
PROPRIETARY NOTE : THIS SPECIFICATION IS THE PROPERTY OF BOE AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE AND MUST BE RETURNED TO BOE UPON ITS REQUEST

Approval Sheet

Preliminary specification

□ Final specification

Customer Name	*** ***
Product Description	2.1inch 1600RGB*1600 TFT-LCD Module
Version	Pre.0
Supplier	BOE
Module Code	VS021XRM-NW0-6KP0

ORDOS YUANSHENG OPTOELECTRONICS TECHNOLOGY CO.,LTD.

P1

Product Specification

Product Name : 2.1" TFT-LCD Module

Model Name : VS021XRM-NW0-6KP0

Description : 2.1" 1600RGB×1600 16.7M Color

HECKED BY	APPROVALED BY

ORDOS YUANSHENG OPTOELECTRONICS TECHNOLOGY CO.,LTD.

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	2 OF 34

B2006-5006-O (3/3)

ISSUE DATE

2020.03.03

Revision History

		,		
REV.	ECN NO.	DESCRIPTION OF CHANGES	DATE	PREPARED
P0	-	Initial Release	2019.10.11	GONG LEI
		\sim		
	Å			

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	3 OF 34

B2006-5006-O (3/3)

P1

ISSUE DATE

2020

2020.03.03

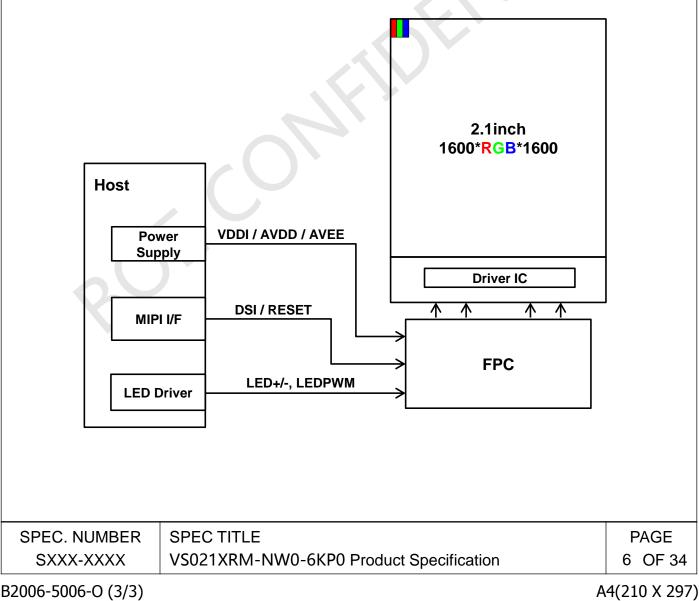
NO.		ITEMS	PAGE
1.0	General E	Description	6
1.1	Introductio	on	6
1.2	Feature		7
1.3	Applicatio	n	7
1.4	General s	pecification	8
2.0	Absolute	Maximum Ratings	9
3.0	Electrical	Specifications	10
3.1	TFT-LCD	Panel	10
3.2	Back-light	Unit	11
4.0	Optical S	pecifications	12
4.1	Overview		12
4.2	Optical sp	ecifications	12
5.0	Interface	Connection	16
6.0	Block Dia	ıgram	17
7.0	Timing C	haracteristics	18
7.1	Power on/	off sequence	18
7.2	Reset Tim	ing Sequence	21
7.3	Deep Star	ndby Mode Timing	22
7.4	MIPI Inter	face Characteristics	23
7.5	Operating	Sequence	27
7.6	Initial Cod	e Setting	28
	NUMBER	SPEC TITLE	PAGE
SXX	X-XXXX	VS021XRM-NW0-6KP0 Product Specification	4 OF 3

В	<u>O</u>	Ε

PRODUCT GROUP	REV	ISSUE DATE
TFT LCD PRODUCT	P1	2020.03.03

NO.	ITEMS	PAGE
8.0	Mechanical Characteristics	29
9.0	Reliability Test	30
10.0	Packing Information	31
10.1	Packing Description	31
10.2	Packing Procedure	32
10.3	Box Label	33
11.0	Handing & Cautions	34

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	5 OF 34


B2006-5006-O (3/3)

2020.03.03

1.0 GENERAL DESCRIPTION

1.1 Introduction

The 2.1inch TFT-LCD Module is a Color Active Matrix TFT LCD panel using LTPS (Low Temperature Poly-silicon) TFT's (Thin Film Transistors) as an active switching devices. This module has a 2.1 inch diagonally measured active area with 1600*1600 resolutions (1600 horizontal by 1600 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD panel used for this module is adapted for a low reflection and higher color type.

BOE	PRODUCT GROUP	REV	ISSUE DATE
	TFT LCD PRODUCT	P1	2020.03.03

1.2 Features

- High PPI
- Fast response time
- High frame ratio
- High luminance, low reflection and wide viewing angle
- RoHS、Halogen Free Compliant

1.3 Application

- Virtual Reality Device
- Augmented Reality Device

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	7 OF 34

P1

2020.03.03

1.4 General Specification

< Table 1. General Specifications >

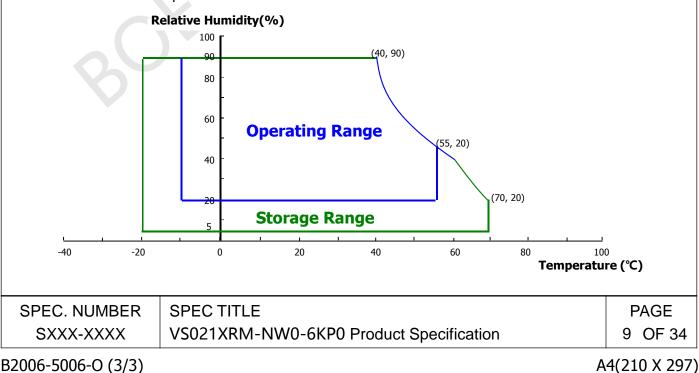
Parameter	Specification	Unit	Remark
Display method	Active matrix TFT		
Display mode	Transmission mode, Normally black		
Screen size	2.1" (38.4mm)	inch	diagonally
Number of pixels	1600(H) × 1600(V)	pixels	1058 ppi
Pixel pitch	8(H) × 24(V)	um	
Pixel arrangement	RGB stripe		
Display colors	16.7M	colors	8bit
NTSC Ratio	70.8%		
LCM Outline Dimension	41.2(H) × 45.3(V) × 1.66 (T)	mm	Note 1)
LCM Weight	6.0 ±1.0	gram	Note 1)
Driver IC	R63455		
Interface	MIPI DSI (Video Mode)		
Surface Treatment	HC, ≥3H		

Note:

1) Protection film is not included.

