

DM-OLED28-643

2.8" 256 × 64 MONOCHROME GRAPHIC OLED DISPLAY MOUDULE - SPI

Contents

- 1 Revision History
- 2 Main Features
- 3 Pin Description
 - 3.1 Panel Pin Description
 - 3.2 Module Pin Description
- 4 Mechanical Drawing
 - 4.1 Panel Mechanical Drawing
 - 4.2 Module Mechanical Drawing
- 5 Optics & Electrical Characteristics
 - 5.1 Optical Characteristics
 - 5.2 Absolute Maximum Ratings
 - 5.3 DC Characteristics
 - 5.4 AC Characteristics
 - 5.4.1 6800-Series MCU Parallel Interface Timing Characteristics:
 - 5.4.2 8080-Series MCU Parallel Interface Timing Characteristics:
 - 5.4.3 4-wire Serial Interface Timing Characteristics: (default)
 - 5.4.4 3-wire Serial Interface Timing Characteristics:

6 Functional Specification

- 6.1 Commands
- 6.2 Power down and Power up Sequence
 - 6.2.1 Power up Sequence:
 - 6.2.2 Power down Sequence:
- 6.3 Reset Circuit
- 6.4 Application circuit reference
 - 6.4.1 6800-Series MCU Parallel Interface and VCC Supplied Externally
 - 6.4.2 8080-Series MCU Parallel Interface and VCC Supplied Externally
 - 6.4.3 4wire SPI and VCC Supplied Externally
 - 6.4.4 3wire SPI and VCC Supplied Externally

- 7 Power ON/OFF Timing Sequence
- 8 Module Schematic
- 9 Reliability
- 10 Warranty and Conditions

1 Revision History

Date	Changes
2019-05-29	First release

2 Main Features

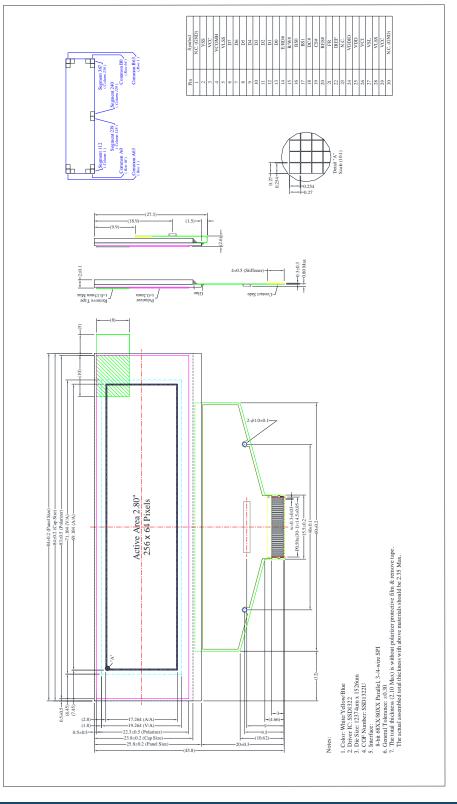
Item	Specification	Unit
Diagonal Size	2.8	inch
Display Mode	Passive Matrix OLED	-
Display Colors	Monochrome (16 Gray Scale)	Colors
Resolution	256 x 64	pixel
Controller IC	SSD1322	-
Interface	4wire SPI	-
Active Area	69.10 x 17.26	mm
Module Dimension	84.00 x 45.80 x 2.00	mm
Pixel Pitch	0.27 x 0.27	mm
Weight	TBD	g

