

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Contents

Workshop on stellar spectroscopy at the college CFG Wuppertal	4,5
DADOS & accessories	6
DADOS layout	7
Spectrum photography & visual guiding	8
Optical path	9
Dado #1, the "guiding port": Slit plate, mirror and slit illuminator	10
Dado #1: Field of view at the slit viewing port	11, 12
Dado #1: α CMa (Sirius) close to 25 μm Slit (DMK41 - video camera)	13
Dado #1: Lunar Spectroscopy – The Aristarchus Plateau (DMK 41)	14
Dado #2: The blazed reflection grating	15
Daylight spectrum of 900 lines/mm grating and 1200 lines/mm grating	16, 17
Dado #2: Grating replacement - Part 1 to 4	18-21
Diffraction of light (transmission)	22
Transmission grating	23
Blazed transmission grating vs. blazed reflection grating	24
Blazed reflection grating	25
Blazed grating theory: Definition of parameters	26
Blazed grating theory	27, 28
Calculation example: DADOS with blazed 200 lines/mm grating	29
Energy saving lamp ORMALIGHT 9W- DADOS with 200 lines/mm grating	30
Spectrum of Energy Saving Lamp (ESL) Ormalight 9W	31

Contents

Stacking/calibration of stellar spectra	32
Stacking/calibration of stellar spectra from a Canon DSLR camera	33-86
The solar spectrum	87, 88
Calibration of Spectra with a Ne/Xe Plasma Tube from Conrad Electronic	89-92
Nova Delphini 2013	93-100
Spectrum of Be star γ Cas	101-103
Spectrum of Be star ζ (zeta) Tau	104-107
Spectroscopic binary star β Aur	108, 109
Emission nebula M42	110
Stacking & full calibration of spectra taken by a STF-8300M CCD camera	111, 112
References & recommended reading	113, 114
Safety and other rules	115
Disclaimer	116

Workshop on stellar spectroscopy at the college CFG Wuppertal

The student astronomical observatory, on the roof of the college Carl-Fuhlrott-Gymnasium, in Wuppertal, Germany, is well equipped with six identical telescope units. We provide astronomy and astrophysics education for larger groups of students from other colleges and the nearby Bergische Universitaet Wuppertal.

Equipment: Astro-Physics 900GTO mount, Celestron 11" EdgeHD telescope, Pentax 75 SDHF refractor, Celestron ED 80/600mm refractor, Canon EOS 450D DSLR camera, SBIG STF-8300M CCD camera and lot of accessories.

Special workshops on the topic of stellar spectroscopy are held with six units of the DADOS spectrograph. Gratings with 200/900/1200 lines/mm are available, as well as spectral calibration lamps. Tutors: Michael Winkhaus, Bernd Koch and Ernst Pollmann.

Please look at the report of Dr. Thomas Schroefl of Vienna, Austria, who attended our October 21-25, 2013 workshop (all pages in German). http://www.waa.at/bericht/2013/10/20131021sfloo.html http://www.waa.at/bericht/2013/10/20131022sfl17.html

If you are interested in a workshop, please have a look at our website www.schuelerlabor-astronomie.de or contact Mr. Michael Winkhaus, head of the observatory: Michael.Winkhaus@t-online.de

Please address inquiries about the DADOS spectrograph directly Mr. Bernd Koch, b.koch@baader-planetarium.de

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Michael Winkhaus

Ernst Pollmann

Bernd Koch

Workshop on stellar spectroscopy at the college CFG Wuppertal

Interested in a workshop? Please contact: Michael Winkhaus, Michael.Winkhaus@t-online.de | Workshop April, 2011

DADOS layout

DADDS SLIT-SPECTROGRAPH TUTORIAL

- 1) 2" Nosepiece (-> Telescope)
- 2) Adjustable red LED slit illuminator (incl. two 1.5V LR-41 batteries)
- 3) $1\frac{1}{4}$ " Slit viewer port for guiding eyepiece (11) or camera
- 4) $1\frac{1}{4}$ " Stop ring for guiding eyepiece (11) or camera
- 5) Micrometer adjustment for scanning the spectrum
- 6) Rotation stage counter spring (do not touch)
- 7) Focuser
- 8) Focuser locking screws
- 9) Grating angle locking screw
- 10) Optional 900 lines/mm grating
- 11) Guiding eyepiece for viewing the spectrograph's slit
- 12) Quick changer (optional, but not for DSLR)
- 13) Focusing eyepiece holder, $T_2 \rightarrow 1\frac{1}{4}$ "
- 14) 10 mm or 20 mm Kellner eyepieces for viewing a spectrum)

Optical path

Dado #1, the "guiding port": Slit plate, mirror and slit illuminator

Slit viewing port (guiding port)

Slit plate:

The slit plate contains three slits of different widths: $25 \mu m$, $35 \mu m$, and $50 \mu m$.

Mirror:

The small mirror allows the observer at the slit viewing port to keep an object's image exactly on one the slits.

Slit illuminator:

To be visible against a dark sky background, the slits can be illuminated by an adjustable red LED.

Please note:

Don't forget to switch off the slit illuminator before starting the exposure of the spectrum. Otherwise the red LED stray light will be superimposed on the image of the spectrum. To save battery energy always be sure to switch off the illuminator while not in use. The illuminator holds two 1.5V batteries LR41.

Dado #1: Field of view at the slit viewing port

View through the guiding eyepice (simulation)
50 μm 🖌 🗸
25 μm ► ←
35 μm → →
Bright background

- Point the 2" nosepiece at a bright light source
- Look through the guiding eyepiece
- Each of the three slits has a different width
- The width of a slit is crucial for spectral resolution
- The length of a slit is irrelevant

Dado #1: Field of view at slit viewing port

View through the guiding eyepiece (Simulation)

Pleiades Star Cluster, Pentax 75.1/ 500mm

- Central slit ($_{25} \mu m$) gives best spectral resolution
- The 50 µm slit provides the brightest visual stellar spectra
- Spectral resolution is independent of the telescope's focus
- Perfect telescope focus maximizes contrast of spectral lines
- Guiding is possible at the slit viewing port
 - The slit's length should be parallel to Declination δ direction

Dado #1: α CMa (Sirius) close to 25 µm Slit (DMK41 - video camera)

Video: Bernd Koch

Video: Jonas Niepmann / Laurenz Sentis / Bernd Koch

Dado #2: The blazed reflection grating

Resolving power $\lambda / \Delta \lambda$ on camera objective axis and 25 µm slit

Grating of 200 lines/mm										
Theoretical Measured λ (nm)										
396	542	@ 416								
606	647	@ 616								
668	723	@ 697								
Grating of 900 lines/mm										
Theoretical	Measured	λ (nm)								
2038	2000	@ 371								
3910	3000	@ 561								
5376	5000	@ 800								

Limiting magnitude for a 30 cm Ø telescope with S/N 50 and 20 minutes of exposure time.

For the	200 lines/mm grating :	m _v = 8
For the	900 lines/mm grating :	m _v = 6

To avoid damage, please change the grating strictly according to DADOS user manual. Also be careful with the tiny set screws and don't touch the optical surface of the grating !!!!

Two blazed reflection gratings are recommended by the designers of the DADOS spectrograph:

- Low resolution 200 lines/mm, linear dispersion 2.16 Å/px (0.2 nm/px) @ 6563 Å / 5.4 micron pixel *
- Medium resolution 900 lines/mm, linear dispersion 0,59 Å/px (0.059 nm/px) *
- Optional: High resolution 1200 lines/mm, linear dispersion 0.46 Å/px (0.046 nm/px) *

A modified DSLR Camera with an 18 mm x 22 mm APS-size sensor covers the whole spectrum (about 400 nm -700 nm) only if used with the 200 lines/mm grating. The camera field should be aligned parallel to the spectrum to minimize aliasing errors due to rotation of the spectrum. This can be achieved by loosening three set screws at the T2-adapter, rotating the inner T2-ring, and tightening the set screws.

Daylight spectrum of 900 l/mm grating and 1200 l/mm grating

Daylight spectrum of 900 lines/mm grating and 1200 lines/mm grating

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

www.lightfrominfinity.org

/HIRSS/HIRRS.htm

Dado #2: Grating replacement – Part 1

A.2 Grating replacement

Touching the grating will destroy it beyond repair!

Do not attempt to remove dust by breathing or blowing air onto the grating! Small droplets of moisture and saliva can permanently damage the grating as well.

Do not use compressed or canned air! This will likewise transport moisture, grease or propellant onto the grating.

Any exchange of grating holders should always be performed in clean surroundings, free of dust and static build up.

Arrange your workplace for ensure a quick and clean grating exchange.

37

Dado #2: Grating replacement – Part 2

Have the 900 lines/mm grating with holder readily available.

Loosen the grating angle locking screw (#9) by one turn only.

Rotate the micrometer backwards to show an 8mm setting on the Vernier scale.

38

Use the 1.5mm Allen wrench to remove the four hex-head screws.

Take off the side plate/grating holder assembly.

Release the headless set

plate by 2 full turns

screw inside of the pressure

counterclockwise using the 1.5mm Allen wrench.

Be careful not to touch the grating.

Take the 900 lines/mm grating holder out of the storage container and store the 200 lines/mm grating in it.

Place the 900 lines/mm grating holder into the pressure plate.

Rotate the grating holder to adjust the proper position in regard to the markings in the pressure plate.

Each mark indicates the position of a specific grating. Be sure to use the proper one to achieve the optimal throughput.

Example of position: 200 lines/mm grating.

Example of position:

900 lines/mm grating.

Lock the pressure plate by tightening the headless set screw clockwise.

Carefully replace the side plate/grating holder assembly.

Replace and tighten the 4 screws that secure the side plate.

41

40

Dado #2: Grating replacement – Part 4

Adjust the micrometer to a Vernier position of approximately 2.5.

Lock the grating tilt mechanism by rotating the grating angle locking screw clockwise.

DADOS with grating exchanged.

Copyright: DADOS Spectrograph's User's Manual by Baader Planetarium GmbH

42

Diffraction of light (transmission)

Single-Slit Diffraction

Diffraction is described by the Huygens-Fresnel principle and the principle of superposition of waves. The propagation of a wave can be visualized by considering every point on a wavefront as a point source for a secondary spherical wave. The wave displacement at any subsequent point is the sum of these secondary waves. When waves are added together, their sum is determined by the relative phases as well as the amplitudes of the individual waves so that the summed amplitude of the waves can have any value between zero and the sum of the individual amplitudes. Hence, diffraction patterns usually have a series of maxima and minima.

Reference: http://en.wikipedia.org/wiki/Diffraction#Single-slit_diffraction

Diffraction grating

An idealized grating is made up of a set of slits of spacing d, that must be wider than the wavelength to cause diffraction. When a plane wave of wavelength λ with normal incidence perpendicular to the grating, each slit in the grating acts as a quasi point-source from which light propagates in all directions. After light interacts with the grating, the diffracted light is composed of the sum of interfering wave components emanating from each slit in the grating. At any given point in space through which diffracted light may pass, the path length to each slit in the grating will vary. So will the phases of the waves at that point from each of the slits, and thus will add or subtract from one another to create peaks and valleys, through the phenomenon of additive and destructive interference. When the path difference between the light from adjacent slits is equal to half the wavelength $\lambda/2$, the waves will all be out of phase, and thus will cancel each other to create points of minimum intensity. Similarly, when the path difference is λ , the phases will add together and maxima will occur. Reference: http://en.wikipedia.org/wiki/Diffraction_grating

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Disadvantages of a transmission grating

- > Light is dispersed among the various diffraction orders, leading to low intensity in the higher ones.
- > Transmission losses are due to selective absorption in the glass.
- > Maximum intensity is the undiffracted zeroth order.
- > A blazed transmission grating will improve things.