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	8 OF 34

P1


2.0 ABSOLUTE MAXIMUM RATINGS

< Table 2. Absolute Maximum Ratings> [Ta =25 ± 2 ℃]
--	---------------

Items	Symbol	Rating	Unit	Remark
Logic voltage	VDDI	-0.3 to +1.8	V	
Positive Analog Power Supply Voltage	AVDD	-0.3 to +6.0	V	
Negative Analog Power Supply Voltage	AVEE	-6.0 to +0.3	V	
LED forward current	I _{LED}	45	mA	each LED 20% on duty
Storage temperature	T _{STG}	-40 to +70	°C	
Operation temperature	T _{OPR}	-10 to +55	°C	
Humidity (ambient temeprature=Ta)	Ta≤60°C, 90% RH Max.			

Note 1: If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operated with the absolute maximum ratings for a long time, its reliability may drop. It is not allowed for any of these ratings to be exceeded. Make sure all the design characte ristics are adequate before the panel is initialed.

Note 2: Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C max. and no condensation of water.

< Table 3, I CD Panel Electrical Specifications >

P1

 $[T_2 = 25 \pm 2 \circ 1]$

3.0 ELECTRICAL SPECIFICATIONS

3.1 TFT LCD Panel

< Table 3. LCD Parlet Electrical Specifications > $[1a = 25 \pm 2 C]$							
Items		Symbol	Min.	Тур.	Max.	Unit	Remark
Logic vo	ltage	VDDI	1.7	1.8	1.9	V	
Positive A Power Suppl	•	AVDD	5.7	6.0	6.3	V	Note 1
Negative Power Supp	0	AVEE	-6.3	-6.0	-5.7	V	
Frame I	Ratio	FPS	-	70/90		Hz	
Input signal H	High level	V _{IH}	0.7×VDDI		VDDI	V	
voltage	Low level	V _{IL}	VSSI		0.3×VDDI	V	
Output signal	High level	V _{OH}	0.8×VDDI	-	VDDI		
voltage	Low level	V _{OL}	VSSI	-	0.2×VDDI		
		I _{VDDI}		79.8	87.7	mA	
Current con	Current consumption		-	8.7	12	mA	Note 2
		I _{AVEE}	-	-5.4	-11	mA	
Driver IC	FSD	НВМ	- 2	-	+2	kV	
Diverio	, LOD	MM	-200	-	+200	V	

Note 1:

The value can be adjusted by software to optimize display quality.

The operation is guaranteed under the recommended operating conditions only. The oper ation is not guaranteed if a quick voltage change occurs during operation. To prevent nois e, a bypass capacitor must be inserted into the line close to power pin. Please make sure all the design settings are used within this range before the panel is initialed.

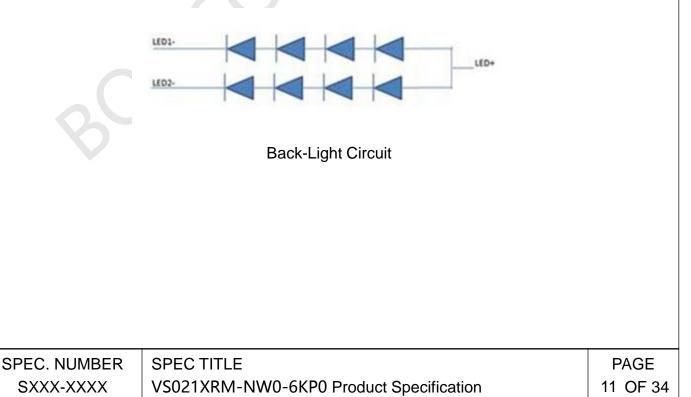
Note 2:

Test pattern: All White Display

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	10 OF 34

2020.03.03

3.2 Back-light Unit


Ta=25+/-2°C

Items	Symbol	Min.	Тур.	Max.	Unit	Remark	
Forward Current	lf	-	45mA@2 0%duty	-	mA	Note1	
Forward Voltage	Vf	-	6.5	-	V	Note1	
Power Consumption	P _{BL}	-	468	-	mW	Note2	
LED Q'ty			8		Ea		

Note 1: The driving condition is defined for each LED chip.

Note 2: The B/L power consumption is defined for the backlight module. the schematic drawing of the backlight unit is as the figure. The B/L power consumption is based on 20% on duty mode

Ref. Total power consumption(max) depends on LED current/LED driver efficiency, etc.

B2006-5006-O (3/3)

4.0 OPTICAL SPECIFICATION

4.1 Overview

The optical characteristics should be measured in a dark room (ambient luminance≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of Konica Minolta CA-310 and CS-2000 and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . The center of the measuring spot on the display su rface should stay fixed.

The operation should be under the recommended operating conditions.

4.2 Optical Specifications

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Horizontal	θ3		-	40	-		
	HUHZUHlai	θ ₉	CR > 100	-	40	-	degree	Note 1
Viewing Angle	Vertical	θ ₁₂		-	40	-		
	venical	θ ₆		-	40	-		
Color Ga	amut (NTSC)		$\theta = 0^{\circ}$	-	70.8	-	%	
Contrast Rat	io	CR	$\theta = 0^{\circ}$	400	650	-		Note 2
Luminance of White	Center	Y _w	0 00	384	480	-	cd/m ²	Note 3
Luminance Uniformity	5 Points	ΔΥ5	$\theta = 0^{\circ}$	80%	85%	-		Note 4
8		Rx		0.615	0.640	0.665		
	Red	Ry	$\theta = 0^{\circ}$	0.305	0.330	0.355		Note 5
	Orean	Gx		0.309	0.334	0.359		
Chromaticity	Green	Gy		0.603	0.628	0.653		
(CIE 1931)	Dhua	Bx		0.125	0.150	0.175		
	Blue	Ву		0.035	0.060	0.085		
		Wx		0.270	0.280	0.290		
	White	Wy		0.280	0.290	0.300		
Response Tir (G to G)	ne	Т	$\theta = 0^{\circ}$	-	-	5.5	ms	Note 6
Flicker			$\theta = 0^{\circ}$	-	-	-30	db	Note 7
Cross Talk		СТ	$\theta = 0^{\circ}$	-	-	2.5	%	Note 8
SPEC. NUMBER	R SPE	C TITLE						PAGE
SXXX-XXXX	VS0	21XRM-N	W0-6KP0 P	roduct Sp	pecificatio	on		12 OF

<Table 5. Optical Specifications>

B2006-5006-O (3/3)

Β	Ο	Ε

2020.03.03

Note 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (FIGURE 1).