3 Pin Description

3.1 Panel Pin Description

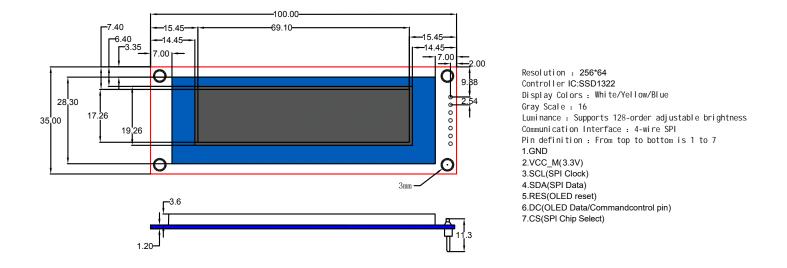
Pin No.	Symbol	Function Description					
1	N.C. (GND)	Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground as the ESD protection circuit.					
2	VSS	Ground of Logic Circuit This is a ground pin. It also acts as a reference for the logic pins. It must be connected to external ground.					
3	VCC	Power Supply for OEL Panel These are the most positive voltage supply pin of the chip. They must be connected to external source.					
4	VCOMH	Voltage Output High Level for COM Signal This pin is the input for the voltage output high level for COM signals. A tantalum capacitor should be connected between this pin and VSS.					
5	VLSS	Ground of Analog Circuit These are the analog ground pins. They should be connected to V_{SS} externally.					
6-13	D7~D0	Host Data Input/Output Bus These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK. Unused pins must be connected to V_{SS} except for D2 in serial mode.					
14	E/RD#	Read/Write Enable or Read This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the CS# is pulled low. When connecting to an 80XX-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled low and CS# is pulled low.					
15	R/W#	 When serial mode is selected, this pin must be connected to V_{SS}. Read/Write Select or Write This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Pull this pin to "High" for read mode and pull it to "Low" for write mode. When 80XX interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled low and the CS# is pulled low. When serial mode is selected, this pin must be connected to V_{SS}. 					
16	BS0	Communicating Protocol Select These pins are MCU interface selection input. See the following table: BS0 BS1 3-wire Serial 1					
17	BS1	4-wire Serial008-bit 68XX Parallel118-bit 80XX Parallel01					

18	D/C#	Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the input at D7~D0 is treated as display data. When the pin is pulled low, the input at D7~D0 will be transferred to the command register. When the pin is pulled high and serial interface mode is selected, the data at SDIN is treated as data. When it is pulled low, the data at SDIN will be transferred to the command register. When 3-wire serial mode is selected, this pin must be connected to V _{SS} . For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams.
19	CS#	Chip Select This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low.
20	RES#	Power Reset for Controller and Driver This pin is reset signal input. When the pin is low, initialization of the chip is executed. Keep this pin pull high during normal operation.
21	FR	Frame Frequency Triggering Signal This pin will send out a signal that could be used to identify the driver status. Nothing should be connected to this pin. It should be left open individually.
22	IREF	Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and V_{SS} . Set the current at 10µA maximum.
23	N.C.	Reserved Pin The N.C. pin between function pins is reserved for compatible and flexible design.
24	VDDIO	Power Supply for I/O Pin This pin is a power supply pin of I/O buffer. It should be connected to V_{CI} or external source. All I/O signal should have V_{IH} reference to V_{DDIO} . When I/O signal pins (BS0~BS1, D0~D7, control signals) pull high, they should be connected to V_{DDIO} .
25	VDD	Power Supply for Core Logic Circuit This is a voltage supply pin. It can be supplied externally (within the range of $2.4\sim2.6V$) or regulated internally from V _{CI} . A capacitor should be connected between this pin & V _{SS} under all circumstances.
26	VCI	Power Supply for Operation This is a voltage supply pin. It must be connected to external source & always be equal to or higher than V_{DD} & V_{DDIO} .
27	VSL	$\begin{array}{l} \mbox{Voltage Output Low Level for SEG Signal} \\ \mbox{This is segment voltage reference pin.} \\ \mbox{When external V}_{SL} \mbox{ is not used, this pin should be left open.} \\ \mbox{When external V}_{SL} \mbox{ is used, this pin should connect with resistor and diode to ground.} \end{array}$
28	VLSS	Ground of Analog Circuit These are the analog ground pins. They should be connected to $V_{\rm SS}$ externally.
29	VCC	Power Supply for OEL Panel These are the most positive voltage supply pin of the chip. They must be connected to external source.
30	N.C. (GND)	Reserved Pin (Sspporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground as the ESD protection circuit.


