

DM-OLED32-648 Monochrome Graphic OLED Display Panel-SPI,MCU

Contents

- 1 Revision History
- 2 Main Features
- 3 Pin Description
- 4 Mechanical Drawing
- 5 Absolute Maximum Ratings
- 6 Electrical Characteristics
- 7 MCU Interface
 - 7.1 MCU Parallel 6800-series Interface
 - 7.2 MCU Parallel 8080-series Interface
 - 7.3 MCU Serial Interface (4-wire SPI)
 - 7.4 MCU Serial Interface (3-wire SPI)
- 8 Block Diagram
- 9 Application Reference
- 10 Initialization flow
- 11 Example Initialization Code
- 12 Reliability
- 13 Warranty and Conditions

1 Revision History

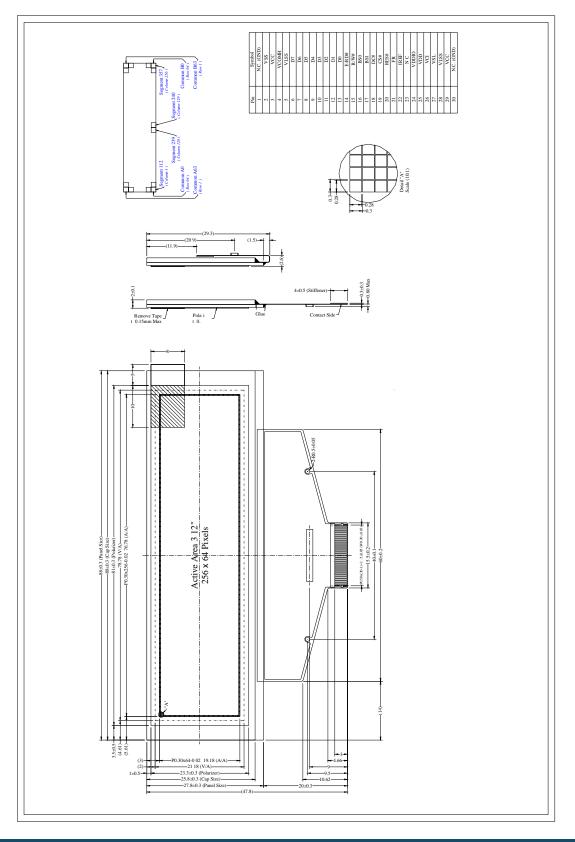
	<u> </u>
2019-05-31 First release	

2 Main Features

Item	Specification	Unit
Diagonal Size	3.2	inch
Display Mode	OLED	-
Display Colors	Monochrome White/Yellow/Blue/Green	
Resolution	256 x 64	pixel
Controller IC	SSD1322	-
Duty	1/64	
Interface	8-Bit 6800/8080 Parallel 3/4-Wire Serial SPI	
Power Supply	3.3V/5V	V
Viewing Area	78.78 x 21.18	mm
Weight	9.95	g

3 Pin Description

Pin No.	Symbol	Function Description
		Reserved Pin(Supporting Pin)
1	N.C(GND)	The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground.
		Ground of Logic Circuit
2	VSS	This is a ground pin. It also acts as a reference for the logic pins. It must be connected to external ground.
		Power supply for OEL Panel
3	VCC	These are the most positive voltage supply pin of the chip. They must be connected to external source.
		Voltage Output High Level for COM Signal
4	VCOMH	This pin is the input pin for the voltage output high level for COM signals. A tantalum capacitor should be connected between this pin and VSS.
		Ground of Analog Circuit
5	VLSS	These are the analog ground pins. They should be connected to VSS externally.
		Host Data Input/ Output Bus
6-13	D7-D0	These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK.
		Unused pins must be connected to VSS except for D2 in serial mode.
		Read/Write Enable or Read
14	E/RD#	This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the CS# is pulled low. When connecting to an 80XX-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled low and CS# is pulled low. When serial mode is selected, this pin must be connected to VSS.
		Read/Write Select or Write
15	R/W#	This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Pull this pin to "High" for read mode and pull it to "Low" for write mode. When 80XX interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled low and the CS# is pulled low. When serial mode is selected, this pin must