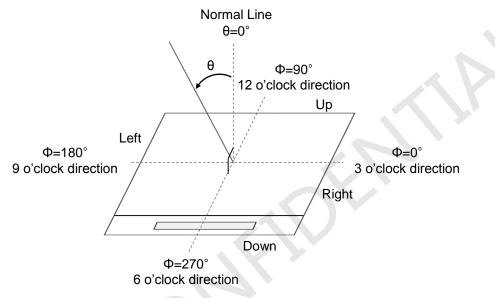


Fig.1 Viewing angle measurement setup

Note 2. Contrast ratio measurements shall be made at viewing angle of θ =0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state (FIGURE 1). Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster

Luminance when displaying a black raster

Note 3. Luminance of white is defined as luminance values of the center point across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display. The luminance is measured by CA310 when **the LED current is set at 9mA/ea and the backlight is under the 20% on duty mode.**

Note 4. The White luminance uniformity is then expressed as:

 ΔY = Minimum Luminance of 5 points / Maximum Luminance of 5 points (FIGURE 3).

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	13 OF 34

B2006-5006-O (3/3)

2020	.03.03
2020.	.00.00

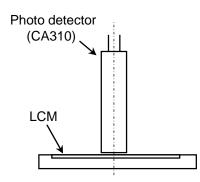
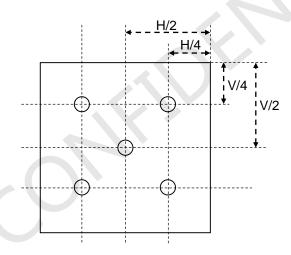
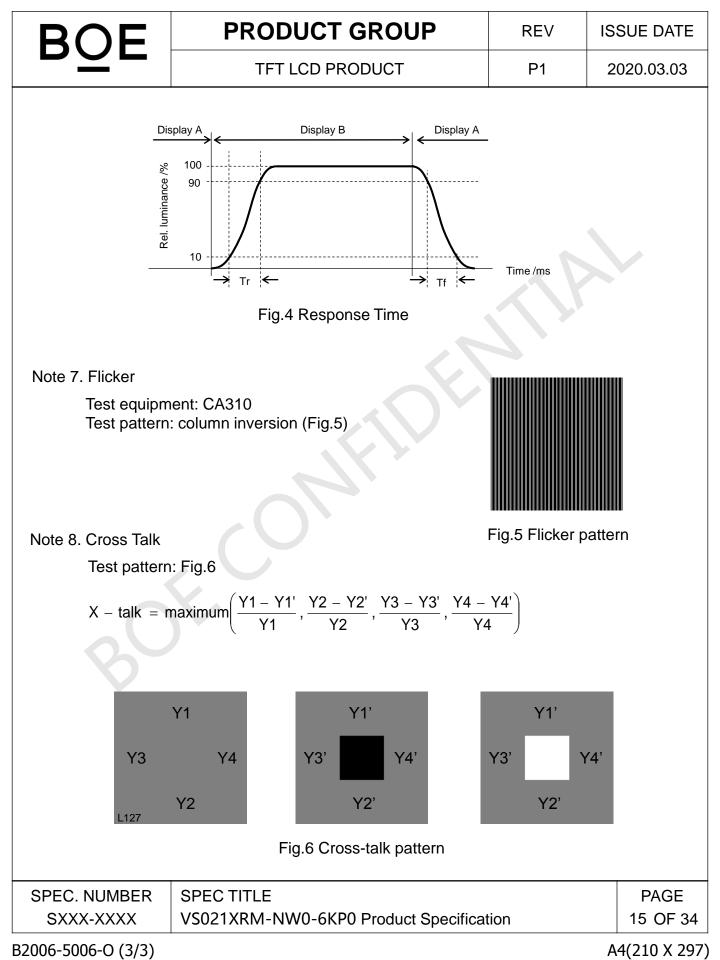


Fig.2 Luminance, uniformity & chromaticity measurement setup




Fig.3 Luminance uniformity measurement setup

- Note 5. The color chromaticity is measured with all pixels first in red, green, blue and white. Measurements should be made at the center of the panel.
- Note 6. Definition of Response time.

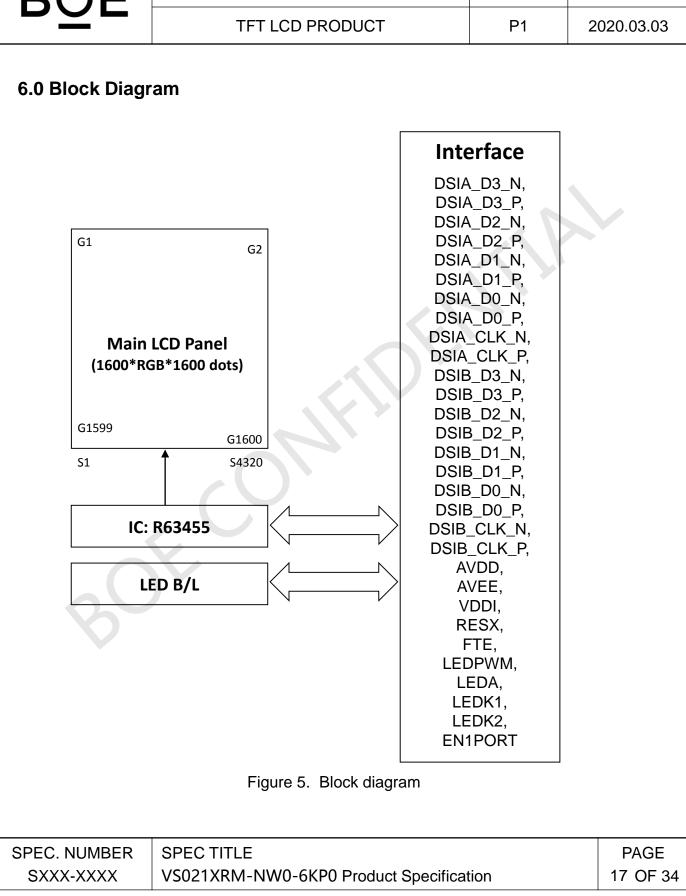
The output signals of photo detector are measured when the input signals are switched between different display pattern (Gray-to-Gray). The response time is defined as the time interval **between the 10% and 90% of amplitudes** (Fig.4)

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	14 OF 34

B2006-5006-O (3/3)

5.0 INTERFACE CONNECTION

The electronics interface connector is **Kyocera 145863050024829+** The connector interface pin assignments are listed in Table 6. <Table 6. Pin Assignments for the Interface Connector>