3.2 Module Pin Description

Pin No.	Symbol	Function Description
1	GND	Ground
2	VCC_M	Power Supply 3.3V
3	SCL	SPI Clock
4	SDA	SPI DATA
5	RES	OLED reset Pin.
6	D/C	Data/Command Control
0	D/C	This pin is Data/Command control pin.
7	CS	Chip Select
/	0	This pin is pulled low to active. Connect to ground if no used .

4 Mechanical Drawing


4.1 Panel Mechanical Drawing

DM-OLED28-643

4.2 Module Mechanical Drawing

5 Optics & Electrical Characteristics

5.1 Optical Characteristics

Item	Symbol	Min	Тур	Max	Unit
View Angles		-	Free	-	0
C.I.E. (White)	(x) (y)	0.25 0.27	0.29 0.31	0.33 0.35	
Brightness	Lbr	80	100	-	cd/m ²
Dark room Contrast Ratio	CR	-	>10,000:1	-	

* Optical measurement taken at $V_{CI} = 2.8V$, $V_{CC} = 12.0V$.

5.2 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Operation Supply Voltage for panel	V_{CI}	-0.3	4	V	1, 2
Logic Supply Voltage for panel	V_{DD}	-0.5	2.75	V	1, 2
I/O Pins Supply Voltage for panel	V _{DDIO}	-0.5	V _{CI}	V	1, 2
Display Supply Voltage for panel	V _{CC}	-0.5	16	V	1, 2
Display Supply Voltage for module	V _{CC M}	2.4	3.5	V	-
Operating Current for V _{CC}	Icc	-	60	mA	1, 2
Operating Temperature	T _{OP}	-40	85	°C	3
Storage Temperature	T _{STG}	-40	90	°C	3
Life Time (100 cd/m ²)		15,000	-	hour	4
Life Time (80 cd/m ²)		25,000	-	hour	4

Note 1: All the above voltages are on the basis of " $V_{SS} = 0V$ ".

Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

- Note 3: The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be 80°C.
- Note 4: $V_{CC} = 12.0V$, Ta = 25°C, 50% Checkerboard.

End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

Item	Symbol	Condition	Min	Тур.	Max	Unit
Operation Supply Voltage for panel	V _{CI}		2.4	2.8	3.5	V
Logic Supply Voltage for panel	V _{DD}		2.4	2.5	2.6	V
I/O Pins Supply Voltage for panel	V _{DDIO}		1.65	1.8	V _{CI}	V
Display Supply Voltage for panel	V _{CC}	Note5	11.5	12.0	12.5	V
Display Supply Voltage for module	V _{CC M}		2.4	3.3	3.5	V
Operating Current V _{CI}	I _{CI}		-	180	300	μA
		Note6	-	15.6	19.5	mA
Operating Current V _{CC}	Icc	Note7	-	26.1	32.7	mA
		Note8	-	44.7	55.9	mA
Sleep Mode Current V _{CI}	I _{CI,SLEEP}		-	20	100	μA
Sleep Mode Current V _{DDIO}	I _{DDIO,SLEEP}		-	2	10	μA
Low Level Input Voltage	VIL		0	-	0.2 x V _{DDIO}	V
High Level Input Voltage	V _{IH}		0.8 x V _{DDIO}	-	V _{DDIO}	V
Low Level Output Voltage	Vol	Iout=100µA	0	-	0.1 x V _{DDIO}	V
High Level Output Voltage	V _{OH}	I _{out} =100µA	0.9 x V _{DDIO}	-	V _{DDIO}	V

5.3 DC Characteristics

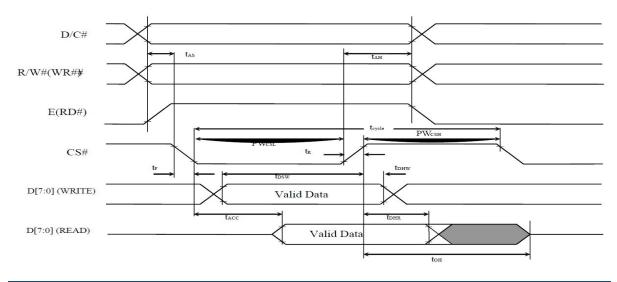
Note 5: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the panel characteristics and the customer's request.

Note 6: $V_{CI} = 2.8V$, $V_{CC} = 12.0V$, 30% Display Area Turn on.

