	256×6416 Grayscale
Preliminary	Dot Matrix OLED/PLED Driver with Controller

Features

■ Support maximum 256 X 64 dot matrix panel with 16 grayscale
■ Embedded 256 X 64×4 bits SRAM
■ Operating voltage:

- I/O voltage supply: VDD1 $=1.65 \mathrm{~V}-3.5 \mathrm{~V}$ or $3.5-5.5 \mathrm{~V}$
- Logic voltage supply: VDD2 $=1.65 \mathrm{~V}-3.5 \mathrm{~V}$
- DC-DC voltage supply: AVDD $=2.4 \mathrm{~V}-3.5 \mathrm{~V}$
- OLED Operating voltage supply: VPP = 7.0V -13.5 V

■ Maximum segment output current: $500 \mu \mathrm{~A}$
■ Maximum common sink current: 128 mA
■ 8-bit 6800-series parallel interface, 8-bit 8080-series parallel interface, 3 wire/4 wire serial peripheral interface

- 400 KHz fast $\mathrm{I}^{2} \mathrm{C}$ bus interface
- Programmable frame frequency and multiplexing ratio
- Row re-mapping and column re-mapping (ADC)

■ Vertical scrolling
■ On-chip oscillator

- Available internal DC-DC converter

■ 256-step contrast control on monochrome passive OLED panel
■ Low power consumption

- \quad Sleep mode: $<5 \mu \mathrm{~A}$

VDD1 $=$ VDD2 $=0 \mathrm{~V}, \mathrm{AVDD}=2.4 \mathrm{~V}-3.5 \mathrm{~V}:<5 \mu \mathrm{~A}$ $V_{D D 1}=V_{D D 2}=A V D D=0 V, V P P=7.0 \mathrm{~V}-13.5 \mathrm{~V}:<5 \mu \mathrm{~A}$
■ Wide range of operating temperatures: -40 to $+85^{\circ} \mathrm{C}$

- Available in COG form

General Description

SH1122 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. SH1122 consists of 256 segments, 64 commons with 16 grayscale that can support a maximum display resolution of 256×64. It is designed for Common Cathode type OLED pane . external components and power consumption SH 1122 is suitable for a wide range of compact portableapplications, such as car audio, and calculator, etc.

Pin Configuration

Pad Configuration

PRELIMINARY

Block Diagram

Figure. 1 SH1122 Block Diagram

Pad Description

Power Supply

Pad No.	Symbol	I/O	
	VDD2	Supply	$1.65-3.5 \mathrm{~V}$ power supply input pad for logic
	VDD1	Supply	$1.65-3.5 \mathrm{~V}$ or 3.5-5.5V power supply input pad
	VDD1	Supply	$1.65-3.5 \mathrm{~V}$ or 3.5-5.5V power supply output for pad option
	AVDD	Supply	$2.4-3.5 \mathrm{~V}$ power supply pad for the internal buffer of the DC-DC voltage converter
	VssA	Supply	Ground for internal buffer
	Vss	Supply	Ground
	Vss	Supply	Ground output for pad option
	VpP	Supply	This is the most positive voltage supply pad of the chip It should be supplied externally
	Supply	This is a segment voltage reference pad A capacitor should be connected between this pad and Vss	
	Supply	This is a common voltage reference pad This pad should be connected to Vss externally	

OLED Driver Supplies

System Bus Connection Pads

Test Pads

Pad No.	Symbol	I/O	
	TEST1	I	Test pads, internal pull low, no connection for user.
	TEST2	O	Test pads, no connection for user.
	TEST3	I	Test pads, no connection for user.
	NC	-	NC pads, no connection for user.

Functional Description

Microprocessor Interface Selection

The 8080-Parallel Interface, 6800-Parallel Interface, Serial Interface (SPI) or I ${ }^{2}$ C Interface can be selected by different selections of IMO~2 as shown in Table 1.

Table. 1

	Config			Data signal								Control signal				
Interface	IM0	IM1	IM2	D7	D6	D5	D4	D3	D2	D1	D0	E/ $\overline{\mathrm{RD}}$	$\overline{\text { WR }}$	$\overline{\mathrm{CS}}$	A0	$\overline{\mathrm{RES}}$
6800	0	0	1	D7	D6	D5	D4	D3	D2	D1	D0	E	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\mathrm{CS}}$	A0	$\overline{\mathrm{RES}}$
8080	0	1	1	D7	D6	D5	D4	D3	D2	D1	D0	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	A0	$\overline{\mathrm{RES}}$
4-Wire SPI	0	0	0	Pull Low						SI	SCL	Pull Low			A0	$\overline{\mathrm{RES}}$
3-Wire SPI	1	0	0	Pull Low						SI	SCL	Pull Low				$\overline{\text { RES }}$
$I^{2} \mathrm{C}$	0	1	0	Pull Low						SDA	SCL	Pull Low			SA0	$\overline{\mathrm{RES}}$

6800-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-D0), $\overline{W R}(R / \bar{W}), \overline{R D}(E), A 0$ and $\overline{C S}$. When $\overline{W R}(R / \bar{W})=$ "H", read operation from the display RAM or the status register occurs. When $\overline{W R}(R / \bar{W})=$ " L ", Write operation to display data RAM or internal command registers occurs, depending on the status of AO inptt. The $\overline{R D}$ (E) input serves as data latch signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing are internally performed, which require the insertion of a dummy read before the first actual display data read. This is shown in Figure. 2 below.

Figure. 2

8080-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-D0), $\overline{W R}(R / \bar{W}), \overline{R D}(E), A 0$ and $\overline{C S}$. The $\overline{R D}$ (E) input serves as data read latch signal (clock) when it is "L" provided that $\overline{C S}=$ " L ". Display data or status register read is controlled by A0 signal. The $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ input serves as data write latch signal (clock) when it is "L" and provided that $\overline{\mathrm{CS}}=$ "L". Display data or command register write is controlled by A0 as shown in Table. 3.