Blazed transmission grating vs. blazed reflection grating

Although in some cases transmission gratings are applicable or even desirable, they are not often used. Reflection gratings are much more prevalent in spectroscopic and laser systems, due primarily to the following advantages:

- Reflection gratings can be used in spectral regions where glass substrates and resins absorb light (*e.g.*, the ultraviolet).
- Reflection gratings provide much higher resolving power than equivalent transmission gratings, since the path difference between neighboring beams (*i.e.*, separated by a single groove) is higher in the case of the reflection grating. Therefore transmission gratings must be wider (so that more grooves are illuminated) to obtain comparable resolving power.
- Reflection grating systems are generally smaller than transmission grating systems, because the reflection grating acts as a folding mirror.

Figure 12-1. Diffraction by a plane transmission grating. A beam of monochromatic light of wavelength l is incident on a grating at angle a to the grating normal, and diffracted along several discrete paths $\{b_m\}$, for diffraction orders $\{m\}$. The incident and diffracted rays lies on opposite sides of the grating. The configuration shown, in which the transmission grating is illuminated from the back, is most common.

Blazed reflection grating

Blazed grating theory: Definition of parameters

GN: Grating normal

FN: Face normal

g: Groove spacing

φ: Blaze angle

 α : Angle of the incident light

 β : Angle of reflected light

Additive interference occurs when the total path difference Δ of light from adjacent slits (S1) and (S2) is an integer multiple of the wavelength λ : The phase is then the same, so the beams' intensity add.

> Path difference of incident beam: $\Delta_1 = BA' = g \sin \alpha$, Path difference of reflected beam: $\Delta_2 = AC = g \sin \beta$

 $\Delta = m \lambda = \Delta_1 - \Delta_2 = g (\sin \alpha - \sin \beta)$ with m =0, ± 1, ± 2 ... (Grating equation)

GN: Grating normal
FN: Face normal
g: Groove spacing
φ: Blaze angle
α: Angle of the incident light
β: Angle of reflected light

Grating equation:
$$m \lambda = g (\sin \alpha - \sin \beta) \rightarrow \lambda = \frac{g}{m} (\sin \alpha - \sin \beta)$$

Derivative with respect to β : $\frac{d \lambda}{d \beta} = -\frac{g \cos \beta}{m}$
Angular dispersion: $\left| \frac{d \beta}{d \lambda} \right| = \frac{m}{g \cos \beta}$
Linear dispersion: $\left| \frac{d x}{d \lambda} \right| = f \left| \frac{d \beta}{d \lambda} \right| = f \frac{m}{g \cos \beta}$ "f" is the focal length of the objective lens
Blaze angle: $\phi = \frac{\alpha - \beta}{2} = \frac{\alpha}{2} - \frac{1}{2} \arcsin\left(\frac{m \lambda}{g} - \sin \alpha\right)$

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Calculation example: DADOS with blazed 200 lines/mm grating

Data Entry: Celestron C11 Telescope aperture: 280 mm Telescope focal length: 2800 mm Grating groove density: 200 *lines/mm* Groove spacing $g = \frac{1}{200}$ mm Total deflection angle: $\alpha + \beta = 90^{\circ}$ Central wavelength: $\lambda = 520$ nm = 5200 Å Diffraction order : m = 1Slit width: 25 µm Camera: Canon EOS 450D

SimSpec Results: 🗲

Angle of incident light: $\alpha = 49.22^{\circ}$ Angle of reflected light: $|\beta| = 40.78^{\circ}$ Dispersion: 2.05 Å/px Spectral resolution: 13.62 Å at 5200 Å Resolving power: 382 Blaze angle: $\varphi = 4.22^{\circ} = 4^{\circ}$ 13' Linear dispersion: 394.37 Å/mm Length of the spectrum: ca. 8 mm

