

DM-TFT40-390 4.0" IPS 480x480 HIGH BRIGHTNESS TFT DISPLAY PANEL WITH CAPICITIVE TOUCH –RGB

Contents

- 1 Revision History
- 2 Main Features
- 3 Pin Description
 - 3.1 TFT
 - 3.2 CTP TFT
- 4 Mechanical Drawing
- 5 Optical & Electrical Characteristics
 - 5.1 Optics Characteristics
 - 5.2 Absolute Maximum Ratings
 - 5.3 DC Characteristics
 - 5.4 LED Backlight Characteristics
 - 5.5 AC Characteristics
 - 5.5.1 Serial Interface Characteristics (3-line serial):
 - 5.5.2 RGB Interface Characteristics:
 - 5.5.3 Reset input timing:

6 RGB Interface

- 6.1 RGB Color Format
- 6.2 RGB Interface Definition
- 6.3 RGB Interface Mode Selection
- 6.4 RGB Interface Timing

7 CTP Specification

- 7.1 Electrical Characteristics
 - 7.1.1 Absolute Maximum Rating
 - 7.1.2 DC Electrical Characteristics(Ta=25 °C)
 - 7.1.3 AC Characteristics
- 7.2 I2C Timing
- 8 Reliability
- 9 Warranty and Conditions

1 Revision History

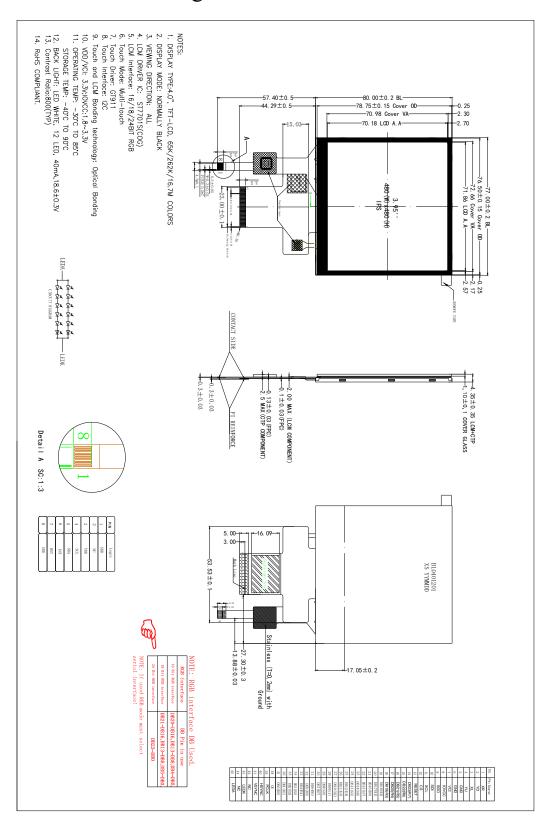
Date	Changes
2019-05-22	First release
2019-07-18	Second release
2020-03-25	Third release

2 Main Features

Item	Specification	Unit
Size	4.0	Inch
Resolution	480(RGB) x 480	pixel
CTP Resolution	480 x 480	-
Module Dimension	77.00 x 80.00 x 4.35	mm
Display area	71.86 x 70.18	mm
Pixel pitch	0.1497 x 0.1462	mm
TFT Controller IC	ST7701S	-
CTP Driver IC	GT911	-
LCM Interface	16/18/24bit RGB	-
CTP Interface	I^2C	-
Display Colors	65K/262K/16.7M	colors
Pixel arrangement	RGB vertical stripe	-
View Direction	ALL	O'clock
Display mode	Transmissive /Normally Black	-
Touch mode	Five points and Gestures	-
CTP Slave Address	0x5D(7bit) or 0x14(7bit)	-
Weight	45	g

