MODEL NO. :	TM025ZDZ01
ISSUED DATE:	2011-6-1
VERSION :	Ver 1.4

Preliminary Specification Final Product Specification

Customer :

Approved by	Notes
6	

SHANGHAI TIANMA Confirmed :

Prepared by	Checked by	Approved by

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Table of Contents

Tab	le of Contents	2
1	General Specifications	4
2	INPUT TERMINALS PIN ASSIGNMENT	5
3	ABSOLUTE MAXIMUM RATINGS	7
4	ELECTRICAL CHARACTERISTICS	8
5	INTERFACE TIMING	10
6	Optical Characteristics	21
7	Environmental / Reliability Tests	25
8	Mechanical Drawing	27
9	Packaging Drawing	31
10	Precautions for Use of LCD Modules	32
11	Incoming Inspection Standard	33

TM025ZDZ01 V1.4

Rev	Issued Date	Description	Editor
1.0	2011-1-5	Preliminary specification release	Jin Zhao
1.1	2011-2-17	Update the packing and add the IIS.	Jin Zhao
1.2	2011-2-21	Add dimension inspection	Jin Zhao
1.3	2011-3-8	Modify the mechanical drawing	Jin Zhao
1.4	2011-6-1	Update power consumption, add initial code, add flicker spec, add backlight, bottom bezel and FPC drawing, update mechanical drawing	Jin Zhao

1 General Specifications

	Feature	Spec		
	Size	2.48"		
	Resolution	320(RGB)x320		
	Interface	3-Wire 9 bit SPI+24 bit RGB		
	Driving IC	S6D05A1		
	Technology type	a-si TFT		
Diambau On a a	Pixel pitch (mm)	0.1395x0.1395		
Display Spec.	Display colors	16.7M		
	Pixel Configuration	RGB Vertical Stripe		
	Display Mode	TM,NW		
	Surface Treatment	НС		
	Viewing Direction	12 o'clock		
	Gray Scale Inversion Direction	6 o'clock		
	LCM (W x H x D) (mm)	50.44×56.34×2.6		
Machanical	Active Area(mm)	44.64 x 44.64		
Characteristics	With /Without TSP	Without TP		
	Weight (g)	15.18		
	LED Numbers	4		

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

- Note 2: Requirements on Environmental Protection: Q/S0002
- Note 3: LCM weight tolerance: ± 5%

2 INPUT TERMINALS PIN ASSIGNMENT

Recommended Connector: FH26-41S-0.3SHW

No	Symbol	I/O	Description	Comment
1	LEDA	Р	LED anode	
2	LEDK	Р	LED cathode	
3	RESET	I	Reset Signal	
4	VSYNC	I	Vertical Sync signal in RGB mode	
5	HSYNC	I	Horizontal Sync signal in RGB mode	∇
6	ENABLE	I	Data Enable signal in RGB mode	
7	DOTCLK	I	Pixel clock signal in RGB mode	
8	GND	Р	Power Ground	
9	DB23	I	Data bus	
10	DB22	I	Data bus	
11	DB21	I	Data bus	
12	DB20	I	Data bus	
13	DB19	I	Data bus	
14	DB18	I	Data bus	
15	DB17	I	Data bus	
16	DB16	I	Data bus	
17	DB15	I	Data bus	
18	DB14	I	Data bus	
19	DB13	I	Data bus	
20	DB12	-	Data bus	
21	GND	Р	Power Ground	
22	DB11	I	Data bus	
23	DB10		Data bus	
24	DB9	I	Data bus	
25	DB8	I	Data bus	
26	DB7	I	Data bus	
27	DB6	I	Data bus	
28	DB5	I	Data bus	
29	DB4	I	Data bus	
30	DB3	I	Data bus	
31	DB2	I	Data bus	
32	DB1	I	Data bus	
33	DB0	I	Data bus	
34	CS	I	Chip select signal	

TM025ZDZ01 V1.4

35	SDI	I	Serial data bus	
36	SDO	0	Serial data output	
37	SCL	I	Serial interface clock in Serial Interface	
38	GND	Р	Power Ground	
39	NC	-	Floating	
40	VCC	Р	Power Supply of Analog Circuit	
41	IOVCC	Р	Power Supply of Logic Circuit	