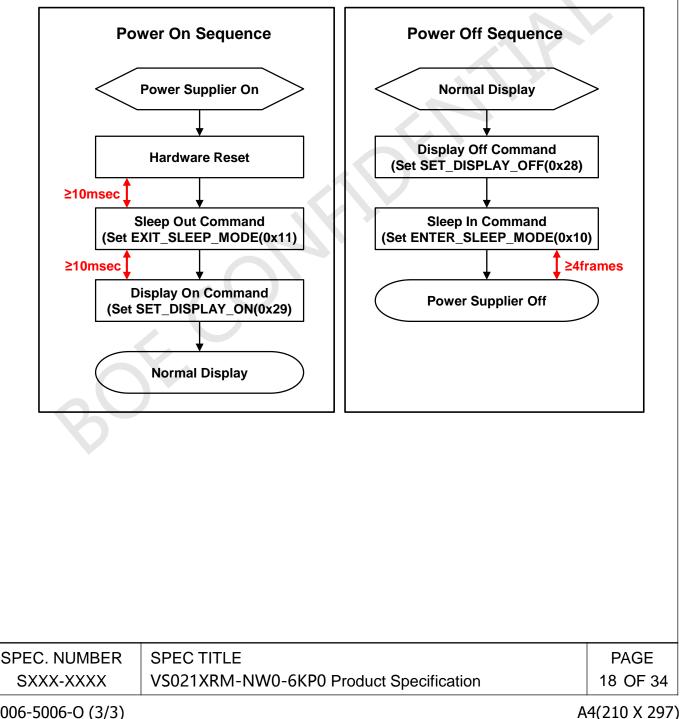

Connector:145863050024829+									
NO.	Symbol	Description	NO.	Symbol	Description				
1	GND	Ground	2	NC	No Connection				
3	PNSLV	Main port select	4	VSP	Positive power				
5	BLUPWM	BLU duty control	6	NC	No Connection				
7	TE	TE signal output	8	VSN	Negative power				
9	RESET	DDIC reset signal	10	GND	Ground				
11	GND	Ground	12	DSIB_D3_P	MIPI-DSI-Data lane				
13	DSIB_D0_P	MIPI-DSI-Data lane	14	DSIB_D3_N	MIPI-DSI-Data lane				
15	DSIB_D0_N	MIPI-DSI-Data lane	16	GND	Ground				
17	GND	Ground	18	DSIB_CLK_P	MIPI-DSI-Clock lane				
19	DSIB_D1_P	MIPI-DSI-Data lane	20	DSIB_CLK_N	MIPI-DSI-Clock lane				
21	DSIB_D1_N	MIPI-DSI-Data lane 🥄	22	GND	Ground				
23	GND	Ground	24	DSIB_D2_P	MIPI-DSI-Data lane				
25	DSIA_D2_N	MIPI-DSI-Data lane	26	DSIB_D2_N	MIPI-DSI-Data lane				
27	DSIA_D2_P	MIPI-DSI-Data lane	28	GND	Ground				
29	GND	Ground	30	DSIA_D1_N	MIPI-DSI-Data lane				
31	DSIA_CLK_N	MIPI-DSI-Clock lane	32	DSIA_D1_P	MIPI-DSI-Data lane				
33	DSIA_CLK_P	MIPI-DSI-Clock lane	34	GND	Ground				
35	GND	Ground	36	DSIA_D0_N	MIPI-DSI-Data lane				
37	DSIA_D3_N	MIPI-DSI-Data lane	38	DSIA_D0_P	MIPI-DSI-Data lane				
39	DSIA_D3_P	MIPI-DSI-Data lane	40	GND	Ground				
41	GND	Ground	42	NC	No Connection				
43	ID0	ID Pin(low : 0)	44	LED+	LED Positive power				
45	ID1	ID Pin (high : 1)	46	NC	No Connection				
47	IOVCC1	Power for digital circuit	48	LED1-	LED Negative power				
49	IOVCC2	Power for digital circuit	50	LED2-	LED Negative power				

Remark:

Pin 3 "PNSLV" is a Main Port select pin, which is should be connected to the 'L' level;

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	16 OF 34

BOE



B2006-5006-O (3/3)

7.0 Timing Characteristics

7.1 Power On/Off Sequence

The power supply ON/OFF setting for Display ON/OFF, Standby Set/Exit, and Sleep Set/Exit sequences is illustrated in figure below.

B2006-5006-O (3/3)

P1

2020.03.03

Power On/Off Sequence

R63455 can be operated by supplying the VSP and VSN power supplies directly.

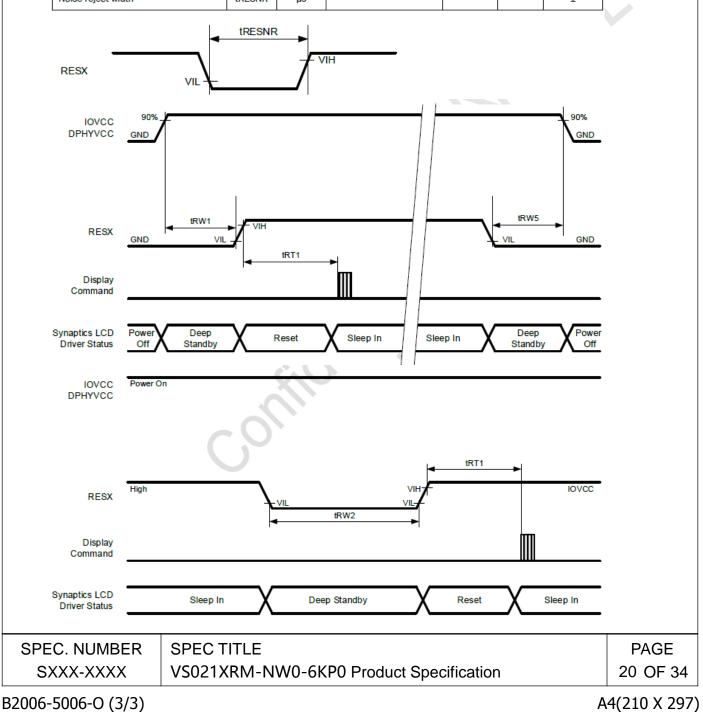
Figure 8. Power supply on/off timing

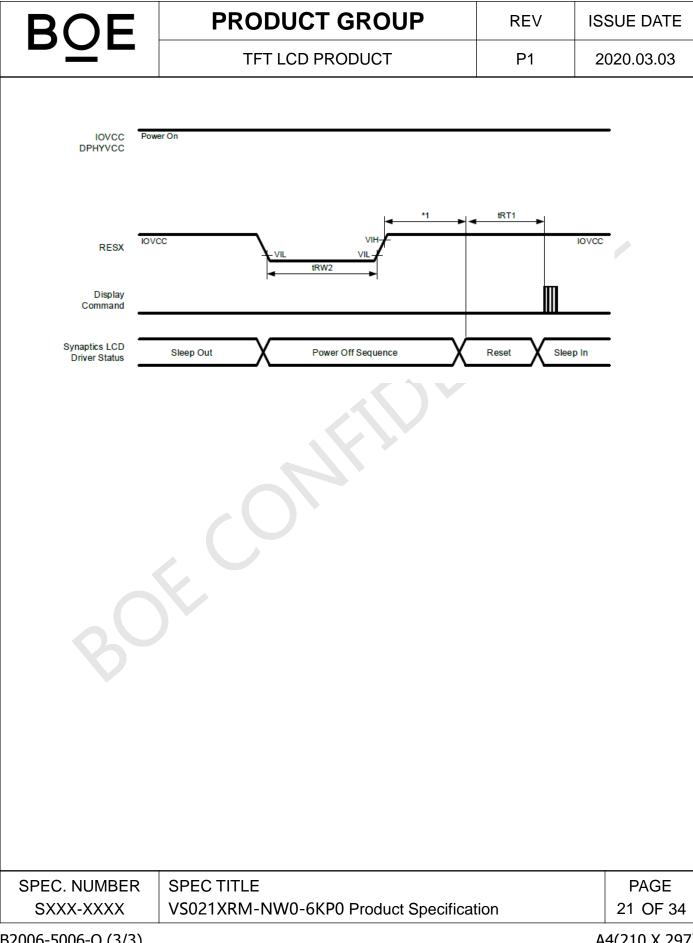
Table 23. Power supply timing specifications

