-7300A. When the function
_7300_DI_DMA_Start is executed, it will enable PCI bus mas-
ter operation. This is conceptually similar to DMA (Direct Mem-
ory Access) transfers in a PC but is really PCI bus mastering. It
does not use an 8237-style DMA controller in the host com-
puter and therefore it is not blocked in 64K maximal groups.
cPCI/PCI/PCIe-7300A bus mastering works as follows:

1. To set up bus mastering, first do all normal cPCI/PCI/
PCIe-7300A initialization necessary to control the board
in status mode. This includes testing for the presence of
the PCI BIOS, determining the base addresses, slot
number, vendor and device ID's, I/O or memory, space
allocation, etc. Please make sure your cPCI/PCI/PCIe-
7300A is plug in a bus master slot, otherwise this func-
tion will not be workable.

2. Load the PCI controller with the count and 32-bit physi-
cal address of the start of previously allocated destina-
tion memory which will accept data. This count is the
number of bytes (not longwords!) transferred during the
bus master operation and can be a large number up to 8
million (2^23) bytes. Since the cPCI/PCI/PCIe-7300A

C/C++ Libraries 79

transfers are always longwords, this is 2 million long-
words (2^21).

3. After the input sampling is started, the input data is
stored in the FIFO of PCI controller. Each bus mastering
data transfer continually tests if any data in the FIFO and
then blocks transfer, the system will continuously loop
until the conditions are satisfied again but will not exit the
block transfer cycle if the block count is not complete. If
there is momentarily no input data, the cPCI/PCI/PCIe-
7300A will relinquish the bus temporarily but returns
immediately when more input data appear. This opera-
tion continues until the whole block is done.

4. This operation proceeds transparently until the PCI con-
troller transfer byte count is reached. All normal PCI bus
operation applies here such as a receiver which cannot
accept the transfers, higher priority devices requesting
the PCI bus, etc. Remember that only one PCI initiator
can have bus mastering at any one time. However,
review the PCI priority and "fairness" rules. Also study
the effects of the Latency Timer. And be aware that the
PCI priority strategy (round robin rotated, fixed priority,
custom, etc.) is unique to your host PC and is explicitly
not defined by the PCI standard. You must determine
this priority scheme for your own PC (or replace it).

5. The interrupt request from the PCI controller can be
optionally set up to indicate that this longword count is
complete although this can also be determined by polling
the PCI controller.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DI_DMA_Start (int card_number, HANDLE
memID, U32 count, int clear_fifo, int
disable_di)

Visual Basic (Windows 95)
W_7300_DI_DMA_Start (ByVal card_number As Long,

ByVal memID As Long, ByVal count As Long,

80 C/C++ Libraries

ByVal clear_fifo As Long, ByVal disable_di
As Long) As Long

C/C++ (DOS)
int _7300_DI_DMA_Start (int card_number, int

mode, U32 *buffer, U32 count, int
clear_fifo, int disable_di)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

mode (DOS):CHAIN_DMA: chaining DMA mode. By using the
scatter-gather capability of cPCI/PCI/PCIe-7300A, the input data
is put to several buffers which chained together.

NON_CHAIN_DMA: The input data is stored in a block of
contiguous memory.

memID (Win-95): the memory ID of the allocated system DMA
memory. In Windows 95 environment, before calling
W_7300_DI_DMA_Start, W_7300_Alloc_DMA_Mem must be
called to allocate a DMA memory. W_7300_Alloc_DMA_Mem will
return a memory ID for identifying the allocated DMA memory, as
well as the linear address of the DMA memory for user to access
the data.

buffer (DOS):With non-chaining mode, this is the start address of
the memory buffer to store the DI data. With chaining-mode (scat-
ter-gather), this is the address (pointer) of first DMA descriptor
node.