		be connected to VSS.					
		Communicating Protocol Select					
	BS0	These pin are MCU interface selection input. See the following table:					
16-17	BS1	3-wire SPI 4-wire SPI 8-bit 68XX Parallel 8-bit 80XX Parallel	BS0 1 0 1 0	BS1 0 0 1 1 1			
18	D/C#	Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the input at D7~D0 is treated as display data. When the pin is pulled low, the input at D7~D0 will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams.					
19	CS#	Chip Select This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low.					
20	RES#	Power Reset for Controller and Driver This pin is reset signal input. When the pin is low, initialization of the chip is executed.					
21	FR	Cascade Application Connection Pin This pin is No Connection pins. Nothing should be connected to this pin. It should be left open individually					
22	IREF	Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current lower than 10uA					
23	N.C	Reserved Pin No connection					
24	VDDIO	Power Supply for I/O Pin This pin is a power supply pin of I/O buffer. It should be connected to VDD or external source. All I/O signal should have VIH reference to VDDIO. When I/O signal pins (BS0~BS1, D0~D7, control signals…) pull high, they should be connected to VDDIO.					
25	VDD	Power Supply for Core Logic CircuitThis is a voltage supply pin. It can be supplied externally (within the range of 2.4~2.6V) or regulated internally from VCI. A capacitor should be connected between this pin & VSS under all circumstances.					
	VCI	Power Supply for Operation					

		This is a voltage supply pin. It must be connected to external source & always be equal to or higher than VDD & VDDIO.
27	VSL	Voltage Output Low Level for SEG Signal This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, this pin should connect with resistor and diode to ground.
28	VLSS	Ground of Analog Circuit These are the analog ground pins. They should be connected to VSS externally.
29	VCC	Power supply for OEL Panel These are the most positive voltage supply pin of the chip. They must be connected to external source.
30	N.C(GND)	Reserved Pin(Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground.

4 Mechanical Drawing

Copyright © 2019

5 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage for Operation	Vci	-0.3	4	V	1,2
Supply Voltage for Logic	Vdd	-0.5	2.75	V	1,2
Supply Voltage for I/O Pins	Vddio	-0.5	Vci	V	1,2
Supply Voltage for Display	Vcc	-0.5	16	V	1,2
Operating Current for Vcc	Icc	-	55	mA	1,2
Operating Temperature	Тор	-30	85	°C	
Storage Temperature	Tstg	-40	90	°C	

Note1:All above voltage are on the basis of "VSS=0V".

Note2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to the "Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

6 Electrical Characteristics

6.1 DC Characteristics

Item	Symbol	Condition	Min	Тур.	Max	Unit
Supply Voltage for Operation	Vci		2.4	2.8	3.5	V
Supply Voltage for Logic	V_{DD}		2.4	2.5	2.6	V
Supply Voltage for I/O Pins	Vddio		1.65	1.8	VCI	V
Supply Voltage for Display	Vcc	Note1	11.5	12.0	12.5	V
Low Level Input Voltage	V _{IL}		0	-	0.2 Vddio	V
High Level Input Voltage	V _{IH}		0.8 Vddio	-	Vddio	V
Low Level Output Voltage	V _{OL}	Iout=100uA,	0		0.1 Vddio	V
		3.3MHz				
High Level Output Voltage	V _{OH}	Iout=100uA,	0.9 Vddio		Vddio	V
		3.3MHz				
Operating Current for VCI	Ісі	Note2	-	1.8	2.25	mA
		Note3		1.8	2.25	mA
Operating Current for Vcc	Icc	Note2	-	25.5	31.9	mA
		Note3		40.1	51.1	mA
Sleep Mode Current for VCI	ICI,SLEEP		-	1	5	uA
Sleep Mode Current for Vcc	ICC,SLEEP		-	1	5	uA

Note1 : Brightness (Lbr) and Supply Voltage for Display (Vcc) are subject to the change of the panel characteristics and the customer's request.

Note2: $V_{CI} = 2.8V$, $V_{CC} = 12V$, 50% Display Area Turn on.

Note3: $V_{CI} = 2.8V$, $V_{CC} = 12V$, 100% Display Area Turn on.