1 SIMSPEC V4.0 english version, by Ken Harrison, original version by Christian Bull Latest Revision: Apr 12 2 Enter data in highlighted cells Image: Collinator Collings (Collinator Collings (Collings (Co	1	A	В	С	D	E	F	G	Н	J	К	L	М	N
3 Enter data in highlighted cells Part 2 3 Enter data in highlighted cells Signactroggraph 4 Signactroggraph Signactroggraph 5 Treisacopa Signactroggraph 6 Bander (D): 2800 mm 7 Focal length (f): 2800 mm 7 Focal length (f): 2800 mm 10 Telesacopa throughput (f): 53 11 Colmator-Aninum diameter (d1): 60 mm 12 Semental Astrongenera 15 13 Seens (h): 21 14 Annospheric bransmission (Ta): 0.7 15 Star star drocus (PMN): 2.1 16 Star star drocus (PMN): 2.1 17 Genera-Maximum head dameter (d2): 41,7 mm 18 Star star drocus (PMN): 2.1 19 Netre star drocus (PMN): 2.1 10 Star star drocus (PMN): 2.1 11 Colmator-Astrome PVMNIc: 15 12 Star star drocus (PMN): 2.7 13 Star star drocus (PMN): 2.7	4	SIMSPEC VA 0 engli	ich vo	reion	by Ken	Harri	500 original version by Christian Ruil	-		Latent Poviniery	Apr 42	-		
2 Enter data in highlighted cells Spectrograph Calmator 4 Spectrograph For ellength (1): 2800 mm 5 For ellength (1): 2800 mm Collimator-Request Focal ratio (Fo): 100 mm 6 Colmator - Request Focal ratio (Fo): 100 mm Colmator - Request Focal ratio (Fo): 100 mm 10 Tessope throughput (To): 0.5 Colmator - Request Focal ratio (Fo): 100 mm 12 Seenig (Atmosuhere * Colmator - Request Focal ratio (Fo): 100 mm 13 Seenig (Atmosuhere * Colmator - Request Focal ratio (Fo): 100 mm 13 Seenig (Atmosuhere * Comera - Coal length (1): 800 mm Samplin Factor: 6.64 14 Atmospheric transmission (Ta): 0.75 Comera - Noninum diamateir (2): 110 mm Samplin Factor: 6.64 15 Styn agnitude (magier sec://): 12 Becolution of Camera Inservitikic: 15 microns Total exposure time (1): 300 sec: 16 Star size at focus (FVHM): 27,0 microns Camera Atminum diamateir (2): 100 mm Samplin Factor: 100 mm Samplin Fact	-	Silvisi Lo V4.0 eligi	ISIT VE	a sion,	by Ken	nann	son, original version by critistian bui			Latest Revision.	Apr 12			
Sector data in highlighted cells Spectrograph Camera 5 Telescope Spectrograph mm Camera Spectrograph mm Spectrograph mm Spectrograph mm Spectrograph mm Spectrograph mm Spectrograph mm Camera Spectrograph	2					_								
4 Spectrograph Catmera 5 Dimeter (D): 2000 mm Collimator-Focal length (T): 2000 mm Collimator-Focal length (T): 2000 mm Solumator-Focal	3	Enter data in highlig	ghted	i cells										
Telescope Collimator 8 Dameter (D): 280 mm Collimator-Focal length (11): Collimator-Focal length (12): Collimator-Focal length (11): Collimator-Focal length (12):	4													
Collimator Collimator Collimator Collimator Collimator 7 Focal length (f): 230 mm Collimator Sam 0 Control obstruction (i): 0.3 Collimator Sam Collimator Sam 1 Collimator Collimator Sam Collimator Collimator Collimator Sam Collimator Collimator <t< td=""><td>6</td><td>Telescone</td><td></td><td></td><td></td><td></td><td>Spectrograph</td><td></td><td></td><td>Camera</td><td></td><td></td><td></td><td></td></t<>	6	Telescone					Spectrograph			Camera				
B Collimation Collimator-Acquired Focal ratio (Fo): BB mm Collimator-Acquired Focal ratio (Fo): BB mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): BB mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): BB mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): BB mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): BB Mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): BB Mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): BB Mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): Collimator-Acquired Focal ratio (Fo): BB Mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): BB Mm Puble Stafe (F): Collimator-Acquired Focal ratio (Fo): Collimator-Acquired Focal ratio (Fo): Collimator-Acquired Focal ratio (Fo): Collimator-Acquired Focal ratio Focal ratio Focal ratio (Fo): Collimator-Acquired Focal ratio (F): Collimator-Acquired Focal ratio Focal ratio Focal ratio (F): Collimator-Acquired Focal ratio (F): Collimator-Acquire	0	Diameter (D) :		200			Callimater				6.00			
1 Collinear-Hock Height (1): 200 mm 200 mm <t< td=""><td>7</td><td>Diameter (D) .</td><td></td><td>200</td><td>mm</td><td></td><td>Collimator</td><td>00</td><td></td><td>pixer sizer (p):</td><td>5,20</td><td>microns</td><td></td><td></td></t<>	7	Diameter (D) .		200	mm		Collimator	00		pixer sizer (p):	5,20	microns		
Contral obstruction (s): 0.3 Seein (g): 0.7 Seein (g): 2 Contral obstruction (s): 0.7 Seein (g): 2 Contral obstruction (s): 0.7 Star size at focus (FVHM): 2.7 Contract obstruction (s): 0.7 Contract obstruction (s): 0.7 Sever (s): 0.7 Contract obstruction (s): 0.7 Sever (s): 0.7 <t< td=""><td></td><td>Focal length (1) .</td><td>D (C#) -</td><td>2000</td><td>mm</td><td></td><td>Collimator-Focal length (11) .</td><td>40.0</td><td>mm</td><td>number of X pixels(NX).</td><td>4212</td><td>0/</td><td></td><td></td></t<>		Focal length (1) .	D (C#) -	2000	mm		Collimator-Focal length (11) .	40.0	mm	number of X pixels(NX).	4212	0/		
3 Commands address of the second	-	Control abote sting (a) :	U (F#) :	10,0			Collimator-Required Focal ratio (FC).	10,0		Quantum efficiency (1):	04 40	70		
1 Tesebolip intourpoint (10) 0,3 0,1 <td< td=""><td>9</td><td>Central obstruction (E) :</td><td></td><td>0,5</td><td></td><td></td><td>Collimator-Minimum diameter (d1) :</td><td>0,0</td><td>mm</td><td>Read holse (RON) :</td><td>10</td><td>e-/pixei</td><td></td><td></td></td<>	9	Central obstruction (E) :		0,5			Collimator-Minimum diameter (d1) :	0,0	mm	Read holse (RON) :	10	e-/pixei		
11 Camera - Coal length (12): 36 mm Seeing (4): Siming, Y axis (0): 1 13 Seeing (4): 2 Camera - Coal length (12): 36 mm Sampling, Y axis (0): 1 14 Atmospheric transmission (1a): 0,75 Camera - Coal length (12): 36 mm Sampling, Y axis (0): 1 15 Sky magnitude (major sec*2): 16 Camera - Coal length (12): 36 mm Sampling, Y axis (0): 30 secs 16 Star size at focus (FWHM): 27.1 microns Colimator/Camera - Total angle (7): 96 * Subs.exposure time (13): 300 secs 17 Colimator/Camera - Total angle (7): 96 * Subs.exposure time (13): 300 secs 18 Colimator/Camera - Total angle (7): 96 * Subs.exposure time (13): 300 secs 19 NOTES: Colimator/Camera - Total angle (7): 20 * Total exposure time (13): 300 secs 10 Sec www. astrosurf.org/builus/spe2/hresolt.htm Grating-Linear man.et/minum meton office (1): 30 Magnitude (major (11): 12	10	Telescope throughput (10):		0,9			Resolution of Collimation lens-FWHM0:	15	microns	Dark holse (Nd) :	0,1	e-/s/pixei		
12 Camera-Hostance to grating (1): 2 Camera-Hostance to grating (1): 2 Camera-Hostance to grating (1): 10 Camera-Hostance (1): 10	42	Cooling/ Atmosphere					Camera Escal Israth (f2) :	00		Dinning, A axis (1A).				
13 Seeing (V). Atmospheric transmission (Ta): 0,75 Camera-Minimum dia dameter (d2): 140,1 mm Exposure time (b): 300 secs 15 Sky magnitude (magarc sec*2): 16 Camera-Minimum media dameter (d2): 2,3 number of subframes (h): 12 17 Sky magnitude (magarc sec*2): 16 Collimator/Camera-Total angle (r): 50 * Subframes (h): 12 17 Collimator/Camera-Total angle (r): 20 Total exposure time (b): 3600 secs Secure time (b): 3600 secs 19 NOTES: Collimator/Camera-Total angle (r): 20 Total exposure time (b): 12 20 Sec www astrosurf org/bul/us/spe2/mesol1.htm Grating-Uffraction order (k): 1 Magnitude (m): 12 21 www.astrosurf org/bul/us/spe2/mesol1.htm Grating-Uffraction order (k): 10 Magnitude (m): 12 22 Sec www astrosurf org/bul/us/spe2/mesol1.htm Grating-Uffraction order (k): 30 mm 12 24 Summappeer (Torgon Mul/us/spe2/mesol1.htm Grating-Uffraction (A): 320 Magnitude (m): 12 25 Spectral resolution 13,62 <td>12</td> <td>Seeing (t) :</td> <td></td> <td>2</td> <td>-</td> <td></td> <td>Camera-Focariengin (12) .</td> <td>140</td> <td>mm</td> <td>Dinning, Taxis (IV).</td> <td>6.64</td> <td></td> <td></td> <td></td>	12	Seeing (t) :		2	-		Camera-Focariengin (12) .	140	mm	Dinning, Taxis (IV).	6.64			
14 Amospheric transmission (18): 0.75 15 Stym agnospheric transmission (18): 0.75 16 Star size at focus (FWHM): 27,1 16 Star size at focus (FWHM): 27,1 17 Camera-Havinum focial ratio (FO): 2,3 18 More and the second of the s	13	Seeing (T-1.	0.70	-		Camera-Distance to grating (1):	140	mm	sampling ractor :	0,04			
15 Sky magnitude (magnitic Set 2): 10 Collimator (Camera Anazymith Total (Critica): 300 300 set size at focus (FWHM):	14	Atmospheric transmission (1	(a):	0,75			Camera-Minimum lens diameter (d2):	41,7	mm	Exposure	200			
Star size at rocus (rvmin): 27.1 microns (resolution of camera ensister vmmic): 15 microns number of subortances (n): 12 microns 18 Collimator/Camera -Total angle (r/): 90 * Spectrum size/ spread 5pectrum size/ spread 5pectrum (n): 12 microns 12 microns Spectrum size/ spread 12 microns Feedowing how many size/ spread 12 microns Spectrum size/ spread 12 microns Spectrum (n): 12 microns 12 microns Spectrum (n): 12 microns 12 microns Spectrum (n): 12 microns 12 microns Magnitude (m): 12 microns 12 microns 12 microns Magnitude (m): 12 microns 12 microns Magnitude (m): 12 microns 12 micros 12 microns 12 micros <td>15</td> <td>Sky magnitude (mag/arc sec</td> <td>c**2) :</td> <td>16</td> <td></td> <td></td> <td>Camera-Maximum tocal ratio (Fo) :</td> <td>2,3</td> <td></td> <td>Subs, exposure time (ts) :</td> <td>300</td> <td>secs</td> <td></td> <td></td>	15	Sky magnitude (mag/arc sec	c**2) :	16			Camera-Maximum tocal ratio (Fo) :	2,3		Subs, exposure time (ts) :	300	secs		
1/1 Iotal exposure time (t): 300 (paces) 1/1 Iotal exposure time (t): 300 (paces) 1/1 Iotal exposure time (t): 300 (paces) 1/1 Interview (t): 25 microns 1/1 Interview (t): 25 microns 1/2 Interview (t): 1/2 1/2 Interview (t):	16	Star size at focus (F	whim):	21,1	microns		Resolution of Camera lens-FWHMC :	15	microns	number of subframes (n):	12			