 Table 2.1 Input terminal pin assignment

I---Input, O---Output, P--- Power/Ground

3 ABSOLUTE MAXIMUM RATINGS

					Ta = 25 ℃
Item	Symbol	MIN	MAX	Unit	Remark
Logic Supply Voltage	IOVCC	-0.3	4.6	V	
Analog Supply Vol- tage	VCC	-0.3	4.6	V	
Input voltage	CS/SDI/SCL/HSYNC/VSYNC/DB[23:0] /DOTCLK/ENABLE/RESET	-0.3	IOVCC+0.5	V	\geq
Back Light Forward Current	I _F	-	25	mA	ONE LED
Operating Tempera- ture	Тор	-20	70	°C	
Storage Temperature	Tst	-30	80	°C	

Table 3.1 Absolute maximum rating

TM025ZDZ01 V1.4

4 ELECTRICAL CHARACTERISTICS

4.1 LCD Module

GND=0V,Ta=25℃

Iter	m	Symbol	MIN	TYP	MAX	Unit	Remark
Logic Supply Voltage		IOVCC	1.65	1.8/2.8	3.3	V	
Analog Supp	ly Voltage	VCC	2.3	2.8	3.3	V	
Input Signal	High Level	VIH	0.7xIOVCC	-	IOVCC	V	2
Voltage	Low Level	VIL	-	-	0.3xIOVCC	V	
Output Sig-	High Level	VOH	0.8xIOVCC	-	-	v	
nal Voltage	Low Level	VOL	-	-	0.2xIOVCC	v	
(Depolul SI)		Black Mode	-	2.25		m W	
(Panel+LSI)	umption	8 color Mode	-	1.11		m W	
		Sleeping Mode	-	0.039		mW	

Table 4.1 LCD module electrical characteristics

4.2 Backlight Unit

Ta=25℃

Item	Symbol	MIN	ТҮР	MAX	Unit	Remark
Forward Current	IF		20	-	mA	One LED
Forward Voltage	V _F	(2.9)	3.2	(3.4)	V	One LED
Backlight Power Consumption	W _{BL}	-	256	-	mW	4 LEDs

Table 4.2.1 backlight unit electrical characteristics

4.3 Block Diagram

Figure 4.3 LCD module diagram

5 INTERFACE TIMING

5.1 Timing Parameter

5.1.1 For SPI Interface

Characteristic	Symbol	Specification		Unit
		Min.	Max.	
Serial clock write cycle time	tscycw	66	-	ns
Serial clock read cycle time	tscycr	150	-	ns
Serial clock rise / fall time	tR, tF	-	Note	ns
Pulse width high for write	tSCHW	15	-	ns
Pulse width high for read	tSCHR	60	-	ns
Pulse width low for write	tSCLW	15	-	ns
Pulse width low for read	tSCLR	60	-	ns
Chip Select setup time	tCSS	15	-	ns
Chip Select hold time	tCSH	15	-	ns
Serial input data setup time	tSIDS	15	-	ns
Serial input data hold time	tSIDH	15	-	ns
Serial output data delay time	tSODD	5	50	ns
Serial output data hold time	tSODH	15	75	ns

Table 5.1.1 timing parameter

TM025ZDZ01 V1.4

5.1.2 For RGB Interface

Parameter	Description	Min	Max	Unit
tDCYC	DOTCLK period	47	-	ns
tDWL	DOTCLK pulse width low	15	-	ns
tDWH	DOTCLK pulse width high	15	-	ns
tDR / tDF	DOTCLK rising / falling time		Note	ns
tSYNCS	VSYNC, HSYNC setup	13	-	ns
tENS	ENABLE setup	13	-	ns
tENH	ENABLE hold	13	-	ns
tDS	Input Data setup	13	-	ns
tDH	Input Data hold	13	-	ns