6.2 Optical Characteristics

Item	Symbol	Min	Тур	Max	Unit
View Angles Left			80		0
View Angles Right			80		0
View Angles Top			80		0
View Angles Bottom			80		0
C.I.E(Yellow)	(x)	Without	0.44	0.48	0.52
	(y)	Polarizer	0.46	0.50	0.54
Contrast Ratio	CR		>2000:1		
Brightness	L _{br}	60	80		cd/m ²

Note: Optical measurement taken at $V_{CI} = 2.8V$, $V_{CC} = 12V$

7 MCU Interface

MCU interface assignment under different bus interface mode

Bus Interface	Data/Command Interface			Control Signal					
	D7 D6 D5 D4 D3	3 D2	D1	D0	E	R/W#	CS#	D/C#	RES#
8-bit 8080	D[7:0]			RD#	WR#	CS#	D/C#	RES#
8-bit 6800	D[7:0]			Е	R/W#	CS#	D/C#	RES#
3-wire SPI	Tie LOW	NC	SDIN	SCLK	Tie LO	OW	CS#	Tie LOW	RES#
4-wire SPI	Tie LOW	NC	SDIN	SCLK	TieLO	W	CS#	D/C#	RES#

7.1 MCU Parallel 6800-series Interface

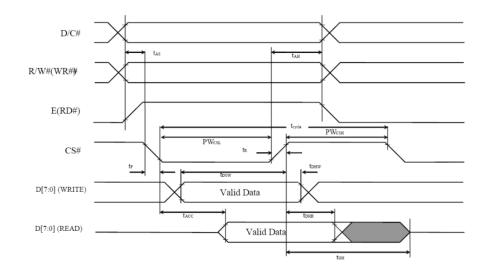
The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.

The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Function	Е	R/W#	CS#	D/C#
Write command	\downarrow	L	L	L
Read status	\downarrow	Н	L	L
Write data	\downarrow	L	L	Н
Read data	\downarrow	Н	L	Н


Note: ↓stands for falling edge of signal

H stands for HIGH in signal

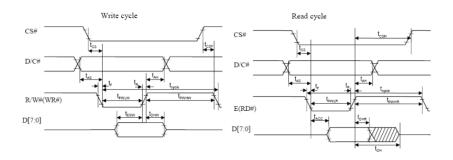
L stands for LOW in signal

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t _{AS}	Address Setup Time	10	-	ns
t _{AH}	Address Hold Time	0	-	ns
t _{DSW}	Write Data Setup Time	40	-	ns
t _{DHW}	Write Data Hold Time	7	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	-	70	ns
t _{ACC}	Access Time	-	140	ns
DW	Chip Select Low Pulse Width (Read)	120		
PW _{CSL}	Chip Select Low Pulse Width (Write)	60	-	ns
DW	Chip Select High Pulse Width (Read)	60		
PW _{CSH}	Chip Select High Pulse Width (Write)	60	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time		15	ns

7.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW.


A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Function	RD#	WR#	CS#	D/C#
Write command	Н	↑	L	L
Read status	↑	Н	L	L
Write data	Н	↑	L	Н
Read data	\uparrow	Н	L	Н

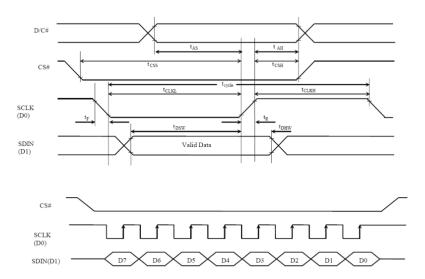
Note: ↑ stands for rising edge of signal

L stands for LOW in signal

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t _{AS}	Address Setup Time	10	-	ns
t _{AH}	Address Hold Time	0	-	ns
t _{DSW}	Write Data Setup Time	40	-	ns
t _{DHW}	Write Data Hold Time	7	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	-	70	ns
t _{ACC}	Access Time	-	140	ns
t _{PWLR}	Read Low Time	150	-	ns
t _{PWLW}	Write Low Time	60	-	ns
t _{PWHR}	Read High Time	60	-	ns
t _{PWHW}	Write High Time	60	-	ns
t _{CS}	Chip Select Setup Time	0	-	ns
t _{CSH}	Chip Select Hold Time to Read Signal	0	-	ns
t _{CSF}	Chip Select Hold Time	20	-	ns
t _R	Rise Time		15	ns
t _F	Fall Time	-	15	ns

H stands for HIGH in signal

7.3 MCU Serial Interface (4-wire SPI)

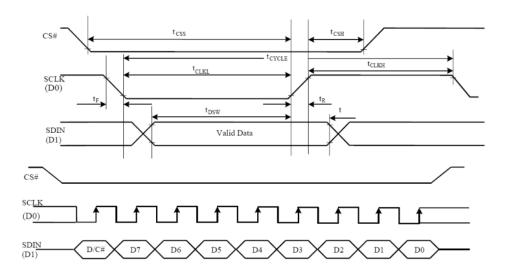

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground.