18 Columator/Lampera - total angle (?): 90 Spectrum size/ spread 20 See www.astrosurf.org/buil/us/spe2/hresolt.htm Silt width (w): 22 21 See www.astrosurf.org/buil/us/spe2/hresolt.htm Grating-Unifraction order (k): 1 22 Explanatory notes and worked example) Grating-Unifraction order (k): 1 23 Grating-Minimum height (H): 8,0 24 SumMARY Grating-Minimum height (H): 8,0 25 Resolving power R 32 Signal/Noise (SNR): 37 26 Spectrum minimum height (H): 13,62 A Resolving power R): 332 26 Spectral resolution (DA): 13,62 A Limiting Mag 2 27 Wavelength range 8761 A Spectral resolution (A): 13,62 A 27 Wavelength ange Sitt width 25 Sitt minimum height (H): 8,0 Imminum height (H): 8,0 28 Signal/Noise (SNR) 37 Limiting Mag Limiting Mag 1 Signal/Noise (SNR) 37 29 Signal/Noise (SNR) 37 Lambda min. (1): <td>1/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I otal exposure time (t):</td> <td>3600</td> <td>secs</td> <td></td> <td></td>	1/									I otal exposure time (t):	3600	secs		
Ind INCLES: Stit width (v): Zb microns Height of Spectrum (n): 12 pxel 20 See www.astrosurf.org/buil/us/stage/alc/ul/design_us.htm Grating_Lines/mm (n): 200 Magnitude (m): 12 21 www.astrosurf.org/buil/us/stage/alc/ul/design_us.htm Grating_Lines/mm (n): 200 Magnitude (m): 12 22 (explanatory notes and worked example) Grating_Hininum height (H): 8,0 Magnitude (m): 12 24 SumMARY Grating_Hininum height (H): 8,0 Magnitude (m): 12 25 Besolving power R 382 Besolving power (R): 382 Silt windth (W): 12,6 26 Spectral resolution 13,62 A Resolving power (R): 382 Silt windth (W): 12,6 27 Wavelength range 8761 A Spectral resolution (A): 13,62 A Limiting Mag. (Bowen-mod): 15,36 26 GratingDiffraction order 1 Wavelength range Magnitude (m): 12 Magnitude (m): 12 27 Wavelength range 816 Magnitude (M): 14 Limiting Mag. (Bowen-mod): 15,36	18						Collimator/Camera - I otal angle (7):	90	· .	Spectrum size/ spread				
20 See www.astrosurt.org/buil/usspe2/inresolf.htm Grating-Lines/mm (n): 20 21 www.astrosurt.org/buil/usspe2/inresolf.htm Grating-Lines/mm (n): 20 22 (explanatory.notes and worked example) Grating-Lines/mm (n): 1 23 Grating-Minimum height (H): 8.0 mm Effective temperature (Te): 1000 K 24 SumMARY Grating-Minimum width (W): 12.0 Å Magnitude (m): 12 25 Resolving power R 382 Balometric Correction (BC): -0.4 26 Spectral resolution (1): 13,62 Å Resolving power (R): 382 Singal/Noise (SNR): 37 27 Wavelength range 8761 Å Spectral resolution (A): 13,62 Å Limiting Mag.(Bowen-mod): 15.36 26 Grating-Mineum height (H): 8.0 m Limiting Mag.(Bowen-mod): 15.36 27 Wavelength range Rating-Lines/mm Limiting Mag.(Bowen-mod): 15.36 28 Grating-Mineum height (H): 8.0 Å EoS 450D: Limiting Mag.(Bowen-mod): 15.36 29 Grating-Mineum height (H): 8.0 Å EoS 4 EoS 450D: EoS 450D: <td>19</td> <td>NOTES:</td> <td></td> <td></td> <td></td> <td></td> <td>Slit width (w) :</td> <td>25</td> <td>microns</td> <td>Height of Spectrum (n) :</td> <td>12</td> <td>pixel</td> <td></td> <td></td>	19	NOTES:					Slit width (w) :	25	microns	Height of Spectrum (n) :	12	pixel		
21 www.astrosurf.org/builus/stage/calcu/design_us.htm Grating-Lines/ mm (h): 200 Larget sur 23 (explanatory notes and worked example) Grating-Lines/ mm (h): 1 Magnitude (m): 12 23 SulMMARY Grating-Unies/ mm (h): 200 Magnitude (m): 12 24 SulMMARY Grating-Unies/ mm width (W): 12.2 mm Bolometric Correction (BC): -0.4 26 Spectral resolution 15.62 Å Resolving power (R): 324 Signal/Noise (SIRR): 37 27 Wavelength range 8761 Å Spectral resolution (A): 13.62 Å Limiting Mag. 15.35 27 Grating-Diffraction order 1 Wavelength Range Imition Mag. 15.35 28 Signal/Noise (SNR) 37 Lambda min. (11): 820 Å EOS 4500: 185,19 px/mm 29 Grating-Diffraction order 1 Wavelength range / image frame: 8761 Å SNR Calculations 31 Target Mag. 12,0 Lambda min. (11): 820 Å EOS 4500: 185,19 px/mm 1 32 Signal/Noise (SNR) 37 Lambda max. (22): SS60 Å <td< td=""><td>20</td><td>See www.astrosurf.org/bu</td><td>il/us/spe</td><td>e2/hresol</td><td>1.htm</td><td></td><td>Grating</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	20	See www.astrosurf.org/bu	il/us/spe	e2/hresol	1.htm		Grating							
22 (explanatory notes and worked example) Grating-Ultracton order (k): 12 23 SilMitARY Grating-Ultracton order (k): 12 24 SilMitARY Grating-Ultracton order (k): 12 25 Resolving power R 332 Dispersion (p): 2,6 26 Spectral resolution 13,62 A Signal/Noise (SNR): 37 27 Wavelength range 8761 A Spectral resolution (A): 13,62 A 26 Grating-Ultracton order 1 Spectral resolution (A): 13,62 A Limiting Mag.(Bowen-mod): 15,36 27 Wavelength Range Spectral resolution (A): 13,62 A Limiting Mag.(Bowen-mod): 15,36 28 Grating-Ultracton order 1 Lambda min. (1): 620 A EOS 450D: 185,19 px/mm 1 31 Target Mag. 2,0 Lambda min. (2): 9500 A EOS 450D: 185,19 px/mm 1 32 Signal/Noise (SNR) 37 Vavelength range/ image frame: 8761 A SNR Calculations 1 34 Transmission efficiency<	_21	www.astrosurf.org/buil/us/	stage/c	alcul/des	ign us.htm		Grating-Lines/ mm (n) :	200		larget Star				
23 Grating-Minimum height (h): 8,0 mm Effective temperature (i (i): 10800 jk 26 Resolving power R 382 Grating-Minimum width (W): 12,26 År pixel SNR 0 26 Spectral resolution 13,62 Å Resolving power (R): 327 Signal/Noise (SNR): 37 27 Wavelength range 8761 Å Spectral resolution (A); 13,62 Å Limiting Mag. 37 27 Grating-Lines/ mm 200 Signal/Noise (SNR): 37 Limiting Mag. 15,36 27 Grating-Lines/ mm 200 Signal/Noise (SNR): 37 Limiting Mag. 15,36 28 Grating-Minimum width (1): 8200 Å EOS 450D: 185,19 px/mm 15,36 29 Signal/Noise (SNR) 37 Lambda max. (2): 9580 Å EOS 450D: 185,19 px/mm 29 Signal/Noise (SNR) 37 Lambda max. (2): 9580 Å EOS 450D: 185,19 px/mm 16 20 A EOS 450D: 185,19 px/mm Enclosed max. (2): 9580 Å Enclosed max. (2): 9580 Å 20 A EOS 450D: 185,19 px/mm Enclosed max. (2): Sin Calculations	22	(explanatory notes and wo	rked ex	ample)			Grating-Diffraction order (k) :	1		Magnitude (m) :	12			
24 Grating-Mininum width (W): 12,2 mm Beloometric Correction (BC): -0,4 28 Resolving power (R): 32 SNR	23						Grating- Minimum height (H) :	8,0	mm	Effective temperature (Te) :	10800	к		
25 Resolving power R 382 Dispersion (p): 2,05 År pixel SNR sint 26 Spectral resolution 13,62 Å Resolving power (R): 332 Signal/Noise (SNR): 37 27 Wavelength range 8761 Å Spectral resolution (Δ2): 13,62 Å Limiting Mag 26 Grating-Lines/mm 200 Dispersion (r): 39,4 Immun Limiting Mag. (Bowen-med): 15,36 30 Sitt width 25 microns Reference wavelength (A): 5200 Å EOS 450D: 185,19 px/mm 31 Target Mag. 12,06 Lambda max. (2): 9550 Å 32 Signal/Noise (SNR) 37 Wavelength range/ image frame: 8761 Å SNR Calculations 34 Throughput efficiency Wavelength range / image frame: 8761 Å SNR Calculations 35 Other Results * Throughput efficiency SN background(E): 4,085-02 36 Angle of incidence (x): 49.22 * Transmission eff	24	SUMMARY					Grating- Minimum width (W) :	12,2	mm	Bolometric Correction (BC) :	-0,4			
26 Spectral resolution (3): 362 A Resolving power (R): 382 Signal/Noise (SNR): 37 27 Wavelength range (Bread) Signal/Noise (SNR): 37 Signal/Noise (SNR): 37 28 Grating-Diffraction order 1 Wavelength Range Limiting Mag (Bowen-mod): 15,36 29 Grating-Diffraction order 1 Wavelength Range EDS 4500: 185,19 px/mm 31 Target Mag. 12,0 Lambda min. (1): 820 Å EDS 4500: 185,19 px/mm 31 Target Mag. 12,0 Lambda mix. (2): 9560 Å EDS 4500: 185,19 px/mm 32 Signal/Noise (SNR) 37 Wavelength range / image frame: 8761 Å SIR Calculations 34 Throughput efficiency Stok scarpound(G): 4,095-04 photons/cm2/s 35 Other Results * Throughput efficiency Ski background(G): 4,095-04 photons/cm2/s 36 Angle of diffraction (B): -40,78 Transmission efficiency -Litrow mirror: 1 Useful signal (Mm): 8856 e-/pkel 37 Angle of diffraction (B): -40,78 Transmission efficiency-Colimator lens (To): 0,92 Background noise (N): 131 e-/pkel 38 Angle of diffraction (B): -40,78 Transmission efficiency-Colimator lens (To): 0,92 Background noise (N): 237 e-/pkel 39 diffraction imt grating, FW	25	Resolving power R	382				Dispersion (p) :	2,05	A/ pixel	SNR				
Vavelength range 8761 Å Spectral resolution (A): 13,62 Å Limiting Mag 29 Grating-Diffraction order 1 Dispersion (r): 39,4 Imm/mm 30 Sitt width 25 microns Reference wavelength (J0): 5200 Å EOS 450D: 185,19 px/mm 31 Target Mag. 2.0 Lambda min. (J1): 820 Å EOS 450D: 185,19 px/mm 32 Signal/Noise (SNR) 37 Wavelength range/ image frame: 8761 Å 36 Other Results * Throughput efficiency SNR Calculations 36 Angle of incidence (x): 49,22 * Transmission efficiency guide system: 1 37 Angle of incidence (x): 49,22 * Transmission efficiency Guimator Instructions (R): 0,12 38 Anage of incidence (x): 49,22 * Transmission efficiencyColimator Instructions (R): 1,322 39 diffraction (M): :0.66 microns Transmission efficiency-Colimator Instructions (R): 0,12 39 diffraction inst grating, FWHMd : 5,38 microns Transmission efficiency-Colimator Instructions (R): 0,22 39 diffraction (M): :34,52 Transmission efficiency-Colimator Instructions (R): 0,36 39 diffr	26	Spectral resolution	13,62	A			Resolving power (R) :	382		Signal/Noise (SNR):	37			
28 Grating-Lines/ mm 200 Dispersion (r): 39.4 Limiting Mag.(Bowen-mod): 15.36 30 Grating-Lines/ infraction order 1 Wavelength Range 1	27	Wavelength range	8761	Å			Spectral resolution (Δλ):	13,62	Å	Limiting Mag				
Understand Wavelength Range Example 31 Sitt with 25 microns Reference wavelength (J0): 5200 Å EOS 4500: 185, 19 px/mm 31 Target Mag. 12,0 Lambda min. (A1): 820 Å EOS 4500: 185, 19 px/mm 32 Signal/Noise (SIIR) 37 Wavelength range/ image frame: 3761 Å SIR Calculations 34 Wavelength range/ image frame: 3761 Å SIR Calculations 1, 638-02 36 Other Results * Throughput efficiency Six background(Ci): 1, 638-02 37 Angle of Incidence (a): 49.22 * Transmission efficiency- guide system: 1 38 Angle of Incidence (a): 49.22 * Transmission efficiency- Guimator lens (To): 0,92 39 diffraction limit grating, FWHMd : 5,38 microns Transmission efficiency-Colimator lens (To): 0,92 39 diffraction limit grating, FWHMd : 5,38 microns Transmission efficiency-Guide system: 1 41 Entrance sit transmission of ficiency-Guide system: 0,82 Background noise (Nis):	28	Grating-Lines/ mm	200				Dispersion (r) :	39,4	nm/mm	Limiting Mag.(Bowen-mod):	15,36			
