

DM-OLEDC13-621P 1.27" 128x96 RGB Color OLED DISPLAY PANEL - SPI, MCU

Contents

- 1 Revision History
- 2 Main Features
- 3 Pin Description
 - 3.1 Panel Pin Description
- 4 Mechanical Drawing
- 5 Electrical Characteristics
- 6 Optical Characteristics
- 7 Timing Characteristics
 - 7.1 Serial Interface Timing Characteristics: (4-wire SPI)
 - 7.2 Serial Interface Timing Characteristics: (3-wire SPI)
 - 7.3 68XX-Seriel MPU Parallel Interface Timing Characteristics
 - 7.4 80XX-Seriel MPU Parallel Interface Timing Characteristics
- 8 Functional Specification
 - 8.1 Power down and Power up Sequence
 - 8.1.1 Power up Sequence
 - 8.1.2 Power down Sequence
 - 8.2 Reset Circuit
- 9 Actual Application Example
- 10 Reliability
- Warranty and Conditions

1 Revision History

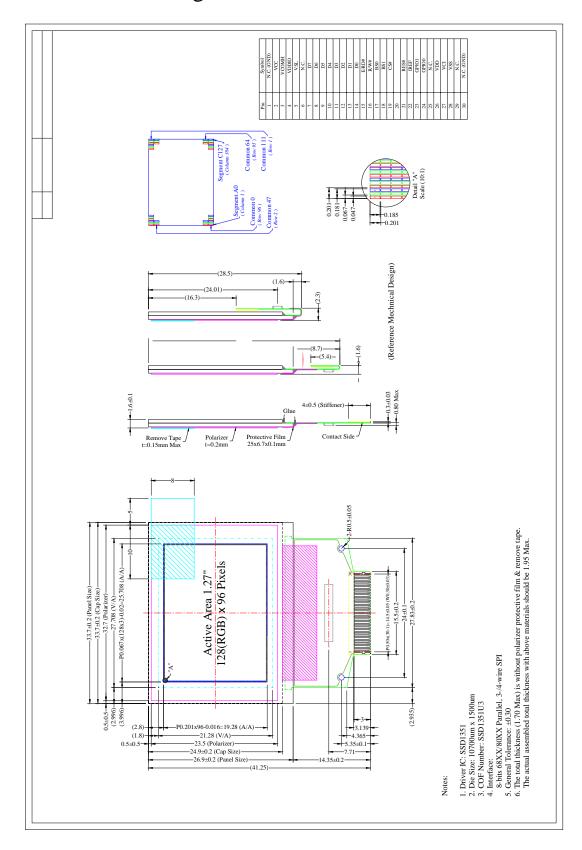
Date	Changes
2015-03-13	First release
2018-05-29	Mainboard update to new version ,Interface change to SPI

2 Main Features

Item	Specification	Unit
Diagonal Size	1.27	inch
Display Mode	Passive Matrix OLED	-
Display Colors	262,144	Colors
Resolution	128(RGB) x 96	pixel
Controller IC	SSD1351	-
Duty	1/96	duty
Interface	3/4 wire SPI, 8 bit 68XX/80XX	-
Power Supply	2.8V	V
Active Area	25.708 x 19.28	mm
Module Dimension	33.7 x 26.9	mm
Weight	2.92	g