Table. 3

IM0	IM1	IM2	Type	$\overline{\mathbf{C S}}$	A0	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	D0 to D7
0	1	1	8080 microprocessor bus	$\overline{\mathrm{CS}}$	$\mathrm{A0}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	D 0 to D 7

Similar to 6800-series interface, a dummy read is also required before the first actual display data read.

Data Bus Signals

The SH1122 identifies the data bus signal according to $A 0, \overline{R D}(E)$ and $\overline{W R}(R / \bar{W})$ signals.
Table. 4

Common	6800 processor	8080 processor		Function
A0	(R/W)	$\overline{\mathbf{R D}}$	$\overline{\text { WR }}$	
1	1	0	1	Reads display data.
1	0	1	0	Writes display data \rightarrow P
0	1	0	-	
0	0			Writes control data in internal register. (Command)

The serial interface consists of seriabclock SCL, serial data SI, A0 and CS . SI is shifted into an 8-bit shift register on every rising edge of SCL in the order of $\mathrm{D} 7, \mathrm{D} 6, \ldots$ and D 0 . A 0 is sampled on every eighth clock and the data byte in the shift register is written to the display data RAM or command register in the same clock. See Figure. 3.

Table. 5

IM0	IM1	IM2	Type	$\overline{\mathbf{C S}}$	A0	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	D0	D1	D2 to D7
0	0	0	4-wire SPI	Pull Low	A0	-	-	SCL	SI	(HZ)

Note: "-" Must always be HIGH or LOW.
$\overline{\mathrm{CS}}$ signal could always pull low in SPI-bus application.

Figure. 3 4-wire SPI data transfer

- When the chip is not active, the shift registers and the counter are reset to their initial statuses.
- Read is not possible while in serial interface mode.
- Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend the operation be rechecked on the actual equipment.

3 Wire Serial Interface (3-wire SPI)

The 3 wire serial interface consists of serial clock SCL, serial data SI, and $\overline{C S}$. SI is shifted into an 9-bit shift register on every rising edge of $S C L$ in the order of $D / \bar{C}, D 7, D 6, \ldots$ and $D 0$. The D / \bar{C} bit (first of the 9 bit) will determine the transferred data is written to the display data RAM ($D / \bar{C}=1$) or command register ($D / \bar{C}=0$). See Figure. 34.

Table. 6

IM0	IM1	IM2	Type	$\overline{\mathbf{C S}}$	A0	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	D0	D1	D2 to $\mathbf{D 7}$
1	0	0	3-wire SPI	Pull Low	Pull Low	-	-	SCL	SI	(HZ)

Note: "-" and Hz pin Must always be HIGH or LOW.
$\overline{\mathrm{CS}}$ signal could always pull low in SPI-bus application.

- When the chip is not active, the shift registers and the counter are reset to their initial statuses.
- Read is not possible while in serial interface mode.
- Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend the operation be rechecked on the actual equipment.

$\mathbf{I}^{2} \mathbf{C}$-bus Interface

The SH1122 can transfer data via a standard $\mathrm{I}^{2} \mathrm{C}$-bus and has slave mode only in communication. The command or RAM data can be written into the chip and the status and RAM data can be read out of the chip.

Table. 7

IM0	IM1	IM2	Type	$\overline{\mathbf{C S}}$	A0	$\overline{\text { RD }}$	$\overline{\text { WR }}$	D0	D1	D2 to D7
0	1	0	I 2 C Interface	Pull Low	SA0	-	-	SCL	SDA	(HZ)

Note: "-" and Hz pin Must always be HIGH or LOW.
$\overline{\mathrm{CS}}$ signal could always pull low in $\mathrm{I}^{2} \mathrm{C}$-bus application.

Characteristics of the $I^{2} C$-bus

The $I^{2} \mathrm{C}$-bus is for bi-directional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.
Note: The positive supply of pull-up resistor must equal to the value of VDD1.

Bit Transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Figure. 5 Bit Transfer

Start and Stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

START condition

STOP condition

Figure. 6 Start and Stop conditions

System configuration

- Transmitter: The device that sends the data to the bus.
- Receiver: The device that receives the data from the bus.
- Master: The device that initiates a transfer, generates clock signals and terminates a transfer.
- Slave: The device addressed by a master.
- Multi-Master: More than one master can attempt to control the bus at the same time without corrupting the message
- Arbitration: Procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted.
- Synchronization: Procedure to synchronize the clock signals of two or more devices.

Figure. 7 System configuration

Acknowledge
Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Protocol

The SH1122 supports both read and write access. The R / \bar{W} bit is part of the slave address. Before any data is transmitted on the $I^{2} \mathrm{C}$-bus, the device that should respond is addressed first. Two 7-bit slave addresses (0111100 and 0111101) are reserved for the SH1122. The least significant bit of the slave address is set by connecting the input SA0 to either logic 0(VSS) or 1 (VDD1). The $I^{2} \mathrm{C}$-bus protocol is illustrated in Fig.9. The sequence is initiated with a START condition (S) from the I ${ }^{2} \mathrm{C}$-bus master that is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the $I^{2} \mathrm{C}$-bus transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and D/ \bar{C} (note1), plus a data byte (see Fig.7). The last control byte is tagged with a cleared most significant bit, the continuation bit Co. After a control byte with a cleared Co-bit, only data bytes will follow. The state of the $\mathrm{D} / \overline{\mathrm{C}}$-bit defines whether the data-byte is interpreted as a command or as RAM-data. The control and data bytes are also acknowledged by all addressed slaves on the bus. After the last control byte, depending on the \bar{D} / \bar{C} bit setting, either a series of display data bytes or command data bytes may follow. If the \bar{D} / \bar{C} bit was set to ' 1 ', these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended SH 1122 device. If the $\mathrm{D} / \overline{\mathrm{C}}$ bit of the last control byte was set to ' 0 ', these command bytes will be decoded and the setting of the device will be changed according to the received commands. The acknowledgement after each byte is made only by the addressed slave. At the end of the transmission the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a stop condition (P). If the R / \bar{W} bit is set to one in the slave-address, the chip will output data immediately after the slave-address according to the $\mathrm{D} / \overline{\mathrm{C}}$ bit, which was sent during the last write access. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master.