30 Sitt width 25 microns Reference wavelength (/0): 5200 Å EOS 450D: 185, 19 px/mm 31 Target Mag. 12, 00 Lambda mix. (1): 82:00 Å EOS 450D: 185, 19 px/mm 32 Signal/Noise (SNR) 37 Lambda max. (2): 9580 Å Market Mag. 1 Final Efficiency 33 Other Results * Throughput efficiency Sint Calculations Mumber of photons (E): 1,63E-02 36 Other Results * Throughput efficiency Sity background(Ed): 4,09E-04 photons/cm2/s. 37 Angle of incidence (x): 49.22 * Transmission efficiency-due writer: 1 Final Efficiency (8): 0.12 % 38 Anamorphic factor (1): 0.86 microns Transmission efficiency-Camera lens (Tc): 0,92 Background noise (Ns): 131 efficiency (1): 39 diffraction limit grating, FWHM: 5.38 microns Transmission of ficiency-Camera lens (Tc): 0,92 Noise from Electronics : 237 e- 40 Silvi mage width on CCD, FWHMI: 34.52 Teatsmission of Spectrograph (Ts): 0,71 Noise from Electronics : 216 e-/pixe	29	Grating-Diffraction order	• 1				Wavelength Range							
31 Target Mag. 12,0 25 Signal/Noise (SNR) 37 32 Signal/Noise (SNR) 37 34 Wavelength range/ image frame: 8761 Å 34 Number of photons (E): 1,638-02 36 Other Results * 37 Angle of incidence (x): 49.22 * 38 Angle of diffraction (B): -40,78 39 Transmission efficiency-ultrow mirror: 1 38 Anamorphic factor (r): 0,68 39 diffraction imit grating, FWHMd : 5,38 41 Fransmission efficiency-Colimator lens (To) : 0,92 42 Transmission efficiency-Colimator lens (To) : 0,92 43 Transmission efficiency-Colimator lens (To) : 0,92 44 Transmission efficiency-Colimator lens (To) : 0,92 44 Transmission efficiency-Colimator lens (To) : 0,92 45 Total Transmission of Spectrogra	30	Slit width	25	microns			Reference wavelength (\lambda 0) :	5200	Å	EOS 450D: 185,19 px/mm				
22 Signal/Noise (SNR) 37 33 Characterization 9500 Å 34 Wavelength range/ image frame: 8761 Å 35 Other Results * 36 Angle of incidence (x): 49.22 * 37 Angle of incidence (x): 49.22 * 38 Angle of incidence (x): 49.22 * 39 Transmission efficiency- guide system: 1 38 Anamorphic factor (r): 0.66 39 diffraction [kh]: -40.78 37 Angle of incidence (x): 49.22 * 38 Anamorphic factor (r): 0.66 39 diffraction [kh]: -40.78 39 diffraction [kh]: -40.78 30 Transmission efficiency-Colimator lens (To): 0.52 30 Background noise (kh3): 131 31 Transmission efficiency-Grating (Tg): 0.62 32 Transmission of ficency-Grating (Tg): 0.62 31 Transmission of Spectrograph (Ts): 0.61 32 Total Transmission of Spectrograph (Ts): 0.36 33 Total T	31	Target Mag.	12,0				Lambda min. (λ1):	820	Å					
33 Wavelength range/ image frame: 8761 A SNR Calculations 34	32	Signal/Noise (SNR)	37				Lambda max. (\.2) :	9580	Å					
34 Number of photons (E): 1,83:-02 photons/cm2/s 35 Other Results * Throughput efficiency 36 Angle of incidence (a): 49,22 * 37 Angle of diffraction (B): -40,78 Transmission efficiency- guide system: 1 38 Anamorphic factor (r): 0.86 microns Transmission efficiency-follmator lens (To): 0.92 39 diffraction (Imt grating, FWHMd : 5,38 microns Transmission efficiency-Collmator lens (To): 0.92 39 diffraction (Imt grating, FWHMd : 5,38 microns Transmission efficiency-Collmator lens (To): 0.92 41 SignalWoles by Interval A): 96 e-/pixel 42 Total Transmission of Spectrograph (Ts): 0.36 43 Cotal Transmission of Spectrograph (Ts): 0.36 44 44 45 46	33						Wavelength range/ image frame:	8761	Å	SNR Calculations				
35 Other Results * Throughput efficiency Sky background(Ed): 4,09E-04 [photons/cm2/s 36 Angle of Incidence (a): 49.22 * Transmission efficiency- guide system: 1 Final Efficiency (R): 0,12 % 37 Angle of Incidence (a): 49.22 * Transmission efficiency-cutrow mirror: 1 Useful signal (Nm): 8856 e-/pixel 38 Anage of Indication (B): 40.76 Transmission efficiency-Cutrow mirror: 1 Useful signal (Nm): 8856 e-/pixel 39 diffraction limit grating, FWHMI: 5,38 microns Transmission efficiency-Camera lens (Tc): 0,92 Background noise (Ns): 131 e-/pixel 40 Sit/ image width on CCD, FWHMI: 34.52 Transmission efficiency-Camera lens (Tc): 0,92 Noise(c): 237 e- 42 Total Transmission of Spectrograph (Ts): 0,71 Noise from Signal : 95 - 43 Total Transmission of Spectrograph (Ts): 0,36 Noise from Electronics: 216 e-/pixel 44 FWISION: Hold advance dat Hold advance dat Hold advance dat - 48 Hold advance dat	34									Number of photons (E) :	1,63E-02	photons/cm	12/s/Å	
36 Angle of incidence (a): 49.22 * Transmission efficiency-guide system: 1 Final Efficiency (R): 0.12 % 37 Angle of diffraction (b): -40,78 Transmission efficiency-Litrow mirror: 1 Useful signal (Nm): 8856 e-/pkel 38 Anamorphic factor (r): 0.86 microns Transmission efficiency-Colimator lens (To): 0,92 Background noise (Ns): 131 e-/pkel 39 diffraction imit grating, FWHMd : 5,38 microns Transmission efficiency-Colimator lens (To): 0,92 Background noise (Ns): 131 e-/pkel 41 SB/ image width on CCD, FWHM : 34,52 Transmission efficiency-Garate lens (To): 0,62 Noise(o): 227 e- 42 Total Transmission of Spectrograph (Ts): 0,71 Noise from Signal : 95 43 Total Transmission of Spectrograph (Ts): 0,36 Noise from Electronics: 216 45 Entrance Hold space metric Hold space metric Hold space metric Hold space metric 46 EVISION: Hold space metric Hold space metric Hold space metric Hold space metric	35	Other Results			•		Throughput efficiency			Sky background(Ed) :	4,09E-04	photons/cm	2/s/Å/ ar	c sec
37 Angle of diffraction (β): -40,78 Transmission efficiency -Littrow mirror: 1 Useful signal (Nm): 8856 e-/pkel 38 Anamorphic factor (r): 0,88 microns Transmission efficiency-Clittrow mirror: 1 Useful signal (Nm): 8856 e-/pkel 39 diffraction imit grains, FWHMB: 3,38 microns Transmission efficiency-Camera lens (Tc): 0,92 Background noise (Ns): 131 e-/pkel 40 Sil/ image width on CCD, FWHMI: 34,52 Transmission efficiency-Grating (Tg): 0,6 Signal/Noise by interval Δλ: 96 e-/pixel 41 Entrance silt transmission of Spectrograph (Ts): 0,36 Noise from Signal : 95 e-/pixel 42 Total Transmission of Spectrograph (Ts): 0,36 Noise from Electronics: 216 e-/pixel 43 Etransmission of Spectrograph (Ts): 0,36 Noise from Electronics: 216 e-/pixel 44 Etransmission of Spectrograph (Ts): 0,36 Noise from Electronics: 216 e-/pixel 46 EVISION: Evision Entrance sit Entransmission Entransmission Entransmission	36	Angle of inciden	ice (a) :	49,22	•		Transmission efficiency- guide system:	1		Final Efficiency (R) :	0,12	%		
38 Anamorphic factor (r): 0.86 microns Transmission efficiency-Colmera lens (To): 0.92 Background noise (Ns): 131 le-/pkel 39 diffraction limit grating, FWHMd : 5.38 microns Transmission efficiency-Camera lens (Tc): 0.92 Noise(o): 237 le- 41 Signal/Noise by interval Δλ : 96 e-/pixel Transmission efficiency-Camera lens (Tc): 0.71 Noise from Signal : 96 e-/pixel 42 Total Transmission of Spectrograph (Ts): 0.36 Noise from Electronics: 216 e-/pixel 43 Table Total Transmission of Spectrograph (Ts): 0.36 Noise from Electronics: 216 e-/pixel 45 Table Table Table Table Table 100 feb/pixel	37	Angle of diffracti	ion (β) :	-40,78			Transmission efficiency -Littrow mirror:	1		Useful signal (Nm) :	8856	e-/pixel		
39 diffraction limit grating, FWHMd : 5,38 5,38 microns Transmission efficiency-Camera laws (Tc) : 0.52 Noise(o) : 227 [e- 40 Sil/ image width on CCD, FWHMt : 34,52 Transmission efficiency-Grating (Tg) : 0.5 Signal/Noise by interval Δλ : 96 [e-/pixel] 41 Entransmission of Spectrograph (Ts) : 0.56 Noise from Signal : 95 [e-/pixel] 43 Total Transmission of Spectrograph (Ts) : 0.36 Noise from Electronics : 216 [e-/pixel] 44 Entransmission of Spectrograph (Ts) : 0.36 Noise from Electronics : 216 [e-/pixel] 45 Entransmission of Spectrograph (Ts) : 0.36 Noise from Electronics : 0.36	38	Anamorphic fac	ctor (r) :	0,86	microns		Transmission efficiency-Collimator lens (To) :	0,92		Background noise (Ns) :	131	e-/pixel		
40 Sit/ image width on CCD, FWHMt : 34,52 Transmission efficiency-Grating (Tg) : 0.6 Signal/Noise by interval Δλ.: 96 (e-/pixel) 41 Entrance sit transmission(Tf): 0,71 Noise from Signal : 95 42 Total Transmission of Spectrograph (Ts) : 0,36 Noise from Electronics : 216 43 Filter State	39	diffraction limit grating, FI	WHMd :	5,38	microns		Transmission efficiency-Camera lens (Tc) :	0,92		Noise(o) :	237	e-		
41 Entrance sit transmission(Tf): 0,71 Noise from Signal : 95 42 Total Transmission of Spectrograph (Ts): 0,36 Noise from Electronics : 216 43 44 44 44 44 44 44 45 46 46 46 46	40	Slit/ image width on CCD, F	WHMt :	34,52			Transmission efficiency-Grating (Tg) :	0,6		Signal/Noise by interval Δλ:	96	e-/pixel		
42 Total Transmission of Spectrograph (Ts): 0,36 Noise from Electronics: 216 e-/pixel 43 44 45 46 46 46 46 46	41						Entrance slit transmission(Tf):	0,71		Noise from Signal :	95	-		
43 44 45 46 REVISION:	42						Total Transmission of Spectrograph (Ts):	0,36		Noise from Electronics :	216	e-/pixel		
44 45 46 REVISION:	43													
45 6 REVISION:	44													
46 REVISION:	45													
17 VAR And 10040 How book Added Bate Book Hended and the	46	REVISION:												
47 V4.0 - April 2012 New layout. Added Data Page. Updated comments	47	V4.0 - April 2012	New la	ayout. Ad	dded Data I	Page.	Updated comments							
48 V3.3a -Jan 2012 Collimator focal ratio set to match telescope. Camera focal ratio no longer an input.	48	V3.3a -Jan 2012	Jan 2012 Collimator focal ratio set to match telescope. Camera focal ratio no longer an input.											
49 V3.3 -May 2011 Corrections to the equation for FWHMt (incorrectly calculated for sitestar)	49	V3.3 -May 2011	May 2011 Corrections to the equation for FWHMt (incorrectly calculated for slit <star)< td=""><td></td><td></td><td></td><td></td><td></td><td></td></star)<>											
50 V3.2c-Oct 2010 -Sitt width now in micron	50	V3.2c-Oct 2010	Oct 2010 -Sit width now in micron											
51 V3.2b -July 2010 Transmission efficiencies added for guider and Littrow mirror	51	V3.2b -July 2010	2b -July 2010 Transmission efficiencies added for guider and Littrow mirror											
52 V3.2a -April 2010 - Fixed slit width v's star size for resolution calculation. Based on CAOS data.	52	52 V3.2a -April 2010 - Fixed slit width v's star size for resolution calculation. Based on CAOS data.												
53 -SNRcalculations amended to follow CAOS formulae	53	-SNRcalculations amended to follow CAOS formulae												
54 -Bowen magnitude now based on spectrum width and units corrected.	54													