Figure 5.1.2 RGB interface characteristics

5.1.3 24-BIT RGB Interface

Figure 5.1.3 Timing Diagram of 24bit RGB Interface

5.2 Register write/read timing in SPI mode

a. Write to register

b. Read from register

b-1 Read 1-byte mode

b-2 Read multi-byte mode

Figure 5.3 Register read timing of SPI interface

5.3 RESET TIMING

Figure 5.4 RESET Input timing

Symbol	Parameter	Pad	Min	Тур	Max	Unit	Note
tRESW	Reset low pulse width	RESX	10	-	-	μs	-
tREST	Reset completion time	RESX	-	-	5	ms	Reset during Sleep In mode
		RESX		-	120	ms	Reset during Sleep Out mode

Table 5.4-1 APON=0

Symbol	Parameter	Pad	Min	Тур	Max	Unit	Note
tRESW	Reset low pulse width	RESX	10	-	-	μs	-
tREST	Reset completion time	RESX	-	-	5	ms	Reset during Sleep In mode
		RESX		-	5	ms	Reset during Sleep Out mode

Table 5.4-2 APON=1

Symbol	Parameter	Pad	Min	Тур	Max	Unit	Note
tRESW	Reset low pulse width	RESX	50	-	-	μs	-
tREST	Reset completion time	RESX	-	-	5	ms	Reset during Deep standby mode

Table 5.4-3 Deep Standby

NOTE:

This is an automatic-boosting-operation-starting bit for the booster circuits. In case of APON=0, the automatic boosting sequence starter is halted and the booster circuits are operated independently by AVDD_EN, VGH_EN, VGL_EN and VCL_EN bits. In case of APON=1, booster circuits are operated automatically and sequentially.

Default value is 1.

5.6 Power on Sequence when APON=1

5.7 Power off Sequence

5.8 Initial code

This version initial code is released on May 9. void S6D05A1_init()

{

RST_High; Delay(100); //1ms RST_Low; Delay(100);//10ms RST_High; Delay(120);//100ms

WriteCommand(0x01); Delay(50);//100ms

WriteCommand(0xF0); WriteData(0x5A); WriteData(0x5A);

WriteCommand(0xF1); WriteData(0x5A); WriteData(0x5A);

WriteCommand(0xF2);

WriteData(0x27);//G1~G320 NL[5:0] WriteData(0x30);//NHW[6:0] WriteData(0x03);//PIINV IINV PINV NINV WriteData(0x08);//NVBP[7:0] WriteData(0x08);//NVFP[7:0] WriteData(0x08);//- - - - - - -WriteData(0x08);//- - - - - - -WriteData(0x00);//- - - - - - -WriteData(0x08);//- - - - - - -WriteData(0x08);//- - - - - - -WriteData(0x00);//- - - - - - -WriteData(0x01);//- - - - - SM GS REV WriteData(0x00);//- - - - - -WriteData(0x00);//- - - - - -WriteData(0x54);//PIHW[6:0] WriteData(0x08);//PIVBP[7:0]

WriteData(0x08);//PIVFP[7:0] WriteData(0x08);//RGB_NVBP[7:0] WriteData(0x08);//RGB_NVFP[7:0]

WriteCommand(0xF4);

WriteData(0x08); WriteData(0x00); WriteData(0x00); WriteData(0x00);

WriteData(0x00);

WriteData(0x00);

WriteData(0x00);

WriteData(0x00); WriteData(0x00);

WriteData(0x66); //52 GVDD=4.5V/ AVDD=2VCI1

WriteData(0x02); //VGH=15V,VGL=-7.5V

WriteData(0x00);

WriteData(0x52); WriteData(0x02);

WriteCommand(0xF5);

 WriteData(0x00);

 WriteData(0x5C);

 WriteData(0x5D);
 // VCOM=5.4V

 WriteData(0x00);

 WriteData(0x00);

 WriteData(0x04);

 WriteData(0x00);

 WriteData(0x00);

 WriteData(0x00);

 WriteData(0x00);

 WriteData(0x00);

 WriteData(0x04);

 WriteData(0x04);

 WriteData(0x2A);

 WriteData(0x21);

WriteCommand(0xF6);//SRCCTL (Source Control)

WriteData(0x01);//- - - - SVCIR[2] SVCIR[1] SVCIR[0] WriteData(0x00);//- - - SEL_360 - - - SG WriteData(0x08);//- - - - SAP[3] SAP[2] SAP[1] SAP[0] WriteData(0x03);//- - - - - OCM[1] OCM[0]

