DIGISCOPING

An overview of the common camera adaptations and necessary adapters for afocal photography and eyepiece projection with spotting scopes and telescopes

EXAMPLE
 AFOCAL PHOTOGRAPHY

Adaptation of Cameras

 (Compakt \& System/DSLR) with Front-Filter-Thread using either M43- or SP54-ThreadCompact cameras and system cameras which provide a front-filter thread can be attached firmly and without risk of tilting to eyepieces with M43- or SP 54-threads. Cameras with M 43-thread can also be attached directly; the M43-extension rings prevents the lenses from colliding.

This kind of photography works better with tele- than wide-angle-lenses. It works better if the camera lens is smaller than the lens of the eyepiece. Wide-angle-eyepieces like Morpheus ${ }^{\circledR}$ or Hyperion ${ }^{\circledR}$ are perfect for afocal projection photography.

Equivalent focal length $=\frac{\text { Magnification of the eyepiece }}{\text { Focal length of camera lens }}$

M82

Stepper-Ring M 72/M82

Stepper-Ring M62/M67 Stepper-Ring M62/M 72 Stepper-Ring M62/M 77 \# 2958067 \# 2958072 \# 2958077

FF 28 DT-Ring \# 2958028
(requires \# 2958090)

SP54/M37 DT-Ring \# 2958037 (requires \# 2958090)

Adaptation of Camera Bodies (System-/DSLR-Cameras) with T-Adapter using either T- or M 43-Thread

Camera bodies can be attached directly to eyepieces which are equipped with a T-thread. But to get an image which is sharp even in the corners, the front of the T-ring should be placed in a distance of 40 mm (full-frame camera), 30 mm (APS-C) or 15 mm (Micro 4/3) to the eyepiece. The equivalent focal length compared to 35 mm is calculated as follows:

$$
f_{\text {equivalent }}=f_{\text {spotting scope }} \times\left(\left(a / f_{\text {eyepiece }}\right)-1\right)
$$

$\boldsymbol{f}_{\text {spotting scope }}=$ Focal length of spotting scope. $\mathbf{a}=$ Distance between sensor and eyepiece incl. 55 mm T-2-flange-back. E.g. a 40 mm extension gives a distance of 95mm. $\boldsymbol{f}_{\text {evepiece }}=$ Focal length of eyepiece.

Available T-Rings:

\#2408319 Canon EOS | \#2408302 Pentax-K | \#2408330 Micro Four Thirds | \#2408329 Four Thirds | \#2408328 Minolta AF (for Minolta Maxxum and Minolta/Sony Alpha) | \#2408331 Fujifilm X| \#2408321 Olympus | \#2408300 Nikon | \#2408317 Sony E/NEX | \#2408301 M42 x 1 (Praktika) Pentax-S)| \#2958550 Protective CANON DSLR-T-Ring T-2/M48 and 2" (with / without filter)

Available T-2-extensions

T-2 extension 40mm (T-2 part \#25B) \#1508153
T-2 extension 15mm (T-2 part \#25A) \#1508154
T-2 extension 7,5mm (T-2 part \#25C)
\#1508155
VariLock 29 - variable, 20-29mm \#2956929
VariLock 46 - variable, 29-46mm \#2956946

Adaptation of Solar System Imagers or Video Modules with a T-Adapter

To image the planets through a telescope, you need a video module, which can capture many images in a short time, as well as a telescope with a long focal length. Cameras with small pixels require only a $2 x$ - or $3 x$-Barlow; for even higher f-ratios, eyepiece projections is a common method. The equvalent focal length is calculated as described on the previous page as:

$$
f_{\text {equivalent }}=f_{\text {telescope }} \times\left(\left(\mathrm{a} / f_{\text {eyepiece }}\right)-1\right)
$$

The perfect f-ratio depends on the pixel size of the camera. It is calculated as $N \leq$ $d_{p i x e} / 0,28 . N$ is the number of the f-ratio and $d_{p i x e l}$ is the length of the edge of the camera's pixels.

