# SSD1317

Advance Information

128 x 96 Dot Matrix OLED/PLED Segment/Common Driver with Controller

This document contains information on a new product. Specifications and information herein are subject to change without notice.



#### Appendix: IC Revision history of SSD1317 Specification

| Version | Change Items            | Effective Date |
|---------|-------------------------|----------------|
| 1.0     | 1 <sup>st</sup> Release | 21-Dec-15      |
|         |                         |                |

confidential to confidence correction confidence correction confidence correction

# CONTENTS

| 1 | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 2 | FEATURES                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                          |
| 3 | ORDERING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                          |
| 4 | BLOCK DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                          |
| 5 | PIN DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                          |
| 6 | FUNCTIONAL BLOCK DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                         |
| 7 | 6.1       MCU INTERFACE SELECTION.         6.1.1       MCU Parallel 6800-series Interface.         6.1.2       MCU Parallel 8080-series Interface.         6.1.3       MCU Serial Interface (4-wire SPI).         6.1.4       MCU Serial Interface (3-wire SPI).         6.1.5       MCU I <sup>2</sup> C Interface.         6.2       COMMAND DECODER         6.3       OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR.         6.4       RESET CIRCUIT | 11<br>11<br>12<br>13<br>14<br>15<br>18<br>19<br>19<br>20<br>21<br>22<br>23 |
| 8 | DC CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                         |
| 9 | AC CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                         |
| • |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |

# TABLES

| TABLE 5-1: PIN DESCRIPTION                                              | 8  |
|-------------------------------------------------------------------------|----|
| TABLE 5-2 : BUS INTERFACE SELECTION                                     | 8  |
| TABLE 6-1 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE | 11 |
| TABLE 6-2 : CONTROL PINS OF 6800 INTERFACE                              | 11 |
| TABLE 6-3 : CONTROL PINS OF 8080 INTERFACE                              | 13 |
| TABLE 6-4 : CONTROL PINS OF 4-WIRE SERIAL INTERFACE                     | 13 |
| TABLE 6-5 : CONTROL PINS OF 3-WIRE SERIAL INTERFACE                     | 14 |
| TABLE 7-1 : MAXIMUM RATINGS                                             | 23 |
| TABLE 8-1 : DC CHARACTERISTICS                                          | 24 |
| TABLE 9-1 : AC CHARACTERISTICS                                          | 25 |
| TABLE 9-2 : 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS   |    |
| TABLE 9-3: 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS    | 27 |
| TABLE 9-4 : SERIAL INTERFACE TIMING CHARACTERISTICS (4-WIRE SPI)        |    |
| TABLE 9-5 : SERIAL INTERFACE TIMING CHARACTERISTICS (3-WIRE SPI)        | 29 |
| TABLE 9-6 : I <sup>2</sup> C INTERFACE TIMING CHARACTERISTICS           | 30 |
| confidence correction<br>confidence correction<br>confidence correction |    |

# FIGURES

| FIGURE 4-1: SSD1317 BLOCK DIAGRAM                                                                                                                                                                                                           | 7                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| FIGURE 6-1 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ                                                                                                                                                                             | 12                   |
| FIGURE 6-2 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE                                                                                                                                                                     | 12                   |
| FIGURE 6-3 : EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE                                                                                                                                                                      | 12                   |
| FIGURE 6-4 : DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ                                                                                                                                                                     | 13                   |
| FIGURE 6-5 : WRITE PROCEDURE IN 4-WIRE SERIAL INTERFACE MODE                                                                                                                                                                                | 14                   |
| FIGURE 6-6 : WRITE PROCEDURE IN 3-WIRE SERIAL INTERFACE MODE                                                                                                                                                                                | 14                   |
| FIGURE 6-7 : I <sup>2</sup> C-BUS DATA FORMAT                                                                                                                                                                                               | 16                   |
| FIGURE 6-8 : DEFINITION OF THE START AND STOP CONDITION                                                                                                                                                                                     | 17                   |
| FIGURE 6-9 : DEFINITION OF THE ACKNOWLEDGEMENT CONDITION                                                                                                                                                                                    | 17                   |
| FIGURE 6-10 : DEFINITION OF THE DATA TRANSFER CONDITION                                                                                                                                                                                     | 17                   |
| FIGURE 6-11 : OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR                                                                                                                                                                                 | 18                   |
| FIGURE 6-12 : SEGMENT OUTPUT WAVEFORM IN THREE PHASES                                                                                                                                                                                       | 19                   |
| FIGURE 6-13 : GDDRAM PAGES STRUCTURE                                                                                                                                                                                                        | 20                   |
| FIGURE 6-14 : ENLARGEMENT OF GDDRAM (NO ROW RE-MAPPING AND COLUMN-REMAPPING)                                                                                                                                                                | 20                   |
| FIGURE 6-15 : IREF CURRENT SETTING BY RESISTOR VALUE                                                                                                                                                                                        | 21                   |
| FIGURE 6-16 : THE POWER ON SEQUENCE.                                                                                                                                                                                                        | 22                   |
| FIGURE 6-17 : THE POWER OFF SEQUENCE                                                                                                                                                                                                        | 22                   |
| FIGURE 9-1 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS                                                                                                                                                                             | 26                   |
| FIGURE 9-2 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS                                                                                                                                                                                 | 27                   |
|                                                                                                                                                                                                                                             | 20                   |
| FIGURE 9-3 : SERIAL INTERFACE CHARACTERISTICS (4-WIRE SPI)                                                                                                                                                                                  | 20                   |
| FIGURE 9-3 : SERIAL INTERFACE CHARACTERISTICS (4-WIRE SPI)<br>FIGURE 9-4 : SERIAL INTERFACE CHARACTERISTICS (3-WIRE SPI)                                                                                                                    | 28                   |
| FIGURE 9-3 : SERIAL INTERFACE CHARACTERISTICS (4-WIRE SPI)<br>FIGURE 9-4 : SERIAL INTERFACE CHARACTERISTICS (3-WIRE SPI)<br>FIGURE 9-5 : I <sup>2</sup> C INTERFACE TIMING CHARACTERISTICS<br>FIGURE 10-1 : APPLICATION EXAMPLE OF SSD1317Z | 28<br>29<br>30<br>31 |
| FIGURE 9-3 : SERIAL INTERFACE CHARACTERISTICS (4-WIRE SPI)                                                                                                                                                                                  | 28<br>29<br>30<br>31 |

#### **GENERAL DESCRIPTION** 1

SSD1317 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display. It consists of 128 segments and 96 commons. This IC is designed for Common Cathode type OLED/PLED panel.

SSD1317 embeds with contrast control, display RAM and oscillator, which reduce the number of external components and power consumption. It has 256-step contrast. Data/Commands are sent from generic MCU through the hardware selectable 6800/8080 series compatible Parallel Interface, I2C interface or Serial Peripheral Interface. SSD1317 is suitable for many compact portable applications which require high display brightness for sunlight readability such as wearable electronics, Wifi routers, etc.

#### 2 **FEATURES**

- Resolution: 128 x 96 dot matrix panel
- Power supply
  - $V_{DD} = 1.65 V 3.3 V$ (for IC logic) 0
  - tial to ation  $V_{CC} = 7.0V - 16.5V$ (for Panel driving) 0
- Segment maximum source current: 600uA
- Common maximum sink current: 76.8mA
- Embedded 128 x 96 bit SRAM display buffer
- Pin selectable MCU Interfaces:
  - 8 bits 6800/8080-series parallel Interface 0
  - 0 3/4 wire Serial Peripheral Interface
  - I<sup>2</sup>C Interface 0
- Screen saving infinite content scrolling function
- Internal or external IREF selection
- RAM write synchronization signal
- Programmable Frame Rate and Multiplexing Ratio
- Row Re-mapping and Column Re-mapping
- Power On Reset (POR) •
- **On-Chip** Oscillator
- Chip layout for COG, COF
- Wide range of operating temperature: -40°C to 85°C

#### 3 **ORDERING INFORMATION**

#### **Table 3-1: Ordering Information**

| Ordering Part Number | SEG | СОМ | Package Form | Remark                                                                                                                                                                           |
|----------------------|-----|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSD1317Z             | 128 | 96  | COG          | <ul> <li>Min SEG pad pitch : 29um</li> <li>Min COM pad pitch : 35um</li> <li>Min I/O pad pitch : 45um</li> <li>Die thickness: 250um</li> <li>Bump height: nominal 9um</li> </ul> |

# 4 BLOCK DIAGRAM



#### Figure 4-1: SSD1317 Block Diagram

# 5 PIN DESCRIPTION

# Key:

| I = Input                           | NC = Not Connected                    |
|-------------------------------------|---------------------------------------|
| O =Output                           | Pull LOW= connect to Ground           |
| I/O = Bi-directional (input/output) | Pull HIGH= connect to V <sub>DD</sub> |
| P = Power pin                       |                                       |

# Table 5-1: Pin Description

| Pin Name          | Pin Type | Description                                                                                                                                                                                                                                               |
|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>DD</sub>   | Р        | Power supply pin for core logic operation.                                                                                                                                                                                                                |
| V <sub>CC</sub>   | Р        | Power supply for panel driving voltage. This is also the most positive power voltage supply pin.                                                                                                                                                          |
| V <sub>CC1</sub>  | Р        | Clean power supply for high voltage circuit. It must be connected to $V_{CC}$ externally.                                                                                                                                                                 |
| BGGND             | Р        | Reserved pin. It must be connected to ground.                                                                                                                                                                                                             |
| V <sub>SS</sub>   | Р        | Ground pin. It must be connected to external ground.                                                                                                                                                                                                      |
| V <sub>LSS</sub>  | Р        | Analog system ground pin. It must be connected to external ground.                                                                                                                                                                                        |
| VSL               | Р        | This is segment voltage (output low level) reference pin.<br>When external VSL is not used, this pin must be connected to $V_{LSS}$ externally.<br>When external VSL is used, connect with resistor and diode to ground (details depends on application). |
| V <sub>LH</sub>   | Р        | Logic high (same voltage level as $V_{DD}$ ) for internal connection of input and I/O pins.<br>No need to connect to external power source.                                                                                                               |
| V <sub>LL</sub>   | Р        | Logic low (same voltage level as $V_{SS}$ ) for internal connection of input and I/O pins.<br>No need to connect to external ground.                                                                                                                      |
| V <sub>COMH</sub> | Р        | COM signal deselected voltage level.<br>A capacitor should be connected between this pin and $V_{SS}$ .                                                                                                                                                   |
| VBREF             | 0        | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                             |
| BS[2:0]           | I        | MCU bus interface selection pins. Select appropriate logic setting as described in the following table. BS2, BS1 and BS0 are pin select.<br>Table 5-2 : Bus Interface selection                                                                           |
|                   |          | BS[2:0] Interface                                                                                                                                                                                                                                         |
|                   |          | $\frac{1}{000}$ 4 line SPI                                                                                                                                                                                                                                |
|                   |          | 001 3 line SPI                                                                                                                                                                                                                                            |
|                   |          | 010 I <sup>2</sup> C                                                                                                                                                                                                                                      |
|                   |          | 110 8-bit 8080 parallel                                                                                                                                                                                                                                   |
|                   |          | 100 8-bit 6800 parallel                                                                                                                                                                                                                                   |
|                   |          | Note<br>(1) 0 is connected to V <sub>SS</sub><br>(2) 1 is connected to V <sub>DD</sub>                                                                                                                                                                    |

| Pin Name         | Pin Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I <sub>REF</sub> | I        | This pin is the segment output current reference pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |          | $I_{REF}$ is supplied externally. A resistor should be connected between this pin and $V_{SS}$ to maintain the current around 18.75uA. Please refer to Figure 6-15 for the details of resistor value.<br>When internal $I_{REF}$ is used, this pin should be kept NC.                                                                                                                                                                                                                                                 |
| CL               | Ι        | This is external clock input pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |          | When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be connected to $V_{SS}$ . When internal clock is disabled (i.e. LOW in CLS pin), this pin is the external clock source input pin.                                                                                                                                                                                                                                                                                             |
| CLS              | Ι        | This is internal clock enable pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |          | When it is pulled HIGH (i.e. connect to $V_{DD}$ ), internal clock is enabled. When it is pulled LOW, the internal clock is disabled; an external clock source must be connected to the CL pin for normal operation.                                                                                                                                                                                                                                                                                                  |
| CS#              | I        | This pin is the chip select input connecting to the MCU.<br>The chip is enabled for MCU communication only when CS# is pulled LOW (active LOW).                                                                                                                                                                                                                                                                                                                                                                       |
| RES#             | Ι        | This pin is reset signal input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |          | When the pin is pulled LOW, initialization of the chip is executed.<br>Keep this pin pull HIGH during normal operation.                                                                                                                                                                                                                                                                                                                                                                                               |
| D/C#             | Ι        | This pin is Data/Command control pin connecting to the MCU.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |          | <ul> <li>When the pin is pulled HIGH, the data at D[7:0] will be interpreted as data.</li> <li>When the pin is pulled LOW, the data at D[7:0] will be transferred to a command register.</li> <li>In I<sup>2</sup>C mode, this pin acts as SA0 for slave address selection.</li> <li>When 3-wire serial interface is selected, this pin must be connected to V<sub>SS</sub>.</li> <li>For detail relationship to MCU interface signals, refer to Timing Characteristics Diagrams Figure 9-1 to Figure 9-3.</li> </ul> |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| K/W# (WK#)       |          | When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW.<br>When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected.<br>When serial or I <sup>2</sup> C interface is selected, this pin must be connected to V <sub>SS</sub> .                                              |
|                  | т        | This min is MCU interface input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| E (KD#)          | 1        | When 6800 interface mode is selected, this pin will be used as the Enable (E) signal.<br>Read/write operation is initiated when this pin is pulled HIGH and the chip is<br>selected.<br>When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read<br>operation is initiated when this pin is pulled LOW and the chip is selected.<br>When serial or I <sup>2</sup> C interface is selected, this pin must be connected to V <sub>ss</sub> .                                                 |

| Pin Name         | Pin Type | Description                                                                                                                                                                                                                                                                                                  |
|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:0]           | I/O      | These pins are bi-directional data bus connecting to the MCU data bus.<br>Unused pins are recommended to tie LOW.                                                                                                                                                                                            |
|                  |          | When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the serial data input: SDIN.<br>When I <sup>2</sup> C mode is selected, D2, D1 should be tied together and serve as SDA <sub>out</sub> , SDA <sub>in</sub> in application and D0 is the serial clock input, SCL. |
| FR               | 0        | This pin outputs RAM write synchronization signal. Proper timing between MCU data writing and frame display timing can be achieved to prevent tearing effect. It should be kept NC if it is not used.                                                                                                        |
| ТО               | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                                                                                |
| T1               | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                                                                                |
| SEG0 ~<br>SEG127 | 0        | These pins provide the OLED segment driving signals. These pins are $V_{SS}$ state when display is OFF.                                                                                                                                                                                                      |
| COM0 ~<br>COM95  | 0        | These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF.                                                                                                                                                                                  |
| TR[10:0]         | -        | Reserved pin. It should be kept NC.                                                                                                                                                                                                                                                                          |
| NC               | -        | This is dummy pin. It should be kept NC.                                                                                                                                                                                                                                                                     |
|                  | R        | confidence<br>confidence<br>display                                                                                                                                                                                                                                                                          |

# **6** FUNCTIONAL BLOCK DESCRIPTIONS

# 6.1 MCU Interface selection

SSD1317 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 6-1. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to Table 5-2 for BS[2:0] setting).

| Pin Name<br>Bus  | Data/C | Data/Command Interface Control Signal |    |    |      |                           |                          |       |       | al           |         |      |      |
|------------------|--------|---------------------------------------|----|----|------|---------------------------|--------------------------|-------|-------|--------------|---------|------|------|
| Interface        | D7     | D6                                    | D5 | D4 | D3   | D2                        | D1                       | D0    | E     | <b>R/W</b> # | CS#     | D/C# | RES# |
| 8-bit 8080       |        | D[7:0]                                |    |    |      |                           |                          | RD#   | WR#   | CS#          | D/C#    | RES# |      |
| 8-bit 6800       |        |                                       |    | D[ | 7:0] |                           |                          |       | E     | R/W#         | CS#     | D/C# | RES# |
| 3-wire SPI       | Tie LO | Tie LOW SDIN SCLK                     |    |    |      |                           | SCLK                     | Tie L | OW    | CS#          | Tie LOW | RES# |      |
| 4-wire SPI       | Tie LO | Fie LOW SDIN SCLK                     |    |    |      |                           | Tie L                    | OW    | CS#   | D/C#         | RES#    |      |      |
| I <sup>2</sup> C | Tie LO | W                                     |    |    |      | <b>SDA</b> <sub>OUT</sub> | <b>SDA</b> <sub>IN</sub> | SCL   | Tie L | .OW          |         | SA0  | RES# |

| Table 6-1 : MCU interface assignment under | different bus interface mode |
|--------------------------------------------|------------------------------|
|--------------------------------------------|------------------------------|

#### 6.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

|  | Function      | E            | R/W# | CS# | D/C# |
|--|---------------|--------------|------|-----|------|
|  | Write command | ↓ ́          | L    | L   | L    |
|  | Read status   | $\downarrow$ | Н    | L   | L    |
|  | Write data    | $\downarrow$ | L    | L   | Н    |
|  | Read data     | $\downarrow$ | Н    | L   | Н    |

| Table 6-2 : Control pins of 6800 interf |
|-----------------------------------------|
|-----------------------------------------|

#### Note

 $^{(1)}\downarrow$  stands for falling edge of signal

H stands for HIGH in signal

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 6-1.



#### Figure 6-1 : Data read back procedure - insertion of dummy read

# 6.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.







| Function      | RD# | WR# | CS# | <b>D/C#</b> |
|---------------|-----|-----|-----|-------------|
| Write command | Н   | ↑   | L   | L           |
| Read status   | ↑   | Н   | L   | L           |
| Write data    | Н   | ↑   | L   | Н           |
| Read data     | 1   | Н   | L   | Н           |

Table 6-3 : Control pins of 8080 interface

Note

 $^{(1)}$   $\uparrow$  stands for rising edge of signal

<sup>(2)</sup> H stands for HIGH in signal

<sup>(3)</sup> L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 6-4.

Figure 6-4 : Display data read back procedure - insertion of dummy read



6.1.3 MCU Serial Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D2 to D7, E(RD#) and R/W#(WR#) can be connected to an external ground.

| Function      | Е       | <b>R/W</b> # | CS# | <b>D/C</b> # | <b>D0</b> |
|---------------|---------|--------------|-----|--------------|-----------|
| Write command | Tie LOW | Tie LOW      | L   | L            | ↑ (       |
| Write data    | Tie LOW | Tie LOW      | L   | Н            | <b>↑</b>  |

Note

<sup>(1)</sup> H stands for HIGH in signal

<sup>(2)</sup> L stands for LOW in signal

 $^{(3)}$   $\uparrow$  stands for rising edge of signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.





# 6.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D2 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Under serial mode, only write operations are allowed.

| Table 6-5  | • Control | nins of 3-wire | Serial interface |
|------------|-----------|----------------|------------------|
| 1 abic 0-5 | · Control | pms or 5-wire  | Serial meetace   |

| Function      | E(RD#)  | <b>R/W#(WR#)</b> | CS# | D/C#    | DO       | Note                                              |
|---------------|---------|------------------|-----|---------|----------|---------------------------------------------------|
| Write command | Tie LOW | Tie LOW          | L   | Tie LOW | <b>↑</b> | $^{(1)}$ L stands for LOW in signal               |
| Write data    | Tie LOW | Tie LOW          | L   | Tie LOW | ſ        | <sup>(2)</sup> T stands for fising edge of signa. |





### 6.1.5 MCU I<sup>2</sup>C Interface

The I<sup>2</sup>C communication interface consists of slave address bit SA0, I<sup>2</sup>C-bus data signal SDA (SDA<sub>OUT</sub>/D<sub>2</sub> for output and SDA<sub>IN</sub>/D<sub>1</sub> for input) and I<sup>2</sup>C-bus clock signal SCL (D<sub>0</sub>). Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device.

a) Slave address bit (SA0)

SSD1317 has to recognize the slave address before transmitting or receiving any information by the I<sup>2</sup>C-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format,

"SA0" bit provides an extension bit for the slave address. Either "0111100" or "0111101", can be selected as the slave address of SSD1317. D/C# pin acts as SA0 for slave address selection. "R/W#" bit is used to determine the operation mode of the I<sup>2</sup>C-bus interface. R/W#=1, it is in read mode. R/W#=0, it is in write mode.

b) I<sup>2</sup>C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".

"SDA<sub>IN</sub>" and "SDA<sub>OUT</sub>" are tied together and serve as SDA. The "SDA<sub>IN</sub>" pin must be connected to act as SDA. The "SDA<sub>OUT</sub>" pin may be disconnected. When "SDA<sub>OUT</sub>" pin is disconnected, the acknowledgement signal will be ignored in the  $I^2C$ -bus.

c) I<sup>2</sup>C-bus clock signal (SCL)

The transmission of information in the  $l^2$ C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

# 6.1.5.1 I<sup>2</sup>C-bus Write data

The I<sup>2</sup>C-bus interface gives access to write data and command into the device. Please refer to Figure 6-7 for the write mode of I<sup>2</sup>C-bus in chronological order.



#### Figure 6-7 : I<sup>2</sup>C-bus data format

#### 6.1.5.2 Write mode for $I^2C$

- 1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 6-8. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
- 2) The slave address is following the start condition for recognition use. For the SSD1317, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as SA0).
- 3) The write mode is established by setting the R/W# bit to logic "0".
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the
- 5) Figure 6-9 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 6) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six "0" 's.
  - a. If the Co bit is set as logic "0", the transmission of the following information will contain data bytes only.
  - b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic "0", it defines the following data byte as a command. If the D/C# bit is set to logic "1", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
- 7) Acknowledge bit will be generated after receiving each control byte or data byte.
- 8) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 6-8. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.



Figure 6-8 : Definition of the Start and Stop Condition





Please be noted that the transmission of the data bit has some limitations.

- 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 6-10 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.





# 6.2 Command Decoder

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to the corresponding command register.

# 6.3 Oscillator Circuit and Display Time Generator



This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be connected to  $V_{SS}$ . Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency Fosc can be changed by command D5h A[7:4].

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 256 by command D5h

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula.

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of } Mux}$$

where

- D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to 256.
- K is the number of display clocks per row. The value is derived by
  - $K = Phase 1 period + Phase 2 period + K_o$

= 2 + 2 + 69 = 73 at power on reset (that is K<sub>o</sub> is a constant that equals to 69)

Please refer to Section 6.5 "Segment Drivers / Common Drivers" for the details of the "Phase".