Item	Symbol	Unit	Test Condition	Minimum	Maximum
VSP-VSN delay time (10% to 10%)	tPON1	μs	Power on	0	-
VSP-VSN delay time (50% to 50%)	tPON2	μs	Power on	0	-
System power on to VSP ON time	tsVSP	ms	Power on	1	-
VSN-VSP delay time (10% to 10%)	tPOFF1	μs	Power off	0	-
VSN-VSP delay time (50% to 50%)	tPOFF2	μs	Power off	0	-
VSP OFF to system power OFF time	thVSP	μs	Power off	0	-

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	19 OF 34

B2006-5006-O (3/3)




P1

2020.03.03

7.2 Reset Input Timing

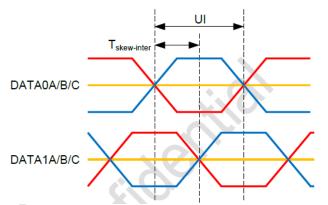
Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximum
Reset low-level width1	tRW1	μs	Power supply on	3000	-	-
Reset low-level width2	tRW2	μs	Operation	1000	-	-
Reset low-level width3	tRW5	ms	Power supply off	25	-	
Reset to MIPI command	tRT1	ms	Sleep in	20	-	-
Noise reject width	tRESNR	μs	-	-	-	1

B2006-5006-O (3/3)

P1

7.3 Deep Standby Mode Timing

B2006-5006-O (3/3)


	6	Otamina d	State	9	
	Sequence	Command	From	То	
1	Power on sequence with HWRESET	$(\text{RESET_N} = \text{Low} \rightarrow \text{High})$	Power off	Sleep mode on	
2-a	HWRESET	(RESET_N = Low)	_	Deep standby on	
2-b	HWRESET sequence	(RESET_N = High -> Low \rightarrow High)	All status	Sleep mode on	
3			Sleep mode on	Sleep mode off	
5	exit_sleep_mode sequence	exit_sleep_mode(11h)	Sleep mode off (display off)	(Display off)	
6			Sleep mode off (display on)	Sleep mode off (Display on)	
7	exit_sleep_mode + set_display_on sequence	exit_sleep_mode(11h) set_display_on(29h)	Sleep mode on	Sleep mode off (Display on)	
9	set_display_on		Sleep mode off (display off)	Sleep mode off (Display on)	
10	sequence	set_display_on(29h)	Sleep mode off (display on)	Sleep mode off (Display on)	
11	set_display_off		Sleep mode off (display on)	Sleep mode off (Display off)	
12	sequence	<pre>set_display_off(28h)</pre>	Sleep mode off (display off)	Sleep mode off (Display off)	
13			Sleep mode off (display off)		
14	enter_sleep_mode sequence	enter_sleep_mode(10h)	Sleep mode off (Display on)	Sleep mode on	
15		C	Sleep mode on		
17			Sleep mode off (display on)		
18	soft_reset sequence	<pre>soft_reset(01h)</pre>	Sleep mode off (Display off)	Sleep mode on	
19			Sleep mode on		
21	Deep standby mode on sequence	(RESET_N = High \rightarrow Low)	Sleep mode on	Deep standby on	
22	Deep standby mode off sequence	$(\text{RESET_N} = \text{Low} \rightarrow \text{High})$	Deep standby on	Sleep mode on	
<u></u>	EC. NUMBER	SPEC TITLE		PAGE	
	SXXX-XXXX	VS021XRM-NW0-6KP0 Prod	duct Specification	22 OF 34	

7.4 MIPI Interface Characteristics

MIPI DSI HS-RX Clock and Data-Clock Specifications

Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximu m
Symbol rate*	fSYMBOL	Msps	$IOVCC = DPHYVCC = 1.65 \sim \mathbf{1.95V}$	80	-	1300
UI instantaneous	UI	ns	$IOVCC = DPHYVCC = 1.65 \sim \mathbf{1.95V}$	0.77	_	12.5
Data transfer rate*	tDSIR	Mbps	IOVCC = DPHYVCC = 1.65 ~ 1.95V	182	_	2971
Inter lane skew	Tskew- inter	UI	IOVCC = DPHYVCC = 1.65 ~ 1.95V	-3.5	-	+3.5

1 C-PHY data transfer rate is 2.28 times the C-PHY symbol rate.

Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximum	Footnote
DSICLK frequency	fDSICLK	MHz	IOVCC = DPHYVCC = 1.65 ~ 1.95V	250	-	650	1
DSICLK cycle time	tCLKP	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	1.54	-	4	1
DSI data transfer rate	tDSIR	Mbps	IOVCC = DPHYVCC = 1.65 ~ 1.95V	500	-	1300	1
		UI	IOVCC = DPHYVCC = 1.65 ~ 1.95V	0.15	-	-	1, 3
Data to clock setup	+O CTUD	ns	DSI transfer rate ≦ 1000 Mbps	0.15	-	-	1, 2, 3
time	tSETUP	UI	IOVCC = DPHYVCC = 1.65 ~ 1.95V	0.2	-	-	1, 3
		ns	DSI transfer rate \geq 1000 Mbps	0.13	-	-	1, 2, 3
		UI	IOVCC = DPHYVCC = 1.65 ~ 1.95V	0.15	-	-	1, 3
Clock to data hold tHOLD		ns	DSI transfer rate ≦ 1000 Mbps IOVCC = DPHYVCC = 1.65 ~ 1.95V DSI transfer rate > 1000 Mbps	0.15	_	-	1, 2, 3
	THULD	UI		0.2	_	-	1, 3
		ns		0.13	_	_	1, 2, 3

1. Minimum 110 mV/-110 mV HS differential swing is required for display data transfer.

2. tSETUP/tHOLD times are measured without HS-TX jitter.