http://www.astrosurf.com/buil/us/compute/SimSpec_V4_o.xls

Energy saving lamp ORMALIGHT 9W - DADOS with 200 lines/mm grating

- ist Order m = 1 is most efficient. Can be used for stellar spectroscopy from 3500 Å to about 10,000 Å with an ultraviolet and infrared sensitive CCD camera.
- In that case be careful: 1st order in the infrared beyond 8500 Å overlaps the 2nd order! You may check this by taking the sun's spectrum (daylight spectrum) with your camera. A DSLR camera modified with a Baader UV/IR cut filter is only sensitive between roughly 4000 Å and 7000 Å.
- Higher Orders than the first can be used for spectroscopy only in a smaller wavelength range. But the higher spectral resolution is bought dearly due to low efficiency. A grating with 900 lines/mm or 1200 lines/mm is recommended to achieve higher spectral resolution.

Spectrum of Energy Saving Lamp (ESL) ORMALIGHT 9W

Weblink to article on fluorescent substances (2003): http://www.electrochem.org/dl/interface/sum/sum03/IF6-03-Pages48-51.pdf

Stacking/calibration of stellar spectra

Stacking & calibration of spectra obtained with a DSLR camera

- + If you already have a DSLR camera, please practice with it by recording a daylight spectrum (= solar spectrum, G2V)
- + Cheaper than any CCD camera with a similar "big" sensor (APS-C)
- + Easier handling than a CCD camera
- + LiveView mode for easy focusing at a bright light source, e.g. ESL
- + You can easily find your way through the spectrum (red/blue)
- + Easy identification of spectral features due to color
- + Autodark improves SNR at the cost of exposure time
- Low signal-to-noise ratio images
- Low sensitivity at less than 4000Å means the Ca II lines are barely visible
- Non-modified DSLRs have low sensitivity above 6000Å

Stacking & calibration of spectra obtained with a cooled b&w CCD camera

- + Sensitive from about 3500Å ("Balmer Jump" at 3646Å) to about 10000Å (IR)
- + High signal-to-noise ratio images
- + Separate dark frames useful (dark frame library)
- + No need for a color camera: Synthetic color spectra can be created with Vspec
- Difficult to handle for beginners in astrophotography and astrospectroscopy

Stacking/calibration of stellar spectra from a Canon DSLR camera

http://www.baader-planetarium.de/sektion/s45/canon_astroupgrade-english.htm

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Stacking/calibration of stellar spectra from a Canon DSLR camera

Exercise 1: α Orionis (Betelgeuse)

Date 2010-12-15 Pentax 75 SDHF / 500mm Canon EOS 450D (Baader BCF-Filter) ISO 800 Spectrograph: DADOS Grating: 200 l/mm Spectral resolution: 12 Å @5500 Å Scale: 2.1 Å/Pixel Betelgeuse: Spectral Class M2Iab Apparent magnitude: 0.7 mag Set of 11 spectra, each 8 s exposed Darkframes: not used Flatflields: not used

Images: .../Betelgeuse_200L_2010-12-15/

Stacking/calibration of stellar spectra from a Canon DSLR camera

 α Orionis (Betelgeuse), M2Iab

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 1: Image Browser - Check the quality of spectral images

Step 2: Fitswork - Download and check settings

Step 3: Fitswork – The stacking process: Create an averaged color spectrum

Step 4: Fitswork – Rotate, crop, convert to monochrome spectrum & save

Step 5: Visual Spec (VSpec) – Spectrum calibration (w/o instrumental response)

Step 6: Visual Spec (VSpec) - Visualize Profile as synthetic (color) profile

Step 7: VisualSpec (VSpec) – Spectrum calibration by instrumental response and calculation of the effective temperature of Betelgeuse from its spectrum

Step 8: Visual Spec (VSpec) - Visualize profile as a synthetic (color) profile

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 1: Check the quality of spectral images in an image browser Dataset: .../Betelgeuse_200L_2010-12-15/**1_Spectra_JPG**/

→ Note the image numbers of the perfectly imaged spectra with regard to exposure time and sharpness of spectral features. Ignore imperfect spectra!

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 2: Spectrum stacking with Fitswork

- Download Fitswork at http://www.fitswork.de/software/softw_en.php
- Start Fitswork

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 2: Spectrum stacking with Fitswork → Settings

Settings 🛛 🔀	Settings 🔀
Load Save Math Image display Various Sys ✓ Show Image Preview □ Convert Color Images to YUV after Loading ✓ Loading and Saving FITS Files: Flip Image Camera Raw: ✓ Debayer Raw Images □ Dont RGB Scale not Debayered Raw Images □ Keep Raw Highlights	Load Save Math Image display Various Sys Save FITS Files as: Extention of FITS Files: 32 bit Floating Point • *.Fit 32 bit Integer • *.Fit • 16 bit Integer • *.Fts JPEG Quality: 100 (Ctrl + J) PNG Lossless Compression: 9 09 (Higher -> Better Compression, Slower) Scale TIFF Images Automatic
Settings Image display Various Sys General Interpolation Method Image Division Method NoHalo Neuronal (slow) Lanczos3 Image Division and Multiplication Scale Result (standard) Scale PSF Images Automatic Hotpixel Removement in Image Subtraction: Sigma 4.0 Network Initialization: Random 1.0 Automatic 2D FFT Interference Filter: Sigma 2.0 2D FFT outer Border for reducing Artefacts: 8	Settings Image display Various Sys Load Save Math Image display Various Sys Automatic Histogram Scaling Black: 1 % White: 99.99 % from Histogram Set Blacklevel always to 0 Image display Adjust Gamma on Images with more than 8 Bit

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 3: Fitswork – The stacking process: Create an averaged color spectrum Dataset: .../Betelgeuse_200L_2010-12-15/2_**Spectra_raw_images_CR**2

File \rightarrow Batch Processing

₹ s F	itswork				
File	Processing	Image Combining	Settings	Window	Help
0	Open				
0	Close				
5	Save as				
	mport				
ŧ	Batch Process	ing			
	4asterdark/ f	at Combining			
ا %	F Image Regi	stration			
N 1	Make User Ra	w Format			
1	ast Processin.	gs			
E	Exit Program				

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 3: Fitswork – The stacking process: Create an averaged color spectrum Dataset: .../Betelgeuse_200L_2010-12-15/2_Spectra_raw_images_CR2

1. Step of Processing [sic]

1. Step of Processing

D

- File → Select first raw image file
 All files in folder
- 3. Press right arrow button to proceed

1. SPECIFY FILES Start File Destination File	Specify Files	Öffnen 🛛 🔀 Suchen in: 🔁 2_Spektra_raw_images_CR2 🔍 🔶 🖆 📸 📰 •
All Files in Folder	Start File Destination File 2 3 0 V All Files in Folder Skip absent Files from Series	Suchen in: 2.Spektra_raw_images_CR2
	Start <u>C</u> ancel	Dateityp: All Formats Abbrechen

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 3: Fitswork – The stacking process: Create an averaged color spectrum Dataset: .../Betelgeuse_200L_2010-12-15/2_**Spectra_raw_images_CR2**

- 2. Step of Processing [sic] \rightarrow Add to destination image \rightarrow Planet/Moon
- \rightarrow Crosscorrelation \rightarrow Number of Marks \rightarrow Function: Mid. (means average)
- \rightarrow Press start button

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 3: Fitswork – The stacking process: Create an averaged color spectrum

Dataset: .../Betelgeuse_200L_2010-12-15/2_Spectra_raw_images_CR2

- 1. Draw a tight yellow frame around the first spectrum
- 2. Skip bad images which are not properly focused or exposed
- 3. Load the next frame ("Ok, go on")
- 4. Check if the area is marked (yellow frame is still in place)
- 5. Go through all images with or without controlling image quality
- 6. The final image, the stacked spectrum, will be saved after a while as "Result_image.fit"
- 7. Create a new folder "3_Results" and save copy of "Result_image.fit"
- 8. "3_Results" is your new working directory

Please note!

The quality of the final spectrum depends on recognizing spectral lines in each single image. Spectra with short exposure times, and consequently low contrast, may not stack properly.

Please mark an Area and	<u>O</u> k, go on	Add to Des	tination	Image
click afterwards on "Uk, go on"!	<u>Skip Image</u>	w_images_CR2	'\Betelgeus	e_01.CR2
No more Controlling	<u>C</u> ancel		Pause	<u>C</u> ancel

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 4: Fitswork - Rotate and save again as "Result_image.fit"

Rotate "Result_image.fit" to achieve a perfectly leveled spectrum Processing \rightarrow Image Geometry \rightarrow Rotate image with Subsidiary Line

Stacking/calibration of stellar spectra from a Canon DSLR camera

- Please mark a line exactly along the spectrum with the left mouse button
- then \rightarrow Ok \rightarrow Whole Image

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 4: Fit	swork –	Crop &	save
-------------	---------	--------	------

- \rightarrow Draw a yellow frame around the spectrum
- → Cut off → Save as "**Result_image_color_16bit.fit**"

Result_image_colour_16bit.fit
FITS
16 bit Integer

Fitswork	
File Processing Image Combining Settings Unndow help	
C:\Dokumente und Einstellungen\astrofoto\Desktop\Betelgeuse_200L_2010-12-15\2_Spektra_raw_images_CR2\Result_image.fit	

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 4: Fitswork – Convert to black & white image and save

Processing \rightarrow Color image to b/w (luminance)

Save as → "Result_image_mono_16bit"

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

• |

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: VisualSpec (VSpec) – Spectrum calibration

- VSpec Software Download: <u>http://valerie.desnoux.free.fr/</u>
- Please note: VisualSpec accepts monochrome 16 bit files only

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: VisualSpec (VSpec) – Spectrum calibration without correction for the instrumental profile

Betelgeuse: Result_image_mono_16bit

Step 5: VisualSpec (VSpec) - Preferences

5.1 Open VSpec

5.2 Options \rightarrow Preferences \rightarrow Working directory "<u>3_Results</u>" Image \rightarrow .fits and Profile \rightarrow .spc

BeSS (2)	
Continuum	
B s (*.fit) ic (*.pic) c (*.spc) ts (*.fit)	

5.3 File → Open image: "**Result_image_mono_16bit.fit**"

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: VisualSpec (VSpec) – Create a spectrum profile

5.4 Profile extraction \rightarrow All set to "Auto" \rightarrow OK \rightarrow Close

Infos...

Reset

b1: 265.11 b2: 264.83

angle: -0.01 *

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: VisualSpec (VSpec) – Save the spectrum profile

5.5 Press 🔲 to display pixel positions and intensity

The result is a spectrum profile with (x,y) = (pixel positions, intensity). "Tilt": Spectrum is not perfectly leveled (angle -0.01°), so the spectral lines are not perfectly perpendicular. This has no measurable effect on the calibration.

5.6 Save "Result_image_16bit.spc"

Due to a different stacking procedure and color conversion, the spectrum intensities on the following pages differ somehow. This has no effect on the final profile as it is being calibrated (continuum removed or instrumental profile used).

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Identification of spectral features

5.7 Print the raw profile and note the wavelengths of precisely known spectral lines of a star of similar class

Suggested reference: Spectroscopic Atlas for Amateur Astronomers, by Swiss amateur astronomer Richard Walker http://www.ursusmajor.ch/downloads/spectroscopic-atlas-4.o.pdf

Stacking/calibration of stellar spectra from a Canon DSLR camera

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Continuum extraction from the raw profile

5.10 Compute continuum

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Continuum extraction from the raw profile

5.11 Press "point/courbe[sic]": set 20 to 50 points (actually green crosses) along the continuum (upper limit)

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Continuum extraction from the raw profile

5.12 Press "Execute". The resulting continuum is the orange-red line

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Continuum extraction from the raw profile

5.13 Edit \rightarrow Replace \rightarrow Intensity

Stacking/calibration of stellar spectra from a Canon DSLR camera Step 5: Visual Spec (VSpec) – Continuum extraction from the raw profile

5.14 Save as \rightarrow Continuum.spc

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Continuum division

5.15 File \rightarrow Open profile \rightarrow Continuum.spc and "Result_image_wavecal.spc" 5.16 Highlight the window "Result_image_wavecal.spc"

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Continuum division

5.17 Operations \rightarrow Divide profile by profile \rightarrow Click on: continuum.spc \rightarrow intensity

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – Continuum division

5.18 The "green profile" is the result of division. Now, prepare to save the result:

planetarium

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – The normalized profile of Betelgeuse

5.19 Edit \rightarrow Replace \rightarrow Intensity 5.20 Save as \rightarrow "Result_image_wavecal_normalized.spc"

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – The normalized profile of Betelgeuse

5.21 Indicate middle area with left mouse button to become "1" in intensity 5.22 Press button "Normalize"

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 5: Visual Spec (VSpec) – The normalized profile of Betelgeuse

5.23 Result: Wavelength calibrated and intensity normalized profile of Betelgeuse 5.24 Save as "Result_image_wavecal_normalized to 1.spc"

Stacking/calibration of stellar spectra from a Canon DSLR camera Step 5: Visual Spec (VSpec): Calibration summary

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 6: Visual Spec (VSpec) - Visualize profile as synthetic profile

6.1 Tools → Synthese[sic]: Creates a synthetic black & white spectrum

Step 6: Visual Spec (VSpec) - Visualize profile as synthetic profile

6.2 Synthese[sic] \rightarrow Colorer[sic]: creates a colored synthetic spectrum

Stacking/calibration of stellar spectra from a Canon DSLR camera

Comparison of spectral resolution of Betelgeuse spectra: DADOS 200 lines/mm and 900 lines/mm