\#1508153
40 mm T-2 extension

\#1508154 15 mm T-2 extension

Effective Focal Lengths of selected CELESTRON spotting scopes with a standard T-adapter (55 mm flange back)

With 40 mm spacer tube (up to full frame) e.g. 40 mm extension tube \#1508153

	Magnification of the еуеріесе	Equivalent focal length with standard T-2 sdapter			Extension tube
		Vollformat	APS-C (Crop 1,5)	Micro Four Thirds	
Ultima 65	18x	1360 mm	2040 mm	2720 mm	$1 \times 40 \mathrm{~mm}$
	$55 x$	4853 mm	7279 mm	9705 mm	$1 \times 40 \mathrm{~mm}$
TrailSeeker 65 / Regal 65	$16 x$	1142 mm	1713 mm	2284 mm	$1 \times 40 \mathrm{~mm}$
	48x	4198 mm	6297 mm	8396 mm	$1 \times 40 \mathrm{~mm}$
Ultima / TrailSeeker / Regal 80	20x	1420 mm	2130 mm	2840 mm	$1 \times 40 \mathrm{~mm}$
	60x	5220 mm	7830 mm	10440 mm	$1 \times 40 \mathrm{~mm}$
Ultima 100	$22 x$	1550 mm	2325 mm	3100 mm	$1 \times 40 \mathrm{~mm}$
	66x	5730 mm	8595 mm	11460 mm	$1 \times 40 \mathrm{~mm}$
TrailSeeker / Regal 100	$22 x$	1550 mm	2325 mm	3100 mm	$1 \times 40 \mathrm{~mm}$
	$67 x$	5825 mm	8738 mm	11650 mm	$1 \times 40 \mathrm{~mm}$

With 30 mm spacer tubes (up to APS-C) e.g. $2 \times \# 1508154$ or $1 \times \# 1508154$ and 7 -2 quich-changer system

	Magnification of the	Equivalent focal length with standard T-2 sdapter			Extension tube
	еуеріесе	Vollformat	APS-C (Crop	Micro Four Thirds	
Ultima 65	18x	1176 mm	1765 mm	2353 mm	$2 \times 15 \mathrm{~mm}$
	$55 x$	4301 mm	6452 mm	8602 mm	$2 \times 15 \mathrm{~mm}$
TrailSeeker 65 / Regal 65	16x	981 mm	1472 mm	1962 mm	$2 \times 15 \mathrm{~mm}$
	$48 x$	3715 mm	5573 mm	7431 mm	$2 \times 15 \mathrm{~mm}$
Ultima / TrailSeeker / Regal 80	20x	1220 mm	1830 mm	2440 mm	$2 \times 15 \mathrm{~mm}$
	60x	4620 mm	6930 mm	9240 mm	$2 \times 15 \mathrm{~mm}$
Ultima 100	$22 x$	1330 mm	1995 mm	2660 mm	$2 \times 15 \mathrm{~mm}$
	$66 x$	5070 mm	7605 mm	10140 mm	$2 \times 15 \mathrm{~mm}$
TrailSeeker / Regal 100	$22 x$	1330 mm	1995 mm	2660 mm	$2 \times 15 \mathrm{~mm}$
	$67 x$	5155 mm	7733 mm	10310 mm	$2 \times 15 \mathrm{~mm}$

Without spacer tubes (only for smaller chips) Image will be vignetted and distorted when using larger camera sensors

	Magnification of the еуеріесе	Equivalent focal length with standard T-2 sdapter Vollformat APS-C (Crop 1,5) Micro Four Thirds			Extension tube
Ultima 65	18x	625 mm	937 mm	1250 mm	-
	$55 x$	2647 mm	3970 mm	5294 mm	-
TrailSeeker 65 / Regal 65	16x	499 mm	748 mm	997 mm	-
	48x	2268 mm	3402 mm	4536 mm	-
Ultima / TrailSeeker / Regal 80	20x	620 mm	930 mm	1240 mm	-
	60x	2820 mm	4230 mm	5640 mm	-
Ultima 100	$22 x$	670 mm	1005 mm	1340 mm	-
	$66 x$	3090 mm	4635 mm	6180 mm	-
TrailSeeker / Regal 100	$22 x$	670 mm	1005 mm	1340 mm	-
	$67 x$	3145 mm	4718 mm	6290 mm	-