3. Minimum tSETUP/tHOLD Time is 0.15 UI or 0.20 UI. This value may change according to the DSI transfer rate.

SPEC. NUMBER SPEC TITLE SXXX-XXXX VS021XRM-NW0-6KP0 Product Specification

PAGE 23 OF 34

B2006-5006-O (3/3)

PRODUCT GROUP

REV

ISSUE DATE

TFT LCD PRODUCT

P1

2020.03.03

Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximu m
Time to drive LP-000 to prepare for high speed transmission	T3-PREPARE	Ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	38	-	95
Time interval during high speed receiver can receive high speed data starting at the beginning of t _{3-PREPARE}	T _{3-SETTLE}	Ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	95	_	300
Time from driving LP-000 to sending sync word ¹	T3-PREPARE + T3PREAMBLE	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	300ns*1	_	-
Time to drive LP-111 after a HS burst	T _{HS-EXIT}	Ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	100	-	-
Time to drive LP-000 after a turnaround request	T _{TA-GO}	_	IOVCC = DPHYVCC = 1.65 ~ 1.95V		4 • T _{LPTX}	
Time that the new transmitter waits after the LP-100 state before transmitting the bridge state (LP-000) during a link turnaround	T _{TA-SURE}	_	IOVCC = DPHYVCC = 1.65 ~ 1.95V	1 • T _{LPTX}	_	2 • T _{LPTX}
Time that the new transmitter drives the bridge state (LP-000) after accepting control during a link turnaround	T _{TA-GET}	_	IOVCC = DPHYVCC = 1.65 ~ 1.95V		5 • T _{lptx}	
Length of any low-power state period	T _{LPX}	Ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	50	_	_
Ratio of TLPX(MASTER)/TLPX(SLAVE) between the master and slave sides	Ratio T _{LPX}		IOVCC = DPHYVCC = 1.65 ~ 1.95V	2/3	_	3/2
Time that the transmitter continues sending post words (4444444) after the last associated data lane has transitioned to LP mode ²	Тзроят	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	224*2	-	_
Length of the low-power transmitter period	Тіртх	Ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	_	(8/fosc)	_

¹ The minimum value of T_{3-PREPARE} is 38 ns and the minimum value of T_{3-PREPARE} is 14 UI, so the minimum value of T_{3-PREPARE} + T_{3-PREAMBLE} is calculated as 38 ns + 14 UI. However, there is a relation where T_{3-PREPARE} + T_{3-PREAMBLE} > T_{3-PREPARE} + T_{3-PREAMBLE} is the minimum value, T_{3-PREPARE} + T_{3-PREPARE} + T_{3-PREAMBLE} is the same as the T_{3-PREPARE} minimum value.

² The minimum value of T_{3-POST} is defined as 7 UI in the CPHY specification. However, R63455 requires a T3_{-POST} period at 224 UI. The CPHY specification states that the value of T_{3-POST} should be adjustable at the transmitter from 7 UI to 224 UI in increments of 7 UI.

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	24 OF 34

ISSUE DATE

TFT LCD PRODUCT

P1

2020.03.03

Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximum
Time to drive LP-00 to prepare for HS transmission	T _{HS-PREPARE}	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	40 ns + 4 • UI	_	85 ns + 6 • UI
THS-PREPARE + time to drive HS- O before the sync sequence	Ths-prepare + Ths-zero	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	145ns + 10 • UI	_	_
Time to drive flipped differential state after last payload data bit of a HS transmission burst ^{1, 2}	T _{HS-TRAIL}	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	max (n • 8 • UI, 60 ns + n • 4 • UI)	_	_
Time to drive LP-11 after a HS burst	T _{HS-EXIT}	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	100	-	-
Time to drive LP-00 after a turnaround request	Tta-go	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	4	• Тиртх	
Time that the new TX waits after the LP-10 state before transmitting the bridge state (LP-00) during a link turnaround	TTA-SURE	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	1 • T _{LPTX}	_	2 • Tlptx
Time that the new TX drives the bridge state (LP-00) after accepting control during a link turnaround	T _{TA-GET}	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	5 • T _{LPTX}		
Length of any low-power state period	T _{LPX}	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	50	-	-
Ratio of TLPX(MASTER)/TLPX(SLAVE) between the master and slave sides	Ratio T _{LPX}	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	2/3	-	3/2
Time that the transmitter continues sending HS clock after the last associated data lane has transitioned to LP mode ³	TCLK-POST	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	60 ns + 52 UI	-	-
T _{CLK-PREPARE} +time for lead HS- O drive period before starting the clock	Tclk-prepare +T _{clk-zero}	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	300	-	-
Time that the HS clock is driven prior to any associated data lane beginning the transition from LP to HS mode	Tolk-pre	UI	IOVCC = DPHYVCC = 1.65 ~ 1.95V	8	_	_
Time to drive LP-00 to prepare for HS clock transmission	T _{CLK-PREPARE}	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	38	_	95
Time to drive HS differential state after last payload clock bit of an HS transmission burst	T _{CLK-TRAIL}	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	60	_	_

SPEC. NUMBER SXXX-XXXX

VS021XRM-NW0-6KP0 Product Specification

SPEC TITLE

B2006-5006-O (3/3)

A4(210 X 297)

PAGE

25 OF 34

PRODUCT GROUP

REV

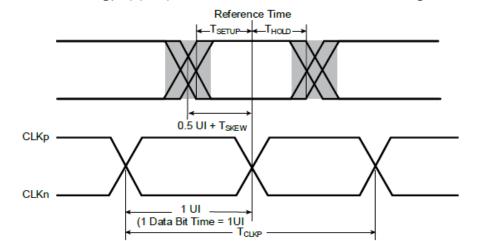
ISSUE DATE

TFT LCD PRODUCT

P1

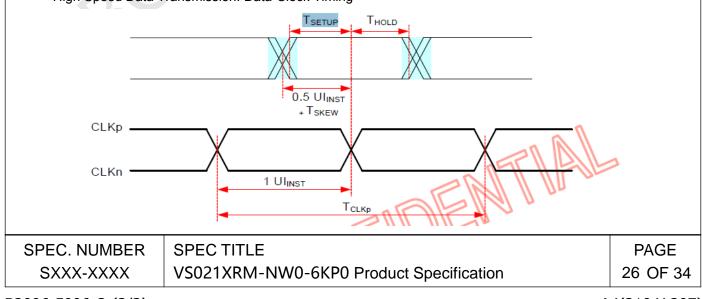
2020.03.03

Item	Symbol	Unit	Test Condition	Minimum	Typical	Maximum
Time from the start of THS-TRAIL period to the start of the LP-11 state ²	Теот	-	IOVCC = DPHYVCC = 1.65 ~ 1.95V	_	_	105 ns + n • 12 • UI
Length of the low-power TX period when using the DSI-2 clock ^{4, 5}	Τιρτχί	UI	IOVCC = DPHYVCC = 1.65 ~ 1.95V	_	1/fTXCLK	_
Length of the low-power TX period when using the internal OSC clock ^{4, 5}	TLPTX2	ns	IOVCC = DPHYVCC = 1.65 ~ 1.95V	_	8/fosc	_

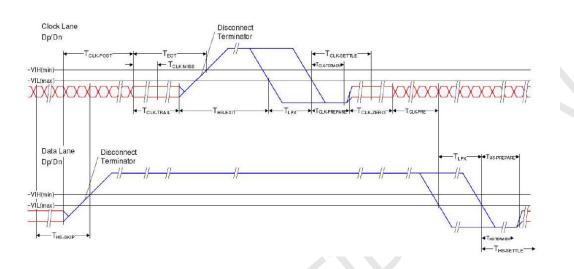

1. If a > b then max (a, b) = a, otherwise max (a, b) = b

Where n = 1 for forward direction HS mode.