Note 7: $V_{CI} = 2.8V$, $V_{CC} = 12.0V$, 50% Display Area Turn on.

Note 8: $V_{CI} = 2.8V$, $V_{CC} = 12.0V$, 100% Display Area Turn on.

5.4 AC Characteristics


5.4.1 6800-Series MCU Parallel Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit
+	Clock Cycle Time (read)	400		
t _{cycle}	Clock Cycle Time (write)	100	-	ns
t _{AS}	Address Setup Time	20	-	ns
t _{AH}	Address Hold Time	0	-	ns
t _{DSW}	Write Data Setup Time	40	-	ns
t _{DHW}	Write Data Hold Time	10	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
toн	Output Disable Time	-	70	ns
tacc	Access Time	-	200	ns
	Chip Select Low Pulse Width (Read)	450		
PW_{CSL}	Chip Select Low Pulse Width (Write)	60	-	ns
	Chip Select High Pulse Width (Read)	60		
$\mathrm{PW}_{\mathrm{CSH}}$	Chip Select High Pulse Width (Write)	60	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

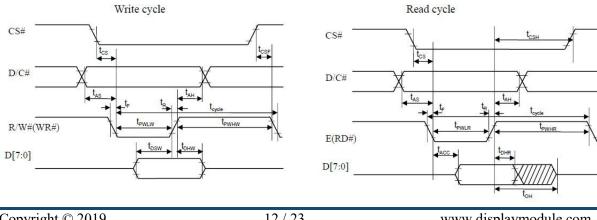
* ($V_{DDIO} - V_{SS} = 1.65V - 2.1V$, $V_{CI} - V_{SS} = 2.4V - 3.5V$, $Ta = 25^{\circ}C$)

Symbol	Description	Min	Max	Unit
4	Clock Cycle Time (read)	400		
t _{cycle}	Clock Cycle Time (write)	100	-	ns
t _{AS}	Address Setup Time	20	-	ns
t _{AH}	Address Hold Time	0	-	ns
t _{DSW}	Write Data Setup Time	40	-	ns
t _{DHW}	Write Data Hold Time	10	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	-	70	ns
t _{ACC}	Access Time	-	200	ns
	Chip Select Low Pulse Width (Read)	450		
PWCSL	Chip Select Low Pulse Width (Write)	60	-	ns
	Chip Select High Pulse Width (Read)	60		
PW _{CSH}	Chip Select High Pulse Width (Write)	60	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

* $(V_{DDIO} - V_{SS} = 2.1 V - V_{CI}, V_{CI} - V_{SS} = 2.4 V - 3.5 V, Ta = 25 °C)$

Copyright © 2019

www.displaymodule.com


Symbol	Description	Min	Max	Unit
t .	Clock Cycle Time (read)	400		20
t _{cycle}	Clock Cycle Time (write)	100	-	ns
t _{AS}	Address Setup Time	20	-	ns
$t_{\rm AH}$	Address Hold Time	0	-	ns
$t_{\rm DSW}$	Write Data Setup Time	40	-	ns
t _{DHW}	Write Data Hold Time	10	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
tон	Output Disable Time	-	70	ns
tACC	Access Time	-	200	ns
tpwlr	Read Low Time	200	-	ns
tpwlw	Write Low Time	60	-	ns
t PWHR	Read High Time	60	-	ns
t _{PWHW}	Write High Time	60	-	ns
t _{CS}	Chip Select Setup Time	0	-	ns
t _{CSH}	Chip Select Hold Time to Read Signal	0	-	ns
t _{CSF}	Chip Select Hold Time	20	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