**With non-chaining mode, this memory should be double-
word alignment. With chaining-mode, this address should be
16-byte alignment. Also the pointer of all DMA descriptor
nodes should be 16-byte alignment.

count:With non-chaining mode, this is the number of digital input
to transfer. The unit is double-word (4-byte). The value of count
can not exceed 2^21 (about 2 million). With chaining mode, please
set this argument to 0. The number of digital input is determined
by the information in DMA descriptor nodes.

clear_fifo:0: retain the FIFO data

1: clear FIFO data before perform digital input

C/C++ Libraries 81

disable_di:0: digital input operation still active after DMA trans-
fer complete

1: disable digital input operation immediately when DMA
transfer complete

@ Return Code
NoError
PCICardNumErr
PCICardNotInit
DMATransferNotAllowed
InvalidDIOCount
BufNotDWordAlign
DMADscrBadAlign

82 C/C++ Libraries

5.15 _7300_DI_DMA_Status

@ Description
Since the _7300_DI_DMA_Start function is executed in back-
ground, you can issue this function to check its operation status.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DI_DMA_Status (int card_number, int
*status)

Visual Basic (Windows 95)
W_7300_DI_DMA_Status (ByVal card_number As Long,

status As Long) As Long
C/C++ (DOS)

int _7300_DI_DMA_Status (int card_number, int
*status)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

status: status of the DMA data transfer

0 (DMA_DONE): DMA is completed
1 (DMA_CONTINUE): DMA is not completed

@ Return Code
ERR_NoError
PCICardNumErr
PCICardNotInit

C/C++ Libraries 83

5.16 _7300_DI_DMA_Abort

@ Description
This function is used to stop the DMA DI operation. After executing
this function, the DMA transfer operation is stopped.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DI_DMA_Abort (int card_number)
Visual Basic (Windows 95)

W_7300_DI_DMA_Abort (ByVal card_number As Long)
As Long

C/C++ (DOS)
int _7300_DI_DMA_Stop (int card_number)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

84 C/C++ Libraries

5.17 _7300_GetOverrunStatus

@ Description
When you use _7300_DI_DMA_Start to input data, the input data
is stored in the FIFO of PCI controller. The data then transfer to
memory through PCI-bus if PCI-bus is available. If the FIFO is full
and next data is written to the FIFO, overrun situation occurs.
Using this function to check overrun status.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_GetOverrunStatus (int card_number, int
*overrun)

Visual Basic (Windows 95)
int W_7300_GetOverrunStatus (ByVal card_number As

Long, overrun As Long) As Long
C/C++ (DOS)

int _7300_GetOverrunStatus (int card_number, int
*overrun)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

overrun:0: overrun sitation did not occur.

1: overrun situation occurred.
@ Return Code

NoError
PCICardNumErr,PCICardNotInit

C/C++ Libraries 85

5.18 _7300_DO_DMA_Start

@ Description
The function will perform digital output N times with DMA data
transfer. It will takes place in the background which will not be stop
until the Nth conversion has been completed or your program exe-
cute _7300_DO_DMA_Abort function to stop the process. After
executing this function, it is necessary to check the status of the
operation by using the function _7300_DO_DMA_Status.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DO_DMA_Start (int card_number, HANDLE
memID, U32 count)

Visual Basic (Windows 95)
W_7300_DO_DMA_Start (ByVal card_number As Long,

ByVal memID As Long, ByVal count As Long) As
Long

C/C++ (DOS)
int _7300_DO_DMA_Start (int card_number, U32

*buff, U32 count, int repeat, DMA_DSCR
*dma_dscr_ptr)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

memID (Win-95): the memory ID of the allocated system DMA
memory. In Windows 95 environment, before calling
W_7300_DO_DMA_Start, W_7300_Alloc_DMA_Mem must be
called to allocate a DMA memory. W_7300_Alloc_DMA_Mem will
return a memory ID for identifying the allocated DMA memory, as
well as the linear address of the DMA memory for user to access
the data. So you should write the output data to this memory
before calling W_7300_DO_DMA_Start.

buff (DOS):If repeat is set as 0, this is the start address of the
memory buffer to store the DO data. If repeat is set as 1, this argu-
ment is of no use.

86 C/C++ Libraries

** This memory should be double-word alignment
count:For non-chaining mode, this is the total number of digital
output data in double-words (4-byte). The value of count can not
exceed 2^21 (about 2 million). For chaining mode, please set this
argument as 0. The number of digital output is determined by the
information in DMA descriptor nodes.

repeat (DOS):0: Use non-chaining mode DMA transfer. The digi-
tal output data is stored in buff.