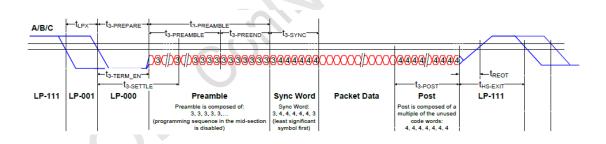
 R63455 works with this specification, although the last part of the internal process remains when the clock lane enters LP-11 and R63455 works without the remaining process if tCLK-POST is more than 512 UI.


 R63455 uses the DSI clock from the host processor if the DSI-2 clock lane is active, and uses the internal oscillator clock if the DSI-2 clock lane is stopped.

5. See section "DSI-2 Control Setting (B6h)" (D-PHY) in this document for more information about the DSITXDIV register function.

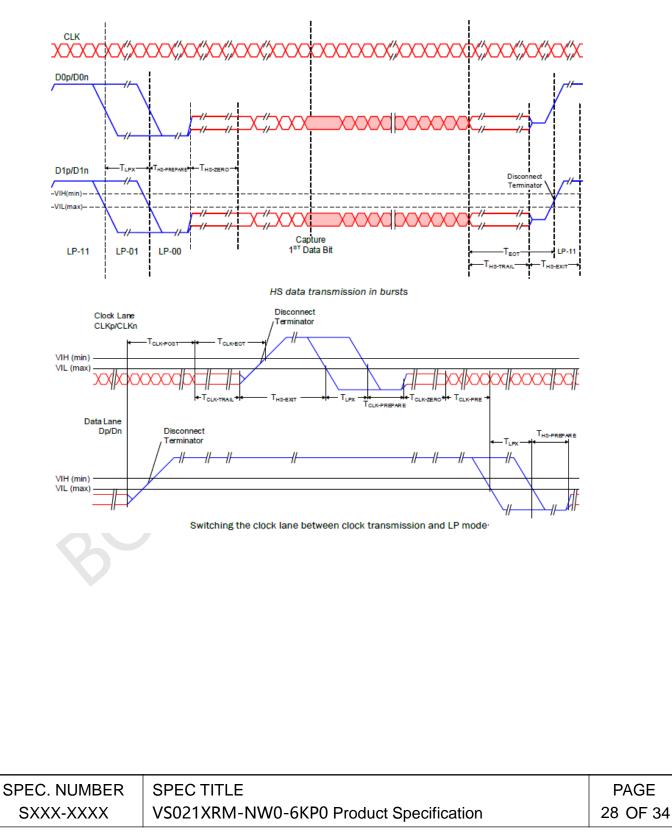

High speed mode

High Speed Data Transmission: Data-Clock Timing



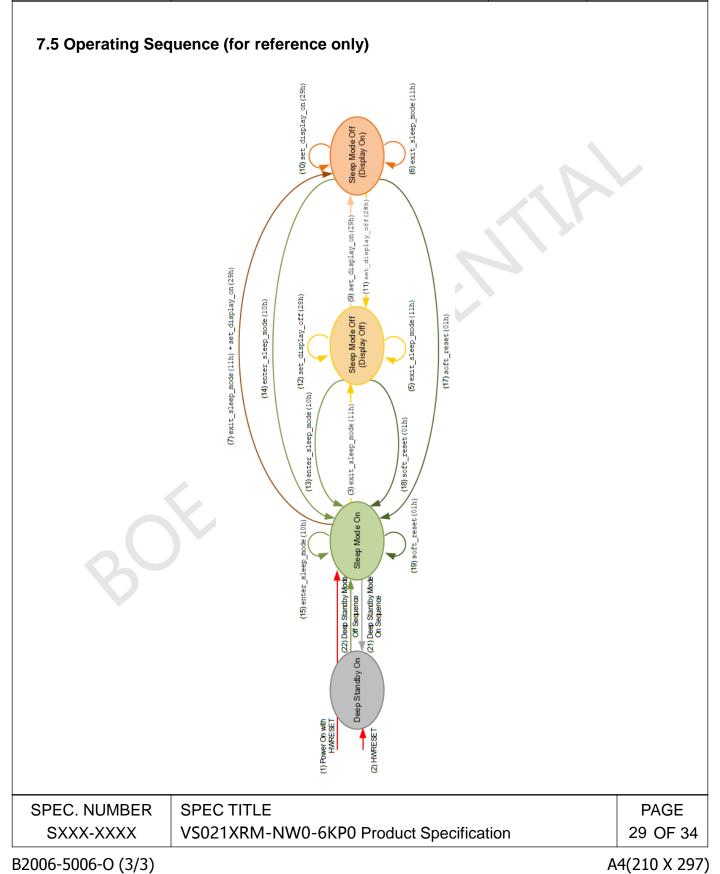
B2006-5006-O (3/3)

Switching Clock lane Switching the Clock Lane between Clock Transmission and Low-Power Mode


Timing request between data transmission

SPEC. NUMBER SPEC TITLE F	
	PAGE
SXXX-XXXX VS021XRM-NW0-6KP0 Product Specification 27	27 OF 34

2020.03.03



B2006-5006-O (3/3)

BOE	
-----	--

P1

2020.03.03

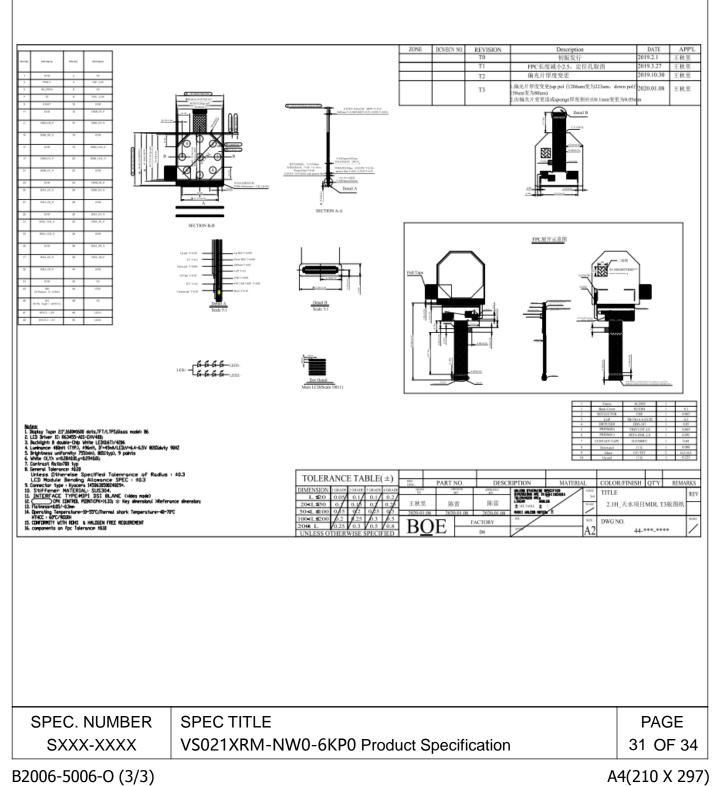
7.6 Initial Code Setting

□ Speed & Porch Setting (for reference only)