8080-Series MCU Parallel Interface Timing Characteristics: 5.4.2

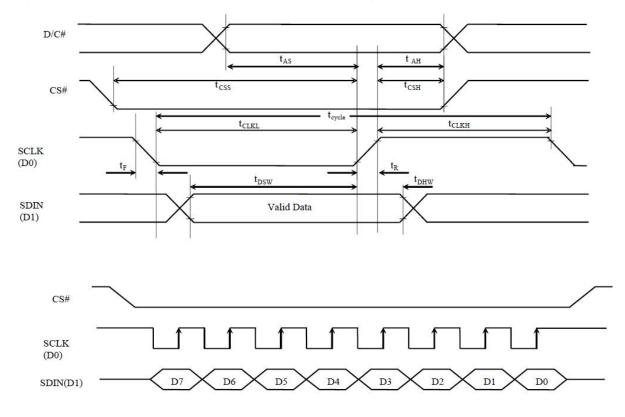
* $(V_{DDIO} - V_{SS} = 1.65V - 2.1V, V_{CI} - V_{SS} = 2.4V - 3.5V, Ta = 25^{\circ}C)$

Symbol	Description	Min	Max	Unit
4	Clock Cycle Time (read)	400		
t _{cycle}	Clock Cycle Time (write)	100	-	ns
t _{AS}	Address Setup Time	20	-	ns
t _{AH}	Address Hold Time	0	-	ns
t _{DSW}	Write Data Setup Time	40	-	ns
t _{DHW}	Write Data Hold Time	10	-	ns
t _{DHR}	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	-	70	ns
t _{ACC}	Access Time	-	200	ns
t _{PWLR}	Read Low Time	150	-	ns
t _{PWLW}	Write Low Time	60	-	ns
t _{PWHR}	Read High Time	60	-	ns
t _{PWHW}	Write High Time	60	-	ns
t _{CS}	Chip Select Setup Time	0	-	ns
t _{CSH}	Chip Select Hold Time to Read Signal	0	-	ns
t _{CSF}	Chip Select Hold Time	20	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

* $(V_{DDIO} - V_{SS} = 2.1 V - V_{CI}, V_{CI} - V_{SS} = 2.4 V - 3.5 V, Ta = 25 °C)$

Copyright © 2019

www.displaymodule.com


Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t _{AS}	Address Setup Time	15	-	ns
t _{AH}	Address Hold Time	35	-	ns
t _{CSS}	Chip Select Setup Time	20	-	ns
t _{CSH}	Chip Select Hold Time	10	-	ns
t _{DSW}	Write Data Setup Time	15	-	ns
t _{DHW}	Write Data Hold Time	20	-	ns
t _{CLKL}	Clock Low Time	40	-	ns
t _{CLKH}	Clock High Time	40	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

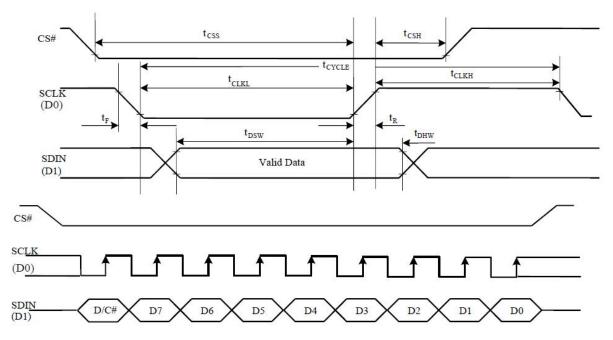
5.4.3 4-wire Serial Interface Timing Characteristics: (default)

* ($V_{DDIO} - V_{SS} = 1.65V - 2.1V$, $V_{CI} - V_{SS} = 2.4V - 3.5V$, $Ta = 25^{\circ}C$)

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t _{AS}	Address Setup Time	15	-	ns
t _{AH}	Address Hold Time	35	-	ns
t _{CSS}	Chip Select Setup Time	20	-	ns
t _{CSH}	Chip Select Hold Time	10	-	ns
t _{DSW}	Write Data Setup Time	15	-	ns
t _{DHW}	Write Data Hold Time	20	-	ns
t _{CLKL}	Clock Low Time	40	-	ns
t _{CLKH}	Clock High Time	40	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

* (V_{DDIO} -V_{SS} = 2.1V-V_{CI} , V_{CI} - V_{SS} = 2.4V-3.5V, Ta = 25°C)

Copyright © 2019


Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t _{CSS}	Chip Select Setup Time	20	-	ns
t _{CSH}	Chip Select Hold Time	35	-	ns
t _{DSW}	Write Data Setup Time	15	-	ns
t _{DHW}	Write Data Hold Time	20	-	ns
t _{CLKL}	Clock Low Time	40	-	ns
t _{CLKH}	Clock High Time	25	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

