

DM-TFTR334-470 3.34" 320 x 320 Round 16M TFT LCD - MIPI

Table of Contents

Tab	le of Contents	2
Re	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	5
3	Absolute Maximum Ratings	6
4	Electrical Characteristics	7
5	Timing Chart	9
6	Optical Characteristics	13
7	Environmental / Reliability Tests	16
8	Mechanical Drawing	17
9	Packing Drawing	18
10	Precautions for Use of LCD Modules	19

1 General Specifications

	Feature	Spec		
	Size	3.34inch		
	Resolution	320(RGB) X 320		
	Interface	MIPI (Command Mode)		
	Color Depth	16M dithering		
	Technology Type	a-si TFT		
Display Spec.	Pixel pitch(mm)	0.1875 x 0.1875		
	Pixel Configuration	R.G.B. Vertical Stripe		
	Display Mode	TM with Normally White		
	Surface Treatment	HC		
	Viewing Direction	12 o'clock		
	Gray Scale Inversion Direction	6 o'clock		
	LCM (W x H x D) (mm)	66.20×69.30×2.66 (Not include FPC		
	LCW (W X I I X D) (IIIIII)	dimension)		
Mechanical	Active Area(mm)	Diameter 60mm		
Characteristics	Driver IC	ST7796SI		
	Weight (g)	22.50±10%		
	LED Numbers	6 LEDs Serial		

Note 1: Requirements on Environmental Protection: Q/S0002

Note 2: LCM weight tolerance: ± 5%

Copyright © 20 www.displaymodule.com Page 4 of 19

2 Input/Output Terminals

2.1 TFT LCD Panel

No	Symbol	I/O	Description
1	1 GND		Ground
2	RST	I	Global reset signal
3	GND	Р	Ground
4	MIPI_Data-N	I/O	MIPI Data
5	MIPI_Data-P	I/O	MIPI Data
6	GND	Р	Ground
7	MIPI_CLK-N	I/O	MIPI Clock
8	MIPI_CLK-P	I/O	MIPI Clock
9	GND	Р	Ground
10	TE	0	Tearing effect output
11	GND	Р	Ground
12	VDD	Р	Analog power supply
13	VDDIO	Р	Digital power supply
14	GND	Р	Ground
15	LEDA	Р	LED Anode
16	LEDK	Р	LED Cathode
17	GND	Р	Ground

Note 1: I——Input, O——Output, P——Power/Ground,VCC=VDD

Table 2.1 Terminal pin assignments

Copyright © 20 www.displaymodule.com Page 5 of 19

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

Ta =25°C

Item	Symbol	MIN	MAX	Unit	Remark
Power Supply Voltage	VDD	-0.3	4	V	
Back Light Forward Current	ILED		25	mA	One LED
Operating Temperature	T_OPR	-20	70	$^{\circ}$	
Storage Temperature	T_{STG}	-30	80	$^{\circ}$	
			≪95	%	Ta≤40°C
Dolotivo I lumiditu	RH		≤85	%	40°C < Ta ≤ 50°C
Relative Humidity Note2			≤55	%	50 °C < Ta ≤ 60°C
NOICZ			≤36	%	60℃ <ta≤70℃< td=""></ta≤70℃<>
			≤24	%	70°C <ta≤80°c< td=""></ta≤80°c<>
Absolute Humidity	АН		≤70	g/m³	Ta>70℃

Table 3.1 absolute maximum rating

Notes:

- 1. In case of below 0° C, the response time of liquid crystal (LC)becomes slower.
- 2. The color of panel becomes darker than normal one. Level of retardation depends on temperature, because of LC's characteristics.
- 3. If the module is above these absolute maximum ratings. It may become permanently damaged. Using the module within the following electrical characteristic conditions are also exceeded, the module will malfunction and cause poor reliability.

Copyright © 20 www.displaymodule.com Page 6 of 19

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

GND=0V, Ta=25℃

Item		Symbol	MIN	TYP	MAX	Unit	Remark
Supply Voltage		VDD	2.7	2.8	2.9	V	
IO Supply Voltage		VDDI	1.65	2.8	VDD	V	Connect to VDD internal.
Input Signal	Low Level	VIL	DGND	_	0.3 VDDI	V	
Voltage	High Level	VIH	0.7 VDDI		VDDI	V	
Output Signal	Low Level	VOL	DGND		0.2VDDI	>	
Voltage	High Level	VOH	0.8VDDI		VDDI	>	
(Panel+LSI) Power Cons		Black Mode (60Hz)		44	54	mW	Note 1,2
Fower Cons	umpuon	Sleep Mode		0.1	0.15	mW	Note 2