- Number of multiplex ratio is set by command A8h. The power on reset value is 95 (i.e. 96MUX).
- F<sub>OSC</sub> is the oscillator frequency. It can be changed by command D5h A[7:4]. The higher the register setting results in higher frequency.

# 6.4 Reset Circuit

When RES# input is LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 x 96 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)

#### 6.5 Segment Drivers / Common Drivers

Segment drivers deliver 128 current sources to drive the OLED panel. The driving current can be adjusted by altering the registers of the contrast setting command (81h). Common drivers generate voltage-scanning pulses.

The segment driving waveform is divided into three phases:

- 1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next image content display.
- 2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the corresponding voltage level from  $V_{ss}$ . The period of phase 2 can be programmed in length from 1 to 15 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
- 3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the current drive stage.



After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This threestep cycle is run continuously to refresh image display on OLED panel.

In phase 3, if the length of current drive pulse width is set to 69, after finishing 69 DCLKs in current drive phase, the driver IC will go back to phase 1 for next row display.

# 6.6 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128 x 96 bits and the RAM is divided into eight pages, from PAGE0 to PAGE11, which are used for monochrome 128x96 dot matrix display, as shown in Figure 6-13.

|                      |            | Row re-mapping      |
|----------------------|------------|---------------------|
| PAGE0 (COM0-COM7)    | Page 0     | PAGE0 (COM95-COM88) |
| PAGE1 (COM8-COM15)   | Page 1     | PAGE1 (COM87-COM80) |
| PAGE2 (COM16-COM23)  | Page 2     | PAGE2 (COM79-COM72) |
| PAGE3 (COM24-COM31)  | Page 3     | PAGE3 (COM71-COM64) |
| PAGE4 (COM32-COM39)  | Page 4     | PAGE4 (COM63-COM56) |
| PAGE5 (COM40-COM47)  | Page 5     | PAGE5 (COM55-COM48) |
| PAGE6 (COM48–COM55)  | Page 6     | PAGE6 (COM47-COM40) |
| PAGE7 (COM56-COM63)  | Page 7     | PAGE7 (COM39-COM32) |
| PAGE8 (COM64-COM71)  | Page 8     | PAGE8 (COM31-COM24) |
| PAGE9 (COM72-COM79)  | Page 9     | PAGE9 (COM23-COM16) |
| PAGE10 (COM80–COM87) | Page 10    | PAGE10 (COM15-COM8) |
| PAGE11 (COM88-COM95) | Page 11    | PAGE11 (COM 7-COM0) |
|                      | SEG0SEG127 |                     |
| Column re-mapping    | SEG127SEG0 |                     |

#### Figure 6-13 : GDDRAM pages structure

When one data byte is written into GDDRAM, all the rows image data of the same page of the current column are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0 is written into the top row, while data bit D7 is written into bottom row as shown in Figure 6-14.





For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software as shown in Figure 6-13.

For vertical shifting of the display, an internal register storing the display start line can be set to control the portion of the RAM data to be mapped to the display (command D3h).

# 6.7 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V<sub>CC</sub> is the most positive voltage supply.
- V<sub>COMH</sub> is the Common deselected level. It is internally regulated.
- V<sub>LSS</sub> is the ground path of the analog and panel current.
- I<sub>REF</sub> is a reference current source for segment current drivers I<sub>SEG</sub>. The relationship between reference current and segment current of a color is:

 $I_{SEG} = Contrast / 8 \ x \ I_{REF}$ 

in which the contrast (1~255) is set by Set Contrast command 81h

When internal  $I_{REF}$  is used, the  $I_{REF}$  pin should be kept NC. Bit A[4] of command ADh is used to select external or internal  $I_{REF}$ : A[4] = '0' Select external  $I_{REF}$  [Reset] A[4] = '1' Enable internal  $I_{REF}$  during display ON

When external  $I_{REF}$  is used, the magnitude of  $I_{REF}$  is controlled by the value of resistor, which is connected between  $I_{REF}$  pin and  $V_{SS}$  as shown in Figure 6-15. It is recommended to set  $I_{REF}$  to 18.75 ± 2uA so as to achieve  $I_{SEG} = 600uA$  at maximum contrast 255.





Since the voltage at  $I_{REF}$  pin is  $V_{CC} - 2V$ , the value of resistor R1 can be found as below:

For  $I_{REF} = 18.75 uA$ ,  $V_{CC} = 12V$ :

$$R1 = (Voltage at I_{REF} - V_{SS}) / I_{REF}$$
  

$$\approx (12 - 2) / 18.75uA$$
  

$$= 530k\Omega$$

# 6.8 Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1317.

#### *Power ON sequence:*

- 1. Power ON V<sub>DD</sub>
- 2. After  $V_{DD}$  become stable, wait at least 20ms (t<sub>0</sub>), set RES# pin LOW (logic low) for at least 3us (t<sub>1</sub>) <sup>(4)</sup> and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least  $3us (t_2)$ . Then Power ON V<sub>CC</sub>.<sup>(1)</sup>
- 1. After  $V_{CC}$  become stable, send command AFh for display ON. SEG/COM will be ON after 100ms  $(t_{AF})$ .



Figure 6-16 : The Power ON sequence

#### Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF V<sub>CC</sub>.<sup>(1), (2)</sup>
- 3. Power OFF  $V_{DD}$  after  $t_{OFF}$ . <sup>(4)</sup> (where Minimum  $t_{OFF}$ =0ms, typical  $t_{OFF}$ =100ms)





#### Note:

- $^{(2)}$  Power Pins (V\_{DD}, V\_{CC}) can never be pulled to ground under any circumstance.
- $^{(3)}$  The register values are reset after  $t_1$ .
- $^{\rm (4)}$   $V_{DD}$  should not be Power OFF before  $V_{CC}$  Power OFF.

 $<sup>^{(1)}</sup>V_{CC}$  should be kept float (i.e. disable) when it is OFF.

# 7 MAXIMUM RATINGS

| Symbol           | Parameter                 | Value                                        | Unit |
|------------------|---------------------------|----------------------------------------------|------|
| V <sub>DD</sub>  | Sumply Volto as           | -0.3 to +4                                   | V    |
| V <sub>CC</sub>  | Suppry voltage            | 0 to 17                                      | V    |
| V <sub>SEG</sub> | SEG output voltage        | 0 to V <sub>CC</sub>                         | V    |
| V <sub>COM</sub> | COM output voltage        | 0 to 0.9*V <sub>CC</sub>                     | V    |
| Vin              | Input voltage             | V <sub>SS</sub> -0.3 to V <sub>DD</sub> +0.3 | V    |
| T <sub>A</sub>   | Operating Temperature     | -40 to +85                                   | °C   |
| T <sub>stg</sub> | Storage Temperature Range | -65 to +150                                  | °C   |

#### **Table 7-1 : Maximum Ratings**

\*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

\*This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

Rev 1.0 P 23/32 SSD1317 Dec 2015

# 8 DC CHARACTERISTICS

#### **Condition (Unless otherwise specified):**

Voltage referenced to  $V_{SS}$  $V_{DD} = 1.65V$  to 3.3V $T_A = 25^{\circ}C$ 

#### **Table 8-1 : DC Characteristics**

| Symbol                | Parameter                                                                                                                | Test Condition                                                                                                                                                             | Min                   | Тур | Max                   | Unit |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|-----------------------|------|
| V <sub>CC</sub>       | Operating Voltage                                                                                                        | -                                                                                                                                                                          | 7                     | -   | 16.5                  | V    |
| V <sub>DD</sub>       | Logic Supply Voltage                                                                                                     | -                                                                                                                                                                          | 1.65                  | -   | 3.3                   | V    |
| VOH                   | High Logic Output Level                                                                                                  | $I_{OUT} = 100 uA, 3.3 MHz$                                                                                                                                                | 0.9 x V <sub>DD</sub> | -   | -                     | V    |
| V <sub>OL</sub>       | Low Logic Output Level                                                                                                   | $I_{OUT} = 100 uA, 3.3 MHz$                                                                                                                                                | -                     | -   | $0.1 \ge V_{DD}$      | V    |
| V <sub>IH</sub>       | High Logic Input Level                                                                                                   | -                                                                                                                                                                          | 0.8 x V <sub>DD</sub> | -   | -                     | V    |
| V <sub>IL</sub>       | Low Logic Input Level                                                                                                    | -                                                                                                                                                                          | -                     | -   | 0.2 x V <sub>DD</sub> | V    |
| I <sub>DD,SLEEP</sub> | Sleep mode Current                                                                                                       | $V_{DD} = 1.65V \sim 3.3V$ , $V_{CC} = 7V \sim 16.5V$<br>Display OFF, No panel attached                                                                                    | -                     | -   | 10                    | uA   |
| I <sub>CC,SLEEP</sub> | Sleep mode Current                                                                                                       | $V_{DD} = 1.65V \sim 3.3V$ , $V_{CC} = 7V \sim 16.5V$<br>Display OFF, No panel attached                                                                                    | -                     | -   | 10                    | uA   |
| I <sub>CC</sub>       | $V_{CC}$ Supply Current<br>$V_{DD} = 2.8V$ , $V_{CC} = 12V$ ,<br>$I_{REF} = 18.75uA$ , No loading,<br>Display ON, All ON | Contract EEb                                                                                                                                                               | 40                    | 800 | 1100                  | uA   |
| I <sub>DD</sub>       | $V_{DD}$ Supply Current<br>$V_{DD}$ =2.8V, $V_{CC}$ = 12V,<br>$I_{REF}$ = 18.75uA , No loading,<br>Display ON, All ON,   | Contrast = FFI                                                                                                                                                             | 012                   | 220 | 300                   | uA   |
|                       | Segment Output Current,<br>$V_{DD} = 2.8V$ , $V_{CC} = 12V$ .                                                            | Contrast=FFh                                                                                                                                                               | 540                   | 600 | 660                   |      |
| I <sub>SEG</sub>      | $I_{\text{REE}}=18.75 \text{uA}.$                                                                                        | Contrast=7Fh                                                                                                                                                               | -                     | 300 | -                     | uA   |
|                       | Display ON.                                                                                                              | Contrast=3Fh                                                                                                                                                               | -                     | 150 | -                     |      |
| Dev                   | Segment output current<br>uniformity                                                                                     | $\begin{array}{l} Dev = (I_{SEG} - I_{MID})/I_{MID} \\ I_{MID} = (I_{MAX} + I_{MIN})/2 \\ I_{SEG}[0:127] = Segment \ current \\ at \ contrast \ setting = FFh \end{array}$ | -3                    | -   | 3                     | %    |
| Adj. Dev              | Adjacent pin output current<br>uniformity (contrast setting<br>= FFh)                                                    | Adj Dev = (I[n]-I[n+1]) /<br>(I[n]+I[n+1])                                                                                                                                 | -2                    | -   | 2                     | %    |
|                       |                                                                                                                          |                                                                                                                                                                            |                       |     |                       |      |

#### **AC CHARACTERISTICS** 9

#### **Conditions:**

Voltage referenced to V<sub>SS</sub> V<sub>DD</sub>=1.65 to 3.3V  $T_A = 25^{\circ}C$ 

| Table | 9-1 | : AC | Characteristics |
|-------|-----|------|-----------------|
|       |     |      |                 |

| Symbol              | Parameter                                            | Test Condition                                                       | Min | Тур                              | Max | Unit |
|---------------------|------------------------------------------------------|----------------------------------------------------------------------|-----|----------------------------------|-----|------|
| Fosc <sup>(1)</sup> | Oscillation Frequency of<br>Display Timing Generator | $V_{DD} = 2.8 V$                                                     | 720 | 800                              | 880 | kHz  |
| Ffrm                | Frame Frequency                                      | 128x96 Graphic Display Mode, Display ON, Internal Oscillator Enabled | -   | Fosc x 1/(DxKx96) <sup>(2)</sup> | -   | Hz   |
| RES#                | Reset low pulse width                                |                                                                      | 3   | -                                | -   | us   |

#### Note

.mad D5h . to ation to ationto ation to ation to ation to ation to ation to ation t <sup>(1)</sup> F<sub>OSC</sub> stands for the frequency value of the internal oscillator and the value is measured when command D5h A[7:4] is in default value.

<sup>(2)</sup> D: divide ratio (default value = 1)

K: number of display clocks per row period (default value = 73)

| Symbol             | Parameter                                                                   | Min       | Тур | Max | Unit |
|--------------------|-----------------------------------------------------------------------------|-----------|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time                                                            | 300       | -   | -   | ns   |
| t <sub>AS</sub>    | Address Setup Time                                                          | 20        | -   | -   | ns   |
| t <sub>AH</sub>    | Address Hold Time                                                           | 0         | -   | -   | ns   |
| t <sub>DSW</sub>   | Write Data Setup Time                                                       | 40        | -   | -   | ns   |
| t <sub>DHW</sub>   | Write Data Hold Time                                                        | 40        | -   | -   | ns   |
| t <sub>DHR</sub>   | Read Data Hold Time                                                         | 20        | -   | -   | ns   |
| t <sub>OH</sub>    | Output Disable Time                                                         | -         | -   | 70  | ns   |
| t <sub>ACC</sub>   | Access Time                                                                 | -         | -   | 150 | ns   |
| PW <sub>CSL</sub>  | Chip Select Low Pulse Width (read)<br>Chip Select Low Pulse Width (write)   | 150<br>60 | -   | -   | ns   |
| PW <sub>CSH</sub>  | Chip Select High Pulse Width (read)<br>Chip Select High Pulse Width (write) | 60<br>100 | -   | -   | ns   |
| t <sub>R</sub>     | Rise Time                                                                   | -         | -   | 40  | ns   |
| t <sub>F</sub>     | Fall Time                                                                   | -         | -   | 40  | ns   |

#### Table 9-2 : 6800-Series MCU Parallel Interface Timing Characteristics





| Symbol             | Parameter                            | Min | Тур | Max | Unit |
|--------------------|--------------------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time                     | 300 | -   | -   | ns   |
| t <sub>AS</sub>    | Address Setup Time                   | 20  | -   | -   | ns   |
| t <sub>AH</sub>    | Address Hold Time                    | 0   | -   | -   | ns   |
| t <sub>DSW</sub>   | Write Data Setup Time                | 40  | -   | -   | ns   |
| t <sub>DHW</sub>   | Write Data Hold Time                 | 40  | -   | -   | ns   |
| t <sub>DHR</sub>   | Read Data Hold Time                  | 20  | -   | -   | ns   |
| toh                | Output Disable Time                  | -   | -   | 70  | ns   |
| t <sub>ACC</sub>   | Access Time                          | -   | -   | 150 | ns   |
| t <sub>PWLR</sub>  | Read Low Time                        | 150 | -   | -   | ns   |
| t <sub>PWLW</sub>  | Write Low Time                       | 60  | -   | -   | ns   |
| t <sub>PWHR</sub>  | Read High Time                       | 60  | -   | -   | ns   |
| t <sub>PWHW</sub>  | Write High Time                      | 100 | -   | -   | ns   |
| t <sub>R</sub>     | Rise Time                            | -   | -   | 40  | ns   |
| t <sub>F</sub>     | Fall Time                            | -   | -   | 40  | ns   |
| t <sub>CS</sub>    | Chip select setup time               | 0   | -   | -   | ns   |
| t <sub>CSH</sub>   | Chip select hold time to read signal | 0   | -   | -   | ns   |
| t <sub>CSF</sub>   | Chip select hold time                | 20  | -   |     | ns   |

Table 9-3: 8080-Series MCU Parallel Interface Timing Characteristics



Figure 9-2 : 8080-series parallel interface characteristics



#### Table 9-4 : Serial Interface Timing Characteristics (4-wire SPI)

 $(V_{DD} - V_{SS} = 1.65V \sim 3.3V, T_A = 25^{\circ}C)$ 

| Symbol             | Parameter              | Min | Тур | Max | Unit |
|--------------------|------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time       | 100 | -   | -   | ns   |
| t <sub>AS</sub>    | Address Setup Time     | 15  | -   | -   | ns   |
| t <sub>AH</sub>    | Address Hold Time      | 15  | -   | -   | ns   |
| t <sub>CSS</sub>   | Chip Select Setup Time | 20  | -   | -   | ns   |
| t <sub>CSH</sub>   | Chip Select Hold Time  | 50  | -   | -   | ns   |
| t <sub>DSW</sub>   | Write Data Setup Time  | 20  | -   | -   | ns   |
| t <sub>DHW</sub>   | Write Data Hold Time   | 20  | -   | -   | ns   |
| t <sub>CLKL</sub>  | Clock Low Time         | 50  | -   | -   | ns   |
| t <sub>CLKH</sub>  | Clock High Time        | 50  | -   | -   | ns   |
| t <sub>R</sub>     | Rise Time              | -   | -   | 40  | ns   |
| t <sub>F</sub>     | Fall Time              | -   | -   | 40  | ns   |

Figure 9-3 : Serial interface characteristics (4-wire SPI)



#### Table 9-5 : Serial Interface Timing Characteristics (3-wire SPI)

 $(V_{DD} \text{ - } V_{SS} = 1.65 V \text{ ~ } 3.3 V, \, T_A = 25^{\circ} C)$ 

| Symbol             | Parameter              | Min | Тур | Max | Unit |
|--------------------|------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time       | 100 | -   | -   | ns   |
| t <sub>CSS</sub>   | Chip Select Setup Time | 20  | -   | -   | ns   |
| t <sub>CSH</sub>   | Chip Select Hold Time  | 50  | -   | -   | ns   |
| t <sub>DSW</sub>   | Write Data Setup Time  | 20  | -   | -   | ns   |
| t <sub>DHW</sub>   | Write Data Hold Time   | 20  | -   | -   | ns   |
| t <sub>CLKL</sub>  | Clock Low Time         | 50  | -   | -   | ns   |
| t <sub>CLKH</sub>  | Clock High Time        | 50  | -   | -   | ns   |
| t <sub>R</sub>     | Rise Time              | -   | -   | 40  | ns   |
| t <sub>F</sub>     | Fall Time              | -   | -   | 40  | ns   |





#### Table 9-6 : I<sup>2</sup>C Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 1.65 V \sim 3.3 V, T_A = 25^{\circ}C)$ 

| Symbol              | Parameter                                                                 | Min | Тур | Max | Unit |
|---------------------|---------------------------------------------------------------------------|-----|-----|-----|------|
| t <sub>cycle</sub>  | Clock Cycle Time                                                          | 2.5 | -   | -   | us   |
| t <sub>HSTART</sub> | Start condition Hold Time                                                 | 0.6 | -   | -   | us   |
| t <sub>HD</sub>     | Data Hold Time (for "SDA <sub>OUT</sub> " pin)                            | 0   | -   | -   | ns   |
|                     | Data Hold Time (for "SDA <sub>IN</sub> " pin)                             | 300 | -   | -   | ns   |
| t <sub>SD</sub>     | Data Setup Time                                                           | 100 | -   | -   | ns   |
| t <sub>SSTART</sub> | Start condition Setup Time (Only relevant for a repeated Start condition) | 0.6 | -   | -   | us   |
| t <sub>SSTOP</sub>  | Stop condition Setup Time                                                 | 0.6 | -   | -   | us   |
| t <sub>R</sub>      | Rise Time for data and clock pin                                          | -   | -   | 300 | ns   |
| t <sub>F</sub>      | Fall Time for data and clock pin                                          | -   | -   | 300 | ns   |
| t <sub>IDLE</sub>   | Idle Time before a new transmission can start                             | 1.3 | -   | -   | us   |

Figure 9-5 : I<sup>2</sup>C interface Timing characteristics

40



### **10 APPLICATION EXAMPLE**





Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assure any itability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, solomon Systech does not convey any license under its patent rights of others. Solomon Systech products for use as a components in systems intended for surgical implant into the body, or other applications intended for surgical implant into the body, or other applications intended for surgical implant into the body, or other applications intended to support or sustain life, of for any such unintended or unauthorized application, Buyer shall indemify and hold Solomon Systech and its offices, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