Note1:

1. $\mathrm{Co}=$ " 0 " : The last control byte, only data bytes to follow,
$\mathrm{Co}=" 1 "$: Next two bytes are a data byte and another control byte;
2. $\mathrm{D} / \overline{\mathrm{C}}=" 0$ " : The data byte is for command operation,
$\mathrm{D} / \overline{\mathrm{C}}=" 1 "$: The data byte is for RAM operation.

Access to Display Data RAM and Internal Registers

This module determines whether the input data is interpreted as data or command. When $\mathrm{A} 0=$ " H ", the inputs at D 7 - D0 are interpreted as data and be written to display RAM. When $A 0=$ " L ", the inputs at $D 7-D 0$ are interpreted as command, they will be decoded and be written to the corresponding command registers.

Display Data RAM

The Display Data RAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is $256 \times 64 \times 4$ bits as shown in Figure. 10.
For mechanical flexibility, re-mapping on both segment and common outputs can be selected by software.
For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display.

Column	COLO				COL1				---	COL254				COL255			
0	D7	D6	D5	D4	D3	D2	D1	D0	---	D7	D6	D5	D4	D3	D2	D1	D0
1	D7	D6	D5	D4	D3	D2	D1	D0	---	D7	D6	D5	D4	D3	D2	D1	D0
2	D7	D6	D5	D4	D3	D2	D1	D0	---	D7	D6	D5	D4	D3	D2	D1	D0
---	---																
62	D7	D6	D5	D4	D3	D2	D1	D0	---	D7	D6	D5	D4	D3	D2	D1	D0
63	D7	D6	D5	D4	D3	D2	D1	D0	---	D7	D6	D5	D4	D3	D2	D1	D0

SH1122

ADC	$=0$	SEG0	SEG1	---	SEG254	SEG255
	$=1$	SEG255	SEG254	---	SEG1	SEG0

Figure. 10

The Column/Row Address

As shown in Figure. 11, the display data RAM column address is specified by the Column and Row Address Set command. The specified column address is incremented (+1) with each display data read/ write command. When the Column address reachs the edge, it will be cleared and the row address will be incremented 1.

RAM Address Increment Direction
Furthermore, as shown in Table 8, the Column re,mapping (ADC) command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. Because of this, the constraints on the IC layout when the OLED modyle is assembled can be minimized. $\leq \leq \leq$

Segment Output	SEG0	SEG255	
ADC "0"	$0(\mathrm{H}) \rightarrow$	Column Address	\rightarrow FF (H)
ADC "1"	FF $(\mathrm{H}) \leftarrow$	Column Address	$\leftarrow 0(\mathrm{H})$

SH1122

The Row Address Circuit

The Row address circuit specifies the Row address of display RAM and the Row address relating to the common output using the display start line set command, what is normally the top line of the display can be specified.
The screen scrolling function is active by changing display start line dynamically using the display start line set command.

Figure. 12 Display Start Line Setting Function

SH1122

The Oscillator Circuit

This is a RC type oscillator (Figure. 13) that produces the display clock. The oscillator circuit is only enabled when CLS = " H ". When CLS = " L ", the oscillation stops and the display clock is inputted through the CL terminal.

Figure. 13
PRELIMINARY

SH1122

DC-DC Voltage Converter

It is a switching voltage generator circuit, designed for hand held applications. In SH1122, built-in DC-DC voltage converter accompanied with an external application circuit (shown in Figure.) can generate a high voltage supply VPP from a low voltage supply input AVDD. VPP is the voltage supply to the OLED driver block.
L D

Current Control and Voltage Control

This block is used to derive the incoming power sources into different levels of internal use voltage and current. Vpp and VDD2 are external power supplies. IREF is a reference current source for segment current drivers.

Common Drivers/Segment Drivers

Segment drivers deliver 256 current sources to drive OLED panel. The driving current can be adjusted up to $500 \mu \mathrm{~A}$ with 256 steps. Common drivers generate voltage scanning pulses.

16 Grayscale

There are 16 level grayscale for segment driver. The grayscale table is as following.

RAM Data	Pulse Duty	Pulse width
0000	0	0 (DCLK)
0001	$1 / 15$	4 (DCLK)
0010	$2 / 15$	8 (DCLK)
0011	$3 / 15$	12 (DCLK)
\ldots		
1110	$14 / 15$	56 (DCLK)
1111	$15 / 15$	60 (DCLK)

Reset Circuit

When the RES input falls to "L", these reenter their default state. The default settings are shown below:

1. Display is OFF. Common and segment are in high impedance state.
2. 256 X 64 Display mode.
3. Normal segment and display data column address and row address mapping (SEGO is mapped to column address 00 H and COMO mapped to row address 00 H).
4. Shift register data clear in serial interface.
5. Display start line is set at display RAM Row address 00H.
6. Column address counter is set at 0 .
7. Normal scanning direction of the common outputs.
8. Contrast control register is set at 80 H .
9. Internal DC-DC is selected.