3 Pin Description

3.1 Panel Pin Description


Pin No.	Symbol	Function Description				
	Ţ	Reserved Pin (Supporting Pi	in)			
1	NC(GND)	The supporting pins can red		m stresses on the		
	, , ,	function pins. These pins mu				
		Power Supply for OEL Pane		8		
2	VCC	This is the most positive vol		chip.		
_	,	It must be connected to exte		P		
		Voltage Output High Level				
3	VCOMH	This pin is the input pin for		th level for COM signals.		
		A tantalum capacitor should				
		Power Supply for I/O Pin		1		
		This pin is a power supply p	in of I/O buffer. It she	ould be connected to VCI		
4	VDDIO	or external source. All I/O si				
	,	When I/O signal pins (BS0~	•			
		they should be connected to) pui iigii,		
		Voltage Output Low Level f				
		This is segment voltage refe				
5	VSL	When external VSL is not us		e left open.		
		When external VSL is used,				
		diode to ground.	1			
		Reserved Pin				
6	N.C.	The N.C. pins between function pins are reserved for compatible and				
		flexible design.				
		Host Data Input/Output Bus				
		These pins are 8-bit bi-direc	tional data bus to be o	connected to the		
7~14	D7~D0	microprocessor's data bus. When serial mode is selected, D1 will be the				
		serial data input SDIN and I				
		Unused pins must be connect				
		Read/Write Enable or Read				
		This pin is MCU interface in	put. When interfacing	g to a 68XX-series		
		microprocessor, this pin will	l be used as the Enabl	e (E) signal. Read/write		
		operation is initiated when the	his pin is pulled high	and the CS# is pulled		
15	E/RD#	low.				
		When connecting to an 80X				
		(RD#) signal. Data read ope	ration is initiated whe	n this pin is pulled low		
		and CS# is pulled low.				
		When serial mode is selected	d, this pin must be con	nnected to VSS.		
		Read/Write Select or Write		60777		
		This pin is MCU interface in		_		
		microprocessor, this pin will				
1.0	D/MIII	input. Pull this pin to "High"	for read mode and p	ull it to "Low" for write		
16	R/W#	mode.	in animated district			
		When 80XX interface mode is selected, this pin will be the Write (WR#)				
		input. Data write operation is initiated when this pin is pulled low and the				
		CS# is pulled low. When serial mode is selected, this pin must be connected to VSS.				
				meeted to vss.		
		Communicating Protocol Se		the following table:		
17	BS1	These pins are MCU interface	•			
18	BS0	2 wire CDI	BS0	BS1		
		3-wire SPI	1	0		
		4-wire SPI	0	0		

		68XX-parallel (8-bit)	1	1		
		80XX-parallel (8-bit)	0	1		
19	CS#	Chip Select This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low.				
20	D/C#	Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the input at D7~D0 is treated as display data. When the pin is pulled low, the input at D7~D0 will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams. When 3-wire serial mode is selected, this pin must be connected to VSS.				
21	RES#	Power Reset for Controller a This pin is reset signal input. is executed.		, initialization of the chip		
22	IREF	Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current lower than 12.5uA.				
23 24	GPIO0 GPIO1	General Purpose Input/Output These pins could be left open inputted/outputted. They are circuit enabled/disabled cont	n individually or have able to use as the ext	ernal DC/DC converter		
25	N.C.	Reserved Pin The N.C. pins between funct flexible design.	ion pins are reserved	for compatible and		
26	VDD	Power Supply for Core Logi This is a voltage supply pin v capacitor should be connected circumstances.	which is regulated int			
27	VCI	Power Supply for Operation This is a voltage supply pin. always be equal to or higher				
28	VSS	Ground of OEL System This is a ground pin. It also a driving voltages, and the ana ground.				
29	N.C.	Reserved Pin The N.C. pins between funct flexible design.	tion pins are reserved	for compatible and		
30	N.C.(GND)	Reserved Pin (Supporting Pi The supporting pins can redu function pins. These pins mu	ace the influences from			

4 Mechanical Drawing

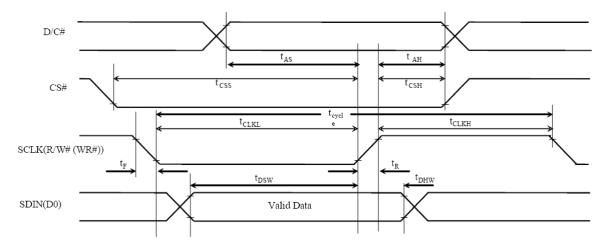
5 Electrical Characteristics

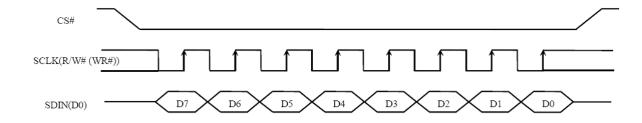
Item	Symbol	Condition	Min	Тур.	Max	Unit
Supply Voltage for Operation	Vci		2.4	3.3	3.5	V
Supply Voltage for Logic	V_{DD}		2.4	2.5	2.6	V
Supply Voltage for I/O pins	V _{DDIO}		1.65	1.8	Vci	V
Supply Voltage for Display	VCC	Note1	11.5	12	12.5	V
Operation Current for VCI	Ici		-	240	300	mA
Low Level Input Voltage	$V_{\rm IL}$		0	-	$0.2xV_{DDIO}$	V
High Level Input Voltage	V_{IH}		$0.8 \mathrm{xV}_\mathrm{DD}$	-	$V_{ m DDIO}$	V
Low Level Output Voltage	V_{OL}		0		$0.1 \text{xV}_{\text{DDIO}}$	V
High Level Output Voltage	V _{OH}		$0.9 \text{xV}_{\text{DDIO}}$		V_{DDIO}	V
Operating Temperature	TOP	Absolute Max	-30		70	$^{\circ}$
Storage Temperature	TST	Absolute Max	-40		80	$^{\circ}$ C

Note1 :Brightness (Lbr) and Supply Voltage for Display (VCC) are subject to the change of the panel characteristics and the customer's request.