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) - Spectrum calibration by removing the instrumental profile

Betelgeuse: Result_Image_mono_16bit

planelarium

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

7.1 File → Open profile → "Result_image_wavecal.spc"

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

7.2 Assistant \rightarrow Instrumental response [sic] assistant 7.3 Pickles \rightarrow Press on green arrow button \rightarrow Open "m2i.dat" (= Class M2I)

	Öffnen					? 🗙
Instrumental response assistant	Suchen in:	🗀 LibSpec		•	+ 🗈 💣 🎟 -	
age_result_wavecal.spc (optional) Spectral type Search spectral type on SIMBAD Select reference spectrum Pickles C UVES C Milles	Zuletzt verwendete D Desktop	g0iii.dat g0iv.dat g0v.dat g2i.dat g2iv.dat g2v.dat g2v.dat g2i.dat	g8iv.dat g8v.dat k0ii.dat k0iv.dat k0v.dat k0v.dat k01ii.dat k1ii.dat	國 k3iv.dat 國 k3v.dat 國 k4i.dat 國 k4ii.dat 國 k4v.dat 國 k5iii.dat 國 k5v.dat	m2i.dat m2i.dat m2i.dat m2i.dat m2v.dat m3ii.dat m3ii.dat m3ii.dat m3v.dat	m7ii.dat m8ii.dat m9ii.dat mm10ii.d rf6v.dat rf8v.dat rf8v.dat
C Elodie C Milles 2	Eigene Dateien	g5ii.dat g5ii.dat g5iv.dat g5v.dat g8i.dat g8i.dat g8ii.dat	k liv.dat k 2i.dat k 2ii.dat k 2v.dat k 3i.dat k 3ii.dat	k7v.dat k34ii.dat m0iii.dat m0v.dat m1ii.dat m1ii.dat	m4iii.dat m4v.dat m5iii.dat m5v.dat m6iii.dat m6iii.dat	rg5iii.dat rg5v.dat rk0iii.dat rk0v.dat rk1iii.dat rk2iii.dat
Division and extraction	Arbeitsplatz	<				>
Save Save response in file:	Netzwerkumgeb ung	Dateiname: Dateityp:	m2i.dat dat (*.dat) Schreibgesc	chützt öffnen	•	Öffnen Abbrechen
Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

The red profile is the reference spectrum of a star of similar spectral class

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

7.4 Press green arrow button "Division and extraction" Result: The orange profile is the (unsmoothed) instrumental profile

• Visual Spec	E
ile Edit Format Operations Spectrometry Radiometry Tools Assistant Window Options ?	
Ħ k H ■ □ x;l 1503; 7536.94 I [8226.58] -\/2.1532 (Å/pixel)	
× ★ 柔 <u>本</u> <u>本</u>	
amage_result_wavecal.spc	
-736380	
-675015	
613650	📮 Instrumental response assistant 🛛 🗙
	image result unused and
	inage_resuit_wavecal.spc
-552285	(optional) Spectral type
	Search spectral type on SIMBAD
ALTING VIENDER AND A	
490920 WV V V V V V V V V V V V V V V V V V V	Select reference spectrum
	📀 Pickles 🔿 UVES 🤇 Milles 🛛 🚳
w l Ward al	C Elodie C Milles 2
429555	
	(optional shift
	Wavelength shift
368190	Deserves
	Response
	Division and extraction
306825	
	Save
245460 I A A I A A A A A A A A A A A A A A A	Save response in file:
	reponse
184095	V M
	M _m
	• • •
HW has	λA
	h h
4570 4840 5110 5380 5650 5920 6190	6460 6730 7000 7270

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) - Spectrum calibration by removing the instrumental profile

7.5 Smooth the instrumental profile. Press button "point/curve" 🖉 🗶 🛶 🛃 and set about 60 "green crosses" along the continuum

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) - Spectrum calibration by removing the instrumental profile

🗸 intensity

💌 🤣 🗖 blue

7.7 Erase graphic \rightarrow Edit \rightarrow Replace: Intensity 7.8 File \rightarrow Save as \rightarrow "response.spc"

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

7.9 While "response.spc" is still open:
File → open profile → "Result_image_wavecal.spc" (please highlight)
7.10 Operations → Divide profile by profile: Select "intensity" (below response.spc)

planelarium

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

Result: The green profile is the calibrated, true spectrum profile of Betelgeuse, corrected for instrumental profile

7.11 Close "response.spc"

planedarium

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

The green profile must be converted to a blue profile, before it can be saved 7.12 Erase graphic \rightarrow Edit \rightarrow Replace: Intensity

7.13 File \rightarrow Save as \rightarrow "Betelgeuse_final_spectrum.spc"

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

7.14 Use left mouse button and select area around 5500Å

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Spectrum calibration by removing the instrumental profile

7.15 Normalize to 1: Press button "1" <u>▲</u>
7.16 File → Save as → "Betelgeuse_final_spectrum.spc"

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Using the spectrum to estimate temperature

7.17 Calculation of the effective temperature of Betelgeuse from its spectrum We assume thermal radiation of a black body according to Planck's Law.

Radiometry \rightarrow Auto Planck (black line)

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 7: Visual Spec (VSpec) – Using the spectrum to estimate temperature

7.18 Wien's law

$$\lambda_{max} \approx \frac{29000 \cdot 10^3 \text{\AA} \cdot K}{T_{eff}}$$

 λ_{max} : Wavelength of the maximum of the assumed black body emission T_{eff} : Effective Temperature [K]

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 8: Visual Spec (VSpec) - Visualize profile as synthetic profile

8.1 Synthese [sic] \rightarrow Creates a synthetic black & white spectrum

Stacking/calibration of stellar spectra from a Canon DSLR camera

Step 8: Visual Spec (VSpec) - Visualize profile as synthetic profile

8.2 Synthese [sic] \rightarrow Colorer [sic] \rightarrow Creates a synthetic color spectrum for presentation

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

The solar spectrum

DADOS 900 lines/mm and ALccd 5.2 CCD camera. Paper by students Tom Schnee and Johannes Schnepp (CFG Wuppertal, 2012)

Calibration of spectra with a Ne/Xe plasma tube from Conrad Electronic

Calibration of spectra with a Ne/Xe plasma tube from Conrad Electronic

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Calibration of spectra with a Ne/Xe plasma tube from Conrad Electronic

Calibration of spectra with a Ne/Xe plasma tube from Conrad Electronic

Nova Delphini 2013: Discovery August 14.8174 UT

http://en.wikipedia.org/wiki/Nova_Delphini_2013

PNV J20233073+2046041 (or Nova Delphini 2013) is a bright nova star in the constellation Delphinus. It was discovered on 14 August 2013 by amateur astronomer Koichi Itagaki in Japan, and confirmed by the Liverpool Telescope on La Palma. The nova appeared with a magnitude 6.8 when it was discovered and peaked at magnitude 4.3 on 16 August.^[1]

Nova

From Wikipedia, the free encyclopedia

For other uses, see Nova (disambiguation) and Novas (disambiguation).

A nova (plural *novae* or *novas*) is a cataclysmic nuclear explosion in a white dwarf, which causes a sudden brightening of the star. Novae are not to be confused with other brightening phenomena such as supernovae or luminous red novae. A nova is caused by the accretion of hydrogen on to the surface of the star, which ignites and starts nuclear fusion in a runaway manner. Novae are thought to occur on the surface of a white dwarf in a binary system. If the two stars are close enough, material can be pulled from the companion star's surface onto the white dwarf.

Nova Delphini 2013: August 16, 2013

2013-08-16 | 23.22 UT – 23.55 UT | mid Exposure August 16.985 UT | 0.3m aperture, f/7.8 f=2340mm | SBIG ST-8300M | Baader RGB Filter | Nova maximum: Aug. 16.45 @ V=4.3 mag Image & Processing: Bernd Koch, Sorth/Germany

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Nova Delphini 2013: 2013-09-05.9 UT

Spectrum: DADOS 200 lines/mm & SBIG ST-8300M CCD camera | 0.3m Telescope

Nova Delphini 2013: 2013-09-05.9 UT Calibration with a Ne/Xe plasma tube from Conrad Electronic

Spectrum: DADOS 200 lines/mm & SBIG ST-8300M CCD camera | 0.3m Telescope Ne/Xe plasma tube in front of the telescope, and spectrum superimposed <u>during</u> exposure. Note the changes in spectral resolution due to the different slit widths.

Calibration with a Ne/Xe plasma tube from Conrad Electronic

Kalibrierung mit Ne/Xe-Plasmaröhre [1] und NIST Atomic Spectra Database [2]

- [1] www.conrad.de/ce/de/product/591136/Magic-Plasma-Roehre-Lichteffekt? query From Suggest=true.
- [2] http://physics.nist.gov/PhysRefData/ASD/lines_form.html

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Bernd Koch 2013-09-16

2013-08-19 | 20.01 UT – 20.33 UT | Mid-exposure: August 19.84722 UT | DADOS 200 lines/mm Stacking: FITSWORK with 9 x 120s | Calibration: VisualSpec

The expansion velocity v_r of the nova's envelope is calculated by the P Cygni profile method, measured at H α :

$$v_r = \frac{\Delta\lambda}{\lambda_0} c_0 = 1005 \frac{km}{s}$$

$$\Delta \lambda = 22.0$$
Å, $\lambda_0 = 6562.82$ Å, $c_0 = 299792 \frac{km}{s}$

Ref.: www.ursusmajor.ch/downloads/analysis-andinterpretation-of-astronomical-sp.pdf

99

2013-08-19 | 20.01 UT – 20.33 UT | Mid-exposure: August 19.84722 UT | DADOS 200 lines/mm Stacking: FITSWORK with 9 x 120s | Calibration: VisualSpec

The expansion velocity v_r of the nova's envelope can also be calculated by the broadening of the emission lines, measured at H α :

$$v_r \approx \frac{FWHM}{\lambda_0} c_0 = 1220 \frac{km}{s}$$

FWHM = 26.7Å,
$$\lambda_0$$
 = 6562.82Å, c_0 = 299792 $\frac{km}{s}$

Ref.: www.ursusmajor.ch/downloads/analysis-andinterpretation-of-astronomical-sp.pdf

Nova Delphini 2013-08-19/23 & 2013-09-05 summary

All spectra taken with DADOS 200 lines/mm with 0.3m Telescope by Bernd Koch

Nova Delphini database: www.astrosurf.com/aras/novae/Nova2013Del.html

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Spectroscopy of Be star γ Cas

- Celestron 11 + DADOS 900 lines/mm + STF-8300M CCD camera
- Pentax 75 + 2x-Converter + DADOS 900 l/mm + STF-8300M CCD camera
- Spectrum recording & video camera guiding: MaxIm DL, Win XP/7 32-bit tested
- > Set γ Cas on the middle of the three slits (25 μ m) for highest resolution
- > The slit's length should be parallel to Deklination (δ) direction
- > Center spectrum on H α by turning the micrometer adjustment
- Keep exposure time well below the saturation level of the sensor (1s ... 60s)
- Guiding: Video camera Skyris 274M / TIS DMK 41 or else
- Number of images per spectrum: Minimum 20. Save in folder: "gamma Cas"
- Expose 20 darks of same exposure time and sensor temperature: Folder: "darks"
- Optional: Flat fields with auto darksubtraction. Folder: "flats"
- Dark/Flat calibration with MaxIm DL, stacking with FITSWORK
- > Spectrum calibration with Visual Spec (VSpec).