**O**The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品 中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

# Appendix II: SSD1317 Command Table and Command Descriptions

# 1 COMMAND TABLE

#### Table 1-1: SSD1317 Command Table

| (D/C #=0, R/V) | W # (WR #) = 0 | E(RD#=1) unless                                                                    | specific setting | y is stated) |
|----------------|----------------|------------------------------------------------------------------------------------|------------------|--------------|
| (D/C/ 0,10,    | (1)            | , $\mathbf{L}(\mathbf{I}\mathbf{U}^{(1)} \mathbf{U}^{(1)})$ and $\mathbf{U}^{(2)}$ | specific setting | , is stated) |

| Funda | 'undamental Command Table |    |       |       |                |                       |                |                      |                |                   |                                                                |  |  |
|-------|---------------------------|----|-------|-------|----------------|-----------------------|----------------|----------------------|----------------|-------------------|----------------------------------------------------------------|--|--|
| D/C#I | Hex                       | D7 | D6    | D5    | D4             | D3                    | D2             | D1                   | D0             | Command           | Description                                                    |  |  |
| 0 0   | 00~0F                     | 0  | 0     | 0     | 0              | X3                    | $X_2$          | $X_1$                | $X_0$          | Set Lower Column  | Set the lower nibble of the column start address               |  |  |
|       |                           |    |       |       |                |                       |                |                      |                | Start Address for | register for Page Addressing Mode using X[3:0] as              |  |  |
|       |                           |    |       |       |                |                       |                |                      |                | Page Addressing   | data bits. The initial display line register is reset to       |  |  |
|       |                           |    |       |       |                |                       |                |                      |                | Mode              | 0000b after RESET.                                             |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   |                                                                |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | Note                                                           |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | <sup>(1)</sup> This command is only for page addressing mode   |  |  |
| 0 1   | 10 17                     | 0  | 0     | 0     | 1              | 0                     | v              | v                    | v              | Sat Higher        | Set the higher withle of the column start address              |  |  |
| 0     | 10~17                     | 0  | 0     | 0     | 1              | 0                     | $\Lambda_2$    | $\mathbf{\Lambda}_1$ | $\Lambda_0$    | Set Higher        | set the higher mode of the column start address                |  |  |
|       |                           |    |       |       |                |                       |                |                      |                | Address for Page  | data bits. The initial display line register is reset to       |  |  |
|       |                           |    |       |       |                |                       |                |                      |                | Addressing Mode   | 0000b after RESET                                              |  |  |
|       |                           |    |       |       |                |                       |                |                      |                | riddressing wode  |                                                                |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | Note                                                           |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | <sup>(1)</sup> This command is only for page addressing mode   |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   |                                                                |  |  |
| 0 2   | 20                        | 0  | 0     | 1     | 0              | 0                     | 0              | 0                    | 0              | Set Memory        | A[1:0] = 00b, Horizontal Addressing Mode                       |  |  |
| 0 4   | A[1:0]                    | *  | *     | *     | *              | *                     | *              | A <sub>1</sub>       | A <sub>0</sub> | Addressing Mode   | A[1:0] = 01b, Vertical Addressing Mode                         |  |  |
|       |                           |    |       |       |                |                       |                |                      |                | 0.2               | A[1:0] = 10b, Page Addressing Mode (RESET)                     |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | A[1:0] = 11b, Invalid                                          |  |  |
|       |                           |    |       |       |                |                       |                | 22                   |                |                   |                                                                |  |  |
| 0 2   | 21                        | 0  | 0     | 1     | 0              | 0                     | 0              | 0                    | 1              | Set Column        | Setup column start and end address                             |  |  |
| 0 4   | A[6:0]                    | 0  | $A_6$ | $A_5$ | $A_4$          | $A_3$                 | $A_2$          | $A_1$                | $A_0$          | Address           | A[6:0] : Column start address, range : 0-127d,                 |  |  |
| 0     | B[6:0]                    | 0  | $B_6$ | $B_5$ | $\mathbf{B}_4$ | <b>B</b> <sub>3</sub> | $B_2$          | $B_1$                | $B_0$          |                   | (RESET=0d)                                                     |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | R[6:0]: Column and address range : 0, 127d                     |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | (RESET - 127d)                                                 |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | (RESET = 1270)                                                 |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | Note                                                           |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | <sup>(1)</sup> This command is only for horizontal or vertical |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | addressing mode.                                               |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   |                                                                |  |  |
| 0 2   | 22                        | 0  | 0     | 1     | 0              | 0                     | 0              | 1                    | 0              | Set Page Address  | Setup page start and end address                               |  |  |
| 0 4   | A[3:0]                    | *  | *     | *     | *              | A <sub>3</sub>        | $A_2$          | $A_1$                | $A_0$          |                   | A[3:0] : Page start Address, range : 0-11d,                    |  |  |
| 0 1   | B[3:0]                    | *  | *     | *     | *              | $\mathbf{B}_3$        | $\mathbf{B}_2$ | $\mathbf{B}_1$       | $\mathbf{B}_0$ |                   | (RESET = 0d)                                                   |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   |                                                                |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | B[3:0] : Page end Address, range : 0-11d,                      |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | (RESET = 11d)                                                  |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   |                                                                |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | (1) This command is only for horizontal or worther 1           |  |  |
| 1     |                           |    |       |       |                |                       | 1              | 1                    | 1              | 1                 | Not how command is only for norizonial or vertical             |  |  |
|       |                           |    |       |       |                |                       |                |                      |                |                   | addressing mode                                                |  |  |

| Fund   | lamental     | Com            | mane                | d Tal          | ole            |                |                |                |                       |                           |                                                                                                                           |
|--------|--------------|----------------|---------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------|
| D/C#   | Hex          | D7             | D6                  | D5             | D4             | D3             | D2             | D1             | D0                    | Command                   | Description                                                                                                               |
| 0      | 40~7F        | 0              | 1                   | X <sub>5</sub> | X4             | X <sub>3</sub> | X <sub>2</sub> | X1             | <b>X</b> <sub>0</sub> | Set Display Start<br>Line | Set display RAM display start line register from 0-<br>63 using $X_5X_4X_3X_2X_1X_0$ .                                    |
|        |              |                |                     |                |                |                |                |                |                       |                           | Display start line register is reset to 000000b during RESET.                                                             |
|        |              |                |                     |                |                |                |                |                |                       |                           | <b>Note</b> <sup>(1)</sup> For display start line register up to 95, please refer to command A2h.                         |
| 0      | 81           | 1              | 0                   | 0              | 0              | 0              | 0              | 0              | 1                     | Set Contrast              | Double byte command to select one of the contrast                                                                         |
| 0      | A[7:0]       | A <sub>7</sub> | A <sub>6</sub>      | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | <b>A</b> <sub>0</sub> | Control                   | steps. Contrast increases as the value increases.<br>(RESET = 7Fh)<br>A[7:0] valid range: 01h to FFh                      |
| 0      | A0/A1        | 1              | 0                   | 1              | 0              | 0              | 0              | 0              | X <sub>0</sub>        | Set Segment Re-<br>map    | A0h, X[0]=0b: column address 0 is mapped to<br>SEG0 (RESET)                                                               |
|        |              |                |                     |                |                |                |                |                |                       |                           | A1h, X[0]=1b: column address 127 is mapped to SEG0                                                                        |
| 0<br>0 | A2<br>A[6:0] | 1<br>0         | 0<br>A <sub>6</sub> | 1<br>A5        | 0<br>A4        | 0<br>A3        | 0<br>A2        | 1<br>A1        | 0<br>A <sub>0</sub>   | Set Display Start<br>Line | Set display RAM display start line register from 0-<br>95 by A[6:0] (RESET=00h)                                           |
|        |              |                |                     |                |                |                |                |                | 5                     |                           | Note                                                                                                                      |
|        |              |                |                     |                |                |                |                |                |                       |                           | <sup>(1)</sup> In command A2h, A[6:0] from 00h to 3Fh has                                                                 |
|        |              |                |                     |                |                |                | 20             |                |                       |                           | the same effect as command 40h-7Fh.                                                                                       |
| 0      | A4/A5        | 1              | 0                   | 1              | 0              | 0              | 1              | 0              | $\mathbf{X}_0$        | Entire Display ON         | A4h, X <sub>0</sub> =0b: Resume to RAM content display                                                                    |
|        |              |                |                     |                |                |                |                | 9              |                       | 1 5                       | (RESET)                                                                                                                   |
|        |              |                |                     |                |                |                |                |                |                       |                           | Output follows RAM content                                                                                                |
|        |              |                |                     |                |                |                |                |                |                       |                           | A5h Xo=1b: Entire display ON                                                                                              |
|        |              |                |                     |                |                |                |                |                |                       |                           | Output ignores RAM content                                                                                                |
|        | A ( ) A 7    | 1              | 0                   | 1              | 0              | 0              | 1              | 1              | v                     | G. /                      |                                                                                                                           |
| 0      | A6/A7        | 1              | 0                   | 1              | 0              | 0              | 1              | 1              | $\mathbf{X}_0$        | Set<br>Normal/Inverse     | A6h, $X[0]=0b$ : Normal display (RESE1)<br>0 in RAM: OFF in display panel                                                 |
|        |              |                |                     |                |                |                |                |                |                       | Display                   | 1 in RAM: ON in display panel                                                                                             |
|        |              |                |                     |                |                |                |                |                |                       |                           | A7h X[0]-1h Inverse display                                                                                               |
|        |              |                |                     |                |                |                |                |                |                       |                           | 0 in RAM: ON in display panel                                                                                             |
|        |              |                |                     |                |                |                |                |                |                       |                           | 1 in RAM: OFF in display panel                                                                                            |
| 0      | A8           | 1              | 0                   | 1              | 0              | 1              | 0              | 0              | 0                     | Set Multiplex             | Set MUX ratio to N+1 MUX                                                                                                  |
| 0      | A[6:0]       | *              | A <sub>6</sub>      | A <sub>5</sub> | $A_4$          | A <sub>3</sub> | $A_2$          | A <sub>1</sub> | A <sub>0</sub>        | Ratio                     |                                                                                                                           |
|        |              |                |                     |                |                |                |                |                |                       |                           | N=A[6:0]: from 16MUX to 96MUX.                                                                                            |
|        |              |                |                     |                |                |                |                |                |                       |                           | $\begin{array}{l} \text{RESE1} = 101 1111b (i.e. 95d, 96MUX) \\ \text{A[6:0] from 0 to 14 are invalid entry} \end{array}$ |
|        |              |                |                     |                |                |                |                |                |                       |                           |                                                                                                                           |
| 0      | AD           | 1              | 0                   | 1              | 0              | 1              | 1              | 0              | 1                     | External or               | Select external or internal Incr.                                                                                         |
| 0      | A[4]         | 0              | 0                   | 0              | A <sub>4</sub> | 0              | 0              | 0              | 0                     | internal I <sub>REF</sub> | A[4] = '0' Select external I <sub>REF</sub> (RESET)                                                                       |
|        |              |                |                     |                |                |                |                |                |                       | Selection                 | $A[4] = '1'$ Enable internal $I_{REF}$ during display ON                                                                  |
|        |              |                |                     |                |                |                |                |                |                       |                           | Note                                                                                                                      |
| 1      |              |                |                     |                |                |                |                |                |                       |                           | details.                                                                                                                  |
|        |              |                |                     |                |                |                |                |                |                       |                           |                                                                                                                           |

| Fund   | Fundamental Command Table |                     |                     |         |                     |                     |                     |                     |                     |                                                              |                                                                                                                                                                                                                                                                                     |  |  |
|--------|---------------------------|---------------------|---------------------|---------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| D/C#   | Hex                       | D7                  | D6                  | D5      | D4                  | D3                  | D2                  | D1                  | D0                  | Command                                                      | Description                                                                                                                                                                                                                                                                         |  |  |
| 0      | AE/AF                     | 1                   | 0                   | 1       | 0                   | 1                   | 1                   | 1                   | X <sub>0</sub>      | Set Display<br>ON/OFF                                        | AEh, X[0]=0b: Display OFF (sleep mode)<br>(RESET)                                                                                                                                                                                                                                   |  |  |
|        |                           |                     |                     |         |                     |                     |                     |                     |                     |                                                              | AFh X[0]=1b: Display ON in normal mode                                                                                                                                                                                                                                              |  |  |
| 0      | B0~BB                     | 1                   | 0                   | 1       | 1                   | X <sub>3</sub>      | X <sub>2</sub>      |                     | X <sub>0</sub>      | Set Page Start<br>Address for Page<br>Addressing Mode        | Set GDDRAM Page Start Address<br>(PAGE0~PAGE11) for Page Addressing Mode<br>using X[3:0].<br><b>Note</b><br><sup>(1)</sup> This command is only for page addressing mode                                                                                                            |  |  |
| 0      | C0/C8                     | 1                   | 1                   | 0       | 0                   | X <sub>3</sub>      | 0                   | 0                   | 0                   | Set COM Output<br>Scan Direction                             | C0h, X[3]=0b: normal mode (RESET) Scan from<br>COM0 to COM[N –1]<br>C8h, X[3]=1b: remapped mode. Scan from<br>COM[N-1] to COM0<br>Where N is the Multiplex ratio.                                                                                                                   |  |  |
| 0<br>0 | D3<br>A[6:0]              | 1<br>*              | 1<br>A <sub>6</sub> | 0<br>A5 | 1<br>A4             | 0<br>A3             | 0<br>A2             | 1<br>A1             | 1<br>A <sub>0</sub> | Set Display Offset                                           | Set vertical shift by COM from 0d~95d<br>The value is reset to 00h after RESET.                                                                                                                                                                                                     |  |  |
| 0<br>0 | D5<br>A[7:0]              | 1<br>A <sub>7</sub> | 1<br>A <sub>6</sub> | 0<br>A5 | 1<br>A <sub>4</sub> | 0<br>A <sub>3</sub> | 1<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | 1<br>A <sub>0</sub> | Set Display Clock<br>Divide<br>Ratio/Oscillator<br>Frequency | A[3:0]: Define divide ratio (D) of display clock<br>(DCLK) (i.e. 1, 2, 4, 8256)<br>(RESET is 0000b, i.e. divide ratio = 1)                                                                                                                                                          |  |  |
|        |                           |                     |                     |         |                     |                     | G                   | 0                   |                     | 01                                                           | A[7:4] : Set the Oscillator Frequency, F <sub>OSC</sub> .<br>Oscillator Frequency increases with the<br>value of A[7:4] and vice versa.<br>(RESET is 0000b)<br>Range: 0000b~1111b.                                                                                                  |  |  |
| 0<br>0 | D9<br>A[7:0]              | 1<br>A <sub>7</sub> | 1<br>A <sub>6</sub> | 0<br>A5 | 1<br>A <sub>4</sub> | 1<br>A <sub>3</sub> | 0<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | 1<br>A <sub>0</sub> | Set Pre-charge<br>Period                                     | A[3:0] : Phase 1 period of up to 15 DCLK<br>Clock 0 is invalid entry<br>(RESET=2h)                                                                                                                                                                                                  |  |  |
|        |                           |                     |                     |         |                     |                     |                     |                     |                     |                                                              | A[7:4] : Phase 2 period of up to 15 DCLK<br>Clock 0 is invalid entry<br>(RESET=2h)                                                                                                                                                                                                  |  |  |
| 0<br>0 | DA<br>A[5:4]              | 1<br>0              | 1<br>0              | 0<br>A5 | 1<br>A4             | 1<br>0              | 0<br>0              | 1<br>1              | 0<br>0              | Set SEG Pins<br>Hardware<br>Configuration                    | A[4]=0b, Sequential SEG pin configuration<br>A[4]=1b (RESET), Alternative (odd/even) SEG<br>pin configuration                                                                                                                                                                       |  |  |
|        |                           |                     |                     |         |                     |                     |                     |                     |                     |                                                              | A[5]=0b (RESET), Disable SEG Left/Right remap<br>A[5]=1b, Enable SEG Left/Right remap                                                                                                                                                                                               |  |  |
| 00     | DB<br>A[5:3]              | 1<br>0              | 1<br>0              | 0<br>A5 | 1<br>A <sub>4</sub> | 1<br>A <sub>3</sub> | 0<br>0              | 1<br>0              | 1<br>0              | Set V <sub>COMH</sub> select<br>Level                        | Set COM select voltage level.                                                                                                                                                                                                                                                       |  |  |
|        |                           |                     |                     |         |                     |                     |                     |                     |                     |                                                              | A[5:3]         Hex         V comm deselect level           code $000b$ $00h$ ~ $0.43 \times V_{CC}$ 010b         10h         ~ $0.57 \times V_{CC}$ $100b$ $20h$ ~ $0.67 \times V_{CC}$ 110b         30h         ~ $0.78 \times V_{CC}$ (RESET) $111b$ $38h$ ~ $0.84 \times V_{CC}$ |  |  |

| r unuamental   | Com | mano | d Tal | ble |     |         |     |     |                     |                                                                                                                                                                                                                                                                                                                                  |
|----------------|-----|------|-------|-----|-----|---------|-----|-----|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C#Hex        | D7  | D6   | D5    | D4  | D3  | D2      | D1  | DO  | Command             | Description                                                                                                                                                                                                                                                                                                                      |
| 0 E3           | 1   | 1    | 1     | 0   | 0   | 0       | 1   | 1   | NOP                 | Command for no operation                                                                                                                                                                                                                                                                                                         |
| 0 FD<br>0 A[2] |     | 1 0  | 1 0   | 1 1 | 1 0 | 1<br>A2 | 0 1 | 1 0 | Set Command<br>Lock | A[2]: MCU protection status.         A[2] = 0b, Unlock OLED driver IC MCU interface from entering command (RESET)         A[2] = 1b, Lock OLED driver IC MCU interface from entering command         Note <sup>(1)</sup> The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command |
|                | ,   |      |       | R   |     | 3       | 5   |     |                     | al to ation                                                                                                                                                                                                                                                                                                                      |

| Scrol | ling Co | mmai      | nd Ta     | ble |       |                |                |                |                  |                   |                                                                    |
|-------|---------|-----------|-----------|-----|-------|----------------|----------------|----------------|------------------|-------------------|--------------------------------------------------------------------|
| D/C#  | Hex     | <b>D7</b> | <b>D6</b> | D5  | D4    | D3             | <b>D2</b>      | D1             | <b>D</b> 0       | Command           | Description                                                        |
| 0     | 26/27   | 0         | 0         | 1   | 0     | 0              | 1              | 1              | X <sub>0</sub>   | Continuous        | 26h, X[0]=0, Right Horizontal Scroll                               |
| 0     | A[7.0]  | Ő         | Ő         | 0   | õ     | Õ              | 0              | 0              | 0                | Horizontal Scroll | 27h, X[0]=1. Left Horizontal Scroll                                |
| Ő     | B[3.0]  | *         | *         | *   | *     | B <sub>2</sub> | B <sub>2</sub> | B <sub>1</sub> | Bo               | Setup             |                                                                    |
| Ő     | C[2.0]  | *         | *         | *   | *     | *              | $C_2$          | $C_1$          | $C_0$            | - · · · · I       | Horizontal scroll by 1 column                                      |
| 0     | D[3.0]  | *         | *         | *   | *     | D2             | $D_2$          | $D_1$          | $D_0$            |                   |                                                                    |
| Ő     | F[7.0]  | 0         | 0         | 0   | 0     | 0              | 0              | 0              | 0                |                   |                                                                    |
| 0     | E[7.0]  | *         | E         | E   | E.    | E <sub>2</sub> | E <sub>2</sub> | E.             | E                |                   | A[7:0] : Dummy byte (Set as 00h)                                   |
| 0     | G[6:0]  | *         | G         | G   | $G_4$ | G              | G              | G              | $\mathbf{G}_{0}$ |                   |                                                                    |
| U     | 0[0.0]  |           | 00        | 03  | 04    | 03             | 02             | OI             | 00               |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | B[3:0] : Define start page address                                 |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | 0000b – PAGE0 0100b – PAGE4 1000b – PAGE8                          |
|       |         |           |           |     |       |                |                |                |                  |                   | 0001b – PAGE1 0101b – PAGE5 1001b – PAGE9                          |
|       |         |           |           |     |       |                |                |                |                  |                   | 0010b – PAGE2 0110b – PAGE6 1010b – PAGE10                         |
|       |         |           |           |     |       |                |                |                |                  |                   | 0011b – PAGE3 0111b – PAGE7 1011b – PAGE11                         |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | C[2:0] : Set time interval between each scroll step in             |
|       |         |           |           |     |       |                |                |                |                  |                   | terms of frame frequency                                           |
|       |         |           |           |     |       |                |                |                |                  |                   | 000h 6 frames 100h 3 frames                                        |
|       |         |           |           |     |       |                |                |                |                  |                   | 1000 - 0 frames $1000 - 5$ frames $101b + 4$ frames                |
|       |         |           |           |     |       |                |                |                |                  |                   | $010b - 52 \text{ frames} \qquad 110b - 5 \text{ frames}$          |
|       |         |           |           |     |       |                |                |                |                  |                   | 0100 - 64 frames $1100 - 5$ frames                                 |
|       |         |           |           |     |       |                |                |                |                  |                   | $0110 - 128 \text{ frames} \qquad 1110 - 2 \text{ frames}$         |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | D[3:0] : Define end page address                                   |
|       |         |           |           |     |       |                |                |                |                  |                   | D[0.0] . Define end page address                                   |
|       |         |           |           |     |       |                |                |                |                  |                   | 0000b - PAGE0 0100b - PAGE4 1000b - PAGE8                          |
|       |         |           |           |     |       |                |                |                |                  |                   | 0001b - PAGE1 0101b - PAGE5 1001b - PAGE9                          |
|       |         |           |           |     |       |                |                | -0             | 5                |                   | 0010b - PAGE2 0110b - PAGE6 1010b - PAGE10                         |
|       |         |           |           |     |       |                |                |                |                  |                   | 0011b - PAGE3 0111b - PAGE7 1011b - PAGE11                         |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | E[7:0] : Dummy byte (Set as 00h)                                   |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | F[7:0]: Define the start column address (RESET = 00h)              |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | G[7:0]: Define the end column address (RESE1 = 7Fn)                |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   | Notes:                                                             |
|       |         |           |           |     |       |                |                |                |                  |                   | <sup>(1)</sup> The value of D[3:0] must be larger than or equal to |
|       |         |           |           |     |       |                |                |                |                  |                   | B[3:0]                                                             |
|       |         |           |           |     |       |                |                |                |                  |                   | - [0.0]                                                            |
|       |         |           |           |     |       |                |                |                |                  |                   | $^{(2)}$ The value of G[6:0] must be larger than or equal to       |
|       |         |           |           |     |       |                |                |                |                  |                   | F[6:0]                                                             |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |
|       |         |           |           |     |       |                |                |                |                  |                   |                                                                    |