3 Pin Description

3.1 TFT


No.	Symbol	Description
1	XR/NC	Touch panel Right Glass Terminal.
1	AR/NC	Leave the pin open when not in use.
2	YD/NC	Touch panel Bottom Film Terminal.
	I D/NC	Leave the pin open when not in use.
3	XL/NC	Touch panel LIFT Glass Terminal.
3	AL/NC	Leave the pin open when not in use.
4	YU/NC	Touch panel Top Film Terminal.
4	I U/NC	Leave the pin open when not in use.
5	GND	Ground.
6	GND	Ground.
7	VCI	Supply voltage (3.3V).
8	IOVCC	Supply Voltage (Logic)(1.8~3.3V).
9	SDO	Serial data output pin used for the SPI Interface.
9	300	Leave the pin open when not in use.
10	SDI	SDI: Serial data input/output bidirectional pin for SPI Interface.
11	SCL	SCL: Serial clock input for SPI interface.
		- A chip select signal
12	CS	Low: the chip is selected and accessible
		High: the chip is not selected and not accessible
		The external reset input
13	RESET	Initializes the chip with a low input. Be sure to execute a power-on reset
		after supplying power.
14-37	DB23-DB0	24-bit parallel data bus for RGB Interface.
14 37	DB23 DB0	Fix to IOVCC or GND level when not in use.
		Data enable signal for RGB interface operation Low: access enabled
38	DE	High: access inhibited
		Fix to IOVCC or GND level when not in use.
39	PCLK	Dot clock signal for RGB interface operation
40	HSYNC	Line synchronizing signal for RGB interface operation
41	VSYNC	Frame synchronizing signal for RGB interface operation
42	NC	
43	LEDK	Cathode pin of backlight.
44	NC	
45	LEDA	Anode pin of backlight.

3.2 CTP TFT

No.	Symbol	Description	
1	GND	Ground	
2	(VDDIO)NC	No Connection	
3	VDD	Supply voltage	
4	SCL	I2C clock input	
5	SDA	I2C data input and output	
6	INT	External interrupt to the host	
7	RST	External Reset, Low is active	
8	GND	Ground	

4 Mechanical Drawing

5 Optical & Electrical Characteristics

5.1 Optics Characteristics

Item	Symbol	Min	Тур	Max	Unit	Remark
View Angles TOP	ΘU	70	80	-	deg	
View Angles Bottom	ΘD	70	80	-	deg	CR ≥ 10
View Angles Right	ΘR	70	80	-	deg	CR ≥ 10
View Angles Left	ΘL	70	80	-	deg	
C.I.E(Red)	(x)	0.571	0.611	0.651	-	
C.I.E(Red)	(y)	0.323	0.363	0.403		$\Theta=0;$
C.I.E(Green)	(x)	0.277	0.317	0.357		Normal
C.I.E(Gleen)	(y)	0.530	0.570	0.610	_	viewing
C.I.E(Blue)	(x)	0.110	0.150	0.190		angle;
C.I.E(Blue)	(y)	0.060	0.100	0.140	_	CA-310
C.I.E(White)	(x)	0.269	0.309	0.349		test
C.I.E(Wille)	(y)	0.310	0.350	0.390	<u>-</u>	
Uniformity	S(%)	55	60	-	%	Note
Response Time	$T_R + T_F$	-	25	35	ms	-
Contrast Ratio	CR	640	800	-	_	-

Note: The data comes from the LCD specification.

Measuring surrounding: dark room

• Ambient temperature: 25±2°C

• 15min. warm-up time

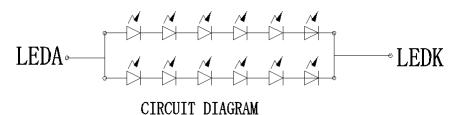
5.2 Absolute Maximum Ratings

Item	Symbol	Min	Max	Unit	Remark
Digital Supply Voltage	VCI	-0.3	4.6	V	Note
Digital Interface Supply Voltage	IOVCC	-0.3	4.6	V	
Operating Temperature	TOP	-30	+85	°C	
Storage Temperature	TST	-40	+90	°C	