Function	E(RD#)	R/W#(WR#)	CS#	DC#	D0#
Write command	Tie LOW	Tie LOW	L	L	\uparrow
Write data	Tie LOW	Tie LOW	L	Н	↑

Note: H stands for HIGH in signal

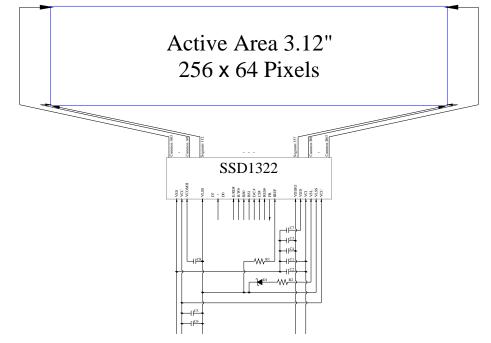
L stands for LOW in signal

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	ns
t _{AS}	Address Setup Time	15	-	ns
t _{AH}	Address Hold Time	15	-	ns
t _{CSS}	Chip Select Setup Time	20	-	ns
t _{CSH}	Chip Select Hold Time	10	-	ns
t _{DSW}	Write Data Setup Time	15	-	ns
t _{DHW}	Write Data Hold Time	15	-	ns
t _{CLKL}	Clock Low Time	20	-	ns
t _{CLKH}	Clock High Time	20	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns


7.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground.

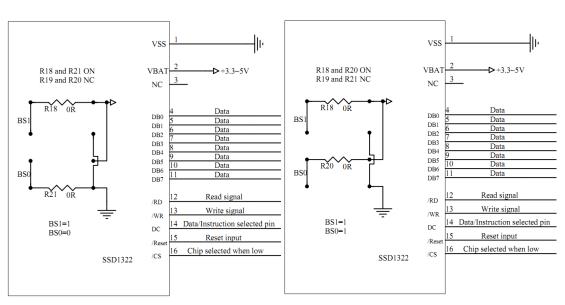
	Function	E(RD#)	R/W#(WR#)	CS#	D/C#	D0
	Write command	Tie LOW	Tie LOW	L	Tie LOW	\uparrow
	Write data	Tie LOW	Tie LOW	L	Tie LOW	\uparrow
Note: Letende for LOW in signal						


Note: L stands for LOW in signal

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	ns
t _{AS}	Address Setup Time	15	-	ns
t _{AH}	Address Hold Time	15	-	ns
t _{CSS}	Chip Select Setup Time	20	-	ns
t _{CSH}	Chip Select Hold Time	10	-	ns
t _{DSW}	Write Data Setup Time	15	-	ns
t _{DHW}	Write Data Hold Time	15	-	ns
t _{CLKL}	Clock Low Time	20	-	ns
t _{CLKH}	Clock High Time	20	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

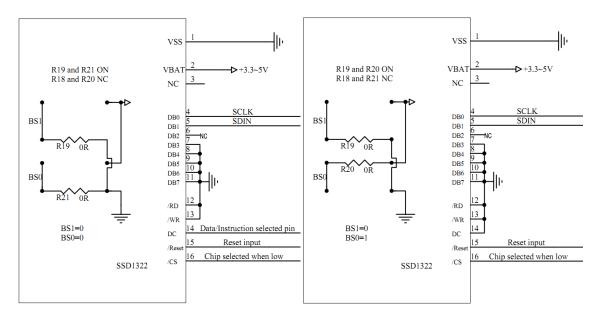
8 Block Diagram

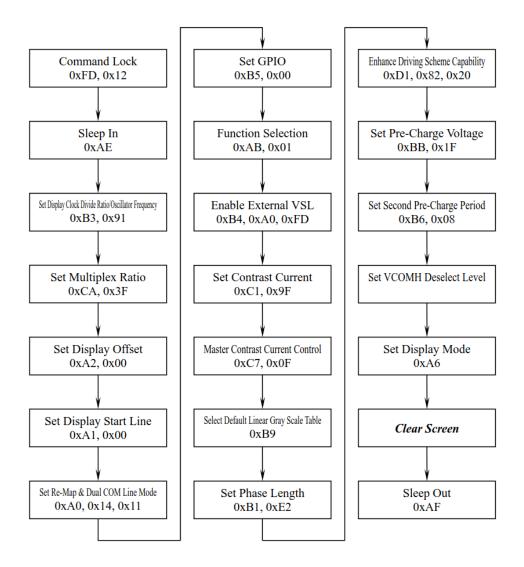
MCU Interface Selection: BS0 and BS1 Pins connected to MCU interface: D7~D0, E/RD#, R/W#, D/C#, CS#, and RES#