1: Use chaining mode DMA transfer. The digital output data
is stored in several buffers. The information of the buffers is
stored in DMA description nodes. All description nodes are
chained together.

dma_dscr_ptr (DOS):the pointer to the first DMA description
node. Since the DMA description nodes are chained together, with
giving this pointer, data in all buffers will be transferred.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit
DMATransferNotAllowed
InvalidDIOCount
BufNotDWordAlign
DMADscrBadAlign

C/C++ Libraries 87

5.19 _7300_DO_DMA_Status

@ Description
Since the _7300_DO_DMA_Start function is executed in back-
ground, you can issue the function _7300_DO_DMA_Status to
check its operation status.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DO_DMA_Status (int card_number, int
*status)

Visual Basic (Windows 95)
W_7300_DO_DMA_Status (ByVal card_number As Long,

status As Long) As Long
C/C++ (DOS)

int _7300_DO_DMA_Status (int card_number, int
*status)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

status: status of the DMA data transfer

0 (DMA_DONE): DMA is completed
1 (DMA_CONTINUE): DMA is not completed

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

88 C/C++ Libraries

5.20 _7300_DO_DMA_Abort

@ Description
This function is used to stop the DMA DO operation. After execut-
ing this function, the _7300_DO_DMA_Start function is stopped.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DO_DMA_Abort (int card_number)
Visual Basic (Windows 95)

W_7300_DO_DMA_Abort (ByVal card_number As Long)
As Long

C/C++ (DOS)
int _7300_DO_DMA_Abort (int card_number)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

C/C++ Libraries 89

5.21 _7300_DO_PG_Start

@ Description
The function will perform pattern generation with the data stored in
buff_ptr. It will takes place in the background which will not be stop
until your program execute _7300_DO_PG_Stop function to stop
the process.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DO_PG_Start (int card_number, void
*buff_ptr, U32 count)

Visual Basic (Windows 95)
W_7300_DO_PG_Start (ByVal card_number As Long,

buff_ptr As Any, ByVal count As Long) As
Long

C/C++ (DOS)
int _7300_DO_PG_Start (int card_number, void

*buff_ptr, U32 count)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

buff_ptr:the start address of the memory buffer to store the out-
put data of pattern generation.

** This memory should be double-word alignment
count:the total number of pattern generation samples. The size of
the sample depends on the port configuration. For example, if port
is set as DO32, each sample contains 4 bytes; if port is set as
DI16DO8 or DI8DO8, each sample is 1 byte.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit
DMATransferNotAllowed
InvalidDIOCount

90 C/C++ Libraries

BufNotDWordAlign
DMADscrBadAlign

C/C++ Libraries 91

5.22 _7300_DO_PG_Stop

@ Description
This function is used to stop the pattern generation operation.
After executing this function, the _7300_DO_PG_Start function is
stopped.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DO_PG_Stop (int card_number)
Visual Basic (Windows 95)

W_7300_DO_PG_Stop (ByVal card_number As Long) As
Long

C/C++ (DOS)
int _7300_DO_PG_Stop (int card_number)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

92 C/C++ Libraries

5.23 _7300_DI_Timer

@ Description
This function is used to set the internal timer pacer for digital input.
Timer pacer frequency = 10Mhz / C0.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DI_Timer (int card_number, U16 c0)
Visual Basic (Windows 95)

W_7300_DI_Timer (ByVal card_number As Long, ByVal
c0 As Integer) As Long

C/C++ (DOS)
int _7300_DI_Timer (int card_number, U16 c0)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

c0: frequency divider of Counter #0. Valid value ranges from 2 to
65535.

Note: Since the Integer type in Visual Basic is signed integer. It’s
range is within -32768 and 32767. In Visual Basic, if you
want to set c0 as value larger than 32767, please set it as the
intended value minus 65536. For example, if you want to set
c0 as 40000, please set c0 as 40000-65536=-25536.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

C/C++ Libraries 93

5.24 _7300_DO_Timer

@ Description
This function is used to set the internal timer pacer for digital out-
put. Timer pacer frequency = 10Mhz / C1.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_DO_Timer (int card_number, U16 c1)
Visual Basic (Windows 95)

W_7300_DO_Timer (ByVal card_number As Long, ByVal
c1 As Integer) As Long

C/C++ (DOS)
int _7300_DO_Timer (int card_number, U16 c1)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

c1: frequency divider of Counter #1. Valid value ranges from 2 to
65535.