WriteData(0x01);//- - - - NSDT[2] NSDT[1] NSDT[0] WriteData(0x01);//- - - NSR_BLK[1]NSR_BLK[0]SR_ND WriteData(0x01);//- - - PISDT[2] PISDT[1] PISDT[0] WriteData(0x00);//- - - PISR_BLK[1] PISR_BLK[0]- -WriteData(0x00);//- -

WriteCommand(0xF7);//IFCTL (Interface Control)

WriteData(0x48);//MY_EOR MX_EOR MV_EOR ML_EOR BGR_EOR - - -WriteData(0x81);//IPM[2] IPM[1] IPM[0] MDT[1] MDT[0]SELF_REF DM[1] DM[0] WriteData(0x30);//VPL HPL DPL EPL ENDIAN - TE_MON RIM WriteData(0x02);//SPR_SEL - RGB_DIV[2] RGB_DIV[1] RGB_DIV[0] WriteData(0x00);//- - - SDO_EN

WriteCommand(0xF8);//PANELCTL (Panel Control)

WriteData(0x11); WriteData(0x00);

WriteCommand(0xF9);//GAMMASEL(Gamma Selection)
WriteData(0x17);

WriteCommand(0xFA);//Gamma positive 3 WriteData(0x00);//- - RFP5 RFP4 RFP5 RFP2 RFP1 RFP0 WriteData(0x02);//- - OSP5 OSP4 OSP3 OSP2 OSP1 OSP0 WriteData(0x00);//- - PKP05 PKP04 PKP03 PKP02 PKP01 PKP00 WriteData(0x21);//- - PKP15 PKP14 PKP13 PKP12 PKP11 PKP10 WriteData(0x2A)://- - PKP25 PKP24 PKP23 PKP22 PKP21 PKP20 WriteData(0x2D);//- - PKP35 PKP34 PKP33 PKP32 PKP31 PKP30 WriteData(0x2E);//- - PKP45 PKP44 PKP43 PKP42 PKP41 PKP40 WriteData(0x22);//- - PKP55 PKP54 PKP53 PKP52 PKP51 PKP50 WriteData(0x28);//- - PKP65 PKP64 PKP63 PKP62 PKP61 PKP60 WriteData(0x2F);//- - PKP75 PKP74 PKP73 PKP72 PKP71 PKP70 WriteData(0x3C);//- - PKP85 PKP84 PKP83 PKP82 PKP81 PKP80 WriteData(0x3F);//- - PKP95 PKP94 PKP93 PKP92 PKP91 PKP90 WriteData(0x34);//- - PKP105 PKP104 PKP103 PKP102 PKP101 PKP100 WriteData(0x00);//- - - - - - -WriteData(0x00);//- - - - - - -WriteData(0x00);//- - - - - GLP1 GLP0

WriteCommand(0xFB);//Gamma negative

WriteData(0x00);//- - RFN5 RFN4 RFN3 RFN2 RFN1 RFN0 WriteData(0x02);//- - OSN5 OSN4 OSN3 OSN2 OSN1 OSN0 WriteData(0x34);//- - PKN05 PKN04 PKN03 PKN02 PKN01 PKN00 WriteData(0x3F);//- - PKN15 PKN14 PKN13 PKN12 PKN11 PKN10 WriteData(0x3C);//- - PKN25 PKN24 PKN23 PKN22 PKN21 PKN20 WriteData(0x2F);//- - PKN35 PKN34 PKN33 PKN32 PKN31 PKN30 WriteData(0x28);//- - PKN45 PKN44 PKN43 PKN42 PKN41 PKN40 WriteData(0x22);//- - PKN55 PKN54 PKN53 PKN52 PKN51 PKN50 WriteData(0x2E);//- - PKN65 PKN64 PKN63 PKN62 PKN61 PKN60 WriteData(0x2D);//- - PKN75 PKN74 PKN73 PKN72 PKN71 PKN70 WriteData(0x2A);//- - PKN85 PKN84 PKN83 PKN82 PKN81 PKN80 WriteData(0x21);//- - PKN95 PKN94 PKN93 PKN92 PKN91 PKN90 WriteData(0x00);//- - PKN105 PKN104 PKN103 PKN102 PKN101 PKN100 WriteData(0x00);//- - - - - - -WriteData(0x00);//- - - - - -WriteData(0x00);//- - - - - GLN1 GLN0