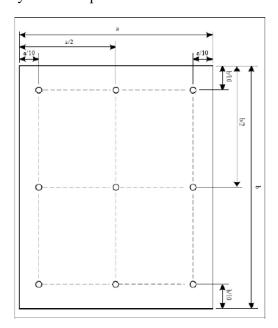
Note: If the absolute maximum rating of even is one of the above parameters is exceeded even momentarily,the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

5.3 DC Characteristics

Item	Symbol	Min	Тур	Max	Unit
Digital Supply Voltage	VCI	2.5	3.3	3.6	V
Digital Interface Supply Voltage	IOVCC	1.65	1.8	3.3	V
Normal mode Current	ICC	-	30	60	mA
Low Level Input Voltage	$V_{\rm IL}$	GND	-	0.3 x IOVCC	V
High Level Input Voltage	V _{IH}	0.7 x IOVCC	-	IOVCC	V
Low Level Output Voltage	Vol	GND	-	0.2 x IOVCC	V
High Level Output Voltage	Voh	0.8 x IOVCC	-	IOVCC	V


5.4 LED Backlight Characteristics

Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I_{F}	35	40	-	mA	
Forward Voltage	V_{F}	-	18.6	-	V	
LCM Luminance (I _F =40mA)	LV	800	850	-	cd/m ²	Note3
LED life time	Hr	-	50000	-	Hour	Note1,2
Uniformity	Avg	80	-	-	%	Note3


The back-light system is edge-lighting type with 12 chips LED.

Note1:LED life time (Hr) can be defined as the time in which it continues to operate under the condition: Ta=25±3°C, typical IL value indicated in the above table until the brightness becomes less than 50%.

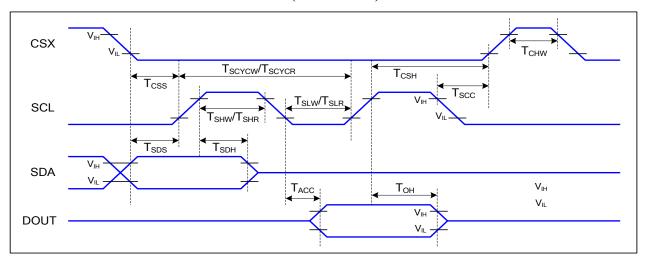
Note2:The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL=40mA. The LED lifetime could be decreased if operating IL is larger than 40mA. The constant current driving method is suggested.

Note3:Luminance Uniformity of these 9 points is defined as below:

Uniformity =

minimun luminance in 9 point(1 - 9)

maximun luminance in 9 point(1 - 9)