Table 4.1 LCD module electrical characteristics

Notes:

- 1. All pixels black.
- 2. The power consumption was only reference

4.2 Backlight Unit

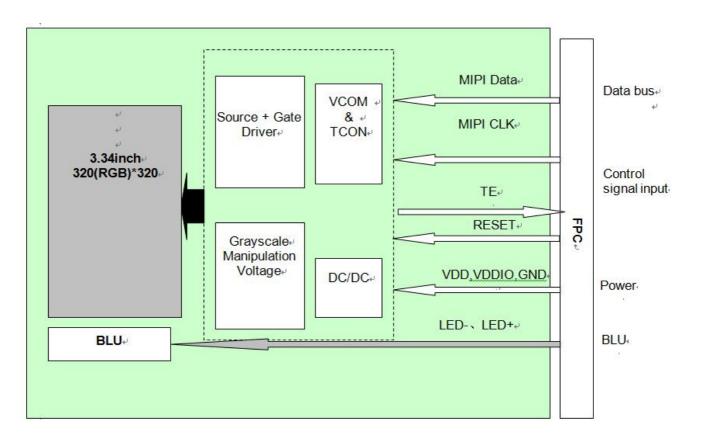
Ta=25°C

Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I _F	18	20	25	mA	
Forward Voltage	V _F	16.8	18.0	19.2	V	6 LEDs (6 LED Serial,)
Operating Life Time	-	20,000	-	-	Hrs	(5 5 5 11 61,)

Note1: The LED driving condition is defined for each LED module (6 LED Serial,). For each LED: $I_F = 20 \text{mA}$, $V_F (1/6) = 3.2 \text{V}$.

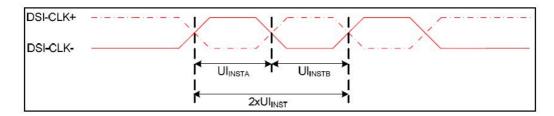
Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: I_F is defined for one channel LED. Optical performance should be evaluated at Ta=25 $^{\circ}$ C only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.


Note4: The LED driving condition is defined for each LED

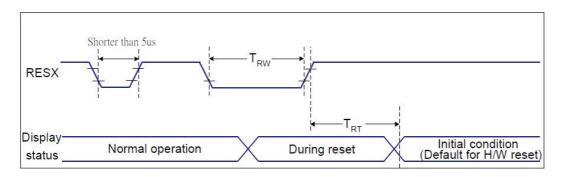
Copyright © 20 www.displaymodule.com Page 8 of 19

4.3 Block Diagram


LCD module diagram

5 Timing Chart

5.1 INTERFACE TIMING


High Speed Mode - Clock Channel Timing

VDDI=1.8V,VDDA=2.8V, AGND=DGND=0V, Ta=25 ℃

Signal Symbol		Parameter	MIN	MAX	Unit	Description
DSI-DATA_P/N	2xUI INST	Double UI instantaneous	4	25	ns	
DSI-DATA_P/N	UI INSTA ,UI INSTB	UI instantaneous Half	2	12.5	ns	

5.2 Reset Timing

Reset Timing

VDDI=1.8V, VDDA=2.8V, AGND=DGND=0V, Ta=25 $^{\circ}$

Related Pins Symbol		Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10	_	us
RESX	TRT Reset cancel	Deast sensel	- 1	5 (Note 1, 5)	ms
			120 (Note 1, 6, 7)	ms	

Table 1 Reset Timing

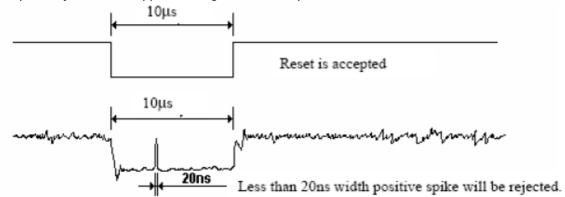
Notes:

1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to

registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.