| Scrol        | ling Co | mmai | nd Ta | ble            |           |                       |       |                |                | I                 |                                                                                                                           |
|--------------|---------|------|-------|----------------|-----------|-----------------------|-------|----------------|----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|
| <b>D/C</b> # | Hex     | D7   | D6    | D5             | <b>D4</b> | D3                    | D2    | <b>D1</b>      | <b>D</b> 0     | Command           | Description                                                                                                               |
| 0            | 29/2A   | 0    | 0     | 1              | 0         | 1                     | 0     | $\mathbf{X}_1$ | $X_0$          | Continuous        | 29h, X <sub>1</sub> X <sub>0</sub> =01b : Vertical and Right Horizontal Scroll                                            |
| 0            | A[0]    | *    | *     | *              | *         | *                     | *     | *              | A <sub>0</sub> | Vertical and      | 2Ah, X <sub>1</sub> X <sub>0</sub> =10b : Vertical and Left Horizontal Scroll                                             |
| 0            | B[3:0]  | *    | *     | *              | *         | <b>B</b> <sub>3</sub> | $B_2$ | $B_1$          | B <sub>0</sub> | Horizontal Scroll |                                                                                                                           |
| 0            | C[2:0]  | *    | *     | *              | *         | *                     | C2    | C1             | $C_0$          | Setup             |                                                                                                                           |
| 0            | D[3:0]  | *    | *     | *              | *         | <b>D</b> <sub>3</sub> | $D_2$ | $D_1$          | $D_0$          |                   | A[0] : Set number of column scroll offset                                                                                 |
| 0            | E[7:0]  | 0    | 0     | 0              | 0         | E <sub>3</sub>        | $E_2$ | $E_1$          | E <sub>0</sub> |                   | 0b No horizontal scroll                                                                                                   |
| 0            | F[6:0]  | *    | $F_6$ | F5             | F4        | F3                    | $F_2$ | $F_1$          | F <sub>0</sub> |                   | 1b Horizontal scroll by 1 column                                                                                          |
| 0            | G[6:0]  | *    | $G_6$ | G <sub>5</sub> | $G_4$     | G3                    | $G_2$ | $G_1$          | $G_0$          |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | B[3:0] : Define start page address                                                                                        |
|              |         |      |       |                |           |                       |       |                |                |                   | 0000h BACEO 0100h BACEA 1000h BACES                                                                                       |
|              |         |      |       |                |           |                       |       |                |                |                   | 00000 - FAGE0 01000 - FAGE4 10000 - FAGE8                                                                                 |
|              |         |      |       |                |           |                       |       |                |                |                   | $\begin{array}{c} 00010 - 1 AOE1 01010 - 1 AOE5 10010 - 1 AOE5 \\ 0010b  PAGE2 0110b  PAGE6 1010b  PAGE10 \\ \end{array}$ |
|              |         |      |       |                |           |                       |       |                |                |                   | 00100 - 1AOE2 01100 - 1AOE0 10100 - 1AOE10<br>0011b PACE3 0111b PACE7 1011b PACE11                                        |
|              |         |      |       |                |           |                       |       |                |                |                   | 00110-1A0E5 01110-1A0E7 10110-1A0E11                                                                                      |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | C[2:0] : Set time interval between each scroll step in                                                                    |
|              |         |      |       |                |           |                       |       |                |                |                   | terms of frame frequency                                                                                                  |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | 000b – 6 frames 100b – 3 frames                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | 001b – 32 frames 101b – 4 frames                                                                                          |
|              |         |      |       |                |           |                       |       |                |                |                   | 010b – 64 frames 110b – 5 frames                                                                                          |
|              |         |      |       |                |           |                       |       |                |                |                   | 011b – 128 frames 111b – 2 frames                                                                                         |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                | RC             |                   | D[3:0] : Define end page address                                                                                          |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | 0000b – PAGE0 0100b – PAGE4 1000b – PAGE8                                                                                 |
|              |         |      |       |                |           |                       |       |                |                |                   | 0001b – PAGE1 0101b – PAGE5 1001b – PAGE9                                                                                 |
|              |         |      |       |                |           |                       |       |                |                |                   | 0010b – PAGE2 0110b – PAGE6 1010b – PAGE10                                                                                |
|              |         |      |       |                |           |                       |       |                |                |                   | 0011b – PAGE3 0111b – PAGE7 1011b – PAGE11                                                                                |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | E[7:4]: (Set as 0000b)                                                                                                    |
|              |         |      |       |                |           |                       |       |                |                |                   | E[5:0]: vertical scrolling offset<br>a g $E[3:0] = 0001b$ refer to offset = 1 row                                         |
|              |         |      |       |                |           |                       |       |                |                |                   | E[3:0] = 1111b refer to offset = 15 rows                                                                                  |
|              |         |      |       |                |           |                       |       |                |                |                   | E[5.0] = 11110 fefer to offset = 15 fows                                                                                  |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | F[6:0]: Define the start column address (RESET = 00h)                                                                     |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | G[6:0] : Define the end column address (RESET = 7Fh)                                                                      |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   | Note                                                                                                                      |
|              |         |      |       |                |           |                       |       |                |                |                   | <sup>(1)</sup> The value of $D[3:0]$ must be larger than or equal to                                                      |
|              |         |      |       |                |           |                       |       |                |                |                   | R[3:0]                                                                                                                    |
|              |         |      |       |                |           |                       |       |                |                |                   | (2) The value of $C[6:0]$ must be larger than a second t                                                                  |
|              |         |      |       |                |           |                       |       |                |                |                   | $\sim$ The value of $G[0:0]$ must be larger than or equal to                                                              |
|              |         |      |       |                |           |                       |       |                |                |                   | 1.[0:0]                                                                                                                   |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |
|              |         |      |       |                |           |                       |       |                |                |                   |                                                                                                                           |

| Scrol | olling Command Table   |       |               |               |               |               |               |               |               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-------|------------------------|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| D/C#  | Hex                    | D7    | <b>D6</b>     | D5            | D4            | D3            | D2            | D1            | <b>D0</b>     | Command                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 0     | 2E                     | 0     | 0             | 1             | 0             | 1             | 1             | 1             | 0             | Deactivate scroll          | Stop scrolling that is configured by command<br>26h/27h/29h/2Ah.<br>Note<br>(1) After sending 2Eh command to deactivate the scrolling<br>action, the ram data needs to be rewritten.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 0     | 2F                     | 0     | 0             | 1             | 0             | 1             | 1             | 1             | 1             | Activate scroll            | Start scrolling that is configured by the scrolling setup<br>commands : 26h/27h/29h/2Ah with the following valid<br>sequences:<br>Valid command sequence 1: 26h; 2Fh.<br>Valid command sequence 2: 27h; 2Fh.<br>Valid command sequence 3: 29h; 2Fh.<br>Valid command sequence 4: 2Ah; 2Fh.<br>For example, if "26h; 2Ah; 2Fh." commands are issued,<br>the setting in the last scrolling setup command, i.e. 2Ah in<br>this case, will be executed. In other words, setting in the<br>last scrolling setup command overwrites the setting in the<br>previous scrolling setup commands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|       | A3<br>A[6:0]<br>B[6:0] | 1 * * | 0<br>A6<br>B6 | 1<br>As<br>Bs | 0<br>A4<br>B4 | 0<br>A3<br>B3 | 0<br>A2<br>B2 | 1<br>A1<br>B1 | 1<br>A0<br>B0 | Set Vertical Scrol<br>Area | <ul> <li>IA[6:0] : Set No. of rows in top fixed area. The No. of rows in top fixed area is referenced to the top of the GDDRAM (i.e. row 0). [RESET = 0]</li> <li>B[6:0] : Set No. of rows in scroll area. This is the number of rows to be used for vertical scrolling. The scroll area starts in the first row below the top fixed area. [RESET = 96]</li> <li>Note <ul> <li>(1) A[6:0]+B[6:0] &lt;= MUX ratio</li> <li>(2) B[6:0] &lt;= MUX ratio</li> <li>(3a) Vertical scrolling offset (E[6:0] in 29h/2Ah) &lt; B[6:0]</li> <li>(3b) Set Display Start Line (X<sub>6</sub>X<sub>5</sub>X<sub>4</sub>X<sub>3</sub>X<sub>2</sub>X<sub>1</sub>X<sub>0</sub> of 40h~7Fh or A[6:0] of A2h) &lt; B[6:0]</li> <li>(4) The last row of the scroll area shifts to the first row of the scroll area.</li> <li>(5) For 96d MUX display <ul> <li>A[6:0] = 0, B[6:0] = 96 : whole area scrolls</li> <li>A[6:0] = 0, B[6:0] &lt; 96 : central area scrolls</li> <li>A[6:0] + B[6:0] &lt; 96 : central area scrolls</li> <li>A[6:0] + B[6:0] = 96 : bottom area scrolls</li> </ul> </li> <li>(6) When vertical scrolling is enabled by command 29h / 2Ah, the vertical scroll area is defined by this command.</li> </ul></li></ul> |  |  |

| Advar | nce Graj | phic C | Comm           | and T          | able   |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|----------|--------|----------------|----------------|--------|----------------|------------------|----------------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C#  | Hex      | D7     | D6             | D5             | D4     | D3             | D2               | <b>D1</b>      | <b>D0</b>        | Command        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0     | 2C/2D    | 0      | 0              | 1              | 0      | 1              | 1                | 0              | $X_0$            | Content Scroll | 2Ch, X[0]=0, Right Horizontal Scroll by one column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | A[7:0]   | 0      | 0              | 0              | 0      | 0              | 0                | 0              | 0                | Setup          | 2Dh, X[0]=1, Left Horizontal Scroll by one column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0     | B[3:0]   | *      | *              | *              | *      | $B_3$          | $B_2$            | $B_1$          | $B_0$            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0     | C[7:0]   | 0      | 0              | 0              | 0      | 0              | 0                | 0              | 1                |                | Horizontal scroll by 1 column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0     | D[3:0]   | *      | *              | *              | *      | $D_3$          | $D_2$            | $D_1$          | $D_0$            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0     | E[7:0]   | 0      | 0              | 0              | 0      | 0              | 0                | 0              | 0                |                | A[7:0] : Dummy byte (Set as 00h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | F[6:0]   | *      | F <sub>6</sub> | F5             | $F_4$  | F <sub>3</sub> | F <sub>2</sub>   | $\mathbf{F}_1$ | Fo               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0     | G[6:0]   | *      | G <sub>6</sub> | G <sub>5</sub> | $G_4$  | G <sub>3</sub> | $\overline{G_2}$ | $G_1$          | $\mathbf{G}_{0}$ |                | B[3:0] · Dafina start paga addrass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | - [ ]    |        | - 0            | - 5            |        | - 5            | - 2              | - 1            | - 0              |                | D[5.0]. Define start page address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |          |        |                |                |        |                |                  |                |                  |                | 0000b - PAGE0         0100b - PAGE4         1000b - PAGE8           0001b - PAGE1         0101b - PAGE5         1001b - PAGE9           0010b - PAGE2         0110b - PAGE6         1010b - PAGE10           0011b - PAGE3         0111b - PAGE7         1011b - PAGE11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |          |        |                |                |        |                |                  |                |                  |                | C[7:0] : Dummy byte (Set as 01h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                |                  |                |                  |                | D[3:0] : Define end page address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |          |        |                |                |        |                |                  |                |                  |                | 0000b - PAGE0 0100b - PAGE4 1000b - PAGE8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |          |        |                |                |        |                |                  |                |                  |                | $\frac{100000}{10000} = \frac{10000}{10000} = \frac{10000}{1000} = \frac{10000}{10000} = \frac{10000}{10000} = \frac{10000}{1$ |
|       |          |        |                |                |        |                |                  |                |                  |                | 0010b - PAGE2 0110b - PAGE6 1010b - PAGE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |          |        |                |                |        |                |                  |                |                  |                | 0011b – PAGE3 0111b – PAGE7 1011b – PAGE11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                |                  |                |                  |                | E[7:0] : Dummy byte (Set as 00h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                |                  |                |                  |                | F[6:0] : Define the start column address (RESET – 00h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |          |        |                |                |        |                |                  |                |                  |                | [0.0]. Define the start column address (RESET = 001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                | 0.               |                |                  |                | G[6:0]: Define the end column address (RESET = 7Fh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                | $\sim$ |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                |                  |                |                  |                | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |          |        |                |                |        |                |                  |                |                  |                | <sup>(1)</sup> The value of $D[3:0]$ must be larger than or equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |          |        |                |                |        |                |                  |                |                  |                | B[3:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |          |        |                |                |        |                |                  |                |                  |                | <sup>(2)</sup> The value of G[6:0] must be larger than F[6:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |          |        |                |                |        |                |                  |                |                  |                | <sup>(3)</sup> A delay time of $2/FrameFred$ must be set if sending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |          |        |                |                |        |                |                  |                |                  |                | the command of 2Ch / 2Dh consecutively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |          |        |                |                |        |                |                  |                |                  |                | the command of 2011/2Dir consecutivery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |          |        |                |                |        |                |                  |                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Note
(1) "\*" stands for "Don't care".

| Bit Pattern                       | Command              | Descrip | otion                                    |
|-----------------------------------|----------------------|---------|------------------------------------------|
| $D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$ | Status Register Read | D[7]:   | Reserved                                 |
|                                   | C C                  | D[6] :  | "1" for display OFF / "0" for display ON |
|                                   |                      | D[5]:   | Reserved                                 |
|                                   |                      | D[4] :  | Reserved                                 |
|                                   |                      | D[3] :  | Reserved                                 |
|                                   |                      | D[2] :  | Reserved                                 |
|                                   |                      | D[1]:   | Reserved                                 |
|                                   |                      | D[0] :  | Reserved                                 |

#### Table 1-2 : Read Command Table

#### Note

<sup>(1)</sup> Patterns other than those given in the Command Table are prohibited to enter the chip as a command; as unexpected results can occur.

#### 1.1 Data Read / Write

To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel mode. No data read is provided in serial mode operation.

In normal data read mode the GDDRAM column address pointer will be increased automatically by one after each data read.

Also, a dummy read is required before the first data read.

To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both 6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode. The GDDRAM column address pointer will be increased automatically by one after each data write.

| D/C# | <b>R/W# (WR#)</b> | Comment       | Address Increment |
|------|-------------------|---------------|-------------------|
| 0    | 0                 | Write Command | No                |
| 0    | 1                 | Read Status   | No                |
| 1    | 0                 | Write Data    | Yes               |
| 1    | 1                 | Read Data     | Yes               |

 Table 1-3 : Address increment table (Automatic)

# **2** COMMAND DESCRIPTIONS

### 2.1 Fundamental Command

#### 2.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh)

This command specifies the lower nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Table 1-1 and Section 2.1.3 for details.

#### 2.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~17h)

This command specifies the higher nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Table 1-1 and Section 2.1.3 for details.

#### 2.1.3 Set Memory Addressing Mode (20h)

There are 3 different memory addressing mode in SSD1317: page addressing mode, horizontal addressing mode and vertical addressing mode. This command sets the way of memory addressing into one of the above three modes. In there, "COL" means the graphic display data RAM column.

#### Page addressing mode (A[1:0]=10b)

In page addressing mode, after the display RAM is read / written, the column address pointer is increased automatically by 1 and page address pointer is not changed. Users have to set the new page and column addresses in order to access the next page RAM content. The sequence of movement of the PAGE and column address point for page addressing mode is shown in Figure 2-1.

|        | COL0 | COL 1 | <br>COL 126 | COL 127 |
|--------|------|-------|-------------|---------|
| PAGE0  |      |       |             |         |
| PAGE1  |      |       |             |         |
|        |      |       |             |         |
| PAGE10 |      |       |             | -       |
| PAGE11 |      |       |             |         |

Figure 2-1 : Address Pointer Movement of Page addressing mode

In normal display data RAM read or write and page addressing mode, the following steps are required to define the starting RAM access pointer location:

- Set the page start address of the target display location by command B0h to BBh.
- Set the lower start column address of pointer by command 00h~0Fh.
- Set the upper start column address of pointer by command 10h~17h.

For example, if the page address is set to B2h, lower column address is 03h and upper column address is 10h, then that means the starting column is SEG3 of PAGE2. The RAM access pointer is located as shown in Figure 2-2. The input data byte will be written into RAM position of column 3.

#### Figure 2-2 : Example of GDDRAM access pointer setting in Page Addressing Mode (No row and column-



#### Horizontal addressing mode (A[1:0]=00b)

In horizontal addressing mode, after the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and page address pointer is increased by 1. The sequence of movement of the page and column address point for horizontal addressing mode is shown in Figure 2-3. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 2-3.)

|        | COL0         | COL 1 | <br>COL 126 | COL 127 |  |
|--------|--------------|-------|-------------|---------|--|
| PAGE0  |              |       |             | 1       |  |
| PAGE1  |              |       |             | 1       |  |
| :      | $\mathbf{+}$ |       |             | 1       |  |
| PAGE10 |              |       |             | 1       |  |
| PAGE11 | $\downarrow$ |       |             | 4       |  |
|        |              |       |             |         |  |

Figure 2-3 : Address Pointer Movement of Horizontal addressing mode

#### Vertical addressing mode: (A[1:0]=01b)

In vertical addressing mode, after the display RAM is read / written, the page address pointer is increased automatically by 1. If the page address pointer reaches the page end address, the page address pointer is reset to page start address and column address pointer is increased by 1. The sequence of movement of the page address pointers reach the end addressing mode is shown in Figure 2-4. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 2-4.)





In normal display data RAM read or write and horizontal / vertical addressing mode, the following steps are required to define the RAM access pointer location:

• Set the column start and end address of the target display location by command 21h.

• Set the page start and end address of the target display location by command 22h.

Example is shown in Figure 2-5.

# 2.1.4 Set Column Address (21h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command 20h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

# 2.1.5 Set Page Address (22h)

This triple byte command specifies page start address and end address of the display data RAM. This command also sets the page address pointer to page start address. This pointer is used to define the current read/write page address in graphic display data RAM. If vertical address increment mode is enabled by command 20h, after finishing read/write one page data, it is incremented automatically to the next page address. Whenever the page address pointer finishes accessing the end page address, it is reset back to start page address.

The figure below shows the way of column and page address pointer movement through the example: column start address is set to 2 and column end address is set to 97, page start address is set to 1 and page end address is set to 2; Horizontal address increment mode is enabled by command 20h. In this case, the graphic display data RAM column accessible range is from column 2 to column 97 and from page 1 to page 2 only. In addition, the column address pointer is set to 2 and page address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (*solid line in Figure 2-5*). Whenever the column address pointer finishes accessing the end column 97, it is reset back to column 2 and page address is automatically increased by 1 (*solid line in Figure 2-5*). While the end page 2 and end column 97 RAM location is accessed, the page address is reset back to 1 and the column address is reset back to 2 (*dotted line in Figure 2-5*).

|        | Col 0 | Col 1 | Col 2 | <br> | Col 97 | Col98 | <br>Col 126 | Col 127 |
|--------|-------|-------|-------|------|--------|-------|-------------|---------|
| PAGE0  |       |       |       |      |        |       |             |         |
| PAGE1  |       |       |       |      |        |       |             |         |
| PAGE2  |       |       |       |      |        |       |             |         |
| :      |       |       | NS-   | <br> |        |       |             |         |
| PAGE10 |       |       |       |      |        |       |             |         |
| PAGE11 |       |       |       |      |        |       |             |         |

Figure 2-5: Example of Column and Row Address Pointer Movement

# 2.1.6 Set Display Start Line (40h~7Fh)

This command sets the Display Start Line register to determine starting address of display RAM, by selecting a value from 0 to 63. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM row 1 is mapped to COM0 and so on. Refer to Table 2-1 for more illustrations. For display start line register setting up to 95, please refer to command A2h.

#### 2.1.7 Set Contrast Control (81h)

This command sets the Contrast Setting of the display, with a valid range from 01h to FFh. The segment output current increases as the contrast step value increases

#### 2.1.8 Set Segment Re-map (A0h/A1h)

This command changes the mapping between the display data column address and the segment driver. It allows flexibility in OLED module design. Please refer to Table 1-1.

This command only affects subsequent data input. Data already stored in GDDRAM will have no changes.

# 2.1.9 Set Display Start Line (A2h)

This double byte command sets the Display Start Line register to determine starting address of display RAM, by selecting a value from 0 to 95. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM row 1 is mapped to COM0 and so on. Refer to Table 2-1 for more illustrations. The value setting from 0 to 63 has the same effect as single byte command 40h-7Fh.

### 2.1.10 Entire Display ON (A4h/A5h)

A4h command enable display outputs according to the GDDRAM contents.

If A5h command is issued, then by using A4h command, the display will resume to the GDDRAM contents. In other words, A4h command resumes the display from entire display "ON" stage.

A5h command forces the entire display to be "ON", regardless of the contents of the display data RAM.

### 2.1.11 Set Normal/Inverse Display (A6h/A7h)

This command sets the display to be either normal or inverse. In normal display a RAM data of 1 indicates an "ON" pixel while in inverse display a RAM data of 0 indicates an "ON" pixel.

#### 2.1.12 Set Multiplex Ratio (A8h)

This command switches the default 64 multiplex mode to any multiplex ratio, ranging from 16 to 95. The output pads COM0~COM95 will be switched to the corresponding COM signal.

# 2.1.13 External or internal IREF Selection (ADh)

corporation This double byte command supports External or Internal I<sub>REF</sub> Selection.

Default A[4] = '0', Select external I<sub>REF</sub>.

When  $A[4] = 1^{\circ}$ , Select internal I<sub>REF</sub> during display ON.

#### 2.1.14 Set Display ON/OFF (AEh/AFh)

These single byte commands are used to turn the OLED panel display ON or OFF. When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those circuits will be turned OFF and the segment and common output are in V<sub>ss</sub>

- state and high impedance state, respectively. These commands set the display to one of the two states:
  - AEh : Display OFF
  - AFh : Display ON





#### 2.1.15 Set Page Start Address for Page Addressing Mode (B0h~BBh)

This command positions the page start address from 0 to 11 in GDDRAM under Page Addressing Mode. Please refer to Table 1-1 and Section 2.1.3 for details.

# 2.1.16 Set COM Output Scan Direction (C0h/C8h)

This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module design. Additionally, the display will show once this command is issued. For example, if this command is sent during normal display then the graphic display will be vertically flipped immediately. Please refer to Table 2-3 for details.

#### 2.1.17 Set Display Offset (D3h)

This is a double byte command. The second command specifies the mapping of the display start line to one of COM0~COM95 (assuming that COM0 is the display start line then the display start line register is equal to 0).