Luminance =

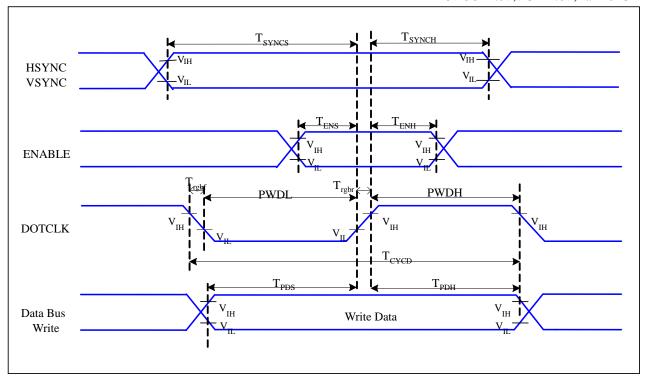
Total Luminance of 9 points

5.5 AC Characteristics

5.5.1 Serial Interface Characteristics (3-line serial):

3-line serial Interface Timing Characteristics

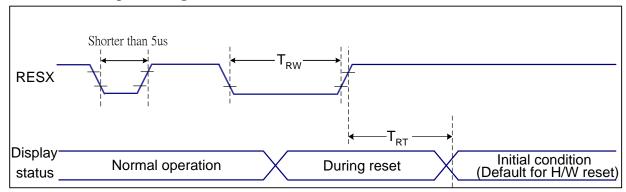
IOVCC=1.8V,VCI=2.8V,Ta=25°C


Signal	Symbol	Description	Min	Max	Unit	Remark
	T _{CSS}	Chip Select Setup Time (Write)	15	-	ns	
	T_{CSH}	Chip Select Hold Time (Write)	15	-	ns	
CSX	T _{CSS}	Chip Select Setup Time (Read)	60	-	ns	
	T _{SCC}	Chip Select Hold Time (Read)	60	-	ns	
	T_{CHW}	Chip Select "H" Pulse Width	40	-	ns	
	T _{SCYCW}	Serial Clock Cycle (Write)	66	-	ns	
	T_{SHW}	SCL "H" Pulse Width (Write)	15	-	ns	
SCL	T_{SLW}	SCL "L" Pulse Width (Write)	15	-	ns	
SCL	T _{SCYCR}	Serial Clock Cycle (Read)	150	-	ns	
	T _{SHR}	SCL "H" Pulse Width (Read)	60	-	ns	
	T_{SLR}	SCL "L" Pulse Width (Read)	60	-	ns	
SDA	T _{SDS}	Data Setup Time	10	_	ns	
(DIN)	T_{SDH}	Data Hold Time	10	_	ns	

Note: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of IOVCC for Input signals.

5.5.2 RGB Interface Characteristics:

IOVCC=1.8V,VCI=2.8V,Ta=25°C

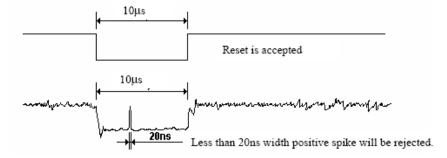


RGB Interface Timing Characteristics

Signal	Symbol	Description	Min	Max	Unit	Remark
HSYNC, VSYNC	T _{SYNCS}	VSYNC, HSYNC Setup Time	5	-	ns	
ENABLE	T _{ENS}	Enable Setup Time	5	-	ns	
ENABLE	T_{ENH}	Enable Hold Time	5	-	ns	
	PWDH	DOTCLK High-level Pulse Width	15	-	ns	
	PWDL	DOTCLK Low-level Pulse Width	15	-	ns	
DOTCLK	T_{CYCD}	DOTCLK Cycle Time	33	-	ns	
	Trghr, Trghf	DOTCLK Rise/Fall time	-	15	ns	
DB	T _{PDS}	PD Data Setup Time	5	-	ns	
שט	T _{PDH}	PD Data Hold Time	5	-	ns	

5.5.3 Reset input timing:

VDDI=1.8,VDD=2.8, AGND=DGND=0V, Ta=25 °C


Related Pins	Symbol	Parameter	Min	Max	Unit
	TRW	Reset Pulse Duration	10	-	μs
RESX	TRT	Reset Cancel	-	5(Note 1,5)	ms
	IKI	Reset Cancer	-	120(Note 1,6,7)	ms

Note:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 9µs	Reset
Between 5µs and 9µs	Reset Starts

- 3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

6 RGB Interface

The ST7701 support RGB interface Mode 1 and Mode 2. The interface signals as shown in ST7701S datasheet table 7.3.1. The Mode 1 and Mode 2 function is select by setting in the Command 2, please reference application note. In RGB Mode 1, writing data to line buffer is done by PCLK and Video Data Bus (D[23:0]), when DE is high state. The external clocks (PCLK, VS and HS) are used for internal displaying clock. So, controller must always transfer PCLK, VS and HS signal to ST7701. In RGB Mode 2, back porch of Vsync is defined by VBP[5:0] of RGBPRCTR command. And back porch of Hsync is defined by HBP[5:0] of RGBPRCTR command. And front porch of Hsync is defined by HFP[5:0] of RGBPRCTR command.