2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

Copyright © 20 www.displaymodule.com Page 10 of 19

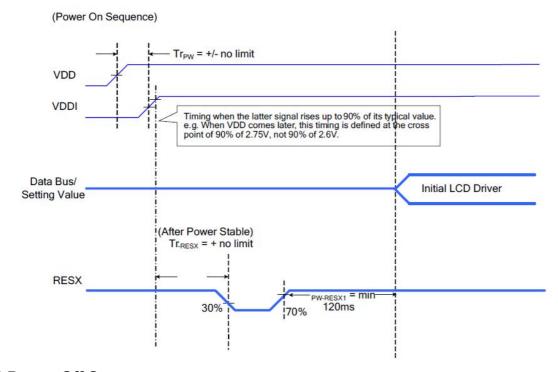

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120

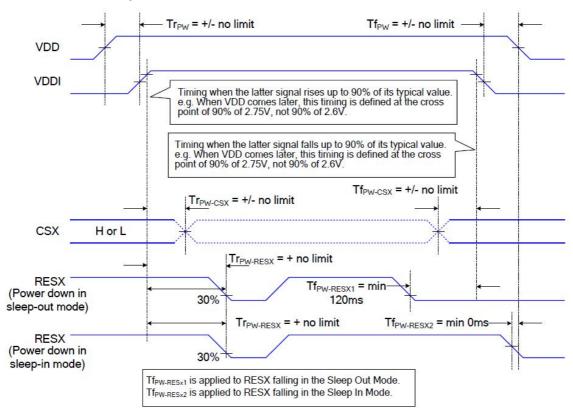
ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition

for Hardware Reset.

4. Spike Rejection also applies during a valid reset pulse as shown below:


- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for

120msec.


Copyright © 20 www.displaymodule.com Page 11 of 19

5.3 Power-On Sequence

The power on sequence:

5.4 Power-Off Sequence

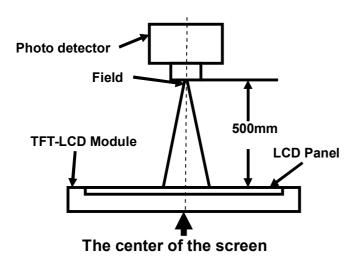
Note: Please refer to ST7796SI data sheet for more details.ST7796SI INTERFACE PROTOCOL

Copyright © 20 www.displaymodule.com Page 12 of 19

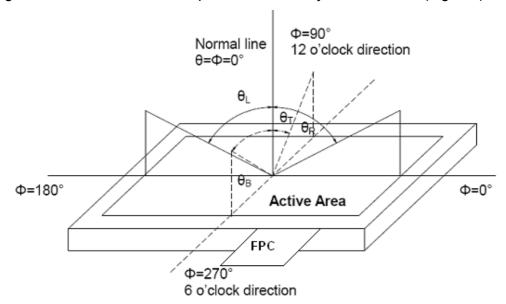
6 Optical Characteristics

Ta=25°C

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark	
		θТ		50	60	-			
Viou Angloo		θВ	CR≥10	60	70	-	Dograd	Note2,3	
View Angles		θL	CR210	60	70	1	Degree	Notez,3	
		θR		60	70	1			
Contrast Ratio		CR	θ=0°	600	800	ı		Note 3	
Response Time	.	T _{ON}	25 ℃	_	20	30	ms	Note 4	
ixesponse fille	•	T_{OFF}	25 0		20	30	1115	Note 4	
	White	x		0.235	0.285	0.335		Note 1,5	
		у	Backlight is	0.258	0.308	0.358	_	11016 1,5	
	Red	x		0.535	0.585	0.635		Note 1,5	
Chromaticity		у		0.274	0.324	0.374		Note 1,5	
Chilomaticity	Green	x	on	0.289	0.339	0.389		Note 1,5	
	Green	у		0.537	0.587	0.637		Note 1,5	
	Blue	х		0.101	0.151	0.201		Note 1 F	
	Diue	у		0.038	0.088	0.138		Note 1,5	
Uniformity		U		70	75	-	%	Note 6	
NTSC				45	50	1	%	Note 5	
Luminance		L		600	750	-	cd/m ²	Note 7	


Test Conditions:

- 1. I_F = 20 mA, and the ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 and Note 2.


Copyright © 20 www.displaymodule.com Page 13 of 19

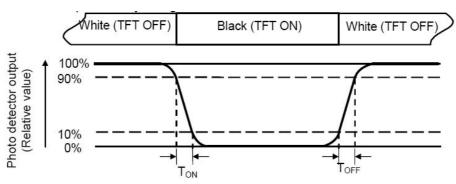
Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

 $Contrast \ ratio \ (CR) = \frac{Luminance \ measured \ when \ LCD \ is \ on \ the \ "White" \ state}{Luminance \ measured \ when \ LCD \ is \ on \ the \ "Black" \ state}$


"White state ": The state is that the LCD should drive by Vwhite.