5.4.4 3-wire Serial Interface Timing Characteristics:

* $(V_{DDIO} - V_{SS} = 1.65V - 2.1V, V_{CI} - V_{SS} = 2.4V - 3.5V, Ta = 25^{\circ}C)$

Symbol	Description	Min	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	ns
t _{CSS}	Chip Select Setup Time	20	-	ns
t _{CSH}	Chip Select Hold Time	25	-	ns
t _{DSW}	Write Data Setup Time	15	-	ns
t _{DHW}	Write Data Hold Time	20	-	ns
t _{CLKL}	Clock Low Time	25	-	ns
t _{CLKH}	Clock High Time	25	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

* $(V_{DDIO} - V_{SS} = 2.1V - V_{CI}, V_{CI} - V_{SS} = 2.4V - 3.5V, Ta = 25^{\circ}C)$

6 Functional Specification

6.1 Commands

Refer to the Technical Manual for the SSD1322

6.2 Power down and Power up Sequence

To protect OEL paneland extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

Vcc

V_{CI}/V_{DDIO}

V_{SS}/Ground

V_{CC}

V_{CI}/V_{DDIO}

V_{SS}/Ground

V_{CI} / V_{DDIO} on V_{CC} on

Display off

V_{cc} off

Display on

V_{CI} / V_{DDIO} off

6.2.1 Power up Sequence:

- 1. Power up V_{CI} / V_{DDIO}
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up V_{CC}
- 6. Delay 200ms (When V_{CC} is stable)
- 7. Send Display on command

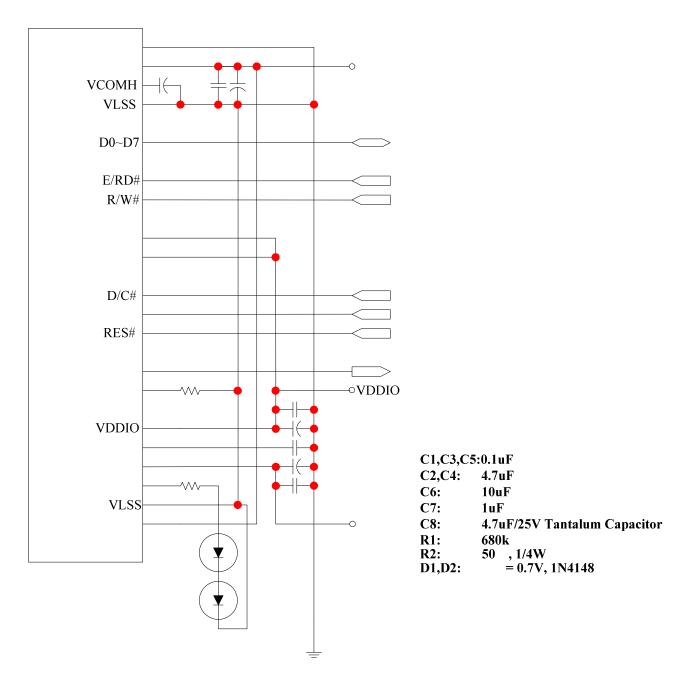
6.2.2 Power down Sequence:

- 1. Send Display off command
- 2. Power down V_{CC}
- 3. Delay 100ms
- 4. (When V_{CC} is reach 0 and panel is completely discharges)
- 5. Power down $V_{CI}\,/\,V_{DDIO}$