RGB I/F Mode	PCLK	DE	VS	HS	DB[23:0]	Register for Blanking Porch setting
RGB Mode 1	Used	Used	Used	Used	Used	Not Used
RGB Mode 2	Used	Not Used	Used	Used	Used	Used

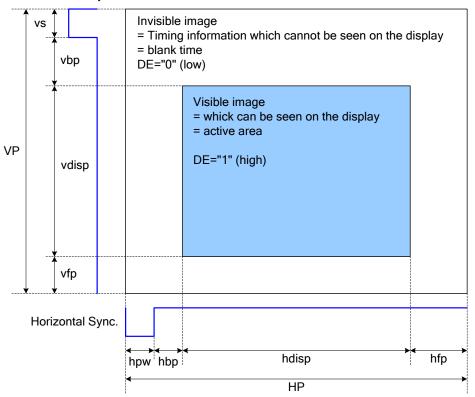
Symbol	Name	Description
PCLK	Pixel clock	Pixel clock for capturing pixels at display interface
HS	Horizontal sync	Horizontal synchronization timing signal
VS	Vertical sync	Vertical synchronization timing signal
DE	Data enable	Data enable signal (assertion indicates valid pixels)
DB[23:0]	Pixel data	Pixel data in 16-bit,18-bit and 24-bit format

The interface signals of RGB interface

6.1 RGB Color Format

ST7701 supports two kinds of RGB interface, DE mode (mode 1) and HV mode (mode 2), and 16bit/18bit and 24 bit data format. When DE mode is selected and the VSYNC, HSYNC, DOTCLK, DE, D[17:0] pins can be used; when HV mode is selected and the VSYNC, HSYNC, DOTCLK, D[17:0] pins can be used. When using RGB interface, only serial interface can be selected.

Pad name	24 bits configuration VIPF[3:0]=0111	18 bits cor VIPF[3:	16 bits configuration VIPF[3:0]=0101	
	VIFF[3.0]=0111	MDT=0	MDT=1	VIFF[3.0]=0101
DB[23]	R7	Not used	Not used	Not used
DB[22]	R6	Not used	Not used	Not used
DB[21]	R5	R5	Not used	Not used
DB[20]	R4	R4	Not used	R4
DB[19]	R3	R3	Not used	R3
DB[18]	R2	R2	Not used	R2
DB[17]	R1	R1	R5	R1
DB[16]	R0	R0	R4	R0
DB[15]	G7	Not used	R3	Not used
DB[14]	G6	Not used	R2	Not used
DB[13]	G5	G5	R1	G5
DB[12]	G4	G4	R0	G4
DB[11]	G3	G3	G5	G3
DB[10]	G2	G2	G4	G2
DB[09]	G1	G1	G3	G1
DB[08]	G0	G0	G2	G0
DB[07]	В7	Not used	G1	Not used
DB[06]	B6	Not used	G0	Not used
DB[05]	B5	B5	B5	Not used
DB[04]	B4	B4	B4	B4
DB[03]	B3	B3	B3	В3
DB[02]	B2	B2	B2	B2
DB[01]	B1	B1	B1	B1
DB[00]	В0	В0	В0	B0


The interface color mapping of RGB interface

6.2 RGB Interface Definition

The display operation via the RGB interface is synchronized with the VSYNC, HSYNC, and DOTCLK signals. The data can be written only within the specified area with low power consumption by using window address function. The back porch and front porch are used to set the RGB interface timing.