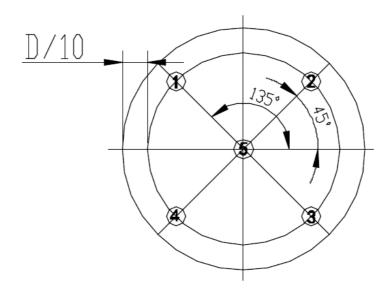
"Black state": The state is that the LCD should drive by Vblack.

Vwhite: TBD V Vblack: TBD V.
Note 4: Definition of Response time

Copyright © 20 www.displaymodule.com Page 14 of 19

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

D-----Active area diameter

Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

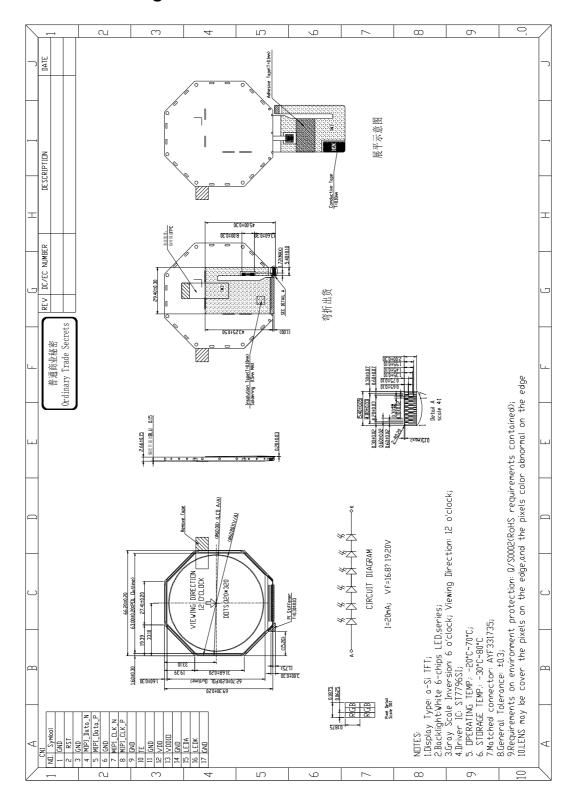
Measure the luminance of white state at center point.

Copyright © 20 www.displaymodule.com Page 15 of 19

7 Environmental / Reliability Tests

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts=+70℃, 160hrs	Note1 IEC60068-2-1,GB2423.2
2	Low Temperature Operation	Ta=-20℃, 160hrs	IEC60068-2-1 GB2423.1
3	High Temperature Storage	Ta=+80℃, 160hrs	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	Ta=-30℃, 160hrs	IEC60068-2-1 GB2423.1
5	High Temperature & High Humidity Storage	Ta=+60℃, 90% RH 160 hours	Note2 IEC60068-2-78 GB/T2423.3
6	Thermal Shock (Non-operation)	-20℃ 30 min ~ +60℃ 30 min, Change time: 1min, 100 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22
7	Electro Static Discharge (Operation)	C=150pF, R=330 Ω , 5points/panel Air: \pm 4KV, 5times; Contact: \pm 2KV, 5 times; (Environment: 15°C \sim 35°C, 30% \sim 60%, 86Kpa \sim 106Kpa)	IEC61000-4-2 GB/T17626.2 Class B
8	Package Vibration Test	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)(Package condition)	IEC60068-2-6 GB/T2423.10
9	Shock (Non-operation)	60G 6ms, ±X,±Y,±Z 3times, for each direction	IEC60068-2-27 GB/T2423.5
10	Package Drop Test	Height:60 cm, 1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8

Note1: Ts is the temperature of panel's surface.


Note2: Ta is the ambient temperature of sample.

Note3: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note 4: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

Copyright © 20 www.displaymodule.com Page 16 of 19

8 Mechanical Drawing

9 Packing Drawing

No	Item	Model (Materiel)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark		
1	LCM module	PV033400AR17A	66.20×69.30×2.66	0.0205	315			
2	Tray	PET (Transmit)	485.00×330.00×13.80	0.156	24	Anti-static		
3	Das-Proof Bag	PE	700.00×545.00×0.05	0.021	1	Anti-static		
4	вох	CORRUGATED PAPER	520.00×345.00×74.00	0.369	3			
5	Carton	CORRUGATED PAPER	544.00×365.00×250.00	0.76	1			
6	Lable	Lable	100×52	0.0007	1			
7	Total weight	12.08±1.2 (Kg)						

Copyright © 20 www.displaymodule.com Page 18 of 19

10 Precautions for Use of LCD Modules

10.1 Handling Precautions

- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
- Isopropyl alcohol
- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.