For example, to move the COM16 towards the COM0 direction by 16 lines the 7-bit data in the second byte should be given as 0010000b. To move in the opposite direction by 16 lines the 7-bit data should be given by 96 - 16, so the second byte would be 1010000b. The following two tables (Table 2-1 and Table 2-2) show the examples of setting the command C0h/C8h and D3h.

| Normal         Normal         Normal         Normal         Normal         Normal         Cold Status         Cold Status <thcold status<="" th="">         Cold Status</thcold>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | 96       | ç     | 96      | 9       | 6       | 8       | 0       | 8       | 0       | 6      | 30      | Set MUX ratio(A8h)                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------|-------|---------|---------|---------|---------|---------|---------|---------|--------|---------|-----------------------------------|
| Hadware         0         8         0         Despire year (Day)           COM0         Row0         RAM8         Row0         RAM8         Row0         RAM8         Row0         RAM8           COM0         Row1         RAM8         Row0         RAM8         Row0         RAM8         Row1         RAM8         Row0         RAM8         Row1         RAM1         Row2         RAM1         Row3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | No    | rmal     | Nor   | rmal    | Nor     | mal     | Nor     | mal     | Nor     | mal     | Nor    | mal     | COM Normal / Remapped (C0h / C8h) |
| pin name         0         0         8         Display start line (A2)           COMM         Revol         RAMB         Revol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hardware |       | 0        |       | 8       | (       | )       | (       | )       | {       | 3       |        | 0       | Display offset (D3h)              |
| COM0         Rowd         RAMB         Rowd <th< td=""><td>pin name</td><td></td><td>0</td><td>(</td><td>0</td><td>8</td><td>3</td><td>(</td><td>)</td><td>(</td><td>)</td><td></td><td>8</td><td>Display start line (A2h)</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pin name |       | 0        | (     | 0       | 8       | 3       | (       | )       | (       | )       |        | 8       | Display start line (A2h)          |
| COM1         Row1         RAM8         Row1         RAM8         Row1         RAM8         Row1         RAM8         Row1         RAM8           COM2         Row2         RAM4         Row1         RAM1         Row3         RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COM0     | Row0  | RAM0     | Row8  | RAM8    | Row0    | RAM8    | Row0    | RAM0    | Row8    | RAM8    | Row0   | RAM8    |                                   |
| COM2         Row2         RAM3         Row1         RAM4         Row2         RAM4         Row3         RAM4         RAM4 <thram4< th="">         RAM4         RAM4         <thr< td=""><td>COM1</td><td>Row1</td><td>RAM1</td><td>Row9</td><td>RAM9</td><td>Row1</td><td>RAM9</td><td>Row1</td><td>RAM1</td><td>Row9</td><td>RAM9</td><td>Row1</td><td>RAM9</td><td></td></thr<></thram4<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COM1     | Row1  | RAM1     | Row9  | RAM9    | Row1    | RAM9    | Row1    | RAM1    | Row9    | RAM9    | Row1   | RAM9    |                                   |
| CDMA         Rows         RAM4         Rows         RAM4         Rows         RAM4         Rows         RAM4           COMA         Rows         RAM4         Rows         RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COM2     | Row2  | RAM2     | Row10 | RAM10   | Row2    | RAM10   | Row2    | RAM2    | Row10   | RAM10   | Row2   | RAM10   |                                   |
| COMA         Rows         RAMS         Rows         RAMS         Rows         RAMS         Rows         RAMS         Rows         RAMS           COMB         Rows         RAMS         Rows         RAMS         Rows         RAMS         Rows         RAMS           COMB         Rows         RAMS         Rows         RAMS         Rows         RAMS         Rows         RAMS           COMB         Rows         RAMS         Rows         RAMS         Rows         RAMS         Rows         RAMS           COMP         Rows         RAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COM3     | Row3  | RAM3     | Row11 | RAM11   | Row3    | RAM11   | Row3    | RAM3    | Row11   | RAM11   | Row3   | RAM11   |                                   |
| COM6         Rows         RAM5         Rows         RAM14         Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COM4     | Row4  | RAM4     | Row12 | RAM12   | Row4    | RAM12   | Row4    | RAM4    | Row12   | RAM12   | Row4   | RAM12   |                                   |
| CDM6         Rowf         RAM7         Rowf         RAM7         Rowf         RAM7         Rowf         RAM7         Rowf         RAM15         Rowf         RAM7         Rowf         RAM15         Rowf         RAM16         Rowf         RAM15         Rowf         RAM15         Rowf         RAM15         Rowf         RAM17         RAM17         Rowf         RAM17         RAM17 <td>COM5</td> <td>Row5</td> <td>RAM5</td> <td>Row13</td> <td>RAM13</td> <td>Row5</td> <td>RAM13</td> <td>Row5</td> <td>RAM5</td> <td>Row13</td> <td>RAM13</td> <td>Row5</td> <td>RAM13</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM5     | Row5  | RAM5     | Row13 | RAM13   | Row5    | RAM13   | Row5    | RAM5    | Row13   | RAM13   | Row5   | RAM13   |                                   |
| COMF         Rowf         RAMB         Rowf         RAMB         Rowf         RAMB         RAMB <th< td=""><td>COM6</td><td>Row6</td><td>RAM6</td><td>Row14</td><td>RAM14</td><td>Row6</td><td>RAM14</td><td>Row6</td><td>RAM6</td><td>Row14</td><td>RAM14</td><td>Row6</td><td>RAM14</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COM6     | Row6  | RAM6     | Row14 | RAM14   | Row6    | RAM14   | Row6    | RAM6    | Row14   | RAM14   | Row6   | RAM14   |                                   |
| COMB         Rows         RAMB         Row17         RAMB         Row18         RAMB         Row17         RAMD         Row18         RAMB         Row17         RAMD         Row17         RAMD         Row17 <th< td=""><td>COM7</td><td>Row7</td><td>RAM7</td><td>Row15</td><td>RAM15</td><td>Row7</td><td>RAM15</td><td>Row7</td><td>RAM7</td><td>Row15</td><td>RAM15</td><td>Row7</td><td>RAM15</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COM7     | Row7  | RAM7     | Row15 | RAM15   | Row7    | RAM15   | Row7    | RAM7    | Row15   | RAM15   | Row7   | RAM15   |                                   |
| COMB         Rowel         RAMID         Rowel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COM8     | Row8  | RAM8     | Row16 | RAM16   | Row8    | RAM16   | Row8    | RAM8    | Row16   | RAM16   | Row8   | RAM16   |                                   |
| COM101         Row11         Row12         RAM11         Row12         RAM12         Row13         RAM12         Row14         RAM12         Row17         RAM11         Row2         RAM11         Row12         RAM12         Row17         RAM11         Row12         RAM12         Row17         RAM11         Row2         RAM12         Row17         RAM11         Row2         RAM22         Row18         RAM12         Row17         RAM11         Row2         RAM22         Row18         RAM23         Row17         RAM23         Row17         RAM23         Row17         RAM23         Row18         RAM23         Row17         RAM23         Row12         RAM23         Row12         RAM23         Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COM9     | Row9  | RAM9     | Row17 | RAM17   | Row9    | RAM17   | Row9    | RAM9    | Row17   | RAM17   | Row9   | RAM17   |                                   |
| COM11         Row12         RAM12         Row13         RAM12         Row12         RAM12         Row13         RAM12         Row13         RAM12         Row14         RAM14         Row22         RAM22         Row17         RAM17         Row23         RAM25         Row17         RAM17         Row28         RAM26         Row17         RAM17         Row28         RAM26         Row18         RAM26         Row18         RAM27         Row18         RAM27         Row18         RAM27         Row18         RAM27         Row18         RAM28         Row28         RAM28         Row28         RAM28         Row28 <td< td=""><td>COM10</td><td>Row10</td><td>RAM10</td><td>Row18</td><td>RAM18</td><td>Row10</td><td>RAM18</td><td>Row10</td><td>RAM10</td><td>Row18</td><td>RAM18</td><td>Row10</td><td>RAM18</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM10    | Row10 | RAM10    | Row18 | RAM18   | Row10   | RAM18   | Row10   | RAM10   | Row18   | RAM18   | Row10  | RAM18   |                                   |
| COM12         Row12         RAM21         Row12         RAM21         Row12         RAM21         Row12         RAM21         Row13         RAM21         Row14         RAM21         Row14         RAM21         Row15         RAM21         Row15         RAM21         Row15         RAM21         Row15         RAM21         Row15         RAM21         Row16         RAM24         Row17         RAM21         Row17         RAM22         Row17         RAM22         Row17         RAM26         Row17         RAM27         Row17         RAM27         Row17         RAM27         Row17 <td< td=""><td>COM11</td><td>Row11</td><td>RAM11</td><td>Row19</td><td>RAM19</td><td>Row11</td><td>RAM19</td><td>Row11</td><td>RAM11</td><td>Row19</td><td>RAM19</td><td>Row11</td><td>RAM19</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM11    | Row11 | RAM11    | Row19 | RAM19   | Row11   | RAM19   | Row11   | RAM11   | Row19   | RAM19   | Row11  | RAM19   |                                   |
| COM13         Row14         RAM21         Row13         RAM21         Row13         RAM21         Row13         RAM21         Row13         RAM21         Row13         RAM21         Row13         RAM21         Row14         RAM22           COM15         Row15         RAM17         Row22         RAM22         Row15         RAM15         Row22         RAM23         Row16         RAM24           COM16         Row17         RAM17         Row23         RAM28         Row17         RAM17         Row24         RAM24         Row18         RAM26           COM18         Row17         RAM17         Row25         RAM22         Row17         RAM17         Row28         RAM27         Row18         RAM26           COM18         Row17         RAM20         Row27         RAM27         Row18         RAM28         Row17         RAM27         Row18         RAM28         Row17         RAM27         Row18         RAM28         Row18         RAM28         Row17         RAM27         Row18         RAM28         Row18         RAM28         Row18         RAM28         Row18         RAM28         Row18         RAM28         Row18         RAM28         Row18         RAM29         Row18         RAM38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COM12    | Row12 | RAM12    | Row20 | RAM20   | Row12   | RAM20   | Row12   | RAM12   | Row20   | RAM20   | Row12  | RAM20   |                                   |
| COM14         Row12         RAM12         Row14         RAM122         Row15         RAM123         Row15         RAM123         Row15         RAM123         Row17         RAM123         Row17         RAM123         Row12         RAM133         Row12 <thram123< th=""> <throw12< th=""> <thram123<< td=""><td>COM13</td><td>Row13</td><td>RAM13</td><td>Row21</td><td>RAM21</td><td>Row13</td><td>RAM21</td><td>Row13</td><td>RAM13</td><td>Row21</td><td>RAM21</td><td>Row13</td><td>RAM21</td><td></td></thram123<<></throw12<></thram123<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COM13    | Row13 | RAM13    | Row21 | RAM21   | Row13   | RAM21   | Row13   | RAM13   | Row21   | RAM21   | Row13  | RAM21   |                                   |
| COM16         Row15         RAM23         Row15         RAM23         Row15         RAM23         Row15         RAM24           COM17         Row17         RAM17         Row22         RAM22         Row17         RAM24           COM18         Row18         RAM18         Row17         RAM25         Row17         RAM25         Row17         RAM25           COM18         Row18         RAM28         Row17         RAM27         Row18         RAM22         Row19         RAM22         Row19         RAM25           COM18         Row19         RAM22         Row19         RAM19         Row22         RAM22         Row19         RAM27         Row19         RAM21         Row21         RAM21         Row21         RAM23         Row21         RAM23         Row21         RAM23         Row21         RAM23         Row21         RAM23         Row21         RAM23         Row21         RAM31         Row22         RAM33         Row22         RAM33         Row22         RAM33         Row22         RAM33         Row24         RAM31         Row24         RAM31         Row24         RAM31         Row24         RAM33         Row24         RAM33         Row24         RAM33         Row24         RAM34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COM14    | Row14 | RAM14    | Row22 | RAM22   | Row14   | RAM22   | Row14   | RAM14   | Row22   | RAM22   | Row14  | RAM22   |                                   |
| COM16         Row17         RAM218         Row12         RAM24         Row17         RAM22         Row17         RAM22         Row17         RAM25           COM118         Row18         RAM18         Row22         RAM26         Row17         RAM18         Row22         RAM25         Row17         RAM18         Row22         RAM27         Row17         RAM17         Row12         RAM18         Row17         RAM17         Row12         RAM18         Row17         RAM17         Row12         RAM18         Row17         RAM17         Row17         RAM17         Row17         RAM17         Row17         RAM17         Row17         RAM18         Row17         RAM18         Row17         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COM15    | Row15 | RAM15    | Row23 | RAM23   | Row15   | RAM23   | Row15   | RAM15   | Row23   | RAM23   | Row15  | RAM23   |                                   |
| COM10         Row17         RAM25         Row17         RAM125         Row17         RAM125         Row17         RAM25         Row17         RAM125         Row17         RAM125         Row17         RAM125         Row17         RAM125         Row118         RAM22         Row129         RAM22         Row129         RAM27         Row129         RAM27         Row129         RAM27         Row129         RAM27         Row129         RAM127         Row129         RAM129         Row12         RAM139         Row139         RAM131         Row139         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COM16    | Row16 | RAM16    | Row24 | RAM24   | Row16   | RAM24   | Row16   | RAM16   | Row24   | RAM24   | Row16  | RAM24   |                                   |
| COM19         Rew18         RAM22         Row18         RAM12         Row18         RAM12         Row18         RAM12         Row27         RAM27         RAM27           COM19         Rew2         RAM22         Row22         RAM28         Row22         RAM28         Row21         RAM21         Row21         RAM21         Row21         RAM22         Row21         RAM21         Row21         RAM22         Row21         RAM22         Row21         RAM21         Row21         RAM31         Row32         RAM31         Row32         RAM31         Row32         RAM31         Row32         RAM31         Row32         RAM32         Row32         RAM32         Row32         RAM32         Row32         RAM32         Row32         RAM32         Row33         RAM33         Row3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COM17    | Row17 | RAM17    | Row25 | RAM25   | Row17   | RAM25   | Row17   | RAM17   | Row25   | RAM25   | Row17  | RAM25   |                                   |
| COM19         Row19         RAM27         Row127         RAM27         Row127         RAM28         Row20         RAM28         Row21         RAM30         Row22         RAM31         Row22         RAM30         Row22         RAM32         Row32         RAM31         Row22         RAM32         Row32         RAM31         Row22         RAM30         Row22         RAM33         Row24         RAM33         Row24         RAM33         Row24         RAM33         Row24         RAM33         Row28         RAM33         Row28         RAM33         Row28         RAM33         Row28         RAM33         Row28         RAM33         Row28         RAM33         Row38         RAM33         Row38         RAM33         Row38         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COM18    | Row18 | RAM18    | Row26 | RAM26   | Row18   | RAM26   | Row18   | RAM18   | Row26   | RAM26   | Row18  | RAM26   |                                   |
| COM21         Row20         RAM22         Row21         RAM22         Row21         RAM22         Row21         RAM23         Row31         RAM31         Row31         RAM31         Row32         RAM33         Row32         RAM33         Row32         RAM33         Row32         RAM33         Row32         RAM33         Row32         RAM35         Row32         RAM36         Row32         RAM36         Row33         RAM37         Row33 <td< td=""><td>COM19</td><td>Row19</td><td>RAM19</td><td>Row27</td><td>RAM27</td><td>Row19</td><td>RAM27</td><td>Row19</td><td>RAM19</td><td>Row27</td><td>RAM27</td><td>Row19</td><td>RAM27</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM19    | Row19 | RAM19    | Row27 | RAM27   | Row19   | RAM27   | Row19   | RAM19   | Row27   | RAM27   | Row19  | RAM27   |                                   |
| COM22         Row22         RAM22         Row22         RAM28         Row22         RAM28         Row22         RAM30           COM22         Row32         RAM31         Row22         RAM31         Row22         RAM30         Row22         RAM32         Row24         RAM38         Row27         RAM35         Row27         RAM35         Row27         RAM35         Row27         RAM35         Row27         RAM35         Row27         RAM35         Row28         RAM36         Row28         RAM36         Row28         RAM36         Row28         RAM37         Row28         RAM37         Row28         RAM37         Row38         RAM37         Row38         RAM37         Row38         RAM37         Row38         RAM37         Row38         RAM38         Row37         RAM38         Row37         RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COM20    | Row20 | RAM20    | Row28 | RAM28   | Row20   | RAM28   | Row20   | RAM20   | Row28   | RAM28   | Row20  | RAM28   |                                   |
| COM22         ROW22         RAM30         Row22         RAM30         Row22         RAM31         Row22         RAM31         Row22         RAM31         Row22         RAM31         Row22         RAM31         Row22         RAM31         Row24         RAM31         Row24         RAM32         Row34         RAM31         Row24         RAM32         Row34         RAM33         Row24         RAM33         Row26         RAM34         Row26         RAM34         Row26         RAM34         Row26         RAM35         Row37         RAM35         Row37         RAM35         Row37         RAM35         Row37         RAM37         Row38         RAM38         Row37         RAM37         Row38         RAM38         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM38         Row37         RAM38         Row37         RAM38         Row37         RAM38         Row37         RAM38         Row37         RAM38         Row37         RAM39         Row37         RAM39         Row37 <td< td=""><td>COM21</td><td>Row21</td><td>RAM21</td><td>Row29</td><td>RAM29</td><td>Row21</td><td>RAM29</td><td>Row21</td><td>RAM21</td><td>Row29</td><td>RAM29</td><td>Row21</td><td>RAM29</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM21    | Row21 | RAM21    | Row29 | RAM29   | Row21   | RAM29   | Row21   | RAM21   | Row29   | RAM29   | Row21  | RAM29   |                                   |
| COM23         Row31         RAM31         Row32         RAM31         Row32         RAM31         Row32         RAM31         Row32         RAM31         Row32         RAM32         Row32         RAM32         Row32         RAM33         Row24         RAM32         Row32         RAM33         Row25         RAM34         Row32         RAM33         Row27         RAM34         Row32         RAM35         Row32         RAM35         Row32         RAM35         Row32         RAM35         Row32         RAM35         Row32         RAM37         Row33         RAM31         Row33         RAM31         Row33         RAM31         Row33         RAM41         Row33 <td< td=""><td>COM22</td><td>Row22</td><td>RAM22</td><td>Row30</td><td>RAM30</td><td>Row22</td><td>RAM30</td><td>Row22</td><td>RAM22</td><td>Row30</td><td>RAM30</td><td>Row22</td><td>RAM30</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM22    | Row22 | RAM22    | Row30 | RAM30   | Row22   | RAM30   | Row22   | RAM22   | Row30   | RAM30   | Row22  | RAM30   |                                   |
| COM28         Row24         RAM24         Row23         RAM32         Row24         RAM24         Row32         RAM33         Row24         RAM33         Row24         RAM33         Row24         RAM33         Row26         RAM33         Row26         RAM33         Row26         RAM33         Row26         RAM34         Row26         RAM34         Row27         RAM35         Row37         RAM36         Row37         RAM36         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM38         Row37         RAM48         Row38         RAM48         Row38         RAM48         Row38         RAM48         Row38         RAM48         Row38         RAM49         Row37         RAM47         Row48         RAM48         Row38 <td< td=""><td>COM23</td><td>Row23</td><td>RAM23</td><td>Row31</td><td>RAM31</td><td>Row23</td><td>RAM31</td><td>Row23</td><td>RAM23</td><td>Row31</td><td>RAM31</td><td>Row23</td><td>RAM31</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM23    | Row23 | RAM23    | Row31 | RAM31   | Row23   | RAM31   | Row23   | RAM23   | Row31   | RAM31   | Row23  | RAM31   |                                   |
| COM26         Row27         RAM25         Row37         RAM38         Row26         RAM26         Row37         RAM33           COM26         Row27         RAM27         Row37         RAM37         Row27         RAM26         Row37         RAM37           COM28         Row28         RAM28         Row36         RAM38         Row37         RAM37         Row37         RAM37           COM29         Row28         RAM38         Row37         RAM37         Row37         RAM37         Row37         RAM37           COM38         Row30         RAM30         Row38         RAM38         Row39         RAM38         Row39         RAM39         Row31         RAM38         Row30         RAM38         Row31         RAM38         Row31         RAM38         Row31         RAM38         Row31         RAM38         Row31         RAM41         RAM38         Row32         RAM41         RAM41         Row33         RAM41         RAM41         Row33         RAM41         RAM41         Row34         RAM44         Row34         RAM44         Row34         RAM44         Row34         RAM44         Row34         RAM44         Row36         RAM44         Row36         RAM44         Row34         RAM44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COM24    | Row24 | RAM24    | Row32 | RAM32   | Row24   | RAM32   | Row24   | RAM24   | Row32   | RAM32   | Row24  | RAM32   |                                   |
| COM26         Row27         RAM28         Rew37         RAM38         Row28         RAM34         Row28         RAM34         Row28         RAM34         Row27         RAM37         Row37         RAM37         Row37         RAM37         Row38         Row37         RAM38         Row37         RAM38         Row37         RAM37         Row38         RAM37         Row30         RAM38         Row37         RAM38         Row37         RAM38         Row38         RAM38         Row30         RAM38         Row30         RAM38         Row30         RAM38         Row30         RAM38         Row30         RAM38         Row37         RAM38         Row37         RAM38         Row37         RAM38         Row38         RAM41         Row38         RAM41         Row38         RAM48         Row38         RAM48         Row48         RAM48 <th< td=""><td>COM25</td><td>Row25</td><td>RAM25</td><td>Row33</td><td>RAM33</td><td>Row25</td><td>RAM33</td><td>Row25</td><td>RAM25</td><td>Row33</td><td>RAM33</td><td>Row25</td><td>RAM33</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM25    | Row25 | RAM25    | Row33 | RAM33   | Row25   | RAM33   | Row25   | RAM25   | Row33   | RAM33   | Row25  | RAM33   |                                   |
| COM27         Row27         Row27         Row27         Row37         Row36         Row37         Row36         Row37         Row44         Row44         Row44 <th< td=""><td>COM26</td><td>Row26</td><td>RAM26</td><td>Row34</td><td>RAM34</td><td>Row26</td><td>RAM34</td><td>Row26</td><td>RAM26</td><td>Row34</td><td>RAM34</td><td>Row26</td><td>RAM34</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM26    | Row26 | RAM26    | Row34 | RAM34   | Row26   | RAM34   | Row26   | RAM26   | Row34   | RAM34   | Row26  | RAM34   |                                   |
| COM28         Row28         RAM28         Row38         RAM36         Row28         RAM36         Row28         RAM36         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM37         Row37         RAM38         Row30         RAM38         Row30         RAM38         Row30         RAM38         Row31         RAM38         Row31         RAM38         Row31         RAM38         Row31         RAM38         Row31         RAM38         Row32         RAM38         Row32         RAM38         Row32         RAM38         Row32         RAM38         Row31         RAM38         Row32         RAM44         Row32         RAM44         Row33         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM44         Row34 <th< td=""><td>COM27</td><td>Row27</td><td>RAM27</td><td>Row35</td><td>RAM35</td><td>Row27</td><td>RAM35</td><td>Row27</td><td>RAM27</td><td>Row35</td><td>RAM35</td><td>Row27</td><td>RAM35</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM27    | Row27 | RAM27    | Row35 | RAM35   | Row27   | RAM35   | Row27   | RAM27   | Row35   | RAM35   | Row27  | RAM35   |                                   |
| COM29         RoM29         RAM29         RoM27         RAM27         RoM27         RAM37         Rom27         RAM37         Rom27         RAM37           COM30         Row30         RAM38         Row30         RAM38         Row30         RAM38         Row30         RAM38           COM31         Row31         RAM38         Row32         RAM31         Row32         RAM39         Row31         RAM39           COM33         Row33         RAM44         Row32         RAM44         Row33         RAM38         Row32         RAM41           COM33         Row33         RAM44         Row34         RAM44         Row33         RAM44         Row33         RAM44         Row33         RAM44         Row33         RAM44           COM36         Row36         RAM44         Row36         RAM44         Row36         RAM44         Row37         RAM47         Row37         RAM47         Row37         RAM47         Row37         RAM47         Row37         RAM47         Row38         RAM48         Row37         RAM47         Row38         RAM48         Row37         RAM47         Row38         RAM48         Row37         RAM47         Row38         RAM448         Row37         RAM44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COM28    | Row28 | RAM28    | Row36 | RAM36   | Row28   | RAM36   | Row28   | RAM28   | Row36   | RAM36   | Row28  | RAM36   |                                   |