Commands

The SH1122 uses a combination of $A 0, \overline{R D}(E)$ and $\overline{W R}(R / \bar{W})$ signals to identify data bus signals. As the chip analyzes and executes each command using internal timing clock only regardless of external clock, its processing speed is very high and its busy check is usually not required. The 8080 series microprocessor interface enters a read status when a low pulse is input to the $\overline{\mathrm{RD}}$ pad and a write status when a low pulse is input to the $\overline{\mathrm{WR}}$ pad. The 6800 series microprocessor interface enters a read status when a high pulse is input to the R / \bar{W} pad and a write status when a low pulse is input to this pad. When a high pulse is input to the E pad, the command is activated. (For timing, see AC Characteristics.). Accordingly, in the command explanation and command table, $\overline{\mathrm{RD}}(\mathrm{E})$ becomes 1 (HIGH) when the 6800 series microprocessor interface reads status of display data. This is an only different point from the 8080 series microprocessor interface.
Taking the 8080 series, microprocessor interface as an example command will explain below.
When the serial interface is selected, input data starting from D7 in sequence.

Command Set

1. Set Lower Column Address of display RAM: ($00 \mathrm{H}-\mathrm{OFH}$)

2. Set Higher Column Address of display RAM: ($\mathbf{1 0 H} \mathbf{- 1 7 H}$)

Specifies column address of display RAM. Divide the column address into 3 higher bits and 4 lower bits. Set each of them into successions. When the microprocessor repeats to access to the display RAM, the column address counter is incremented during each access until address 128 is accessed. The row address is not changed during this time.

3. - 5. Blank

6. Set Display Start Line: (40H-7FH)

Specifies Row address to determine the initial display line or COMO. The RAM display data becomes the top line of OLED screen. It is followed by the higher number of lines in ascending order, corresponding to the duty cycle. When this command changes the Row address, the smooth scrolling or page change takes place.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	0	1	A 5	A 4	A 3	A 2	A 1	A 0

A5	A4	A3A	A2	A1	A0	Row address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
			$:$			
1	1	1	1	1	0	62
1	1	1	1	1	1	63

SH1122

7. Set Contrast Control Register: (Double Bytes Command)

This command is to set contrast setting of the display. The chip has 256 contrast steps from 00 to FF . The segment output current increases as the contrast step value increases.
Segment output current setting: Iseg $=\alpha / 256 \times$ IreF X scale factor
Where: α is contrast step; IREF is reference current equals $12.5 \mu \mathrm{~A}$; Scale factor $=40$.
■ The Contrast Control Mode Set: (81H)
When this command is input, the contrast data register set command becomes enabled. Once the contrast control mode has been set, no other command except for the contrast data register command can be used. Once the contrast data set command has been used to set data into the register, then the contrast control mode is released.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	0	0	0	0	0	1

■ Contrast Data Register Set: (00H - FFH)
By using this command to set eight bits of data to the contrast data register, the OLED segment output assumes one of the 256 current levels.
When this command is input, the contrast control mode is released after the contrast data register has been set.

A0	$\overline{\mathrm{RD}}$ (E)	$\overline{W R}(R / \bar{W})$	D7	D6	D5	D4	D3	D2	D1	D0	IsEg
0	1	0	0	0	0	0	0	0	0	0	Small
0	1	0	0	0	0	0	0	0	0	1	
0	1	0	0	0	0		0		1		
0	1	0					:				
0	1	0					0				OR
0	1	0									
0	1	01			1	1	1	1	1	0	
0	1	0	1	1	1	1	1	1	1	1	Large

8. Set Segment Re-map: (A0H - A1H)

Change the relationship between RAM column address and segment driver. The order of segment driver output pads can be reversed by software. This allows flexible IC layout during OLED module assembly. For details, refer to the column address section of ADC. When display data is written or read, the column address is incremented by 1 as shown in Figure. 2.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	1	0	0	0	0	ADC

When ADC = " L ", the right rotates (normal direction). (POR)
When ADC = "H", the left rotates (reverse direction).

Note:

The Set Segment Re-map command will change the address counter value, so it is recommended to set segment re-map in the initial program.

SH1122
9. Set Entire Display OFF/ON: (A4H - A5H)

Forcibly turns the entire display on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held.
This command has priority over the normal/reverse display command.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	1	0	0	1	0	D

When $\mathrm{D}=$ " L ", the normal display status is provided. (POR)
When $\mathrm{D}=$ " H ", the entire display ON status is provided.

10. Set Normal/Reverse Display: (A6H - A7H)

Reverses the display ON/OFF status without rewriting the contents of the display data RAM.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	1	0	0	1	1	D

When $D=$ " L ", the RAM data is high, being OLED ON potential (normal display). (POR)
When $\mathrm{D}=$ " H ", the RAM data is low, being OLED ON potential (reverse display)
11. Set Multiplex Ration: (Double Bytes Command)

This command switches default 64 multiplex modes to any multiplex ratio from 1 to 64 . The output pads COMO-COM63 will be switched to corresponding common signal.

A 0	$\overline{\mathrm{RD}}(\mathrm{E}) \overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	Multiplex Ratio	
0	1	0	$*$	$*$	0	0	0	0	0	0	1
0	1	0	$*$	$*$	0	0	0	0	0	1	2
0	1	0	$*$	$*$	0	0	0	0	1	0	3
0	1	0					$:$				$:$
0	1	0	$*$	$*$	1	1	1	1	1	0	63
0	1	0	$*$	$*$	1	1	1	1	1	1	64 (POR)

12. DC-DC Setting: (Double Bytes Command)

This command is to control the DC-DC voltage converter status and the switch frequency. Issuing this command then display ON command will turn on the converter. The panel display must be off while issuing this command.

- DC-DC Control Mode Set: (ADH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	1	0	1	1	0	1

■DC-DC ON/OFF Mode Set:

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	0	0	F 2	F 1	F 0	D

When $\mathrm{D}=$ " L ", $\mathrm{DC}-\mathrm{DC}$ is disable.
When $\mathrm{D}=$ " H ", $\mathrm{DC}-\mathrm{DC}$ will be turned on when display on. (POR)

$S F=400 \mathrm{kHZ} \pm 25 \%$
13. Display OFFION: (AEH - AFH)

Alternatively turns the display on and off.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	1	0	1	1	1	D

When D = "L", Display OFF OLED. (POR)
When $\mathrm{D}=$ " H ", Display ON OLED.
When the display OFF command is executed, power saver mode will be entered.
Sleep Mode:
This mode stops every operation of the OLED display system, and can reduce current consumption nearly to a static current value if no access is made from the microprocessor. The internal status in the sleep mode is as follows:
(1) Stops the oscillator circuit and DC-DC circuit.
(2) Stops the OLED drive and outputs HZ as the segment/common driver output.
(3) Holds the display data and operation mode provided before the start of the sleep mode.
(4) The MPU can access to the built-in display RAM.