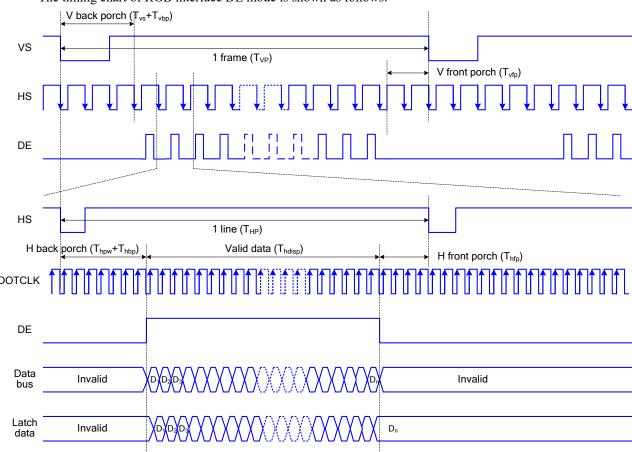
DRAM Access Area by RGB Interface

Please refer to the following table for the setting limitation of RGB interface signals.

Parameter	Symbol	Min.	Тур.	Max.	Unit
DCLK frequency	FCLK	-	(17)	-	MHz
Horizontal Sync. Width	hpw	1	(8)	255	Clock
Horizontal Sync. Back Porch	hbp	1	(50)	255	Clock
Horizontal Sync. Front Porch	hfp	1	(10)	-	Clock
Vertical Sync. Width	vs	1	(8)	254	Line
Vertical Sync. Back Porch	vbp	1	(20)	254	Line
Vertical Sync. Front Porch	vfp	1	(10)	-	Line

Note:

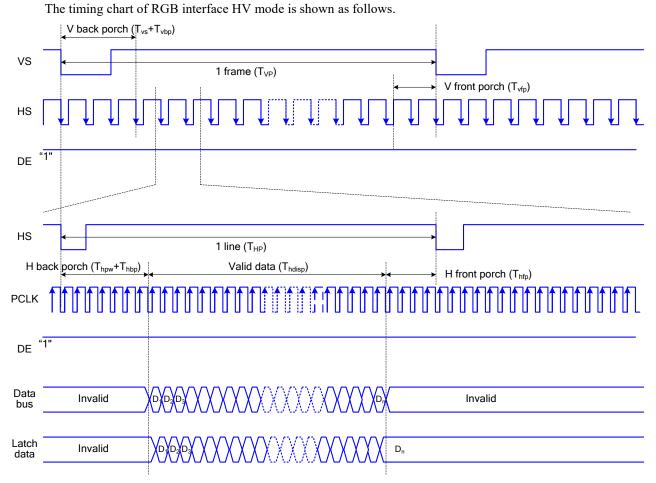
Typical value are related to the setting frame rate is 60Hz..


6.3 RGB Interface Mode Selection

ST7701 supports two kinds of RGB interface, DE mode and HV mode. The table shown below uses command C3h to select RGB interface mode.

DE/Sync	RGB Mode
0	DE mode
1	HV mode

6.4 RGB Interface Timing


The timing chart of RGB interface DE mode is shown as follows.

Note: The setting of front porch and back porch in host must match that in IC as this mode.

Timing Chart of Signals in RGB Interface DE Mode

Timing Chart of RGB Interface HV Mode

7 CTP Specification

7.1 Electrical Characteristics

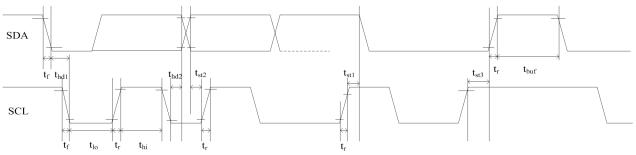
7.1.1 Absolute Maximum Rating

Item	Symbol	Min	Max	Unit	Note
Digital Supply Voltage	VDD	2.66	3.47	V	
Operating Temperature	Top	-30	+85	°C	
Storage Temperature	T_{ST}	-30	+85	°C	

7.1.2 DC Electrical Characteristics(Ta=25 °C)

(Ambient temperature:25°C, VDD=2.8V, VDDIO=1.8V or VDDIO=VDD)