Spectroscopy of Be star γ Cas

Ha

- Pentax 75 + 2x-Converter + DADOS 900/200 lines/mm + EOS 450D (ISO 800)
- Spectrum recording & video camera guiding: MaxIm DL, Win XP/7 32-bit tested
- > The slit's length should be parallel to Deklination (δ) direction
- > Center spectrum on H α or H β by turning the micrometer adjustment
- Keep exposure time well below saturation of sensor (1s to about 6os)
- Guiding: Video camera Skyris 274M / TIS DMK 41 or else
- Number of images per spectrum: Minimum 20. Save in folder: "gamma Cas"
- Stacking with FITSWORK
- Spectrum calibration with Visual Spec (VSpec)

Hβ

Date: 2011-04-19.882 UT | C11 EdgeHD (0.28m aperture, f/10). DADOS 900 lines/mm grating. CCD camera Alccd 5.2 (QHY6). Single exposure: 1205. Average of 20 exposures. Darkframe subtraction, no flatfielding. Spectral resolution 2.3 Å at 6563Å. Calibration with VisualSpec (telluric H2O). FWHM=7.9Å, EW=-23.4Å (6520Å-6605Å), RV=-5.2 km/s. Spectrum obtained at a spectroscopy workshop at the College CFG Wuppertal/Germany. Calibration & results: Bernd Koch

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Date: 2014-03-10, mid-exposure 23.30 UT | 0.3m aperture, f/10. DADOS 1200 lines/mm grating. CCD camera SBIG ST-8300M, total exposure 3x300s with darkframe subtraction, without flatfielding. Spectral resolution about 1.49 Å. Calibration with Xenon/Neon plasma tube and VisualSpec software. Image processing & spectrum calibration: Bernd Koch

Date: 2014-03-10, JD 2456727.386 | Spectral resolution: 1.5Å | Radial velocity v=30.9 km/s EW=-3.9Å (6540Å-6590Å) | V/R=1.00 | by Bernd Koch and Ernst Pollmann

V3.5E © Bernd Koch | b.koch@baader-planetarium.de

Spectrum of Be star ζ Tau

Multi-epoch Near-Infrared Interferometry of the Spatially Resolved Disk Around the Be Star ζ Tau (Schaefer et al., http://arxiv.org/abs/1009.5425) V3.5E © Bernd Koch | b.koch@baader-planetarium.de 106

Credit: Gemini Observatory Illustration by Jon Lomberg

Spectrum of ζ Tau, spectral class Be

Spectroscopic binary star β Aur

Date: 2014-03-14.817 UT | 0.3m aperture f/10 | DADOS 1200 lines/mm grating | 120s exposure CCD camera SBIG ST-8300, 5.4 Micron Pixel | Spectral resolution 1.5Å | Calibration and creation of a synthetic colour spectrum with VisualSpec software| Image and calibration by Bernd Koch

Spectroscopic binary star β Aur

Line splitting $\Delta\lambda$ approximately 1.9Å in the covered spectral range due to Doppler shift caused by the stars' combined rotational velocity $v. \Delta\lambda/\lambda = v/c. c = 299792.5 km/s$, average: $v = 126.3 km/s \pm 6.2 km/s$

Project: Emission nebula M42

Stacking & full calibration of spectra taken by a STF-8300M CCD camera

In an upcoming release, the subject of stacking and full calibration of spectra obtained with a monochrome CCD camera will be described. Stay tuned

 α Lyr (Vega) – Spectral Class AoV

2013-10-22 | 17.40 UT | Exposure time 10s (with Autodark)| DADOS 200 lines/mm | SBIG STF-8300M | Student astronomical observatory at Carl-Fuhlrott College in Wuppertal/Germany | Credit: Thomas Schröfl

Stacking & full calibration of spectra taken by a STF-8300M CCD camera

In an upcoming release, the subject of stacking and full calibration of spectra obtained with a monochrome CCD camera will be described. Stay tuned

네셜 Visual Spec		
File Edit Format Operations Spectrometry Radiometry	y Tools Assistant Window Options ?	DADOS 200 lines/mm & SBIG ST-8300M (Bernd Koch)
😑 🙀 🕾 👰 🔚 🗆 x;1 🛛 2179 ; 8451.2	I 0.0 -√-2.1648 (Å/pixel)	5440.03 ; 6106.77 666.74
🖻 spcg&H 💽 🌍 💷 green 💽 🐺 🔐 💷 😾 🤽 🔍 🔍 🥰 😰 🖕 🗳 🖄 🖉 🔛 🛋 🍐 🖄 🔠 🚜 🏹 🌗		
🚰 atair 1x1 -20c 60-004 wavecal-pseudocontinuum-normiert.spc		
α Ac	μl (Altair) – Spectral C	Class A7V
4465 52	5995	6760 7525 8290
🛋 atair 1×1 -20c 60-004 wavecal-pseudocontinuum-normiert.spc: intensity		

2013-09-13 | 19.20 UT | Stack of 10 x 1s exposure time 10s (Autodark)| DADOS 200 lines/mm | SBIG ST-8300M Image and calibration: Bernd Koch

References & recommended reading

by Bernd Koch

DADOS Spectrograph's user manual

www.baader-planetarium.de/dados/download/dados manual english.pdf

Richard Walker's astronomical spectroscopy www.ursusmajor.ch/astrospektroskopie/richard-walkers-page/

- Spectroscopic Atlas 4.0 [11'487 KB]
- Practical Aspects of Astronomical Spectroscopy 2.0 [4'209 KB]
- Analysis and Interpretation of Astronomical Spectra 9.1 [5'330 KB]
- The Spectrum of Quasar 3c273 1.2 [745 KB]
- Atomic Emission Spectroscopy 2.0 [4'983 KB]
- SQUES RELCO SC480 Calibration Lines 2.0 [2'210 KB]

References & recommended reading

by Matthew Buynoski

"Introduction to Astronomical Spectroscopy" by Immo Appenzeller

ISBN 978-1-107-60179-6 Wonderful little book by a master of the art of spectroscopy, and contains interesting topics (atmospheric dispersion compensators, volume phase gratings, etc).

"Observation and Analysis of Stellar Photospheres" by David Gray

ISBN 978-0-521-06681-5 Parts of this book are highly technical and suitable only for those with physical science degrees, but other portions of it, describing equipment and how it works (e.g. detectors, spectroscopes, telescopes) are suitable by everyone. Dr. Gray is also a master of the art of spectroscopy.

"Stars and Their Spectra" by James Kaler

ISBN 0-521-30494-6

This book is a good introduction to stars and what their spectra reveal about them. It is not too technical, and suitable for any amateur astronomer. Dr. Kaler is another master of the art.

http://stars.astro.illinois.edu/sow/spectra.html

Dr. Kaler also has a website on the same subjects as his book (above). This specific web address is one entry port into a trio of websites about stars and their spectra.

Safety and other rules

SAFETY RULES

- 1. NEVER look directly at the Sun with your eyes. You can burn a hole in your retina resulting in partial blindness.
- 2. NEVER change how solar observing equipment is set up for you. Doing so may result in permanent blindness for yourself or others.
- 3. If we are using the spectral calibration lamp, take care not to touch the bulb as it gets hot enough to burn fingers.
- 4. If you see a yellowish-green indistinct "fog" while using the solar spectroscope in the deep blue end of the spectrum, you have gone too far and ultraviolet in the sunlight is causing the vitreous humor in your eye to fluoresce. This is not the best thing for your eye; adjust the spectroscope to head away from the deep blue until the fog disappears.
- 5. Avoid mashing your eye into the eyepiece. Doing so is unnecessary and raises the risk of spreading conjunctivitis (pink eye). It also makes the telescope jiggle and observation harder.
- 6. Don't play around with the batteries. They can give you a serious electrical jolt.
- 7. If you are unsure about anything, ask!

OTHER RULES

- 1. Apply only light pressure to make allowed adjustments (focusing, for example). Less force means less jiggling and thus easier observation.
- 2. This equipment is expensive, in the thousands of dollars. Treat it carefully and don't horse around near it.
- 3. Minor accidents do happen; should you bump something, let the docent know so he can get the observed object back in view.
- 4. Don't touch any of the glass optics with your hands. This can damage the optical coatings.
- 5. Please ENJOY YOUR OBSERVATIONS, and ASK LOTS OF QUESTIONS about anything you don't understand or about which you wish to know more.

Disclaimer

While the methods shown in this tutorial work well, they assume an underlying knowledge of astrophotography not covered here. The user must be able to specify, purchase, operate and maintain appropriate equipment for the task at hand: optical tube assemblies, eyepieces, equatorial mounts, autoguiding equipment, cameras, spectroscopes, computers, image processing software, and astronomical accessories. The user must know skills such as cleaning and collimation of optics, physical balancing of the system, polar alignment, setting periodic error correction and gear backlash for the mount in use, dew control, navigating across the sky, operation of a computer and its programs to collect and reduce data, etc.

The equipment used in this tutorial is expensive, well over ten thousand US\$ per student set-up. Expect that equipment of similar value must be used in order to achieve good results. All that said, please accept our best wishes for your success in astrospectroscopy!

The author thanks Michael Winkhaus, head of the Student Astronomical Observatory of the college Carl-Fuhlrott-Gymnasium, in Wuppertal, Germany, for the opportunity to give workshops in astronomy, astrophotography, and astrospectroscopy.

These workshops are held in collaboration with Ernst Pollmann of Leverkusen. Ernst is the head of Active Spectroscopy in Astronomy (ASPA, http://www.astrospectroscopy.de) and well-known for his expertise in high-resolution stellar spectroscopy.

The author thanks Matthew Buynoski (<u>buynoski@batnet.com</u>), who does visual spectroscopy for presentation to schoolchildren, for his helpful review and proofreading of this tutorial.

COPYRIGHT NOTICE! This document is proprietary and for use of the intended recipient only. Baader Planetarium GMBH reserves all rights. Certain parts of this document were contributed, and are also copyrighted, by one or more of the following authors: Baader Planetarium, Bernd Koch, Michael Winkhaus, Ernst Pollman, Matthew Buynoski. All information contained in this document is subject to Baader Planetariums's copyright. Permission is granted for educators in astronomy and astrophysics to make this tutorial available to their students for no more than the direct cost of making the copies to hand out. Permission is also granted to each individual astronomer (student, amateur, or professional) to make and keep one copy for his or her personal use. Any unauthorized copying, any publishing of it's content in the internet or intranet, any use of this information by third parties, and/or its dissemination to third parties, without the expressed written consent of Baader Planetarium GMBH, is a serious infringement. Under international copyright laws, any reproduction or dissemination of this document by the recipient is expressly prohibited. Any transfer of this document, in original or copied form, to competitors or other third parties violates applicable public copyright laws. Violations of copyright or public procurement laws will be prosecuted under the law - Baader Planetarium GMBH, 2014.

V3.5E © Bernd Koch | b.koch@baader-planetarium.de