14. Set Row Address of Display RAM: (Double Bytes Command)

Specifies Row address to load display RAM data to Row address register. Any RAM data bit can be accessed when its Row address and column address are specified. The display remains unchanged even when the Row address is changed.

- Row address Mode Setting: (BOH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	0	1	1	0	0	0	0

■ Row address setting:

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	${ }^{*}$	${ }^{*}$	A 5	A 4	A 3	A 2	A 1	A 0

This command sets the scan direction of the common output allowing tayout flexibility in OLED module design. In addition, the display will have immediate-effect once this command is issued. That is, if this command is sent during normal display, the graphic display will be vertically flipped.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	0	0	D	${ }^{*}$	${ }^{*}$	$*$

When $D=$ " L ", Scan from COM0 to COM [N-1]. (POR)
When D = "H", Scan from COM [$\mathrm{N}-1$] to COM0.

16. Set Display Offset: (Double Bytes Command)

This is a double byte command. The next command specifies the mapping of display start line to one of COM0-63 (it is assumed that COMO is the display start line, that equals to 0). For example, to move the COM16 towards the COM0 direction for 16 lines, the 6 -bit data in the second byte should be given by 010000 . To move in the opposite direction by 16 lines, the 6-bit data should be given by (64-16), so the second byte should be 100000.
■ Display Offset Mode Set: (D3H)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	0	1	0	0	1	1

■ Display Offset Data Set: (00H-3FH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E}) \overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	COMx	
0	1	0	$*$	$*$	0	0	0	0	0	0	$0(\mathrm{POR})$
0	1	0	$*$	$*$	0	0	0	0	0	1	1
0	1	0	$*$	$*$	0	0	0	0	1	0	2
0	1	0					$:$				$:$
0	1	0	$*$	$*$	1	1	1	1	1	0	62
0	1	0	$*$	$*$	1	1	1	1	1	1	63

Note: "*" stands for "Don't care"

17. Set Display Clock Divide Ratio/Oscillator Frequency: (Double Bytes Command)

This command is used to set the frequency of the internal display clocks (DCLKs). It is defined as the divide ratio (Value from 1 to 16) used to divide the oscillator frequency. POR is 1 . Frame frequency is determined by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency.
■ Divide Ratio/Oscillator Frequency Mode Set: (D5H)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	0	1	0	1	0	1

■ Divide Ratio/Oscillator Frequency Data Set: (00H-3FH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0

A3-Ao defines the divide ration of the display clocks (DCLK). Divide Ration = A[3:0]+1.

A3	A2	A1	Ao	Divide Ration
0	0	0	0	1 (POR)
		\vdots		$:$
1	1	1	1	16

A7-A4 sets the oscillator frequency. Oscillator frequency increase with the value of $A[7: 4]$ and vice versar

SH1122

18. Set Discharge/Precharge Period: (Double Bytes Command)

This command is used to set the duration of the Precharge/Discharge period. The interval is counted in number of DCLK. POR is 2 DCLKs.
■ Precharge/Discharge Period Mode Set: (D9H)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	0	1	1	0	0	1

■ Precharge/Discharge Period Data Set: (00 H - FFH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0

Precharge Period Adjust: (A3-A0)

А3	A2	A1	Ao	Pre-charge Period
0	0	0	0	INVALID
0	0	0	1	1 DCLKs
0	0	1	0	2 DCLKs (POR)
				:
1	1	1	0	14 DCLKs
1	1	1	1	15 DCEKs
Discharge Period Adjust: (A7-A4)				
A7	A6		A4	V/ Dis-charge Reriod
0	0		$0 /$	NVALD 12
0	0		1	1 DCLKs
0	0	1	0	2 DCLKs (POR)
				.
1	1	1	0	14 DCLKs
1	1	1	1	15 DCLKs

19. Set VCOM Deselect Level: (Double Bytes Command)

This command is to set the common pad output voltage level at deselect stage.
■ VCOM Deselect Level Mode Set: (DBH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	0	1	1	0	1	1

■ VCOM Deselect Level Data Set: (00 H - FFH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0

Vсомн $=\beta 1 \times$ Vref $=(0.430+A[7: 0] \times 0.006415) \times$ Vref

20. Set VSEGM Level: (Double Bytes Command)

This command is to set the segment pad output voltage level at pre-charge stage.

- Vsegm Level Mode Set: (DCH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	0	1	1	1	0	0

■ Vsegm Level Data Set: (00H - FFH)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0

Vsegm $=\beta 2 \times$ Vref $=(0.430+A[7: 0] \times 0.006415) \times$ Vref

21. Set Discharge VSL Level (30H-3FH)

This command is to set the Segment output discharge voltage level.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	0	0	1	1	D 3	D 2	D 1	D 0

This command is to set the segment discharge voltage level

D[3:0]	VsL
00 H	0 V (Default)
01 H	0.1 Vref
02 H	0.125 Vref
03 H	0.150 Vref
04 H	0.175 Vref
05 H	0.2 Vref
06 H	0.225 Vref
07 H	0.250 Vref
08 H	0.275 Vref
09 H	0.3 Vref
0 AH	0.325 Vref
$0 B H$	0.350 Vref
0 CH	0.375 Vref
0 DH	0.4 Vref
0 OH	0.425 Vref
0 FH	0.450 Vref

22. Read-Modify-Write: (EOH) A pair of Read-Modify-Write and End commands must alwaysbe used. Once read-modify-write is issued, column address is not incremental by read display data command but incremental by write display data command only It continues until End command is issued. When the End is issued, column address returns to the address when read-modify-write is issued. This can reduce the microprocessor load when data of a specifie display area is repeatedly changed during cursor blinking or others.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	1	0	0	0	0	0

Cursor display sequence:

Figure. 15
23. End: (EEH)

Cancels Read-Modify-Write mode and returns column address to the original address (when Read-Modify-Write is issued.)