Item	Min	Туре	Max	Unit	Note
Power Supply Voltage/VDD	2.66	3.3	3.47	V	
Normal mode operating current	-	8	14.5	mA	
Green mode operating current	-	3.3	-	mA	
Sleep mode operating current	70	-	120	uA	
Doze mode operating current	-	0.78	-	mA	
Digital Input low voltage/VIL	-0.3	-	0.25*VDD	V	
Digital Input high voltage/VIH	0.75*VDD	-	VDD+0.3	V	
Digital Output low voltage/VOL	-	-	0.15*VDD	V	
Digital Output high voltage/VOH	0.85*VDD	-	-	V	


7.1.3 AC Characteristics

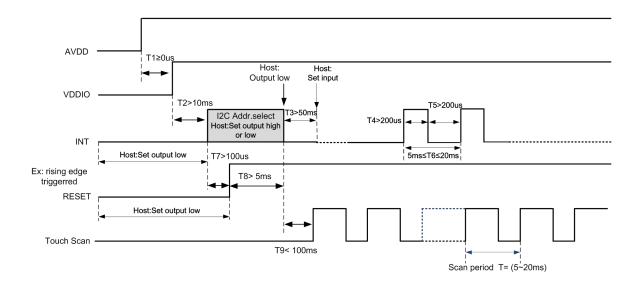
(Ambient temperature:25°C, VDD=2.8V, VDDIO=1.8V)

Parameter	Min	Тур	Max	Unit	Note
OSC oscillation frequency	59	60	61	MHz	
I/O output rise time, low to high	-	14	-	ns	
I/O output rfall time, high to low	-	14	-	ns	

7.2 I2C Timing

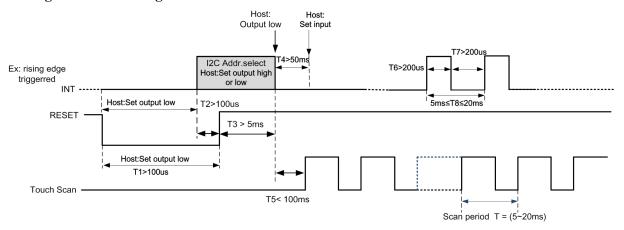
GT911 provides a standard I2C interface for SCL and SDA to communicate with the host. GT911 always serves as slave device in the system with all communication being initialized by the host. It is strongly recommended that transmission rate be kept at or below 400Kbps. The I2C timing is shown below:

Test condition 1: 1.8V host interface voltage, 400Kbps transmission rate, 2K pull-up resistor

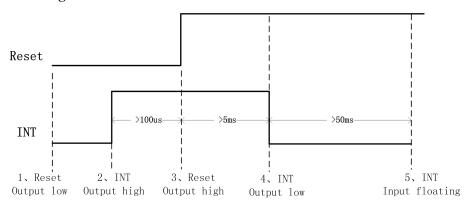

Item	Symbol	Min	Max	Unit
SCL low period	t_{lo}	1.3	-	μs
SCL high period	t _{hi}	0.6	-	μs
SCL setup time for Start condition	$t_{\rm st1}$	0.6	-	μs
SCL setup time for Stop condition	t _{st3}	0.6	-	μs
SCL hold time for Start condition	t _{hd1}	0.6	-	μs
SDA setup time	t_{st2}	0.1	-	μs
SDA hold time	t _{hd2}	0	-	μs

Test condition 2: 3.3V host interface voltage, 400Kbps transmission rate, 2K pull-up resistor

Item	Symbol	Min	Max	Unit
SCL low period	t_{lo}	1.3	-	μs
SCL high period	t_{hi}	0.6	-	μs
SCL setup time for Start condition	$t_{\mathrm{st}1}$	0.6	-	μs
SCL setup time for Stop condition	$t_{\rm st3}$	0.6	-	μs
SCL hold time for Start condition	$t_{ m hd1}$	0.6	-	μs
SDA setup time	$t_{\rm st2}$	0.1	-	μs
SDA hold time	$t_{ m hd2}$	0	-	μs