Note: Since the Integer type in Visual Basic is signed integer. It’s
range is within -32768 and 32767. In Visual Basic, if you
want to set c1 as value larger than 32767, please set it as the
intended value minus 65536. For example, if you want to set
c1 as 40000, please set c1 as 40000-65536 = -25536.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

94 C/C++ Libraries

5.25 _7300_Int_Timer

@ Description
This function is used to set Counter #2.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Int_Timer (int card_number, U16 c2)
Visual Basic (Windows 95)

W_7300_Int_Timer (ByVal card_number As Long,
ByVal c2 As Integer) As Long

C/C++ (DOS)
int _7300_Int_Timer (int card_number, U16 c2)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

c2: frequency divider of Counter #2. Valid value ranges from 2 to
65535.

Note: Since the Integer type in Visual Basic is signed integer. It’s
range is within -32768 and 32767. In Visual Basic, if you
want to set c2 as value larger than 32767, please set it as the
intended value minus 65536. For example, if you want to set
c1 as 40000, please set c1 as 40000-65536 = -25536.

@ Return Code
NoError
PCICardNumErr
PCICardNotInit

C/C++ Libraries 95

5.26 _7300_Get_Sample

@ Description
For the language without pointer support such as Visual Basic,
programmer can use this function to access the index-th data in
input DMA buffer. This function is only available in Windows 95
version.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Get_Sample (U32 linearAddr, U32 index,
U32 *data_value, U32 portWidth)

Visual Basic (Windows 95)
W_7300_Get_Sample (ByVal linearAddr As Long,

ByVal index As Long, data_value As Long,
ByVal portWidth As Long) As Long

@ Argument
linearAddr:The linear address of the allocated DMA memory.

index: The index of the sample. The first sample is with index 0.

dataValue: The sample retrieved. The width of retrieved data is
different with the different portWidth value.

portWidth: The port width of the digital input port. The possible
values are 8, 16, or 32.

@ Return Code
NoError

96 C/C++ Libraries

5.27 _7300_Set_Sample

@ Description
For the language without pointer support such as Visual Basic,
programmer can use this function to write the output data to the
index-th position in output DMA buffer. This function is only avail-
able in Windows 95 version.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_Set_Sample (U32 linearAddr, U32 index,
U32 data_value, U32 portWidth)

Visual Basic (Windows 95)
W_7300_Get_Sample (ByVal linearAddr As Long,

ByVal index As Long, ByVal data_value As
Long, ByVal portWidth As Long) As Long

@ Argument
linearAddr:The linear address of the allocated DMA memory.

index: The position the data is written to. The first sample is with
index 0.

dataValue: The data to put to output buffer. The data width is dif-
ferent with the different portWidth value.

portWidth: The port width of the digital output port. The possible
values are 8, 16, or 32.

@ Return Code
NoError

C/C++ Libraries 97

5.28 _7300_GetUnderrunStatus

@ Description
When you use _7300_DO_DMA_Start to output data, the output
data is read from the FIFO on the cPCI/PCI/PCIe-7300A. If the
FIFO becomes empty and next data is read from the FIFO, under-
run situation occurs. Using this function to check underrun status.

@ Syntax
Visual C/C++ (Windows 95)

int W_7300_GetUnderrunStatus (int card_number,
int *underrun)

Visual Basic (Windows 95)
int W_7300_GetUnderrunStatus (ByVal card_number

As Long, underrun As Long) As Long
C/C++ (DOS)

int _7300_GetUnderrunStatus (int card_number, int
*underrun)

@ Argument
card_number:The card number of the cPCI/PCI/PCIe-7300A
card.

underrun:0: underrun sitation did not occur.

1: underrun situation occurred.

@ Return Code
NoError
PCICardNumErr,PCICardNotInit

98 C/C++ Libraries

Appendix 99

Appendix

8254 Programmable Interval Timer
Note: The material of this section is adopted from “Intel Micropro-

cessor and Peripheral Handbook Vol. II --Peripheral”

The Intel (NEC) 8254
The Intel (NEC) 8254 contains three independent, programmable,
multi-mode 16 bit counter/timers. The three independent 16 bit
counters can be clocked at rates from DC to 5 MHz. Each counter
can be individually programmed with 6 different operating modes
by appropriately formatted control words. The most commonly
uses for the 8254 in microprocessor based system are:

programmable baud rate generator
event counter
binary rate multiplier
real-time clock
digital one-shot
motor control

For more information about the 8254, please refer to the NEC
Microprocessors and peripherals or Intel Microprocessor and
Peripheral Handbook.