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	1	0	1	1	1	0

Figure. 16
24. NOP: (E3H)

Non-Operation Command.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	1	0	1	1	1	0	0	0	1	1

25. Write Display Data

Write 8-bit data in display RAM. As the column address is incremental by aufomaticaty after each write, the microprocessor can contin

26. Read Status

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	1	BUSY	$\mathrm{ON} / \mathrm{OFF}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	0	0	0

BUSY: When high, the SH1122 is busy due to internal operation or reset. Any command is rejected until BUSY goes low. The busy check is not required if enough time is provided for each cycle.
ON/OFF: Indicates whether the display is on or off. When goes low the display turns on. When goes high, the display turns off. This is the opposite of Display ON/OFF command.

27. Read Display Data

Reads 8 -bit data from display RAM area specified by column address and Row address. As the column address is increment by 1 automatically after each writing, the microprocessor can continue to read data of multiple words. A single dummy read is required immediately after column address being setup. Refer to the display RAM section of FUNCTIONAL DESCRIPTION for details. Note that no display data can be read via the serial interface.

A 0	$\overline{\mathrm{RD}}(\mathrm{E})$	$\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
1	0	1	Read RAM data							

Command Table

Command	Code											Function
	A0	RD	$\overline{\mathrm{WR}}$	D7	D6	D5	D4	D3	D2	D1	D0	
1. Set Column Address 4 lower bits	0	1	0	0	0	0	0	Lower column address				Sets 4 lower bits of column address of display RAM in register. (POR = 00H)
2. Set Column Address 3 higher bits	0	1	0	0	0	0	1	Higher columnaddress				Sets 3 higher bits of column address of display RAM in register. $(P O R=10 \mathrm{H})$
3. Reserved Command 4. Reserved Command 5. Reserved Command	0	1	0	0	0	1	0	0	1	0	0	Reserved
	0	1	0	0	0	1	0	0	1	1	0	Reserved
	0	1	0	0	0	1	0	1	1	1	D	Reserved
6. Set Display Start Line	0	1	0	0	1	Start Line address						Specifies RAM display line for COMO. (POR = 40H)
7. The Contrast Control Mode Set Contrast Data Register Set	0	1	0	1	0	0	0	0	0	0	1	This command is to set Contrast Setting of the display. The chip has 256 contrast steps from 00 to FF. (POR = 80H)
	0	1	0	Contrast Data								
8. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The right (0) or left (1) rotation. ($\mathrm{POR}=\mathrm{AOH}$)
9. Set Entire Display OFF/ON	0	17						71				Setects hormal display (0) or Entire Display $O N(1) .(P O R=A 4 A)$
10. Set Normal/Reverse Display												Norma/ indication (0) whe low, but re erse indication (1) when high. (ROR = A6H)
11. Multiplex Ration Mode Set Multiplex Ration Data Set	0					Multiplex Ratio						This command switches default 63 multiplex mode to any multiplex ratio from 1 to 64 . $(\mathrm{POR}=3 \mathrm{FH})$
	0	1	0	*	*							
12. DC-DC Control Mode Set DC-DC ON/OFF Mode Set	0	1	0	1	0	1	0	1	1	0	1	This command is to control the DC-DC voltage and the switch frequency.$(\mathrm{POR}=81 \mathrm{H})$
	0	1	0	1	0	0	0	F2	F1	F0	D	
13. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	$\begin{aligned} & \begin{array}{l} \text { Turns on OLED panel (} 1 \text {) or turns off (} 0 \text {). } \\ (\text { POR }=A E H) \end{array} \\ & \hline \end{aligned}$
14. Row Address Set Row Address	0	1	0	1	0	1	1	0	0	0	0	Specifies Row address to load display RAM data to Row address register.$(\mathrm{POR}=00 \mathrm{H})$
	0	1	0	*	*	Row Address						
15. Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N -1] to COMO (1). (POR = COH)
16. Display Offset Mode Set Display Offset Data Set	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command that specifies the mapping of display start line to one of $C O M 0-63$. $(P O R=00 H)$
	0	1	0	*	*	COMx						
17. Set Display Divide Ratio/Oscillator Frequency Mode Set Divide Ratio/Oscillator Frequency Data Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to set the frequency of the internal display clocks.$(\mathrm{POR}=50 \mathrm{H})$
	0	1	0	Oscillator Frequency				Divide Ratio				

Command Table (Continued)

Command	Code											Function
	A0	$\overline{\mathrm{RD}}$	$\overline{\text { WR }}$	D7	D6	D5	D4	D3	D2	D1	D0	
18. Dis-charge/Pre-charge Period Mode Set Dis-charge/Pre-charge Period Data Set	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and pre-charge period.$(\mathrm{POR}=22 \mathrm{H})$
	0	1	0	Dis-charge Period				Pre-charge Period				
19. VCOM Deselect Level Mode Set VCOM Deselect Level Data Set	0	1	0	1	1	0	1	1	0	1	1	This command is to set the common pad output voltage level at deselect stage.$(\mathrm{POR}=35 \mathrm{H})$
	0	1	0	$\mathrm{VCOMH}=\left(\beta_{1} \times\right.$ VREF $)$								
20. VSEGM Level Mode Set VSEGM Level Data Set	0	1	0	1	1	0	1	1	1	0	0	This command is to set the segment pad output voltage level at pre-charge stage.$(\mathrm{POR}=35 \mathrm{H})$
	0	1	0	VSEGM $=(\beta 2 \times$ Vref $)$								
21. Discharge voltage VSL level setting	0	1	0	0	0	1	1	D3	D2	D1	D0	Set the discharge voltage level.
22. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.
23. End	0	1	0	1 1 1 0 1 1					$1-1-0$			Read-Mddify-Write end.
24. NOP	0			$1 \quad 1$								Non-Operation Command
25. Write Display Data						Write RAM data				000		
26. Read Status	0	0		Bus ${ }^{\text {d }}$		ON	OFE	$\stackrel{+}{*}$				
27. Read Display Data	1	0	1				ad R	AM d				

Note: Do not use any others command, or the system malfunction may result.