6 Optical Characteristics

Item	Symbol	Min	Тур	Max	Unit
View Angles Top	AV		80		0
View Angles Bottom	AV		80		0
View Angles Left	AH		80		0
View Angles Right	AH		80		0
Response Time (25 ℃)	Tr + Tf		20		us
Brightness		80	100		cd/m ²
Contrast Ratio	CR		2,000:1		
Lifetime		10,000			Hrs

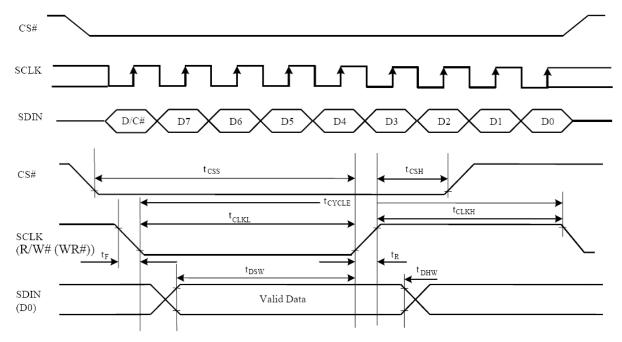



7 Timing Characteristics

7.1 Serial Interface Timing Characteristics: (4-wire SPI)

Symbol	Item	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	50	-	-	ns
t _{AS}	Address Setup Time	15			ns
t_{AH}	Address Hold Time	15	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	15	-		ns
t_{CLKL}	Clock Low Time	20	-		ns
t_{CLKH}	Clock High Time	20			ns
t_R	Rise Time	-		15	ns
t_{F}	Fall Time	-		15	ns

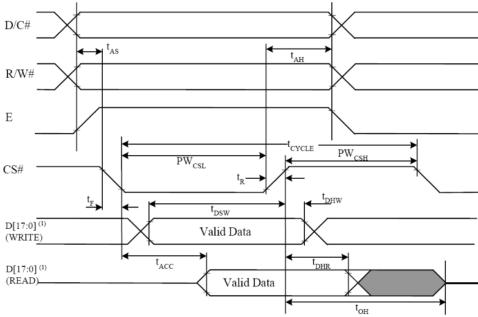
V_{DD}-V_{SS} =2.4V to 2.6V, V_{DDIO}=1.65V, V_{CI}=2.8V, Ta=25 °C



7.2 Serial Interface Timing Characteristics: (3-wire SPI)

Symbol	Item	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	50	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-		ns
t_{CLKL}	Clock Low Time	20	-		ns
t_{CLKH}	Clock High Time	20			ns
t_R	Rise Time	-		15	ns
t_{F}	Fall Time	=		15	ns

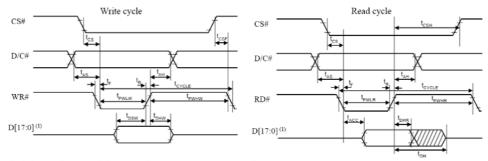
 \overline{V}_{DD} - V_{SS} =2.4V to 2.6V, V_{DDIO} =1.65V, V_{CI} =2.8V, Ta=25 °C



7.3 68XX-Seriel MPU Parallel Interface Timing Characteristics

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t _{AS}	Address Setup Time	10	-	ns
t _{AH}	Address Hold Time	0	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	_	70	ns
t _{ACC}	Access Time	_	140	ns
DW	Chip Select Low Pulse Width (Read)	120		***
PW_{CSL}	Chip Select Low Pulse Width (Write)	60	_	ns
DW	Chip Select High Pulse Width (Read)	60		***
PW_{CSH}	Chip Select High Pulse Width (Write)	60	_	ns
t	Rise Time	_	15	ns
t _F	Fall Time	_	15	ns

^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.65V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$