The Control Byte
The 8254 occupies 8 I/O address locations in the cPCI/PCI/PCIe-
7300A I/O map. As shown in the following table:

Before loading or reading any of these individual counters, the
control byte (Base + C) must be loaded first. The format of control
byte is:

Base + 0 LSB OR MSB OF COUNTER 0
Base + 4 LSB OR MSB OF COUNTER 1
Base + 8 LSB OR MSB OF COUNTER 2
Base + C CONTROL BYTE for Chip 0

100 Appendix

Control Byte: (Base + 7, Base + 11)

SC1 & SC1 - Select Counter (Bit7 & Bit 6)

RL1 & RL0 - Select Read/Load operation (Bit 5 & Bit 4)

M2, M1 & M0 - Select Operating Mode (Bit 3, Bit 2, & Bit 1)

BCD - Select Binary/BCD Counting (Bit 0)

Note:

 1. The count of the binary counter is from 0 up to 65,535.

Bit 7 6 5 4 3 2 1 0

SC1 SC0 RL1 RL0 M2 M1 M0 BCD

SC1 SC0 COUNTER

0 0 0
0 1 1
1 0 2
1 1 ILLEGAL

RL1 RL0 OPERATION

0 0 COUNTER LATCH
0 1 READ/LOAD LSB
1 0 READ/LOAD MSB
1 1 READ/LOAD LSB FIRST, THEN MSB

M2 M1 M0 MODE

0 0 0 0
0 0 1 1
x 1 0 2
x 1 1 3
1 0 0 4
1 0 1 5

0 BINARY COUNTER 16-BITS
1 BINARY CODED DECIMAL (BCD) COUNTER (4 DECADES)

Appendix 101

 2. The count of the BCD counter is from 0 up to 99,999.

Mode Definition
In 8254, there are six different operating modes can be selected.
They are:

Mode 0: Interrupt on terminal count
The output will be initially low after the mode set operation.
After the count is loaded into the selected count register, the
output will remain low and the counter will count. When termi-
nal count is reached, the output will go high and remain high
until the selected count register is reloaded with the mode or a
new count is loaded. The counter continues to decrement after
terminal count has been reached.

Rewriting a counter register during counting results in the fol-
lowing:

(1) Write 1st byte stops the current counting.

(2) Write 2nd byte starts the new count.

Mode 1: Programmable One-Shot.
The output will go low on the count following the rising edge of
the gate input. The output will go high on the terminal count. If
a new count value is loaded while the output is low it will not
affect the duration of the one-shot pulse until the succeeding
trigger. The current count can be read at anytime without
affecting the one-shot pulse.

The one-shot is re-triggerable, hence the output will remain low
for the full count after any rising edge of the gate input.

Mode 2: Rate Generator.
Divided by N counter. The output will be low for one period of
the input clock. The period from one output pulse to the next
equals the number of input counts in the count register. If the
count register is reloaded between output pulses the present
period will not be affected, but the subsequent period will
reflect the new value.

102 Appendix

The gate input when low, will force the output high. When the
gate input goes high, the counter will start form the initial count.
Thus, the gate input can be used to synchronized by software.

When this mode is set, the output will remain high until after the
count register is loaded. The output then can also be synchro-
nized by software.

Mode 3: Square Wave Rate Generator.
Similar to MODE 2 except that the output will remain high until
one half the count has been completed (or even numbers) and
go low for the other half of the count. This is accomplished by
decrement the counter by two on the falling edge of each clock
pulse. When the counter reaches terminal count, the state of
the output is changed and the counter is reloaded with the full
count and the whole process is repeated.

If the count is odd and the output is high, the first clock pulse
(after the count is loaded) decrements the count by 1. Subse-
quent clock pulses decrement the clock by 2 after time-out, the
output goes low and the full count is reloaded. The first clock
pulse (following the reload) decrements the counter by 3. Sub-
sequent clock pulses decrement the count by 2 until time-out.
Then the whole process is repeated. In this way, if the count is
odd, the output will be high for (N + 1)/2 counts and low for (N -
1)/2 counts.

In Modes 2 and 3, if a CLK source other then the system clock
is used, GATE should be pulsed immediately following Way
Rate of a new count value.