GT911 supports two I²C slave addresses: 0xBA/0xBB and 0x28/0x29. The host can select the address by changing the status of Reset and INT pins during the power-on initialization phase. See the diagram below for configuration methods and timings:

Power-on Timing:



Timing for host resetting GT911:

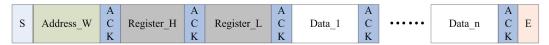
Timing for setting slave address to 0xBA/0xBB:

a) Data Transmission

(For example: device address is 0xBA/0xBB)

Communication is always initiated by the host. Valid Start condition is signaled by pulling SDA line from "high" to "low" when SCL line is "high". Data flow or address is transmitted after the Start condition.

All slave devices connected to I 2 C bus should detect the 8-bit address issued after Start condition and send the correct ACK. After receiving matching address, GT911 acknowledges by configuring SDA line as output port and pulling SDA line low during the ninth SCL cycle. When receiving unmatched address, namely, not 0XBA or 0XBB, GT911 will stay in an idle state.


For data bytes on SDA, each of 9 serial bits will be sent on nine SCL cycles. Each data byte consists of 8 valid data bits and one ACK or NACK bit sent by the recipient. The data transmission is valid when SCL line is "high".

When communication is completed, the host will issue the STOP condition. Stop condition implies the transition of SDA line from "low" to "high" when SCL line is "high".

b) Writing Data to GT911

(For example: device address is 0xBA/0xBB)

Timing for Write Operation

The diagram above displays the timing sequence of the host writing data onto GT911. First, the host issues a Start condition. Then, the host sends 0XBA (address bits and R/W bit; R/W bit as 0 indicates Write operation) to the slave device.

After receiving ACK, the host sends the 16-bit register address (where writing starts) and the 8-bit data bytes (to be written onto the register).

The location of the register address pointer will automatically add 1 after every Write Operation.

Therefore, when the host needs to perform Write Operations on a group of registers of continuous addresses, it is able to write continuously. The Write Operation is terminated when the host issues the Stop condition.

c) Reading Data from GT911

(For example: device address is 0xBA/0xBB)

Timing for Read Operation

The diagram above is the timing sequence of the host reading data from GT911. First, the host issues a Start condition and sends 0XBA (address bits and R/W bit; R/W bit as 0 indicates Write operation) to the slave device.

After receiving ACK, the host sends the 16-bit register address (where reading starts) to the slave device. Then the host sets register addresses which need to be read.

Also after receiving ACK, the host issues the Start condition once again and sends 0XBB (Read Operation). After receiving ACK, the host starts to read data.

GT911 also supports continuous Read Operation and, by default, reads data continuously. Whenever receiving a byte of data, the host sends an ACK signal indicating successful reception. After receiving the last byte of data, the host sends a NACK signal followed by a STOP condition which terminates communication.

8 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high storage temperature for a long time.	90°C 96hrs	2
Low Temperature Storage	Endurance test applying the high storage temperature for a long time.	-40°C 96hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	85°C 96hrs	-
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-30°C 96hrs	1
High Temperature/ Humidity Operation	The module should be allowed to stand at 60°C,90%RH max, for 96hrs under no-load condition excluding the polarizer. Then taking it out and drying it at normal temperature.	60°C,90%RH 96hrs	1,2
Thermal Shock Resistance	The sample should be allowed stand the following 10 cycles of operation.	-30°C/85°C 20 cycles	-
Vibration Test	Endurance test applying the vibration during transportation and using.	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55 Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total) (Package condition).	3
Static Electricity Test	Endurance test apply the electric stress to the terminal.	C=150pF, R=330,5points /panel Air:±8KV, 5times; Contact:±6KV, 5 times; (Environment: 15°C~35°C, 30%~60%).	-

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

Note3: Test performed on product itself, not inside a container

9 Warranty and Conditions

http://www.displaymodule.com/pages/faq