| CCM30         RAM30         RAM38         RAM38         Row30         RAM38         Row30         RAM38         Row31         RAM33         Row31         RAM33         Row31         RAM33         Row31         RAM33         Row31         RAM38         Row31         RAM38         Row31         RAM33         Row31         RAM33         Row31         RAM33         Row31         RAM33         Row31         RAM33         Row31         RAM33         Row31         RAM41         Row32         RAM41         Row32         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM43         Row34         RAM43         Row36         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM43         Row36         RAM44         Row37         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM44         Row37         RAM44 <th< td=""><td>COM29</td><td>Row29</td><td>RAM29</td><td>Row37</td><td>RAM37</td><td>Row29</td><td>RAM37</td><td>Row29</td><td>RAM29</td><td>Row37</td><td>RAM37</td><td>Row29</td><td>RAM37</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM29    | Row29 | RAM29    | Row37 | RAM37   | Row29   | RAM37   | Row29   | RAM29   | Row37   | RAM37   | Row29  | RAM37   |                                   |
| COM31         Row31         RAM39         Row31         RAM39         Row31         RAM39         Row31         RAM39           COM32         Row32         RAM33         Row41         RAM40         Row32         RAM40         Row32         RAM40         Row32         RAM40         Row32         RAM41         Row32         RAM41         Row33         RAM41         Row33         RAM41         Row32         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM41         Row33         RAM41         Row34         RAM43         Row34         RAM43         Row34         RAM43         Row35         RAM35         Row37         RAM43         Row35         RAM35         Row34         RAM44         Row37         RAM44         Row37         RAM47         Row36         RAM43         Row37         RAM47         Row38         RAM48         Row40         RAM44         Row38         RAM48         Row40         RAM44         Row38         RAM48         Row40         RAM44         Row38         RAM38         Row40         RAM44         Row38         RAM38         Row41         RAM41         Row41         RAM44         Row41         RAM44         Row41         RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COM30    | Row30 | RAM30    | Row38 | RAM38   | Row30   | RAM38   | Row30   | RAM30   | Row38   | RAM38   | Row30  | RAM38   |                                   |
| COM32         Row32         RAM40         Row32         RAM40         Row32         RAM40         Row32         RAM40         Row34         RAM41           COM33         Row33         RAM34         Row33         RAM41         Row33         RAM43         Row32         RAM44         Row36         RAM44         Row36         RAM44         Row36         RAM44         Row36         RAM44         Row37         RAM44         Row37         RAM44         Row37         RAM47         Row37         RAM44         Row37         RAM47         Row38         RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COM31    | Row31 | RAM31    | Row39 | RAM39   | Row31   | RAM39   | Row31   | RAM31   | Row39   | RAM39   | Row31  | RAM39   |                                   |
| COM33         Row33         RAM33         Row34         RAM41         Row33         RAM41         Row34         RAM42         Row35         RAM43         Row35         RAM43         Row35         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM43         Row37         RAM47         Row38         RAM48         Row40         RAM40         Row48         RAM48         Row38         RAM48         Row47         RAM47         Row38         RAM48         Row47         RAM47         Row38         RAM48         Row48         RAM48         Row48 <td< td=""><td>COM32</td><td>Row32</td><td>RAM32</td><td>Row40</td><td>RAM40</td><td>Row32</td><td>RAM40</td><td>Row32</td><td>RAM32</td><td>Row40</td><td>RAM40</td><td>Row32</td><td>RAM40</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM32    | Row32 | RAM32    | Row40 | RAM40   | Row32   | RAM40   | Row32   | RAM32   | Row40   | RAM40   | Row32  | RAM40   |                                   |
| COM34         Row34         RAM32         Row32         RAM32         Row32         RAM42         Row34         RAM42         Row34         RAM42           COM35         Row35         RAM33         Row34         RAM43         Row35         RAM33         Row34         RAM44         Row36         RAM44           COM36         Row37         RAM37         Row44         RAM44         Row36         RAM44         Row37         RAM47           COM38         Row38         RAM38         Row46         RAM45         Row37         RAM47         Row39         RAM47         Row37         RAM47           COM38         Row38         RAM38         Row47         RAM47         Row39         RAM47         Row39         RAM47         Row39         RAM47         Row39         RAM47         Row39         RAM47         Row49         RAM48         Row40         RAM48         Row41         RAM49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COM33    | Row33 | RAM33    | Row41 | RAM41   | Row33   | RAM41   | Row33   | RAM33   | Row41   | RAM41   | Row33  | RAM41   |                                   |
| COM38         Row38         RAM35         Row38         RAM438         Row38         RAM438         Row43         RAM438         Row43         RAM438         Row43         RAM435         Row43         RAM445         Row37         RAM45         Row37         RAM45         Row37         RAM45         Row37         RAM45         Row37         RAM47         Row38         RAM48         Row46         RAM46           COM38         Row39         RAM47         Row39         RAM47         Row39         RAM47         Row40         RAM47           COM40         Row41         RAM48         Row40         RAM48         Row40         RAM48         Row40         RAM47         Row40         RAM48           COM41         Row41         RAM48         Row42         RAM42         Row51         RAM51         Row42         RAM42         Row52         RAM42         Row52         RAM51         Row43         RAM43         Row52         RAM52         Row43         RAM43         Row52         RAM52         Row43 <t< td=""><td>COM34</td><td>Row34</td><td>RAM34</td><td>Row42</td><td>RAM42</td><td>Row34</td><td>RAM42</td><td>Row34</td><td>RAM34</td><td>Row42</td><td>RAM42</td><td>Row34</td><td>RAM42</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COM34    | Row34 | RAM34    | Row42 | RAM42   | Row34   | RAM42   | Row34   | RAM34   | Row42   | RAM42   | Row34  | RAM42   |                                   |
| COM36         RAW38         RAW44         RAM44         RAW36         RAM34         RAW34         RAW34         RAW34         RAW34         RAW34         RAW34         RAW34         RAW37         RAW44           COM37         RAW37         RAW38         RAW47         RAW37         RAW38         RAW47         RAW37         RAW38         RAW47         RAW48         RAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COM35    | Row35 | RAM35    | Row43 | RAM43   | Row35   | RAM43   | Row35   | RAM35   | Row43   | RAM43   | Row35  | RAM43   |                                   |
| COM37         Row37         RAM37         Row37         RAM38         RAM35         Row37         RAM35         Row37         RAM35         Row37         RAM35           COM38         Row38         RAM38         Row46         RAM38         Row46         RAM46         Row38         RAM47           COM40         Row40         RAM47         Row38         RAM47         Row38         RAM47         Row48         RAM47           COM40         Row41         RAM40         Row48         RAM48         Row40         RAM41         Row48         RAM48           COM41         Row41         RAM41         Row49         RAM41         Row41         RAM42         Row50         RAM51           COM42         RAM42         Row51         RAM51         Row42         RAM42         Row52         RAM51           COM43         Row44         RAM44         Row52         RAM53         Row43         RAM43         Row51         RAM51         Row43         RAM43         Row52         RAM51           COM44         Row46         RAM44         Row52         RAM53         Row43         RAM43         Row51         RAM54           COM44         Row47         RAM47         Row53 <td>COM36</td> <td>Row36</td> <td>RAM36</td> <td>Row44</td> <td>RAM44</td> <td>Row36</td> <td>RAM44</td> <td>Row36</td> <td>RAM36</td> <td>Row44</td> <td>RAM44</td> <td>Row36</td> <td>RAM44</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COM36    | Row36 | RAM36    | Row44 | RAM44   | Row36   | RAM44   | Row36   | RAM36   | Row44   | RAM44   | Row36  | RAM44   |                                   |
| COM38         RAM38         RAM46         RAM46         RAM47         RAM37         RAM47         RAM48         RAM47         RAM47         RAM47         RAM48         RAM48         RAM48         RAM47         RAM47 <th< td=""><td>COM37</td><td>Row37</td><td>RAM37</td><td>Row45</td><td>RAM45</td><td>Row37</td><td>RAM45</td><td>Row37</td><td>RAM37</td><td>Row45</td><td>RAM45</td><td>Row37</td><td>RAM45</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM37    | Row37 | RAM37    | Row45 | RAM45   | Row37   | RAM45   | Row37   | RAM37   | Row45   | RAM45   | Row37  | RAM45   |                                   |
| CUM39         RAW39         RAW47         RAW47         RAW47         RAW47         RAW47         RAW47         RAW47           COM40         RAW40         RAM48         RAW40         RAM48         Row40         RAM48         Row40         RAM48           COM41         RAM41         RAM41         RAM48         Row40         RAM48         Row40         RAM49         Row41         RAM49           COM42         Row42         RAM41         Row43         RAM51         Row42         RAM50         Row42         RAM50         Row42         RAM51           COM43         Row43         RAM44         Row50         RAM51         Row42         RAM51         Row43         RAM44         Row52         RAM51         Row43         RAM51         Row43         RAM51         Row42         RAM51         Row52         RAM52         Row44         RAM44         Row52         RAM51         Row45         RAM51         Row52         RAM51         Row52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COM38    | Row38 | RAM38    | Row46 | RAM46   | Row38   | RAM46   | Row38   | RAM38   | Row46   | RAM46   | Row38  | RAM46   |                                   |
| COM40         Row41         Row43         RAM48         Row40         RAM48         Row40         RAM48         Row40         RAM48           COM41         Row41         RAM41         Row43         RAM42         Row50         RAM49         Row41         RAM49         Row41         RAM49           COM42         Row42         RAM42         Row50         RAM51         Row42         RAM42         Row50         RAM51           COM43         Row43         RAM44         Row51         RAM51         Row43         RAM43         Row43         RAM51           COM44         Row44         RAM44         Row52         RAM51         Row43         RAM44         Row53         RAM51           COM45         Row44         RAM44         Row52         RAM51         Row43         RAM44         Row53         RAM51           COM46         Row46         RAM46         Row55         RAM51         Row47         RAM47         Row55         RAM51         Row47         RAM48         Row56         RAM54         Row46         RAM48         Row55         RAM51           COM46         Row47         RAM47         Row57         RAM48         Row57         RAM51         Row48         RAM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COM39    | Row39 | RAM39    | Row47 | RAM47   | Row39   | RAM47   | Row39   | RAM39   | Row47   | RAM47   | Row39  | RAM47   |                                   |
| CDM11         Row41         RAM41         Row42         RAM43         Row42         RAM43         Row42         RAM43         Row42         RAM43           COM42         Row42         RAM43         Row50         RAM43         Row42         RAM50         Row42         RAM43         Row42         RAM50           COM43         Row43         RAM43         Row51         RAM51         Row43         RAM51         Row43         RAM51           COM44         Row44         RAM44         Row52         RAM53         Row43         RAM51         Row44         RAM51           COM45         Row44         RAM46         Row53         RAM53         Row45         RAM45         Row52         RAM53         Row43         RAM51           COM46         Row47         RAM47         Row55         RAM56         Row46         RAM47         Row55         RAM55         Row47         RAM57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COM40    | Row40 | RAM40    | ROW48 | RAM48   | Row40   | RAM48   | ROW40   | RAM40   | ROW48   | RAM48   | Row40  | RAM48   |                                   |
| CUM42         RXM42         RXM43         RXM43         RXM51         RXM52         RXM42         RXM42         RXM51         RXM43         RXM43         RXM51         RXM44         RXM51         RXM43         RXM43         RXM51         RXM43         RXM51         RXM43         RXM51         RXM43         RXM51         RXM43         RXM51         RXM44         RXM52         RXM44         RXM54         RXM44         RXM44         RXM54         RXM44         RXM45         RXM44         RXM45         RXM44         RXM45         RXM45         RXM44         RXM45         RXM45         RXM44         RXM47         RXM57         RXM47 <th< td=""><td>COM41</td><td>Row41</td><td>RAM41</td><td>Row49</td><td>RAM49</td><td>Kow41</td><td>RAM49</td><td>Kow41</td><td>RAM41</td><td>Row49</td><td>RAM49</td><td>Row41</td><td>RAM49</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM41    | Row41 | RAM41    | Row49 | RAM49   | Kow41   | RAM49   | Kow41   | RAM41   | Row49   | RAM49   | Row41  | RAM49   |                                   |
| CUM43         RXM44         RXM44         RXM51         RXM51         RXM451         RXM51         RXXM51         RXM51         RXM51         RXM52         RXM51         RXM52         RXM51         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COM42    | Kow42 | KAM42    | Row50 | RAM50   | KOW42   | RAM50   | Row42   | KAM42   | ROW50   | RAM50   | KOW42  | RAM50   |                                   |
| CUM44         ROW54         RAM152         ROW44         RAM152         ROW44         RAM152         ROW45         RAM152         ROW44         RAM152         ROW45         RAM152         ROW46         RAM152         ROW55         RAM152         ROW46         RAM164         ROw55         RAM157         ROW47         RAM152         ROW47         RAM157         ROW49         RAM157         ROW49         RAM157         ROW49         RAM157         ROW49         RAM157         ROW49         RAM151         ROW59         RAM151         ROW59         RAM151         ROW59         RAM151         ROW50         RAM151         ROW59         RAM151         ROW50         RAM151         ROW50         RAM151         ROW50         RAM151         ROW50         RAM151         ROW50         RAM151         ROW50         RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COM43    | Row43 | KAM43    | KOW51 | RAM51   | KOW43   | RAM51   | Row43   | KAM43   | KOW51   | RAM51   | Row43  | RAM51   |                                   |
| CUM49         FOUM49         FAM175         FAM1753         FAM1757         FAM1757         FAM1757         RAM57         RAM57         RAM55         RAM57         RAM57         RAM57         RAM57         RAM57         RAM57         RAM57         RAM49         RAM57         RAM58         RAM58         RAM58         RAM58         RAM58         RAM58         RAM57         RAM57         RAM57         RAM57         RAM57         RAM59         RAM51         RAM58         RAM59         RAM51         RAM59         RAM58         RAM59         RAM51         RAM51         RAM51         RAM51         RAM51         RAM58         RAM58         RAM58         RAM58         RAM58         RAM58         RAM53         RAM53         RAM51         RAM51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COM44    | KOW44 |          | Row52 | RAM52   | KOW44   | RAM52   | KOW44   | RAM44   | Row52   | RAM52   | KOW44  | RAM52   |                                   |
| CUM40         FOW40         FAM174         ROW40         FAM174         ROW55         RAM55         ROW47         RAM55         ROW47         RAM55         ROW47         RAM55         ROW47         RAM55         ROW47         RAM55         ROW47         RAM55         ROW56         RAM56         ROW56         RAM56         ROW56         RAM56         ROW56         RAM57         ROW48         RAM48         ROW56         RAM57         ROW47         RAM48         ROW57         RAM57         ROW50         RAM51         ROW50         RAM51         ROW50         RAM58         ROW50         RAM58         ROW50         RAM59         ROW51         RAM61         ROW53         RAM61         ROW53 <td>CON445</td> <td>K0W45</td> <td></td> <td>ROW53</td> <td>RAM53</td> <td>ROW45</td> <td>RAM53</td> <td>ROW45</td> <td></td> <td>ROW53</td> <td>RAN53</td> <td>R0W45</td> <td>RAM53</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CON445   | K0W45 |          | ROW53 | RAM53   | ROW45   | RAM53   | ROW45   |         | ROW53   | RAN53   | R0W45  | RAM53   |                                   |
| COMM         NOM         FAMINS         ROW         RAM         ROWS         RAM         RAMS         ROWS         RAMS         RAMS         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | RUW40 |          | RUW54 | RAIVID4 | R0W40   |         | RUW40   |         | RUW04   |         | RUW40  |         |                                   |
| COM48         ROW48         RAM48         ROW48         RAM48         ROW48         RAM49         ROW49         RAM57         ROW50         RAM57         ROW49         RAM57         ROW50         RAM57         ROW51         RAM50         ROW51         RAM51         ROW51 <th< td=""><td>COIVI47</td><td>R0W47</td><td>RAIVI47</td><td>ROW55</td><td>RAIVIOO</td><td>R0W47</td><td>RAIVISS</td><td>R0W47</td><td>RAIVI47</td><td>R0W55</td><td>RAIVISS</td><td>ROW47</td><td>RAIVISS</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COIVI47  | R0W47 | RAIVI47  | ROW55 | RAIVIOO | R0W47   | RAIVISS | R0W47   | RAIVI47 | R0W55   | RAIVISS | ROW47  | RAIVISS |                                   |
| COM49         ROW49         RAM49         ROW49         RAM49         ROW49         RAM49         ROW49         RAM49           COM50         Row50         RAM50         Row50         RAM50         Row50         RAM50         Row50         RAM50         Row50         RAM57           COM51         Row51         RAM51         Row50         RAM58         Row50         RAM58         Row50         RAM58           COM52         Row52         RAM51         Row50         RAM59         Row51         RAM51         Row52         RAM59         Row51         RAM59           COM52         Row52         RAM53         Row61         RAM61         Row53         RAM61         Row53         RAM61           COM53         Row54         RAM54         Row62         RAM61         Row53         RAM61         Row53         RAM61         Row53         RAM61           COM54         Row54         RAM54         Row56         RAM62         Row54         RAM62         Row54         RAM62         Row54         RAM62         Row54         RAM62           COM55         Row56         RAM64         Row56         RAM64         Row57         RAM64         Row56         RAM64         Row5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COIVI48  | ROW48 | RAIVI48  | ROW56 | RAIVISO | R0W48   | RAIVISO | ROW48   | RAIVI48 | ROW56   | RAIVISO | R0W48  | RAIVISO |                                   |
| COM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM50RAM60RAv53RAM61COM55RAM55RAM56RAM56RAM56RAM56RAM56RAM56RAM57RAM66RAM56RAM56RAM56RAM56RAM56RAM56RAM56RAM56RAM56RAM56RAM56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COME0    | ROW49 | RAM49    | ROW57 | RAIVI57 | R0W49   | RAIVI57 | ROW49   | RAM49   | ROW57   | RAM57   | ROW49  | RAIVI57 |                                   |
| COMISI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI           COMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI           COMISI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI           COMSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI           COMSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI           COMSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI         ROWSI         RAMISI           COMSI         RAMISI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | R0W50 | RAIVIOU  | RUW00 | RAIVISO | RUW50   | RAIVI30 | R0W50   | RAIVIOU | RUW50   | RAIVISO | R0W50  | RAIVIO  |                                   |
| COM52RAM52RAM60RAM60RAM60RAM60RAM60RAM60RAM60RAM60RAM60RAM60RAM60COM53Row53RAM53RAM61RAM61Row53RAM61Row53RAM61Row53RAM61COM54Row54RAM54Row62RAM62RAM62Row54RAM62Row54RAM62Row54RAM62COM55Row55RAM55Row63RAM63Row55RAM63Row55RAM55Row63RAM63Row55RAM63COM56Row56RAM56Row64RAM64Row55RAM64Row55RAM56Row56RAM64COM57Row57RAM57Row65RAM65Row56RAM66Row58RAM66Row58RAM65Row57RAM65COM58Row58RAM58Row66RAM66Row58RAM66Row58RAM66Row58RAM66Row58RAM66COM58Row59RAM59Row60RAM66Row58RAM66Row59RAM67Row59RAM67COM60Row60RAM60Row68RAM68Row60RAM68Row60RAM68Row60RAM68COM61Row61RAM61Row63RAM69Row61RAM61Row63RAM61Row69RAM69COM61Row61RAM61Row63RAM70Row62RAM61Row63RAM61Row69RAM69COM61Row62RAM62Row70RAM61Row63RAM61Row63 <td< td=""><td>COMED</td><td>ROW51</td><td>RAIVID I</td><td>R0w59</td><td>RAIVISS</td><td>R0W51</td><td>RAIVI59</td><td>ROW51</td><td>RAIVIDT</td><td>R0W59</td><td>RAIVISS</td><td>ROW51</td><td>RAIVID9</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COMED    | ROW51 | RAIVID I | R0w59 | RAIVISS | R0W51   | RAIVI59 | ROW51   | RAIVIDT | R0W59   | RAIVISS | ROW51  | RAIVID9 |                                   |
| COMIGNUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOINUMOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COM52    | Row52 | DAME2    | Row61 | DAM64   | Row52   | DAM64   | Row52   | DAME2   | Row60   | DAM64   | Row52  |         |                                   |
| COMIGENUMO2NUMO2NUMO2NUMO2NUMO2NUMO2NUMO2NUMO2NUMO2NUMO2NUMO2COMISERow55RAM55RAM56ROw63RAM63Row55RAM63Row55RAM63Row55RAM63COM56RAM56Row56RAM64Row56RAM64Row56RAM64Row56RAM64Row57RAM57Row57RAM63Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM65Row57RAM66Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67Row57RAM67 <td>COM54</td> <td>Row54</td> <td>DAMEA</td> <td>Rower</td> <td>DAMES</td> <td>Row53</td> <td>DAMES</td> <td>Row53</td> <td>DAMEA</td> <td>Row62</td> <td>DAMES</td> <td>Row53</td> <td>DAMES</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COM54    | Row54 | DAMEA    | Rower | DAMES   | Row53   | DAMES   | Row53   | DAMEA   | Row62   | DAMES   | Row53  | DAMES   |                                   |
| COMIGNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomesNomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CON54    | Row55 | RAM55    | Row62 | RAM62   | Row55   | RAM62   | ROW54   | RAM55   | Row62   | RAM62   | Row55  | RAM62   |                                   |
| COMISENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOSENUMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMEE    | Row56 | RAMEE    | Row64 | RAM64   | Row56   | RAMEA   | Row56   | RAMEE   | Row64   | RAM64   | Row56  | RAM64   |                                   |
| COMO         Nowo         RAM00         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMEZ    | Pow57 | DAMEZ    | Power | DAMEE   | Pow57   | DAMEE   | Pow57   | DVW22   | Power   | DAMEE   | Row50  | DAMEE   |                                   |
| COMISE         Rowso         RAMISE         Rowso         RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COM59    | Row59 | RAM59    | Rowee | RAMEE   | Row58   | RAMEE   | ROW57   | RAM59   | ROWES   | RAMEE   | ROW57  | RAMES   |                                   |
| COM60         Row60         RAM60         Row63         RAM63         Row63         RAM63         Row63         RAM63         Row63         RAM64         Row63         RAM64         Row63         RAM64         Row63         RAM64         Row63         RAM63         Row63         RAM63         Row63         RAM64         Row63         RAM70         Row63         RAM62         Row70         RAM70         Row63         RAM63         Row71         RAM71         Row63         RAM63         Row71         RAM71         Row63         RAM63         Row71         RAM71         Row63         RAM63         Row71         RAM71         Row63         RAM71         Row63 <th< td=""><td>COM50</td><td>Row50</td><td>RAM50</td><td>Row67</td><td>RAM67</td><td>Row50</td><td>RAM67</td><td>R014/50</td><td>RAM50</td><td>Row67</td><td>RAM67</td><td>Row50</td><td>RAM67</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COM50    | Row50 | RAM50    | Row67 | RAM67   | Row50   | RAM67   | R014/50 | RAM50   | Row67   | RAM67   | Row50  | RAM67   |                                   |
| COM61       Row61       RAM61       Row69       RAM69       Row61       RAM61       Row69       Row61       RAM69       Row61       ROw61 <td< td=""><td>COM60</td><td>Row60</td><td>RAM60</td><td>Row68</td><td>RAM68</td><td>Row60</td><td>RAM68</td><td>Row60</td><td>RAM60</td><td>Row68</td><td>RAM68</td><td>Row60</td><td>RAM68</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COM60    | Row60 | RAM60    | Row68 | RAM68   | Row60   | RAM68   | Row60   | RAM60   | Row68   | RAM68   | Row60  | RAM68   |                                   |
| COM62 Row62 RAM62 Row70 RAM70 Row62 RAM70 Row62 RAM62 Row70 RAM70 Row63 RAM70 COM63 RAM70 Row63 RAM71 ROM71 | COM61    | Row61 | RAM61    | R0M60 | RAMEO   | R014/61 | RAMEO   | R01461  | RAM61   | R014/60 | RAMEO   | R01/61 | RAMEO   |                                   |
| COM63 RAM63 Row71 RAM71 Row63 RAM71 Row63 RAM71 Row63 RAM71 RAM71 RAM73 RAM71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COM62    | Row62 | RAM62    | Row70 | RAM70   | Row62   | RAM70   | Row62   | RAM62   | Row70   | RAM70   | Row62  | RAM70   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COM63    | Row63 | RAM63    | Row71 | RAM71   | Row63   | RAM71   | Row63   | RAM63   | Row71   | RAM71   | Row63  | RAM71   |                                   |