Mode 4: Software Triggered Strobe.
After the mode is set, the output will be high. When the count is
loaded, the counter will begin counting. On terminal count, the
output will go low for one input clock period, then will go high
again.

If the count register is reloaded during counting, the new count
will be loaded on the next CLK pulse. The count will be inhib-
ited while the GATE input is low.

Appendix 103

Mode 5: Hardware Triggered Strobe.
The counter will start counting after the rising edge of the trig-
ger input and will go low for one clock period when the terminal
count is reached. The counter is re-triggerable. the output will
not go low until the full count after the rising edge of any trigger.

The detailed description of the 8254, please refer to the Intel
Microsystem Components Handbook.

104 Appendix

	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Applications
	1.2 Features
	1.3 Specifications
	1.4 Software Support
	1.4.1 Programming Library
	1.4.2 DAQ-LVIEW PnP: LabVIEW® Driver
	1.4.3 PCIS-VEE: HP-VEE Driver
	1.4.4 DAQBenchTM: ActiveX Controls

	2 Installation
	2.1 What You Have
	2.2 Unpacking
	2.3 Device Installation for Windows Systems
	2.4 cPCI/PCI/PCIe-7300A Layout
	2.5 Hardware Installation Outline
	2.6 Connector Pin Assignment
	2.7 Wiring and Termination
	2.8 Termination Board Support
	2.8.1 Connect with DIN-100S
	2.8.2 Connect with DIN-502S

	3 Registers
	3.1 I/O Port Base Address
	3.2 DI_CSR: DI Control & Status Register
	3.3 DO_CSR: DO Control & Status Register
	3.4 Auxiliary Digital I/O Register
	3.5 INT_CSR: Interrupt Control and Status Register
	3.6 DI_FIFO: DI FIFO direct access port
	3.7 DO_FIFO: DO external data FIFO direct access port
	3.8 FIFO_CR: FIFO almost empty/full register
	3.9 POL_CNTRL: Control Signal Polarity Control Register
	3.10 PLX PCI-9080 DMA Control Registers

	4 Operation Theory
	4.1 I/O Configuration
	4.2 Block Diagram
	4.3 Digital I/O Data Flow
	4.4 Input FIFO and Output FIFO
	4.5 Bus-mastering DMA
	4.6 Scatter/gather DMA
	4.7 Clocking Mode
	4.8 Starting Mode
	4.9 Active Terminator
	4.10 Digital Input Operation Mode
	4.10.1 Digital Input DMA in Internal Clock Mode
	4.10.2 Digital Input DMA in External Clock Mode
	4.10.3 Digital Input DMA in Handshaking Mode
	4.10.4 Continuous Digital Input

	4.11 Digital Output Operation Mode
	4.11.1 Digital Output DMA in Internal Clock Mode
	4.11.2 Digital Output DMA in Handshaking Mode
	4.11.3 Digital Output DMA in Burst Handshaking Mode
	4.11.4 Pattern Generator

	4.12 Auxiliary DIO

	5 C/C++ Libraries
	5.1 Libraries Installation
	5.2 Programming Guide
	5.3 _7300_Initial
	5.4 _7300_Close
	5.5 _7300_Configure
	5.6 _7300_DI_Mode
	5.7 _7300_DO_Mode
	5.8 _7300_AUX_DI
	5.9 _7300_AUX_DI_Channel
	5.10 _7300_AUX_DO
	5.11 _7300_AUX_DO_Channel
	5.12 _7300_Alloc_DMA_Mem
	5.13 _7300_Free_DMA_Mem
	5.14 _7300_DI_DMA_Start
	5.15 _7300_DI_DMA_Status
	5.16 _7300_DI_DMA_Abort
	5.17 _7300_GetOverrunStatus
	5.18 _7300_DO_DMA_Start
	5.19 _7300_DO_DMA_Status
	5.20 _7300_DO_DMA_Abort
	5.21 _7300_DO_PG_Start
	5.22 _7300_DO_PG_Stop
	5.23 _7300_DI_Timer
	5.24 _7300_DO_Timer
	5.25 _7300_Int_Timer
	5.26 _7300_Get_Sample
	5.27 _7300_Set_Sample
	5.28 _7300_GetUnderrunStatus

	Appendix
	The Intel (NEC) 8254
	The Control Byte
	Mode Definition