7.4 80XX-Seriel MPU Parallel Interface Timing Characteristics

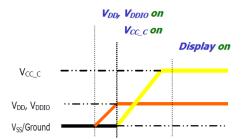
Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t_{AS}	Address Setup Time	10	-	ns
t_{AH}	Address Hold Time	0	_	ns
t _{DSW}	Write Data Setup Time	40	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	_	70	ns
t_{ACC}	Access Time	_	140	ns
t_{PWLR}	Read Low Time	150	-	ns
t _{PWLW}	Write Low Time	60	_	ns
t _{PWHR}	Read High Time	60	-	ns
t _{PWHW}	Write High Time	60	-	ns
t_{CS}	Chip Select Setup Time	0	_	ns
CSH	Chip Select Hold Time to Read Signal	0	_	ns
t_{CSF}	Chip Select Hold Time	20	-	ns
t _R	Rise Time	_	15	ns
t_{F}	Fall Time	_	15	ns

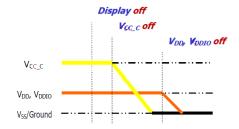
^{*} $(V_{DD} - V_{SS} = 2.4 \text{V to } 2.6 \text{V}, V_{DDIO} = 1.65 \text{V}, V_{CI} = 2.8 \text{V}, T_a = 25 ^{\circ}\text{C})$

* (1) When 8-bit Used: D[7:0] Instead

8 Functional Specification

8.1 Power down and Power up Sequence

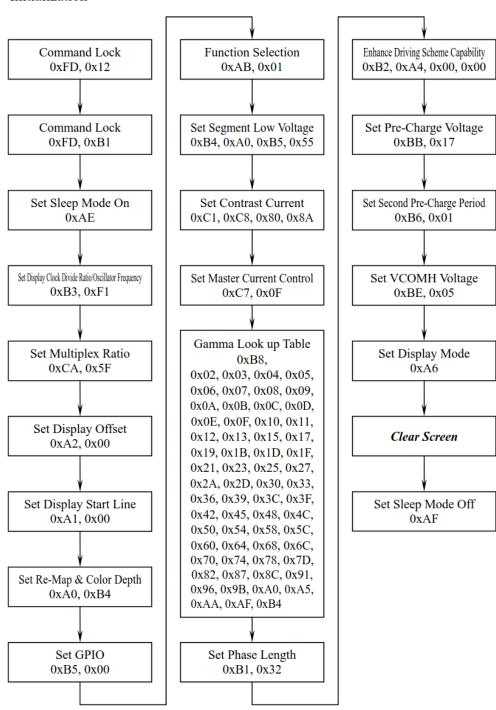

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.


8.1.1 Power up Sequence

- 1. Power up $V_{DD} \& V_{DDIO}$
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up V_{CC}
- 6. Delay 100ms(When V_{CC} is stable)
- 7. Send Display on command

- 1. Send Display off command
- 2. Power down V_{CC}
- 3. Delay 100ms (When V_{CC} is reach 0 and panel is completely discharges)
- 4. Power down V_{DD} &V_{DDIO}

8.2 Reset Circuit


When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128(RGB) x 128 Display Mode
- 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Command A2h, B1h, B3h, BBh, BEh are locked by command FDh

9 Actual Application Example

<Initialization>

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

10 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high storage	80°C	2
	temperature for a long time.	200hrs	2
Low Temperature Storage	Endurance test applying the high storage	-40°C	1,2
	temperature for a long time.	200hrs	1,2
High Temperature	Endurance test applying the electric stress	70°C	
Operation	(Voltage & Current) and the thermal stress	200hrs	-
	to the element for a long time.		
Low Temperature	Endurance test applying the electric stress	-30 °C	1
Operation	under low temperature for a long time.	200hrs	1
High Temperature/	The module should be allowed to stand at	60°C,90%RH	
Humidity Operation	60°C,90%RH max, for 96hrs under no-load	96hrs	
	condition excluding the polarizer. Then		1,2
	taking it out and drying it at normal		
	temperature.		
Thermal Shock Resistance	The sample should be allowed stand the	-30°C/70°C	
	following 10 cycles of operation	10 cycles	
	-30°C 25°C 70°C√		
			-
	30min 5min 30min⊌		
	1 cycle₽		
Vibration Test	Endurance test applying the vibration during	Total fixed	
	transportation and using	amplitude:	
		15mm; Vibration:	
		10~55Hz;	
		One cycle 60	3
		seconds to 3	
		directions of X,	
		Y, Z, for each 16	
		minutes.	
Static Electricity Test	Endurance test apply the electric stress to	VS=800V,	
	the terminal.	RS=1.5k Ω ,	
		CS=100pF,	_
		1 time.	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

Note3: Test performed on product itself, not inside a container.

11 Warranty and Conditions

http://www.displaymodule.com/pages/faq HYPERLINK

"http://www.displaymodule.com/pages/faq"