WriteCommand(0x3A); WriteData(0x77); WriteCommand(0x11); Delay(120);//120ms

WriteCommand(0x38); WriteCommand(0x29);

/*WriteCommand(0x2A); //Set_clumn_address WriteData(0x00);//"SC15 SC14 SC13 SC12 SC11 SC10 SC9 SC8" WriteData(0x00);//"SC7 SC6 SC5 SC4 SC3 SC2 SC1 SC0" WriteData(0x01);//"EC15 EC14 EC13 EC12 EC11 EC10 EC9 EC8" WriteData(0x3F);//"EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0"

WriteCommand(0x2B);//Set_page_address WriteData(0x00);//"SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8" WriteData(0x00);//"SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0" WriteData(0x01);//"EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8" WriteData(0x3F);//"EP7 EP6 EP5 EP4 EP3 EP2 EP1 EP0"

WriteCommand(0x2C);//Write_memory_start*/ }

Need to program ID1= 0x68, ID2 = 0x45, ID3 = 0x00 in IC.

TM025ZDZ01 V1.4

6 Optical Characteristics

Item		Symbol	Condition	Min	Тур.	Max.	Unit	Remark
		өт		55	60	-		
		θΒ		65	70	-	Deeree	Nata O
view Ang	jies	θL	CR≦10	65	70	-	Degree	
		θR		65	70	-		
Contrast F	Ratio	CR	θ=0°	400	500	-	-	Note1,3
Deenenee	Tires e	Ton	೧೯ °೧		20	20	$\langle \rangle$	
Response	IIme	Toff	25 C	-	20	30	ms	NOLE 1,4
	\A/bite	х		0.260	0.310	0.360		
	vvnite	У		0.290	0.340	0.390	~	
	RED	х		0.550	0.600	0.650		
Chromoticity		У		0.280	0.330	0.380		Noto1 E
Chromaticity	GREEN	х	-	0.290	0.340	0.390	-	INDLE 1,5
		У		0.535	0.585	0.635		
		х		0.100	0.150	0.200		
	BLUE	У	\mathbf{G}	0.060	0.110	0.160		
Uniform	iity	U		70%	80%	-	%	Note1,6
NTSC			-	-	50%	-	%	Note 5
Luminance		L	-	350	400	-	cd/m2	Note1,7
Flicke	r		-	-	-	30	%	CA210 Contrast mode

Test Conditions:

1. VDD=2.8V, I_L =20mA(Backlight current), the ambient temperature is 25°C.

2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Item	Photo Detector	Field
Contrast Ratio		
Luminance		10
Chromaticity	SR-JA	
Lum Uniformity		
Response Time	BM-7A	2°

LCD Panel

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

"White state ":The state is that the LCD is driven by $\mathbf{V}_{\text{white.}}$

"Black state": The state is that the LCD is driven by Vblack.

V_{white:} To be determined **V**_{black:} To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Measure procedure

1. Setting panel display dynamic picture (alternating black image and white image)

2. Using BM-7 and signal generator test the rise time of white pattern converted to black pattern and the fail time of black pattern converted to white pattern (High reference level of signal generator set 90%,low set 10%)

3. Response time is the sum of rise time and fall time

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance :

Measure the luminance of white state at center point

7 Environmental / Reliability Tests

No	Test Item	Condition	Remarks
	High Tempera-	T 70°C 040k	Note1
1	ture Operation	TS=+70 C, 240nrs	IEC60068-2-1,GB2423.2
0	Low Temperature	Ta- 20°C 240bra	IEC60068-2-1
2	Operation	Ta=-20 C, 240hrs	GB2423.1
2	High Tempera-	To-190° 240bro	IEC60068-2-1
3	ture Storage	Ta-+60 C, 240115	GB2423.2
4	Low Temperature	$T_{2} = 30^{\circ}$ 240 brs	IEC60068-2-1
4	Storage	Ta50 C; 2401115	GB2423.1
	High Tempera-		Note2
5	ture & High Hu-	240 hours	IEC60068-2-78
	midity Storage	240 110015	GB/T2423.3
	Thormal Shock	30° 30 min + 70° 30 min	Start with cold temperature,
6			End with high temperature,
	(Non-operation)	Change time.smin, 20 Cycles	IEC60068-2-14,GB2423.22
		C=150pF, R=330 Ω $,$ 5points/panel	
	Electro Static	Air:±8KV, 5times;	IEC61000 4 2
7	Discharge (Op-	Contact:±4KV, 5 times;	CP/T17626.2
	eration)	(Environment: 15℃~35℃,	GB/11/020.2
		30%∼60%, 86Kpa~106Kpa)	
		Frequency range:10~55Hz,	
		Stroke:1.5mm	
Q	Vibration	Sweep:10Hz~55Hz~10Hz 2 hours	IEC60068-2-6
0	(Non-operation)	for each direction of X.Y.Z.	GB/T2423.10
		(6 hours for total)(Package condi-	
		tion)	
a (Shock	60G 6ms, ±X,±Y,±Z 3times,	IEC60068-2-27
5	(Non-operation)	for each direction	GB/T2423.5
10	Package	Height:80 cm,	IEC60068-2-32
10	Drop Test	1 corner, 3 edges, 6 surfaces	GB/T2423.8
		Random Vibration:	
	Package Vibra	0.015GxG/Hz for 5-200Hz,	IEC60068-2-34
11	tion Test	-6dB/Octave from 200-500Hz	CB/T2/23 11
		2 hours for each direction of X,Y,Z	00/12423.11
		(6 hours for total)	

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

8 Mechanical Drawing

Backlight Drawing

Bottom Bezel Drawing

FPC Drawing

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

9 Packaging Drawing

Ν	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity
0					
1	LCM module	TM025ZDZ01	50.44*56.34*2.6	0.01518	924
2	Tray	PS	356.0*256.0*12.0	0.07	72
3	EPE	EPE	320.0*220.0*3.0	0.00528	12
4	BOX	CORRUGATED	363.0×263.0×95.0	0.285	6
		PAPER			\sim \times
5	Carton	CORRUGATED	550.0×385.0×320.0	1.057	1
		PAPER			
6	Total		21.89668		
	weight(Kg)				

10 Precautions for Use of LCD Modules

10.1 Handling Precautions

10.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

10.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

10.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

10.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

10.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

- Isopropyl alcohol

- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:— Water, Ketone, Aromatic solvents

10.1.6. Do not attempt to disassemble the LCD Module.

10.1.7. If the logic circuit power is off, do not apply the input signals.

10.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

a. Be sure to ground the body when handling the LCD Modules.

b. Tools required for assembly, such as soldering irons, must be properly ground.

c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

10.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

10.2.2. The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C ~ 40° C Relatively humidity: $\leq 80^{\circ}$

10.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

Shanghai Tianma Micro-Electronics Corporation

TFT-LCD Module Incoming Inspection Standard

Customer	Nest Labs/Pegatron
Description	Module IIS
Model Name	TM025ZDZ01
Date	2011-1-28
Version	1.0

Customer Name	Checked & Approved	by Date
Prepared By	Checked by	Approved By
尚有融	待动社	シリネッカック

HISTORY OF REVISION

REV NO.	REV DATE	CONTENTS	REMARKS		
1.0	2011.01.28				
Shanghai Tianma Micro-Electronics CO.,LTD					

1. Scope:

The incoming inspection standards shall be applied to TFT-LCD Modules (hereinafter called "Modules") that supplied by Shanghai Tianma Micro-Electronics Corporation.

2. Incoming Inspection

The customer shall inspect the modules within twenty calendar days of the delivery date (the "inspection period) at its own cost. The result of the inspection (acceptance or rejection) shall be recorded in writing, and a copy of this writing will be promptly sent to the seller, If the results of the inspecting from buyer does not send to the seller within twenty calendar days of the delivery date. The modules shall be regards as acceptance.