	It	tem	Symbol	Min.	Тур.	Max.	Unit
		Frame Rate	-	-	70/90		Hz
On a sit		Line Time	-	-	2.5	-	us
Speed*		Dot CLK	-	-	-	-	MHz
		MIPI Speed	-	-	700	-	Mbps
		Horizontal total time	Htotal	-	1651	-	dot
	Horizontal	Horizontal Active time	Hactive	1600		dot	
		Horizontal Pulse Width	Hsync	-	1	-	dot
		Horizontal Back Porch	НВР	-	20	-	dot
Doroh		Horizontal Front Porch	HFP	-	30	-	dot
Porch		Vertical Total	Vtotal	-	1780	-	line
		Vertical Active	Vactive		1600		line
	Vertical	Vertical Pulse Width	Vsync	-	1	-	line
		Vertical Back Porch	VBP	-	29	-	line
		Vertical Front Porch	VFP	-	150	-	line
		Lane		-	4	8	Lane

* The Driver IC supports VESA DSC V1.0 and V1.1 Data compression Decoder.

□ Display Scan Direction


·				_		
	Dat	a Direction	36h		P H Active Area	HFP
正向 扫描			00h	V Active Area	Active Area	
反向 扫描		Driver 10	c0h			
SPEC. NL	JMBER	SPEC TITLE				PAGE
SXXX-X	XXXX	VS021XRM-N	W0-6KP0 P	roduct Specificati	on	30 OF 34
006 5006	0 (2 (2)	1				

B2006-5006-O (3/3)

Β	Ο	Ε

P1

8.0 MECHANICAL CHARACTERISTICS

P1

2020.03.03

9.0 RELIABILITY TEST

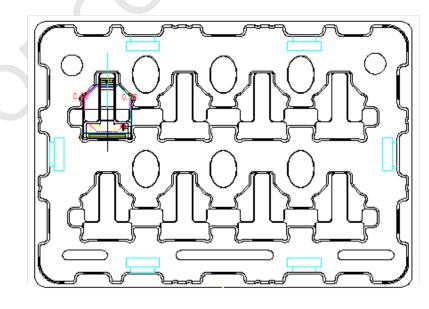
The Reliability test items and its conditions are shown in below.

<table 7.="" reliability<="" th=""><th>y Test Conditions></th></table>	y Test Conditions>
---	--------------------

No.	Test Items	Conditions	
1	High temperature storage	Ta = 70 °C, 48 hrs	
2	Low temperature storage	Ta = -30°C, 48 hrs	
3	High temperature & high humidity operation test	Ta = 60 °C, 90%RH, 48hrs	
4	High temperature operation	Ta = 55 °C, 48 hrs	
5	Low temperature operation	Ta = -10 °C, 48 hrs	

Remark : The Reliability test items can only be applied to the BLU 20% on duty Mode

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	32 OF 34


B2006-5006-O (3/3)

P1

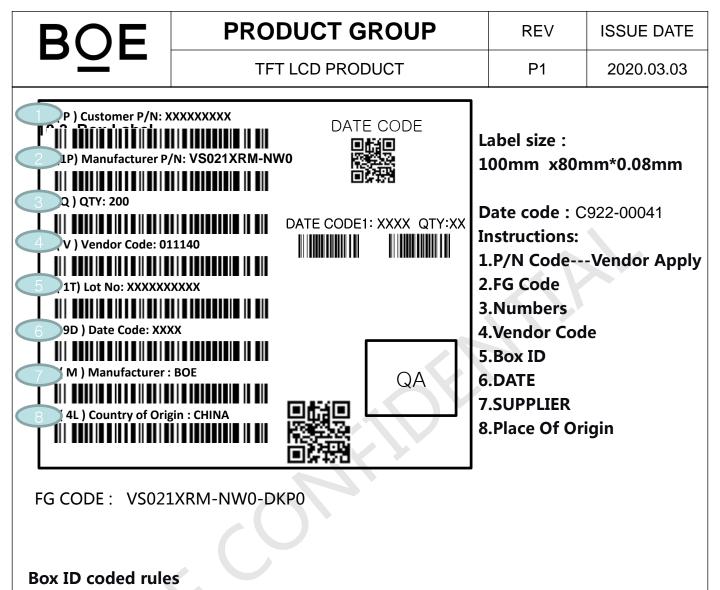
10.0 PACKING INFORMATION

10.1 Packing Description

No.	Description	Quantity	Size (mm)
1	LCM per Box	200pcs	
2	LCM per Tray	8pcs	
3	PET Tray	26ea (1ea empty)	320mm ×225mm×16mm
4	Antistatic Bag	1ea	650×550×0.08mm
5	PE Bag	1ea	480(L)×380(W)
6	inner box	1ea	375×280×290mm
7	Out Box	1ea	545(L)×380(W)×270(H)
8	Distribution label		

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	33 OF 34

B2006-5006-O (3/3)


P1

2020.03.03

10.2 Packing Procedure

Put 8pcs LCM into the PET tray;	Stack the Trays with LCMs in 25 layers, then cover 1 empty tray on the top; 200pcs LCM /25Tray	Put the 26 layers of Tray electrostatic shielding ba	
	8 7 6 5 4 3 1 1 1		
Step 1	Step 2		Step 3
Put the Pet bag into the inner box	Put the inner box into the Out Box	Seal the outer box and r lable on the surface of o 84pcs LCMs/Box	
Step 4	Step 5		Step 6
The 8 cartons are stacked in one layer.They will be stacked in 4 layers			
PEC. NUMBER SPEC TIT SXXX-XXXX VSO219XRI	LE M-NW0-6KP0 Product Specifi	cation	PAGE 34 OF 3

B2006-5006-O (3/3)

serial	1	2	3	4	5	6	7	8	9	10	11	12	13
code	Х	Х	S	3	1	5	В	0	0	0	1	Н	D
Des.	GBN	Code	grad e	B3	Υe	ear	Mon.	Rev	Serial no.(36 decimal, without I,O)			I,O)	

Year: 2015—15, 2016—16 Month: 1~12→ 1~9, A, B, C

SPEC. NUMBER	SPEC TITLE	PAGE
SXXX-XXXX	VS021XRM-NW0-6KP0 Product Specification	35 OF 34

B2006-5006-O (3/3)