Table 2-1: Example of Set Display Offset and Display Start Line without Remap

SSD1317

|          |       |       |       |       |       | Out   | put      |       |       |       |       |       |                                  |
|----------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|----------------------------------|
|          | ç     | 96    | ç     | 96    | g     | 6     | 8        | 30    | 8     | 80    | 8     | 0     | Set MUX ratio(A8h)               |
|          | No    | rmal  | Nor   | rmal  | Nor   | mal   | Nor      | mal   | Nor   | mal   | Nor   | mal   | COM Normal / Remapped (C0h / C8h |
| Hardware |       | 0     |       | 8     | (     | )     | (        | 0     |       | 8     | 0     |       | Display offset (D3h)             |
| pin name |       | 0     | (     | 0     | 8     | 3     | (        | 0     | (     | 0     | 8     | 3     | Display start line (A2h)         |
| COM64    | Row64 | RAM64 | Row72 | RAM72 | Row64 | RAM72 | Row64    | RAM64 | Row72 | RAM72 | Row64 | RAM72 |                                  |
| COM65    | Row65 | RAM65 | Row73 | RAM73 | Row65 | RAM73 | Row65    | RAM65 | Row73 | RAM73 | Row65 | RAM73 |                                  |
| COM66    | Row66 | RAM66 | Row74 | RAM74 | Row66 | RAM74 | Row66    | RAM66 | Row74 | RAM74 | Row66 | RAM74 |                                  |
| COM67    | Row67 | RAM67 | Row75 | RAM75 | Row67 | RAM75 | Row67    | RAM67 | Row75 | RAM75 | Row67 | RAM75 |                                  |
| COM68    | Row68 | RAM68 | Row76 | RAM76 | Row68 | RAM76 | Row68    | RAM68 | Row76 | RAM76 | Row68 | RAM76 |                                  |
| COM69    | Row69 | RAM69 | Row77 | RAM77 | Row69 | RAM77 | Row69    | RAM69 | Row77 | RAM77 | Row69 | RAM77 |                                  |
| COM70    | Row70 | RAM70 | Row78 | RAM78 | Row70 | RAM78 | Row70    | RAM70 | Row78 | RAM78 | Row70 | RAM78 |                                  |
| COM71    | Row71 | RAM71 | Row79 | RAM79 | Row71 | RAM79 | Row71    | RAM71 | Row79 | RAM79 | Row71 | RAM79 |                                  |
| COM72    | Row72 | RAM72 | Row80 | RAM80 | Row72 | RAM80 | Row72    | RAM72 | -     | -     | Row72 | RAM80 |                                  |
| COM73    | Row73 | RAM73 | Row81 | RAM81 | Row73 | RAM81 | Row73    | RAM73 | -     | -     | Row73 | RAM81 |                                  |
| COM74    | Row74 | RAM74 | Row82 | RAM82 | Row74 | RAM82 | Row74    | RAM74 | -     | -     | Row74 | RAM82 |                                  |
| COM75    | Row75 | RAM75 | Row83 | RAM83 | Row75 | RAM83 | Row75    | RAM75 | -     | -     | Row75 | RAM83 |                                  |
| COM76    | Row76 | RAM76 | Row84 | RAM84 | Row76 | RAM84 | Row76    | RAM76 | -     | -     | Row76 | RAM84 |                                  |
| COM77    | Row77 | RAM77 | Row85 | RAM85 | Row77 | RAM85 | Row77    | RAM77 | -     | -     | Row77 | RAM85 |                                  |
| COM78    | Row78 | RAM78 | Row86 | RAM86 | Row78 | RAM86 | Row78    | RAM78 | -     | -     | Row78 | RAM86 |                                  |
| COM79    | Row79 | RAM79 | Row87 | RAM87 | Row79 | RAM87 | Row79    | RAM79 | -     | -     | Row79 | RAM87 |                                  |
| COM80    | Row80 | RAM80 | Row88 | RAM88 | Row80 | RAM88 | -        | -     | -     | -     | -     | -     |                                  |
| COM81    | Row81 | RAM81 | Row89 | RAM89 | Row81 | RAM89 | -        | -     | -     | -     | -     | -     |                                  |
| COM82    | Row82 | RAM82 | Row90 | RAM90 | Row82 | RAM90 | -        | -     | -     | -     | -     | -     |                                  |
| COM83    | Row83 | RAM83 | Row91 | RAM91 | Row83 | RAM91 | -        | -     | -     | -     | -     |       |                                  |
| COM84    | Row84 | RAM84 | Row92 | RAM92 | Row84 | RAM92 | -        | -     | -     | -     | -     | -     |                                  |
| COM85    | Row85 | RAM85 | Row93 | RAM93 | Row85 | RAM93 | -        | -     | -     | -     | -     | -     |                                  |
| COM86    | Row86 | RAM86 | Row94 | RAM94 | Row86 | RAM94 | -        | -     | -     | -     | -     |       |                                  |
| COM87    | Row87 | RAM87 | Row95 | RAM95 | Row87 | RAM95 | -        | -     | -     | -     |       | - 1   |                                  |
| COM88    | Row88 | RAM88 | Row0  | RAM0  | Row88 | RAM0  | -        | -     | Row0  | RAM0  |       |       |                                  |
| COM89    | Row89 | RAM89 | Row1  | RAM1  | Row89 | RAM1  | -        | -     | Row1  | RAM1  | _     |       |                                  |
| COM90    | Row90 | RAM90 | Row2  | RAM2  | Row90 | RAM2  | -        |       | Row2  | RAM2  | -     |       |                                  |
| COM91    | Row91 | RAM91 | Row3  | RAM3  | Row91 | RAM3  | -        | •     | Row3  | RAM3  | -     |       |                                  |
| COM92    | Row92 | RAM92 | Row4  | RAM4  | Row92 | RAM4  | -        |       | Row4  | RAM4  |       |       |                                  |
| COM93    | Row93 | RAM93 | Row5  | RAM5  | Row93 | RAM5  | -        | -     | Row5  | RAM5  |       | -     |                                  |
| COM95    | Row94 | RAM94 | Row6  | RAM6  | Row94 | RAM6  | <b>-</b> |       | Row6  | RAM6  |       | -     |                                  |
| COM95    | Row95 | RAM95 | Row7  | RAM7  | Row95 | RAM7  |          | -     | Row7  | RAM7  |       |       |                                  |
| Display  | ,     |       |       | h)    |       | -     |          | al)   |       |       |       | n     | 1                                |
| examples | (     | a)    | (1    | U)    | (     | 5)    |          | u)    |       | 9)    | (1    | 0     |                                  |
|          |       |       |       |       |       |       |          |       |       |       |       |       | -                                |



|  | Table 2-2: Exam | ple of Set Display | Offset and Display | Start Line with Remap |
|--|-----------------|--------------------|--------------------|-----------------------|
|--|-----------------|--------------------|--------------------|-----------------------|

|               |        |         |                  |         |        |         | Ou               | tput    |                  |         |                  |         |                  |         | 1                                 |
|---------------|--------|---------|------------------|---------|--------|---------|------------------|---------|------------------|---------|------------------|---------|------------------|---------|-----------------------------------|
|               | g      | 96      | g                | 96      | g      | 96      | 8                | 30      | 8                | 30      | 8                | 0       | 8                | 0       | Set MUX ratio(A8h)                |
|               | Rer    | map     | Rer              | map     | Rer    | map     | Rei              | map     | Rer              | map     | Rer              | map     | Rer              | nap     | COM Normal / Remapped (C0h / C8h) |
| Hardw are pin |        | 0       |                  | 8       |        | 0       |                  | 0       |                  | 8       | (                | 0       | 8                | 3       | Display offset (D3h)              |
| name          |        | 0       |                  | 0       |        | 8       |                  | 0       |                  | 0       | 8                | 8       | 1                | 6       | Display start line (A2h)          |
| COM0          | Row 95 | RAM95   | Row 7            | RAM7    | Row 95 | RAM7    | Row 79           | RAM79   | -                | -       | Row 79           | RAM87   | -                | -       |                                   |
| COM1          | Row 94 | RAM94   | Row 6            | RAM6    | Row 94 | RAM6    | Row 78           | RAM78   | -                | -       | Row 78           | RAM86   | -                | -       |                                   |
| COM2          | Row 93 | RAM93   | Row 5            | RAM5    | Row 93 | RAM5    | Row 77           | RAM77   | -                | -       | Row 77           | RAM85   | -                | -       |                                   |
| COM3          | Row 92 | RAM92   | Row 4            | RAM4    | Row 92 | RAM4    | Row 76           | RAM76   | -                | -       | Row 76           | RAM84   | -                | -       |                                   |
| COM4          | Row 91 | RAM91   | Row 3            | RAM3    | Row 91 | RAM3    | Row 75           | RAM75   | -                | -       | Row 75           | RAM83   | -                | -       |                                   |
| COM5          | Row 90 | RAM90   | Row 2            | RAM2    | Row 90 | RAM2    | Row 74           | RAM74   | -                | -       | Row 74           | RAM82   | -                | -       |                                   |
| COM6          | Row 89 | RAM89   | Row 1            | RAM1    | Row 89 | RAM1    | Row 73           | RAM73   | -                |         | Row 73           | RAM81   | -                | -       |                                   |
| COM7          | Row 88 | RAM88   | Row 0            | RAMO    | Row 88 | RAMO    | Row 72           | RAM72   | -                | -       | Row 72           | RAM80   | -                | -       |                                   |
| COM8          | Row 87 | RAM87   | Row 95           | RAM95   | Row 87 | RAM95   | Row 71           | RAM71   | Row 79           | RAM79   | Row 71           | RAM79   | Row 79           | RAM95   |                                   |
| COMO          | Pow 86 | DA M86  | Pow 04           |         | Pow 86 |         | Pow 70           |         | Pow 78           | DA M78  | Row 70           | DA M78  | Row 78           |         |                                   |
| COMO          | Row 85 | PAM85   | Pow 03           | DV W03  | Row 85 | DV M03  | Pow 60           |         | Row 77           |         | Row 60           |         | Row 70           |         |                                   |
| COM11         | Pow 84 |         | Pow 02           |         | Pow 84 |         | Pow 68           | DV W68  | Pow 76           | DAM76   | Pow 68           | DAM76   | Pow 76           | DA MO2  |                                   |
| COM12         | R0W 04 | DA M02  | ROW 92<br>Row 01 |         | R0W 04 |         | Row 67           |         | ROW 70           |         | Row 67           | DAM75   | ROW 70           | DA MO1  |                                   |
| COM12         | Row 03 |         | Row 91           | DAMOO   | Row 03 | DAMOO   | Dow 66           |         | ROW 75           | DAMZA   | Row 07           | DAMEA   | ROW 75           | DA MOO  |                                   |
| COIVIT3       | ROW 82 | RAIVIOZ | ROW 90           | RAIVI90 | ROW 82 | RAIVI90 | ROW 66           | RAINOO  | ROW 74           | RAM/4   | ROW 66           | RAM/4   | ROW 74           | RAIVI90 |                                   |
| COIVI14       | ROW 81 | RAINBT  | ROW 89           | RAIN89  | ROW 81 | RAIVI89 | ROW 65           | RAINOS  | ROW 73           | RAIN/3  | ROW 65           | RAINI/3 | ROW 73           | RAIVI89 |                                   |
| COIVI15       | ROW 80 | RAIMBU  | ROW 88           | RAM88   | ROW 80 | RAIVI88 | ROW 64           | RAIM64  | ROW 72           | RAM/2   | ROW 64           | RAM/2   | Row 72           | RAINBB  | _                                 |
| COM16         | Row 79 | RAM/9   | Row 87           | RAM87   | Row 79 | RAM87   | Row 63           | RAM63   | Row /1           | RAM/1   | Row 63           | RAM/1   | Row /1           | RAM87   |                                   |
| COM17         | Row 78 | RAM/8   | Row 86           | RAM86   | Row 78 | RAM86   | Row 62           | RAM62   | Row 70           | RAM/0   | Row 62           | RAM/0   | Row 70           | RAM86   |                                   |
| COM18         | Row // | RAM//   | Row 85           | RAM85   | Row // | RAM85   | Row 61           | RAM61   | Row 69           | RAM69   | Row 61           | RAM69   | Row 69           | RAM85   |                                   |
| COM19         | Row 76 | RAM76   | Row 84           | RAM84   | Row 76 | RAM84   | Row 60           | RAM60   | Row 68           | RAM68   | Row 60           | RAM68   | Row 68           | RAM84   |                                   |
| COM20         | Row 75 | RAM75   | Row 83           | RAM83   | Row 75 | RAM83   | Row 59           | RAM59   | Row 67           | RAM67   | Row 59           | RAM67   | Row 67           | RAM83   |                                   |
| COM21         | Row 74 | RAM74   | Row 82           | RAM82   | Row 74 | RAM82   | Row 58           | RAM58   | Row 66           | RAM66   | Row 58           | RAM66   | Row 66           | RAM82   |                                   |
| COM22         | Row 73 | RAM73   | Row 81           | RAM81   | Row 73 | RAM81   | Row 57           | RAM57   | Row 65           | RAM65   | Row 57           | RAM65   | Row 65           | RAM81   |                                   |
| COM23         | Row 72 | RAM72   | Row 80           | RAM80   | Row 72 | RAM80   | Row 56           | RAM56   | Row 64           | RAM64   | Row 56           | RAM64   | Row 64           | RAM80   |                                   |
| COM24         | Row 71 | RAM71   | Row 79           | RAM79   | Row 71 | RAM79   | Row 55           | RAM55   | Row 63           | RAM63   | Row 55           | RAM63   | Row 63           | RAM79   |                                   |
| COM25         | Row 70 | RAM70   | Row 78           | RAM78   | Row 70 | RAM78   | Row 54           | RAM54   | Row 62           | RAM62   | Row 54           | RAM62   | Row 62           | RAM78   |                                   |
| COM26         | Row 69 | RAM69   | Row 77           | RAM77   | Row 69 | RAM77   | Row 53           | RAM53   | Row 61           | RAM61   | Row 53           | RAM61   | Row 61           | RAM77   |                                   |
| COM27         | Row 68 | RAM68   | Row 76           | RAM76   | Row 68 | RAM76   | Row 52           | RAM52   | Row 60           | RAM60   | Row 52           | RAM60   | Row 60           | RAM76   |                                   |
| COM28         | Row 67 | RAM67   | Row 75           | RAM75   | Row 67 | RAM75   | Row 51           | RAM51   | Row 59           | RAM59   | Row 51           | RAM59   | Row 59           | RAM75   |                                   |
| COM29         | Row 66 | RAM66   | Row 74           | RAM74   | Row 66 | RAM74   | Row 50           | RAM50   | Row 58           | RAM58   | Row 50           | RAM58   | Row 58           | RAM74   |                                   |
| COM30         | Row 65 | RAM65   | Row 73           | RAM73   | Row 65 | RAM73   | Row 49           | RAM49   | Row 57           | RAM57   | Row 49           | RAM57   | Row 57           | RAM73   |                                   |
| COM31         | Row 64 | RAM64   | Row 72           | RAM72   | Row 64 | RAM72   | Row 48           | RAM48   | Row 56           | RAM56   | Row 48           | RAM56   | Row 56           | RAM72   |                                   |
| COM32         | Row 63 | RAM63   | Row 71           | RAM71   | Row 63 | RAM71   | Row 47           | RAM47   | Row 55           | RAM55   | Row 47           | RAM55   | Row 55           | RAM71   |                                   |
| COMB3         | Row 62 | RAM62   | Row 70           | RAM70   | Row 62 | RAM70   | Row 46           | RAM46   | Row 54           | RAM54   | Row 46           | RAM54   | Row 54           | RAM70   |                                   |
| COM34         | Row 61 | RAM61   | Row 69           | RAM69   | Row 61 | RAM69   | Row 45           | RAM45   | Row 53           | RAM53   | Row 45           | RAM53   | Row 53           | RAM69   |                                   |
| COMB5         | Pow 60 | DAM60   | Row 68           | DV W68  | Row 60 | PAM68   | Pow 44           | DA MAA  | Pow 52           | DAM52   | Pow 44           | DAM52   | Row 52           | DV W68  |                                   |
| COMBE         | Row 50 |         | Row 67           | PAM67   | Row 50 | PAM67   | Pow 43           | DV W13  | Row 51           |         | Row 44           |         | Row 51           |         |                                   |
| COMPT         | Dow 59 |         | Row 67           | DA Mee  | Dow 59 | DAMES   | Row 43           | DA MAD  | Row 51           |         | Row 43           |         | Row 50           | DAMEE   |                                   |
| COMPR         | Row 50 |         | Row 66           | DAMES   | Row 50 | DAMES   | R0W 42           |         | Row 30           |         | ROW 42<br>Dow 41 |         | Row 30           | DAMES   |                                   |
| COIVIDO       | ROW 57 |         | ROW 05           | RAINOS  | ROW 57 | CONIAN  | ROW 41           | RAIVH I | ROW 49           | RAIVH9  | ROW 41           | RAIVH9  | ROW 49           | RAINOO  |                                   |
| COMA          | ROW 50 |         | ROW 04           | RAIN04  | ROW 50 | DAMC2   | ROW 40<br>Dow 20 |         | ROW 40<br>Dow 47 | RAIVHO  | ROW 40<br>Dow 20 | RAIVHO  | ROW 40<br>Dow 47 | RAIN04  |                                   |
| COIV/40       | ROW 55 | RAINDO  | ROW 63           | RAIN63  | ROW 55 | RAIVI03 | ROW 39           | RAIVUS  | R0W 47           | RAIVH/  | ROW 39           | RAIVH/  | ROW 47           | RAIVI03 |                                   |
| COIVI41       | R0W 54 | RAM54   | Row 62           | RAM62   | ROW 54 | RAIVI62 | ROW 38           | RAIVIS  | ROW 46           | RAIVI46 | ROW 38           | RAM46   | ROW 46           | RAIVI62 |                                   |
| COIVI42       | ROW 53 | RAM53   | ROW 61           | RAM61   | ROW 53 | RAIM61  | ROW 37           | RAIN37  | ROW 45           | RAIN45  | Row 37           | RAM45   | ROW 45           | RAIM61  |                                   |
| COM43         | Row 52 | RAM52   | Row 60           | RAM60   | Row 52 | RAM60   | Row 36           | RAM36   | Row 44           | RAM44   | Row 36           | RAM44   | Row 44           | RAM60   |                                   |
| COM44         | Row 51 | RAM51   | Row 59           | RAM59   | Row 51 | RAM59   | Row 35           | RAM35   | Row 43           | RAM43   | Row 35           | RAM43   | Row 43           | RAM59   |                                   |
| COM45         | Row 50 | RAM50   | Row 58           | RAM58   | Row 50 | RAM58   | Row 34           | RAM34   | Row 42           | RAM42   | Row 34           | RAM42   | Row 42           | RAM58   |                                   |
| COM46         | Row 49 | RAM49   | Row 57           | RAM57   | Row 49 | RAM57   | Row 33           | RAM33   | Row 41           | RAM41   | Row 33           | RAM41   | Row 41           | RAM57   |                                   |
| COM47         | Row 48 | RAM48   | Row 56           | RAM56   | Row 48 | RAM56   | Row 32           | RAM32   | Row 40           | RAM40   | Row 32           | RAM40   | Row 40           | RAM56   |                                   |
| COM48         | Row 47 | RAM47   | Row 55           | RAM55   | Row 47 | RAM55   | Row 31           | RAM31   | Row 39           | RAM39   | Row 31           | RAM39   | Row 39           | RAM55   |                                   |
| COM49         | Row 46 | RAM46   | Row 54           | RAM54   | Row 46 | RAM54   | Row 30           | RAM30   | Row 38           | RAM38   | Row 30           | RAM38   | Row 38           | RAM54   |                                   |
| COM50         | Row 45 | RAM45   | Row 53           | RAM53   | Row 45 | RAM53   | Row 29           | RAM29   | Row 37           | RAM37   | Row 29           | RAM37   | Row 37           | RAM53   | 1                                 |
| COM51         | Row 44 | RAM44   | Row 52           | RAM52   | Row 44 | RAM52   | Row 28           | RAM28   | Row 36           | RAM36   | Row 28           | RAM36   | Row 36           | RAM52   | 1                                 |
| COM52         | Row 43 | RAM43   | Row 51           | RAM51   | Row 43 | RAM51   | Row 27           | RAM27   | Row 35           | RAM35   | Row 27           | RAM35   | Row 35           | RAM51   | 1                                 |
| COM53         | Row 42 | RAM42   | Row 50           | RAM50   | Row 42 | RAM50   | Row 26           | RAM26   | Row 34           | RAM34   | Row 26           | RAM34   | Row 34           | RAM50   | 1                                 |
| COM54         | Row 41 | RAM41   | Row 49           | RAM49   | Row 41 | RAM49   | Row 25           | RAM25   | Row 33           | RAM33   | Row 25           | RAM33   | Row 33           | RAM49   | 1                                 |
| COM55         | Row 40 | RAM40   | Row 48           | RAM48   | Row 40 | RAM48   | Row 24           | RAM24   | Row 32           | RAM32   | Row 24           | RAM32   | Row 32           | RAM48   |                                   |
| COM56         | Row 39 | RAM39   | Row 47           | RAM47   | Row 39 | RAM47   | Row 23           | RAM23   | Row 31           | RAM31   | Row 23           | RAM31   | Row 31           | RAM47   |                                   |
| COM57         | Row 38 | RAM38   | Row 46           | RAM46   | Row 38 | RAM46   | Row 22           | RAM22   | Row 30           | RAM30   | Row 22           | RAM30   | Row 30           | RAM46   | 1                                 |
| COM58         | Row 37 | RAM37   | Row 45           | RAM45   | Row 37 | RAM45   | Row 21           | RAM21   | Row 29           | RAM29   | Row 21           | RAM29   | Row 29           | RAM45   |                                   |
| COM59         | Row 36 | RAM36   | Row 44           | RAM44   | Row 36 | RAM44   | Row 20           | RAM20   | Row 28           | RAM28   | Row 20           | RAM28   | Row 28           | RAM44   | 1                                 |
| COM60         | Row 35 | RAM35   | Row 43           | RAM43   | Row 35 | RAM43   | Row 19           | RAM19   | Row 27           | RAM27   | Row 19           | RAM27   | Row 27           | RAM43   | 1                                 |
| COM61         | Row 34 | RAM34   | Row 42           | RAM42   | Row 34 | RAM42   | Row 18           | RAM18   | Row 26           | RAM26   | Row 18           | RAM26   | Row 26           | RAM42   | 1                                 |
| COM62         | Row 33 | RAM33   | Row 41           | RAM41   | Row 33 | RAM41   | Row 17           | RAM17   | Row 25           | RAM25   | Row 17           | RAM25   | Row 25           | RAM41   | 1                                 |
| COM63         | Row 32 | RAM32   | Row 40           | RAM40   | Row 32 | RAM40   | Row 16           | RAM16   | Row 24           | RAM24   | Row 16           | RAM24   | Row 24           | RAM40   | 1                                 |
| COM64         | Row 31 | RAM31   | Row 30           | RAM30   | Row 31 | RAM30   | Row 15           | RAM15   | Row 23           | RAM23   | Row 15           | RAM23   | Row 23           | RAM30   | 1                                 |
| COM65         | Row 30 | RAMBO   | Row 38           | RAM38   | Row 30 | RAM38   | Row 14           | RAM14   | Row 22           | RAM22   | Row 14           | RAM22   | Row 22           | RAM38   | 1                                 |
| COMee         | Row 20 | RAMOO   | Row 37           | RAM27   | Row 20 | RAM27   | Row 12           | RAM12   | Row 21           | RAM21   | Row 12           | RAM21   | Row 21           | RAMAT   | 1                                 |
| COM67         | Row 29 | RV WDS  | Row 26           | RANGE   | Row 29 | RV W26  | Row 12           | RVW13   | Row 20           |         | Row 12           | RV/00   | Row 20           | RAMBE   | 1                                 |
| COM68         | Row 27 |         | Row 26           | BV WBE  | Row 27 | RVINDO  | Row 11           |         | Row 10           |         | Row 12           | RAMAO   | Row 10           | RUNDE   | 1                                 |
|               | ROW 26 | RV NOC  | Row 24           |         | ROW 2F | BV Nov  | Row 10           | BV WHO  | Row 19           | BV WIG  | Row 10           | BV M 6  | Row 19           | BV Nov  | 1                                 |
| CONTO         | Row 20 |         | Row 34           |         | Row 20 | DA M00  | Dow 0            |         | Dov: 17          |         | Dow 0            |         | Row 10           |         | 1                                 |
|               | RUW 25 |         | RUW 33           | RAIV63  | RUW 25 | RAIVIJJ | ROW 9            |         | RUW 17           |         | ROW 9            |         | RUW17            | RAIVIJJ | 1                                 |
| COM/1         | Row 24 | KAM24   | ROW 32           | KAM32   | ROW 24 | KAM32   | KOW 8            | KAM8    | KOW 16           | KAM16   | KOW 8            | RAM16   | KOW 16           | RAM32   | 1                                 |
| COM/2         | KOW 23 | KAM23   | KOW 31           | KAM31   | KOW 23 | KAM31   | KOW /            | KAM/    | KOW 15           | KAM15   | KOW /            | KAM15   | KOW 15           | камз1   | 1                                 |