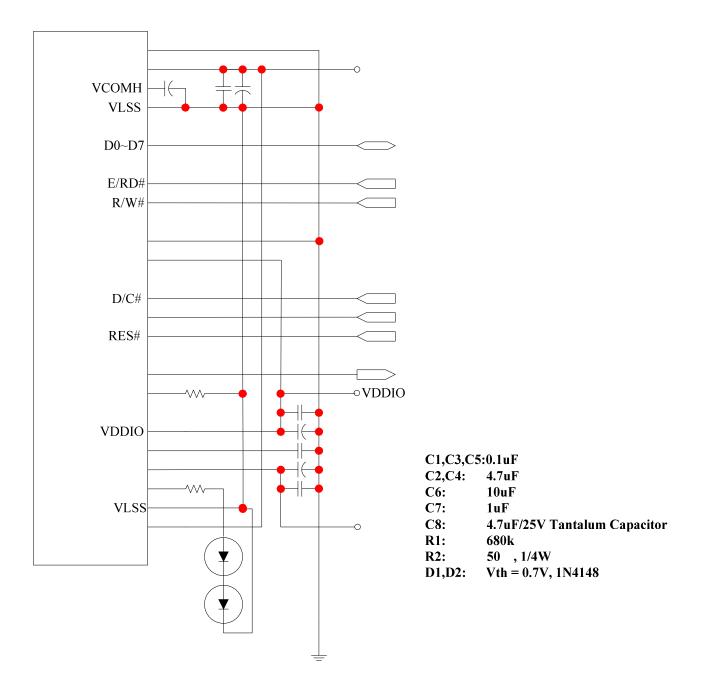
Note 9:

- 1) Since an ESD protection circuit is connected between V_{CI}, V_{DDIO} and V_{CC} inside the driver IC, V_{CC} becomes lower than V_{CI} whenever V_{DD}, V_{DDIO} is ON and V_{CC} is OFF.
- 2) V_{CC} should be kept float (disable) when it is OFF.
- 3) Power Pins (V_{DD} , V_{DDIO} , V_{CC}) can never be pulled to ground under any circumstance.
- 4) V_{CI} , V_{DDIO} should not be power down before V_{CC} power down.

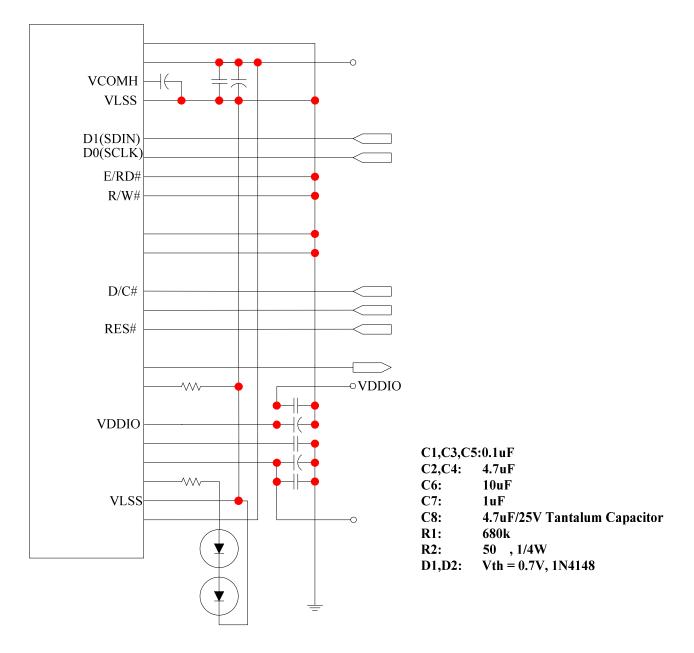
6.3 Reset Circuit


When RES# input is low, the chip is initialized with the following status:

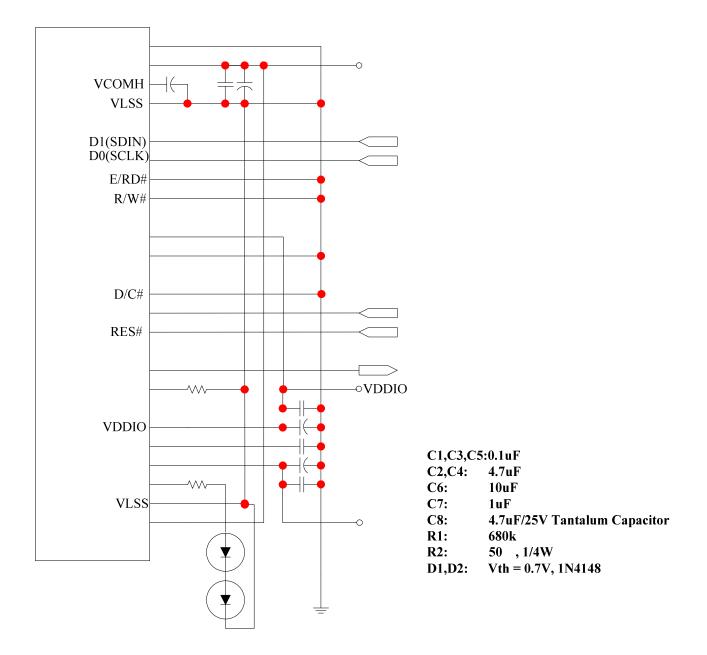
- 1. Display is OFF
- 2. 480 x 128 Display Mode
- 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Contrast control register is set at 7Fh