Command Description

Instruction Setup: Reference

1. Power On and Initialization

1.1. When the built-in DC-DC pump power is being used immediately after turning on the power:

1.2. When the external DC-DC pump power is being used immediately after turning on the power:

2. Power Off

Absolute Maximum Rating*

DC Supply Voltage (VDD1) $\ldots \ldots \ldots$. . . 0.3 V to +5.6 V
DC Supply Voltage (VDD2) - 0.3 V to +3.6 V
DC Supply Voltage (VPP) -0.3 V to +15 V
Input Voltage . - -3.3 V to VdD1 + 0.3V
Operating Ambient Temperature
.$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

DC Characteristics (Vss $=0 \mathrm{~V}$, VDD1 $=1.65-3.5 \mathrm{~V}$, VDD2 $=2.4-3.5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
VDD1	Power supply of I/O	1.65	-	5.5	V	
VDD2	Power supply of logic device	1.65	-	3.5	V	
AVdd	DC-DC voltage supply	2.4		3.5		
VPP	OLED Operating voltage	7.0		13.5		1 C
Vbref	Internal voltage reference	1.20	1.26	1.32	Y	
IDD1	Dynamic current Consumption 1		$\begin{aligned} & 110 \\ & 110 \end{aligned}$	160	UA	\square Bulid-in DC-DC OFF, Display ON, display data = All ON No panel attached
IDD2	Dynamic current Consumption 2	-	190	285	$\mu \mathrm{A}$	VDD1 $=3 \mathrm{~V}, \mathrm{~V} D \mathrm{D}_{2}=3 \mathrm{~V}, \mathrm{~V} P \mathrm{P}=12 \mathrm{~V}$, IREF $=-12.5 \mu \mathrm{~A}$, Contrast $\alpha=256$, Bulid-in DC-DC ON, Display ON, Display data = All ON, No panel attached
IPP	OLED dynamic current consumption	-	550	825	$\mu \mathrm{A}$	VDD1 $=3 \mathrm{~V}, \mathrm{VDD2}=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, IREF $=-12.5 \mu \mathrm{~A}$, Contrast $\alpha=256$, Display ON, Display data $=$ All ON, No panel attached
Isp	Sleep mode current Consumption in Vdd1 \& VDD2	-	0.01	5	$\mu \mathrm{A}$	During sleep, $\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{V}$ dD1 $=3 \mathrm{~V}, \mathrm{~V}$ dD2 $=3 \mathrm{~V}$
	Sleep mode current Consumption in VpP	-	0.01	5	$\mu \mathrm{A}$	During sleep, $\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{VPP}=12 \mathrm{~V}$
IsEg	Segment output current	-488	-500	-512	$\mu \mathrm{A}$	VDD1 $=3 \mathrm{~V}, \mathrm{~V} D \mathrm{D}_{2}=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, $\operatorname{lREF}=-12.5 \mu \mathrm{~A}$, Rload $=20 \mathrm{k} \Omega$, Display ON. Contrast $\alpha=256$
		-	-343.75	-	$\mu \mathrm{A}$	VDD1 $=3 \mathrm{~V}, \mathrm{~V} D \mathrm{D} 2=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, IREF $=-12.5 \mu \mathrm{~A}$, Rload $=20 \mathrm{k} \Omega$, Display ON. Contrast $\alpha=176$
		-	-187.5	-	$\mu \mathrm{A}$	$\text { VDD1 }=3 \mathrm{~V}, \mathrm{~V} D \mathrm{D} 2=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V} \text {, IREF }=-12.5 \mu \mathrm{~A} \text {, }$ $\text { RLoAD }=20 \mathrm{k} \Omega \text {, Display ON. Contrast } \alpha=96$
		-	-31.25	-	$\mu \mathrm{A}$	VDD1 $=3 \mathrm{~V}, \mathrm{VDD2}=3 \mathrm{~V}, \mathrm{VPP}=12 \mathrm{~V}$, $\operatorname{IREF}=-12.5 \mu \mathrm{~A}$, Rload $=20 \mathrm{k} \Omega$, Display ON. Contrast $\alpha=16$
Δ ISEG1	Segment output current uniformity	-	-	± 3	\%	$\begin{aligned} & \Delta \text { ISEG1 = (ISEG - IMID)/IMID X 100\% } \\ & \text { IMID = (IMAX + IMIN)/2 } \\ & \text { ISEG [0:255] at contrast } \alpha=256 \end{aligned}$
Δ ISEG2	Adjacent segment output Current uniformity	-	-	± 2	\%	$\begin{aligned} & \Delta \text { ISEG2 }=(\text { ISEG }[\mathrm{N}]-\text { ISEG }[\mathrm{N}+1]) /(\operatorname{ISEG}[\mathrm{N}]+\operatorname{ISEG}[\mathrm{N}+1]) \mathrm{X} \\ & 100 \% \\ & \text { ISEG [0:255] at contrast } \alpha=256 \end{aligned}$