|           |        |       |        |       |        |       |       |      |        |       |       |          |        | ]     |                                   |
|-----------|--------|-------|--------|-------|--------|-------|-------|------|--------|-------|-------|----------|--------|-------|-----------------------------------|
|           | ç      | 96    | ç      | 96    | 9      | 16    | 8     | 30   | 8      | 80    | 8     | 30       | 8      | 30    | Set MUX ratio(A8h)                |
|           | Rei    | map   | Rei    | map   | Rer    | map   | Rei   | map  | Rer    | map   | Re    | map      | Rer    | map   | COM Normal / Remapped (C0h / C8h) |
| Hardw are |        | 0     |        | 8     | (      | 0     | 1     | 0    | 1      | 8     |       | 0        |        | 8     | Display offset (D3h)              |
| pin name  |        | 0     |        | 0     |        | 8     |       | 0    |        | 0     |       | 8        | 1      | 6     | Display start line (A2h)          |
| COM73     | Row 22 | RAM22 | Row 30 | RAM30 | Row 22 | RAM30 | Row 6 | RAM6 | Row 14 | RAM14 | Row 6 | RAM14    | Row 14 | RAM30 |                                   |
| COM74     | Row 21 | RAM21 | Row 29 | RAM29 | Row 21 | RAM29 | Row 5 | RAM5 | Row 13 | RAM13 | Row 5 | RAM13    | Row 13 | RAM29 |                                   |
| COM75     | Row 20 | RAM20 | Row 28 | RAM28 | Row 20 | RAM28 | Row 4 | RAM4 | Row 12 | RAM12 | Row 4 | RAM12    | Row 12 | RAM28 |                                   |
| COM76     | Row 19 | RAM19 | Row 27 | RAM27 | Row 19 | RAM27 | Row 3 | RAM3 | Row 11 | RAM11 | Row 3 | RAM11    | Row 11 | RAM27 |                                   |
| COM77     | Row 18 | RAM18 | Row 26 | RAM26 | Row 18 | RAM26 | Row 2 | RAM2 | Row 10 | RAM10 | Row 2 | RAM10    | Row 10 | RAM26 |                                   |
| COM78     | Row 17 | RAM17 | Row 25 | RAM25 | Row 17 | RAM25 | Row 1 | RAM1 | Row 9  | RAM9  | Row 1 | RAM9     | Row 9  | RAM25 |                                   |
| COM79     | Row 16 | RAM16 | Row 24 | RAM24 | Row 16 | RAM24 | Row 0 | RAM0 | Row 8  | RAM8  | Row 0 | RAM8     | Row 8  | RAM24 |                                   |
| COM80     | Row 15 | RAM15 | Row 23 | RAM23 | Row 15 | RAM23 | -     | -    | Row 7  | RAM7  | -     | -        | Row 7  | RAM23 |                                   |
| COM81     | Row 14 | RAM14 | Row 22 | RAM22 | Row 14 | RAM22 | -     | -    | Row 6  | RAM6  | -     | -        | Row 6  | RAM22 |                                   |
| COM82     | Row 13 | RAM13 | Row 21 | RAM21 | Row 13 | RAM21 | -     | -    | Row 5  | RAM5  | -     | -        | Row 5  | RAM21 |                                   |
| COM83     | Row 12 | RAM12 | Row 20 | RAM20 | Row 12 | RAM20 | -     | -    | Row 4  | RAM4  | -     | -        | Row 4  | RAM20 |                                   |
| COM84     | Row 11 | RAM11 | Row 19 | RAM19 | Row 11 | RAM19 | -     | -    | Row 3  | RAM3  | -     | -        | Row 3  | RAM19 |                                   |
| COM85     | Row 10 | RAM10 | Row 18 | RAM18 | Row 10 | RAM18 | -     | -    | Row 2  | RAM2  | -     | -        | Row 2  | RAM18 |                                   |
| COM86     | Row 9  | RAM9  | Row 17 | RAM17 | Row 9  | RAM17 | -     | -    | Row 1  | RAM1  | -     | -        | Row 1  | RAM17 |                                   |
| COM87     | Row 8  | RAM8  | Row 16 | RAM16 | Row 8  | RAM16 | -     | -    | Row 0  | RAM0  | -     | -        | Row 0  | RAM16 |                                   |
| COM88     | Row 7  | RAM7  | Row 15 | RAM15 | Row 7  | RAM15 | -     | -    | -      | -     | -     | -        |        | •     |                                   |
| COM89     | Row 6  | RAM6  | Row 14 | RAM14 | Row 6  | RAM14 | -     | -    | -      | -     | -     | •        | •      | -     |                                   |
| COM90     | Row 5  | RAM5  | Row 13 | RAM13 | Row 5  | RAM13 | -     | -    | -      | -     | -     |          | -      | -     |                                   |
| COM91     | Row 4  | RAM4  | Row 12 | RAM12 | Row 4  | RAM12 | -     | -    | -      | -     | •     |          |        | -     |                                   |
| COM92     | Row 3  | RAM3  | Row 11 | RAM11 | Row 3  | RAM11 | -     | -    | -      | -     |       | - ŝ      |        |       |                                   |
| COM93     | Row 2  | RAM2  | Row 10 | RAM10 | Row 2  | RAM10 | -     | -    | -      |       |       | i - T    | -      | -     |                                   |
| COM94     | Row 1  | RAM1  | Row 9  | RAM9  | Row 1  | RAM9  | -     | -    | -      | •     |       | <b>—</b> | -      |       |                                   |
| COM95     | Row 0  | RAM0  | Row 8  | RAM8  | Row 0  | RAM8  | -     | -    |        |       |       | -        |        |       |                                   |
| Display   |        | -)    | 0      |       | (      | ->    | (     | n.   |        |       |       | 0        |        |       |                                   |
| examples  | (      | a)    | (1     | 0)    | ((     | c)    | (     | d)   | (      | e)    | (     | I)       | G      | g)    |                                   |
|           |        |       |        |       |        |       |       | T    |        | G     | 0     |          |        |       |                                   |



#### 2.1.18 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)

This command consists of two functions:

- Display Clock Divide Ratio (D) (A[3:0]) Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 256, with reset value = 0000b. Please refer to section 7.3 for the details relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4]) Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings available as shown below. The default setting is 0000b.

#### 2.1.19 Set Pre-charge Period (D9h)

This command is used to set the duration of the pre-charge period. The interval is counted in number of DCLK, where RESET equals to 2 DCLKs.

### 2.1.20 Set SEG Pins Hardware Configuration (DAh)

This command sets the SEG signals pin configuration to match the OLED panel hardware layout. SEG Odd / Even (Left / Right) and Top / Bottom connections are software selectable, thus there are total of 8 cases and they are shown on the followings:

| Table 2-3 | : SEG Pir | s Hardware | Configuration |
|-----------|-----------|------------|---------------|
|-----------|-----------|------------|---------------|

| Case | Oddeven (1) / Sequential (0) | ldeven (1) / Sequential (0) SEG Remap Left / R |                                  |         |
|------|------------------------------|------------------------------------------------|----------------------------------|---------|
| no.  | Command : DAh -> A[4]        | Command : A0h / A1h                            | Command : $DAh \rightarrow A[5]$ |         |
| 1    | 0                            | 0                                              | 0                                |         |
| 2    | 0                            | 0                                              | 1                                |         |
| 3    | 0                            | 1                                              | 0                                |         |
| 4    | 0                            | 1                                              | 1                                |         |
| 5    | 1                            | 0                                              | 0                                | Default |
| 6    | 1                            | 0                                              | 1                                |         |
| 7    | 1                            | 1                                              | 0                                |         |
| 8    | 1                            | 1                                              | 1                                |         |





#### Note:

<sup>(1)</sup> The above eight figures are all with bump pads being faced up.

#### 2.1.21 Set V<sub>COMH</sub> Deselect Level (DBh)

This command adjusts the VCOMH regulator output. Please refer Table 1-1 for details.

#### 2.1.22 NOP (E3h)

No Operation Command.

#### 2.1.23 Set Command Lock (FDh)

This double byte command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is called "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resumes from the "Lock" state, and the driver IC will then respond to the command and memory access.

.a .ate. .emory access.

### 2.2 Graphic Acceleration Command

#### 2.2.1 Horizontal Scroll Setup (26h/27h)

This command consists of seven consecutive bytes to set up the horizontal scroll parameters and determines the scrolling start page, end page, scrolling speed, start column and end column.

Before issuing this command the horizontal scroll must be deactivated (2Eh). Otherwise, RAM content may be corrupted.

The SSD1317 horizontal scroll is designed for 128 columns scrolling. The following figures (Figure 2-7, Figure 2-8, and Figure 2-9) show the examples of using the horizontal scroll:

| Original Setting      | SEG0   | SEG1 | SEG2 | SEG3 | SEG4 | SEG5 | : | : | : | SEG122 | SEG123 | SEG124 | SEG125 | SEG126 | SEG127 |
|-----------------------|--------|------|------|------|------|------|---|---|---|--------|--------|--------|--------|--------|--------|
| After one scroll step | SEG127 | SEG0 | SEG1 | SEG2 | SEG3 | SEG4 | : |   | 0 | SEG121 | SEG122 | SEG123 | SEG124 | SEG125 | SEG126 |

Figure 2-7 : Horizontal scroll example: Scroll RIGHT by 1 column

#### Figure 2-8 : Horizontal scroll example: Scroll LEFT by 1 column

| Original<br>Setting      | SEG0 | SEG1 | SEG2 | SEG3 | SEG4 | SEG5 |   | : | : | SEG122 | SEG123 | SEG124 | SEG125 | SEG126 | SEG127 |
|--------------------------|------|------|------|------|------|------|---|---|---|--------|--------|--------|--------|--------|--------|
| After one<br>scroll step | SEG1 | SEG2 | SEG3 | SEG4 | SEG5 | SEG6 | : |   |   | SEG123 | SEG124 | SEG125 | SEG126 | SEG127 | SEG0   |

#### Figure 2-9 : Horizontal scrolling setup example



# 2.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)

This command consists of seven consecutive bytes to set up the continuous vertical scroll parameters and determine the scrolling start page, end page, start column, end column, scrolling speed, horizontal and vertical scrolling offset.

If the vertical scrolling offset byte E[3:0] of command 29h / 2Ah is set to zero, then only horizontal scrolling is performed (like command 26/27h). On the other hand, if the number of column scroll offset byte A[0] is set to zero, then only vertical scrolling is performed.

Continuous diagonal (horizontal + vertical) scrolling would be enabled if both A[0] and E[3:0] are set to be non-zero, whereas full column diagonal scrolling mode is suggested by setting F[6:0]=00h and G[6:0]=7Fh.

Before issuing this command the scroll must be deactivated (2Eh), or otherwise, RAM content may be corrupted. The following figure (Figure 2-10) show the examples of using the continuous vertical and horizontal scroll.



#### 2.2.3 Deactivate Scroll (2Eh)

This command stops the motion of scrolling. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten.

#### 2.2.4 Activate Scroll (2Fh)

This command starts the motion of scrolling and should only be issued after the scroll setup parameters have been defined by the scrolling setup commands: 26h / 27h / 29h / 2Ah. The setting in the latest scrolling setup command overwrites the setting in the previous scrolling setup command.

The following actions are prohibited after the scrolling is activated

- 1. RAM access (Data write or read)
- 2. Changing the horizontal scroll setup parameters

#### 2.2.5 Set Vertical Scroll Area (A3h)

This command consists of 3 consecutive bytes to set up the vertical scroll area. For the continuous vertical scroll function (command 29h / 2Ah), the number of rows in the vertical scroll area can be set smaller than or equating to the MUX ratio. Figure 2-11 shows a vertical scrolling example with different settings in vertical scroll area.



Figure 2-11 : Vertical scroll area setup examples

# 2.3 Advance Graphic Acceleration Command

#### 2.3.1 Content Scroll Setup (2Ch/2Dh)

This command consists of seven consecutive bytes to set up the horizontal scroll parameters and determine the scrolling start page, end page, start column and end column. One column will be scrolled horizontally by sending the setting of command 2Ch / 2Dh once.

When command 2Ch / 2Dh are sent consecutively, a delay time of  $\frac{2}{FrameFreq}$  must be set. Figure 2-12 shown an example of using 2Dh "Content Scroll Setup" command for horizontal scrolling to left with infinite content update. In there, "Col" means the graphic display data RAM column.

Figure 2-12: Content Scrolling example (2Dh, Left Horizontal Scroll by one column)



By using command 2Ch/2Dh, RAM contents are scrolled and updated by one column. Table 2-4 is an example of content scrolling setting of SSD1317 (eg. scrolling window of 4 pages). The values of registers depend on different conditions and applications.

| Step | Action                               | D/C# | Code | Remarks                                                  |
|------|--------------------------------------|------|------|----------------------------------------------------------|
| 1    | For i= 1 to n                        | -    | -    | Create "For loop" for infinite content scrolling         |
|      |                                      |      |      |                                                          |
| 2    | Set Content scrolling command        | 0    | 2Dh  | Left Horizontal Scroll by one column                     |
|      | (scrolling window : Page 0 to 3, Col | 0    | 00h  | A[7:0] : Dummy byte (Set as 00h)                         |
|      | 8 to Col 120)                        | 0    | 00h  | B[3:0] : Define start page address                       |
|      |                                      | 0    | 01h  | C[7:0] : Dummy byte (Set as 01h)                         |
|      |                                      | 0    | 03h  | D[3:0] : Define end page address                         |
|      |                                      | 0    | 00h  | E[7:0] : Dummy byte (Set as 00h)                         |
|      |                                      | 0    | 08h  | F[6:0] : Define start column address                     |
|      |                                      | 0    | 78h  | G[6:0] : Define end column address                       |
|      |                                      |      |      |                                                          |
| 3    | Add Delay time of 2/FrameFreq        | -    | 1    | E.g. Delay 20ms if frame freq $\approx$ 100Hz            |
|      |                                      |      |      |                                                          |
| 4    | Write RAM on the beginning column    |      |      |                                                          |
|      | of the scrolling window              |      |      |                                                          |
|      | Write RAM on (Page0, Col 120)        | 0    | B0h  | Set Page Start Address for Page Addressing Mode          |
|      | Content update in beginning          | 0    | 17h  | Set Higher Column Start Address for Page Addressing Mode |
|      | column)                              | 0    | 08h  | Set Lower Column Start Address for Page Addressing Mode  |
|      |                                      | 1    | -    | Write data to fill the RAM                               |
|      | Write RAM on (Page1, Col 120)        | 0    | B1h  | Set Page Start Address for Page Addressing Mode          |
|      | Content update in beginning          | 0    | 17h  | Set Higher Column Start Address for Page Addressing Mode |
|      | column)                              | 0    | 08h  | Set Lower Column Start Address for Page Addressing Mode  |
|      |                                      | 1    | -    | Write data to fill the RAM                               |
|      | Write RAM on (Page2, Col 120)        | 0    | B2h  | Set Page Start Address for Page Addressing Mode          |
|      | (Content update in beginning         | 0    | 17h  | Set Higher Column Start Address for Page Addressing Mode |
|      | column)                              | 0    | 08h  | Set Lower Column Start Address for Page Addressing Mode  |
|      |                                      | 1    | -    | Write data to fill the RAM                               |
|      | Write RAM on (Page3, Col 120)        | 0    | B3h  | Set Page Start Address for Page Addressing Mode          |
|      | (Content update in beginning         | 0    | 17h  | Set Higher Column Start Address for Page Addressing Mode |
|      | column)                              | 0    | 08h  | Set Lower Column Start Address for Page Addressing Mode  |
|      |                                      | 1    | -    | Write data to fill the RAM                               |
|      |                                      |      |      |                                                          |
| 5    | i=i+1                                | -    | -    | Go to next "For loop"                                    |
|      | Delay timing                         | -    | -    | Set time interval between each scroll step if necessary  |
|      | End                                  | Ī    |      |                                                          |

Table 2-4 : Content Scrolling software flow example (Page addressing mode – command 20h, 02h)

There are 3 different memory addressing mode in SSD1317: page addressing mode, horizontal addressing mode and vertical addressing mode and it is selected by command 20h. Table 2-4 is an example of content scrolling software flow under page addressing mode, while vertical addressing mode example is shown in below Table 2-5.

| Step | Action                                | <b>D/C#</b> | Code | Remarks                                                 |
|------|---------------------------------------|-------------|------|---------------------------------------------------------|
| 1    | For i= 1 to n                         | -           | -    | Create "For loop" for infinite content scrolling        |
|      |                                       |             |      |                                                         |
| 2    | Set Content scrolling command         | 0           | 2Dh  | Left Horizontal Scroll by one column                    |
|      | (scrolling window : Page 0 to 3, Col  | 0           | 00h  | A[6:0] : Dummy byte (Set as 00h)                        |
|      | 8 to Col 120)                         | 0           | 00h  | B[3:0] : Define start page address                      |
|      |                                       | 0           | 01h  | C[2:0] : Dummy byte (Set as 01h)                        |
|      |                                       | 0           | 03h  | D[3:0] : Define end page address                        |
|      |                                       | 0           | 00h  | E[6:0] : Dummy byte (Set as 00h)                        |
|      |                                       | 0           | 08h  | F[6:0] : Define start column address                    |
|      |                                       | 0           | 78h  | G[6:0] : Define end column address                      |
|      |                                       |             |      |                                                         |
| 3    | Add Delay time of 2/FrameFreq         | -           | -    | E.g. Delay 20ms if frame freq ≈ 100Hz                   |
|      |                                       |             |      |                                                         |
| 4    | Write RAM on the beginning column     | 0           | 21h  | Set Column address                                      |
|      | of the scrolling window (Page 0 to 3, | 0           | 78h  | Set column start address for Vertical Addressing Mode   |
|      | Col 120)                              | 0           | 78h  | Set column end address for Vertical Addressing Mode     |
|      | (Content update in beginning          | 0           | 22h  | Set Page address                                        |
|      | column)                               | 0           | 00h  | Set start page address for Vertical Addressing Mode     |
|      |                                       | 0           | 03h  | Set end page address for Vertical Addressing Mode       |
|      |                                       | 1           | -    | Write data to fill the RAM                              |
|      |                                       |             |      |                                                         |
| 5    | i=i+1                                 | -           | -    | Go to next "For loop"                                   |
|      | Delay timing                          | 37          | -    | Set time interval between each scroll step if necessary |
|      | End                                   |             |      |                                                         |
|      | RI                                    |             |      |                                                         |

Table 2-5 : Content Scrolling setting example (Vertical addressing mode – command 20h, 01h)