C1, C3, C5: 0.1µF

- C2, C4: 4.7µF
- C6: 10µF
- C7: 1μF
- C8: 4.7uF / 25V Tantalum Capacitor
- R1: $680k\Omega$, R1 = (Voltage at IREF VSS) / IREF
- R2: 50Ω, 1/4W
- D1: ≤1.4V, 0.5W

9 Application Reference


The Parallel (8080 Series MCU)Reference Example


The Parallel (6800 Series MCU)Reference Example

The Serial 3 Line SPI Reference Example

10 Initialization flow

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

11 Example Initialization Code

void Write_Data(unsigned char dat) RS=1; CS=0; _RW=0; DATA_BUS=dat; Delayms(2); _RW=1; CS=1;} void Write_Instruction(unsigned char cmd) { RS=0; CS=0; _RW=0; DATA_BUS=cmd; Delayms(2); RW=1; CS=1;} void LCD_initialize(void) { RES=1; Delayms(200); RES=0; Delayms(200); RES=1; Delayms(200); /*SET COMMAND LOCK */ Write_Instruction(0xFD); Write_Data(0x12); /* UNLOCK */ /*DISPLAY OFF*/ Write_Instruction(0xAE); Write_Instruction(0xB3); /*DISPLAYDIVIDE CLOCKRADIO/OSCILLATAR FREQUANCY*/ Write_Data(0x91); Write_Instruction(0xCA); /*multiplex ratio*/ Write_Data(0x3F); /*duty = 1/64*/ Write_Instruction(0xA2); /*set offset*/ Write_Data(0x00); Write_Instruction(0xA1); /*start line*/ Write_Data(0x00); Write_Instruction(0xA0); /*set remap*/ Write_Data(0x14); Write_Data(0x11); Write_Instruction(0xAB); /*funtion selection*/ Write_Data(0x01); /* selection external vdd */ Write_Instruction(0xB4); Write_Data(0xA0); Write_Data(0xFD); Write_Instruction(0xC1); /*set contrast current */ Write_Data(Contrast_level); Write_Instruction(0xC7); /*master contrast current control*/ Write_Data(0x0F); Wriite_Instruction(0xB1); /*SET PHASE LENGTH*/ Write_Data(0xE2); Write_Instruction(0xD1); Write_Data(0x82); Write_Data(0x20); Write_Instruction(0xBB); /*SET PRE-CHANGE VOLTAGE*/ Write_Data(0x1F); Write_Instruction(0xB6); /*SET SECOND PRE-CHARGE PERIOD*/ Write_Data(0x08); Write_Instruction(0xBE); /* SET VCOMH */ Write_Data(0x07); Write_Instruction(0xA6); /*normal display*/ Clear_ram(); Write_Instruction(0xAF); /*display ON*/

}

12 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high storage	80°C	2
	temperature for a long time.	200hrs	2
Low Temperature Storage	Endurance test applying the high storage	-30°C	1,2
	temperature for a long time.	200hrs	1,2
High Temperature	Endurance test applying the electric stress	70°C	
Operation	(Voltage & Current) and the thermal	200hrs	-
	stress to the element for a long time.		
Low Temperature	Endurance test applying the electric stress	-20 °C	1
Operation	under low temperature for a long time.	200hrs	1
High Temperature/	The module should be allowed to stand at	60°C,90%RH	
Humidity Operation	60°C,90%RH max, for 96hrs under no-	96hrs	
	load condition excluding the polarizer.		1,2
	Then taking it out and drying it at normal		
	temperature.		
Thermal Shock Resistance	The sample should be allowed stand the	-30°C/85°C	
	following 10 cycles of operation	10 cycles	
	-30°C 25°C 85°C₊/		
			-
	30min 5min 30min		
	1 cycle		
Vibration Test	Endurance test applying the vibration	Total fixed	
violation rest	during transportation and using	amplitude: 15mm;	
	during transportation and using	Vibration:	
		10~55Hz;	
		One cycle 60	3
		seconds to 3	5
		directions of X, Y,	
		Z, for each 16	
		minutes.	
Static Electricity Test	Endurance test apply the electric stress to	VS=800V,	
Suite Dicetiony Test			
			-
Static Electricity Test	the terminal.	VS=800V, RS=1.5k Ω , CS=100pF, 1 time.	-

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

Note3: The packing have to including into the vibration testing.

13 Warranty and Conditions

http://www.displaymodule.com/pages/faq