Absorption of Essential Fatty Acids in Wax Ester Rich Oil from the Marine Crustacean, Calanus finmarchicus, in Healthy Men and Women

Chad M. Cook, PhD¹, Terje Larsen, PhD², Hua J. Kern, PhD¹, Linda D. Derrig, MS¹, Kathleen M. Kelly, MD¹, Kurt S. Tande, Dr. Philos³
¹Biofortis Clinical Research, Addison, IL, USA; ²Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway; ³Calanus AS, Tromsø, Norway

Abstract #2040 - Program #684.5 Experimental Biology April 2-6, 2016 | San Diego, CA, USA

Background

- Absorption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) depends on the source and chemical composition of the fatty acids (e.g., bound as triacylglycerols [TAG], ethyl esters, or phospholipids).¹⁻⁴
- EPA and DHA derived from the marine copepod *Calanus finmarchicus*, contains >85% of the fatty acids present as wax esters bound predominantly to aliphatic long-chain monounsaturated alcohols [mostly 20:1(n-9) and 22:1(n-11) alcohols], with minor amounts of TAG and other neutral lipids (<10%) and polar lipids (<5%).⁵
- The bioavailability of essential fatty acids from wax ester rich oil remains to be determined in humans.

Objective

The primary objective of this randomized, two-period crossover study was to assess the absorption of EPA and DHA wax esters from *C. finmarchicus* extracted oil as an encapsulated dietary supplement in generally healthy adults.

Methods

Study Products

- Wax ester oil (Calanus® oil; Calanus AS, Tromso, Norway) providing 260 mg EPA and 156 mg/day DHA primarily as primarily wax esters.
- Ethyl ester oil (Lovaza®, GlaxoSmithKline, Research Triangle Park, NC) providing 465 mg EPA and 375 mg DHA as primarily ethyl esters.

Statistical Analyses

- Statistical analyses were performed using SAS v9.4.
- All tests of significance were performed at $\alpha = 0.05$, two-sided.

EPA+DHA (μg/mL) 30 25 20 15 10 Wax ester oil (416 mg EPA+DHA) 40 Ethyl ester oil (840 mg EPA+DHA) 012 4 6 8 10 12 24 48 72 Time (h) EPA (μg/mL) 50 45 50 Wax ester oil (260 mg EPA) 012 4 6 8 10 12 24 48 72 Time (h) DHA (μg/mL) 50 Wax ester oil (156 mg DHA) 30 Ethyl ester oil (375 mg DHA) 012 4 6 8 10 12 24 48 72 Time (h) Time (h)

Figure 2. The 72 h time course of plasma EPA+DHA, EPA, and DHA in response to a single serving of wax ester oil or

Table 1. Fatty acid profile of wax ester oil.		
Fatty Acid (Common Name)	<u>g/100 g</u>	
C14:0 (myristic acid)	10.7	
C16:0 (palmitic acid)	5.0	
C15:0	0.5	
C16:1	1.5	
C16:3	0.1	
C17:0	0.2	
C18:0 (oleic acid)	0.4	
C18:4 n-9	1.4	
C18:1	0.3	
C18:2 n-6	0.5	
C18:3	0.7	
C18:4 n-3 (stearidonic acid; SDA)	7.3	
C20:1 n-9	1.5	
C20:4	0.2	
C22:1 n-11	3.0	
C20:5 n-3 (EPA)	6.5	
C24:1 n-9	0.4	
C22:5 n-3	0.3	
C22:6 n-3 (DHA)	3.9	

ethyl ester comparator oil. Data presented as mean ± SEM.

Results

Sex	
Male	9 (50.0)
Female	9 (50.0)
Race	
White	13 (72.2)
Black / African American	1 (5.6)
Asian / Pacific Islander	3 (16.7)
Other	1 (5.6)
	Mean ± SEM
Age, years	38.3 ± 2.5
Weight, kg	73.1 ± 3.1
Body BMI, kg/m ²	25.1 ± 0.6

Oil from the marine crustacean, *Calanus finmarchicus*, appears to be a suitable alternative source of EPA and DHA to help meet daily intake recommendations of these fatty acids.

Table 3. Kinetic parameters for plasma EPA+DHA, EPA, and DHA in response to a single serving of wax ester oil and ethyl ester comparator oil.

Parameter	Ethyl ester oil	Wax ester oil
	Mean ± SEM	
EPA+DHA		
iAUC _{0-72 h} , µg*h/mL	764 ± 93	931 ± 92
iAUC _{0-48 h} , µg*h/mL	585 ± 63	681 ± 61
iAUC _{0-24 h} , µg*h/mL	291 ± 32	335 ± 30
C _{max} (µg/mL)	77 ± 5	80 ± 5
T _{max} (h)	16.4 ± 2.7	20.3 ± 3.9
EPA		
iAUC _{0-72 h} , µg*h/mL	313 ± 49	514 ± 47*
iAUC _{0-48 h} , μg*h/mL	259 ± 39	$381 \pm 31*$
iAUC _{0-24 h} , μg*h/mL	146 ± 20	190 ± 14
C _{max} (µg/mL)	23 ± 2	26 ± 2
T _{max} (h)	17.3 ± 4.1	16.9 ± 3.5
DHA		
iAUC _{0-72 h} , µg*h/mL	460 ± 66	438 ± 75
iAUC _{0-48 h} , µg*h/mL	327 ± 41	308 ± 46
iAUC _{0-24 h} , µg*h/mL	146 ± 18	150 ± 21
C _{max} (µg/mL)	55 ± 5	55 ± 5
T _{max} (h)	27.4 ± 5.5	27.4 ± 5.4
*Significant difference (p < 0.05) compared to ethyl ester oil		

Abbreviations: BMI, body mass index; C_{max} , maximal concentration; iAUC, incremental area under the curve; SEM, standard error of the mean; T_{max} , time to maximal concentration

References

- 1. Ghasemifard et al. *Prog Lipid Res.* 2014, *56*, 92-108.
- 2. Salem et al. Lipids Health Dis. 2014, 13, 137.
- . Schuchardt et al. *Prostaglandins Leukot Essent Fatty Acids.* 2013, 89, 1-8.
- 4. Yurko-Mauro et al. *Lipids Health Dis.* 2015, *14*, 99.
- 5. Melle et al. In: Skjoldal HR (ed) The Norwegian Sea Ecosystem. Trondheim: Tapir Academic Press, 2004. p 148–149.

Copyright © 2016 Mérieux NutriSciences. All Rights Reserved