Should the customer fail to notify the seller within the inspection period, the buyers right to reject the modules. Shall be lapsed and the modules shall be deemed to have been accepted by the buyer.

3. Inspection Sampling Method

- 3.1. Lot size: Quantity per shipment lot per model
- 3.2. Sampling type: Normal inspection, Single sampling
- 3.3. Inspection level: II
- 3.4. Sampling table: MIL-STD-105D
- 3.5. Acceptable quality level (AQL) Major defect: AQL=0.4 Minor defect: AQL=1.00

4. Inspection Conditions

- 4.1 Ambient conditions:
 - a. Temperature: Room temperature 25±5°C
 - b. Humidity: (60±10) %RH
 - c. Illumination: Single fluorescent lamp non-directive (300 to 700 Lux)
- 4.2 Viewing distance

The distance between the LCD and the inspector's eyes shall be at least 35±5 cm.

4.3 Viewing Angle

```
U/D: 45°/45°, L/R: 45°/45°
```


The information cont

Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

5. Inspection Criteria

Defects are classified as major defects and minor defects according to the degree of defectiveness defined herein.

5.1 Major defect

Item No	Items to be inspected	Inspection Standard	
5.1.1	All functional defects	1) No display 2) Display abnormally 3) Short circuit	
		4) line defect	
5.1.2	missing	Missing function component	
5.1.3	Crack	Glass Crack	

5.2 Minor defect

ltem No	Items to be in- spected	Inspection standard							
5.2.1	Spot Defect Including Black spot White spot Pinhole Foreign particle Polarizer dirt	For dark/white spot is define $\varphi = (\mathbf{x} + \mathbf{y}) / 2$ $\mathbf{x} + \mathbf{y} + \mathbf{y}$ Size $\varphi(mm)$ $\varphi \le 0.10$ $0.10 < \varphi \le 0.20$ $0.20 < \varphi$	ed Acceptable Quantity Ignore 3 Not allowed						

		Define:							
5.2.2	Line Defect In-	Length Width							
	cluding Black line	Width(mm) Length(mm)	Acceptable Quantity						
l	Scratch	W≤0.03	Ignore						
		0.03< W≤0.05 L≤2.0	2						
		0.05< W≤0.1 L≤2.0	1						
l		0.1< W	Not allowed						
		Size φ(mm)	Acceptable Quantity						
		φ≤0.2	Ignore						
E 0 0		0.2< φ≤0.3	2						
5.2.3	Polarizer Dent/Bubble	0.3< φ≤0.4	1						
		0.4< φ	Not allowed						
		Total QTY	3						
	\mathcal{A}	Bright and Black dot define:							
5.2.4	Electrical Dot	^{成點}							
	Defect	Inspection pattern: Full w blue screens	hite、Full black、Red、green and						
		Item	Acceptable Quantity						
l		Black dot defect	2						
		Bright dot defect	0						

TM025ZDZ01 V1.4

011/			
		Total Dot	2
		1.Corner Fragment:	X X X Y
		Size(mm)	Acceptable Quantity
		X≤2mm Y≤2mm Z≤T	Ignore T : Glass thickness X: Length Y: Width Z: thickness
5.2.5	Glass defect	X >2 mm , Y>2 mm, Z>Thickness,	Not allowed
		2. Side Fragment:	Y Z
		Size(mm)	Acceptable Quantity
		X≤5.0mm Y ≤1mm Z≤T	Ignore T : Glass thickness X: Length Y: Width Z: thickness

Note: 1. Dot defect is defined as the defective area of the dot area is larger than

50% of the dot area.

- 2. The distance between two bright dot defects (red, green, blue, and white) should be larger than 15mm.
- 3. The distance between black dot defects or black and bright dot defects should be more than 5mm apart.
- 4. Polarizer bubble is defined as the bubble appears on active display area. The defect of polarizer bubble shall be ignored if the polarizer bubble appears on the outside of active display area.