DC Characteristics (Continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
Viнc	High-level input voltage	0.8XVDD1	-	Vdd1	V	$\text { A0, D0 - D7, } \overline{\mathrm{RD}}(\mathrm{E}), \overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}}), \overline{\mathrm{CS}},$
Vilc	Low-level input voltage	Vss	-	0.2XVDD1	V	CLS, CL, C86, P/S and $\overline{\text { RES }}$
Vонс	High-level output voltage	0.8XVDD1	-	VdD1	V	$\mathrm{IOH}=-0.5 \mathrm{~mA}(\mathrm{DO}-\mathrm{D} 7$, and CL)
Volc	Low -level output voltage	Vss	-	0.2XVDD1	V	$\mathrm{loL}=0.5 \mathrm{~mA}(\mathrm{D} 0-\mathrm{D} 7$, and CL$)$
ILI	Input leakage current	-1.0	-	1.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN = VDD1 or Vss (AO, } \overline{\mathrm{RD}}(\mathrm{E}), \overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}}), \\ & \overline{\mathrm{CS}}, \mathrm{CLS}, \mathrm{C} 86, \mathrm{P} / \mathrm{S} \text { and } \overline{\mathrm{RES}}) \end{aligned}$
IHz	HZ leakage current	-1.0	-	1.0	$\mu \mathrm{A}$	When the D0-D7, and CL are in high impedance
fosc	Oscillation frequency	457	512	564	KHz	$\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
frRm	Frame frequency for 64 Commons	-	125	-	Hz	When fosc $=512 \mathrm{kHz}$, Divide ratio $=1$, common width $=64$ DCLKs
Rpre	Precharge switch resistance	-	300	450	Ω	VPP $=12 \mathrm{~V}$, VSEG $=0.770 \times \mathrm{VPP}-0.4 \mathrm{~V}$
Rdis	Discharge switch resistance	-	8	10	Ω	$\mathrm{VPP}=12 \mathrm{~V}, \mathrm{VsL}=0.4 \mathrm{~V}$
Ron1	Common switch resistance	-	10	12	Ω	$V_{P P}=12 V V_{\text {com }} F V_{s s}+0.4 \mathrm{~V} \subset \Gamma$
Ron2	Common switch resistance	-	350		91	$V_{P P}=12 \mathrm{~V}, \mathrm{Vcom} /=0.770 \times \mathrm{V} / \mathrm{pp}-0.4 \mathrm{~V}$

AC Characteristics

(1) System Buses Read/Write Characteristics 1 (For the 8080 Series Interface MPU)

(2) System Buses Read/Write Characteristics 2 (For the 6800 Series Interface MPU)

(3) System Buses Write Characteristics 3 (For the Serial Interface MPU)

(4) Reset Timing

$$
\left(\mathrm{VDD1}=1.65-3.5 \mathrm{~V}, \mathrm{VDD2}=2.4-3.5 \mathrm{~V}, \mathrm{TA}=+25^{\circ} \mathrm{C}\right)
$$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tR	Reset time	-	-	1.0	$\mu \mathrm{~s}$	
trw	Reset low pulse width	5.0	-	-	$\mu \mathrm{s}$	

Application Circuit (for reference only)
Reference Connection to MPU:

1. 8080 Series Interface: (Internal Oscillator, External Vpp)

Figure. 17

Note:
C1-C6: $4.7 \mu \mathrm{~F}$
R1: about $910 \mathrm{k} \Omega$, R1 $=($ Voltage at lref -Vss$) /$ /Iref
2. 6800 Series Interface: (Internal Oscillator, Built-in DC-DC)

Figure. 18
Note:
L, D, Q, R1, R2, R3, C1-C4: Please refer to following description of DC-DC module.
C5, C6, C7, C8, C9: $4.7 \mu \mathrm{~F}$
R4: about 910k Ω, R4 $=($ Voltage at IRef - Vss)/Iref
3. Serial Interface (3-wire or 4-wire SPI): (External Oscillator, External VPP)

Figure. 19
Note:
C1-C6: $4.7 \mu \mathrm{~F}$
R1: about $910 \mathrm{k} \Omega$, R1 $=($ Voltage at IREF -Vss$) /$ IREF

4. $I^{2} \mathrm{C}$ Interface: (Internal oscillator, External VPP)

Figure. 20

Note:

C1-C6: $4.7 \mu \mathrm{~F}$
R1: about 910k Ω, R1 = (Voltage at IRef - Vss)/Iref
The least significant bit of the slave address is set by connecting the input SA0 to either logic 0(VSS) or 1 (VDD1). WR and RD are not used in $I^{2} \mathrm{C}$ mode, should fix to VSS or VDD1.
CS can fix to VSS in $I^{2} \mathrm{C}$ mode.
The positive supply of pull-up resistor must equal to the value of VDD1.

DC-DC:

Below application circuit is an example for the input voltage of 3 V AVDD to generate VPP of about $12 \mathrm{~V} @ 10 \mathrm{~mA}-25 \mathrm{~mA}$ application.

Figure. 21

Symbol	Value	Recommendation
L	$10 \mu \mathrm{H}$	LQH3C100K24
D	SCHOTTKY DIODE	20V@0.5A, MBR0520
Q	MOSFET	N-FET with low Rds(ON) and low VTH, MGSF1N02LT1
R 1	$820 \mathrm{k} \Omega$	$1 \%, 1 / 8 \mathrm{~W}$
R 2	$100 \mathrm{k} \Omega$	$1 \%, 1 / 8 \mathrm{~W}$
R 3	0.12Ω	$1 \%, 1 / 2 \mathrm{~W}$
C 1	$22 \mu \mathrm{~F}$	Ceramic / 16V
C 2	$0.1-1 \mu \mathrm{~F}$	Ceramic/16V
C 3	$10 \mu \mathrm{~F}$	Low ESR/16V
C 4	56 pF	Ceramic/16V

Ordering Information

Part No.	Package
SH1122G	Gold bump on chip tray

Spec Revision History

Version	Content	Date	
0.0	1. Original	Jan. 2012	