6. Mechanics specification

As for the outside dimension, weight of the modules, please refer to product specification for more details

7. Precaution

Please pay attention to the following items when you use the LCD Modules:

- 7-1 Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 7-2 Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 7-3 Avoid dust or oil mist during assembly.
- 7-4 Following the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 7-5 Less EMI: it will be more safety and less noise.
- 7-6 Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7-7 Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image stains.
- 7-8 Be sure to turn off the power when connection of disconnecting the circuit.
- 7-9 Polarizer scratches easily, please handle it carefully.
- 7-10 Display surface never likes dirt of stains.
- 7-11 A dew drop may lead to destruction. Please wipe off and moisture before using module.
- 7-12 Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 7-13 High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 7-14 Acetic acid or chlorine compounds are not friends with TFT display module.
- 7-15 Static electricity will damage the module, please do not touch the module without any

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

grounded device.

- 7-16 Do not disassemble and reassemble the module by self.
- 7-17 Be careful do not touch the rear side directly.
- 7-18 Not strong vibration or shock. It will cause module broken.
- 7-19 Storage the modules in suitable environment with regular packing.
- 7-20 Be careful or injury from a broken display module.
- 7-21 Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity of other function issue.

8. Appendix

			AQL																				
Level 2	Lot Size (Pcs)	Sampling Quanti ty	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	15	25	40	65	100
			Ac Re	Ac Re	AcRe	AcRe	AcRe	AcRe	Ac Re	AcRe	AcRe	AcRe	AcRe	Ac Re	Ac Re	Ac Re	AcRe	AcRe	AcRe	AcRe	Ac Re	AcRe	Ac Re
А	2~8	2														¥	0 1		ł	12	23	34	56
В	9~15	3														0 1	Î	ł	12	23	34	56	78
С	16~25	5													0 1		↓	12	23	34	56	78	10 11
D	26~50	8												0 1		↓ ↓	12	23	34	56	78	10 11	14 15
Е	51~90	13										↓	0 1		+	12	23	34	56	78	10 11	14 15	21 22
F	91~150	20										0 1			12	2 3	34	56	78	10 11	14 15	21 22	Т
G	151~280	32								ł	0 1	I T		12	23	34	56	78	10 11	14 15	21 22	T	
Н	281~500	50							¥	0 1	1		1 2	23	34	56	78	10 11	14 15	21 22	Î		
J	501~1,200	80						l ↓	0 1		ł	1 2	23	34	56	78	10 11	14 15	21 22	Î			
К	1,201~3,200	125					↓	0 1	1	ł	1 2	23	34	56	78	10 11	14 15	21 22	Î				
L	3,201~10,000	200				↓ ↓	0 1	1	+	12	23	34	56	78	10 11	14 15	21 22	Î					
М	10,001~35,000	315				0 1	1	ł	1 2	2 3	34	56	78	10 11	14 15	21 22							
Ν	35,001~150,000	500		l ↓	0 1	1	1	1 2	2 3	34	56	78	10 11	14 15	21 22	Î							
Р	150,001~500,000	800	↓ ↓	0 1	1	ł	1 2	2 3	3 4	56	78	10 11	14 15	21 22									
Q	50,0001	1,250	0 1			1 2	2 3	34	56	78	10 11	14 15	21 22										
R		2000			1 2	2 3	3 4	56	78	10 11	14 15	21 22											

\sim

SHANGHAI TIANMA MICRO-ELECTRONICS

TM025ZDZ01 V1.4

No	Pattern Name	Condition	Level(0~255)RGBW /			
1	Fonts/Frame Line	PAGA LCM IQC TESTING VERSION	L0 / L255word / 1 pixel frame line RGBY color			
2	6"X8" Chessboard		L255 / L0 block			
3	Frame W 255		L255 / White			
4	Frame W 128		L128 /White			
5	Frame R 255		L255 / Red			
6	Frame G 255		L255 / Green			
7	Frame B 255		L255 / Blue			
8	Frame W 0		L0 / Black			
9	V 8 Color Bar		L255 BBRGWCYM			
10	H 4 Color Bar		L0~L255 RGBW			
11	Pixel ON OFF		L255 / L0 Pixel ON OFF			
12	Five Block		L0 five bock/ L128			
13	H Gray Level		L0~L255			
14	V Gray Level		L0~L255			
15	Logo / Vesrion / Real picture / numeral		Logo			

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.