6.4 Application circuit reference

6.4.1 6800-Series MCU Parallel Interface and VCC Supplied Externally



6.4.2 8080-Series MCU Parallel Interface and VCC Supplied Externally



6.4.3 4wire SPI and VCC Supplied Externally

6.4.4 3wire SPI and VCC Supplied Externally

7 Power ON/OFF Timing Sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1322 (assume V_{CI} and V_{DDIO} are at the same voltage level and internal V_{DD} is used).

Power ON sequence:

1. Power ON V_{CI} , V_{DDIO} .

2. After V_{CI} , V_{DDIO} become stable, set wait time at least 1ms (t₀) for internal V_{DD} become stable. Then set RES# pin LOW (logic low) for at least 100us (t₁)⁽⁴⁾ and then HIGH (logic high).

3. After set RES# pin LOW (logic low), wait for at least 100us (t₂). Then Power ON V_{CC} . ⁽¹⁾

4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 200ms(t_{AF}).

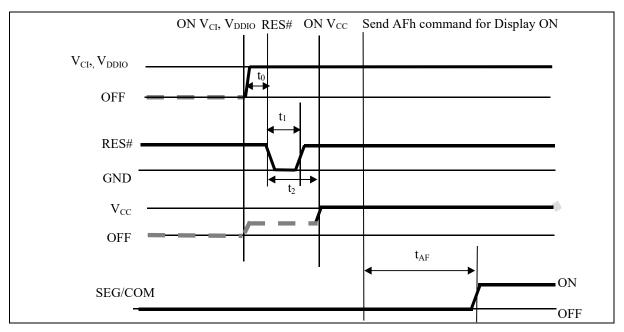
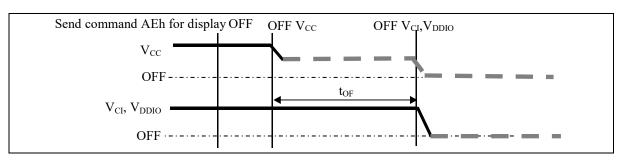



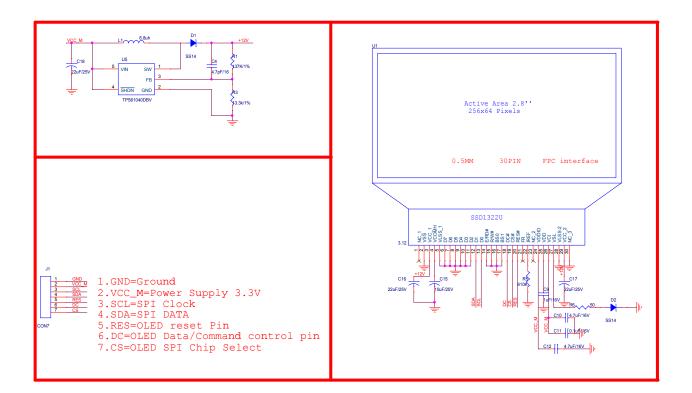
Figure 7-1 : The Power ON sequence

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF V_{CC} .^{(1), (2)}
- 3. Wait for t_{OFF}. Power OFF V_{CI}, V_{DDIO}. (where Minimum t_{OFF}=0ms⁽³⁾, Typical t_{OFF}=100ms)

Figure 7-2 : The Power OFF sequence

Note:


⁽¹⁾ Since an ESD protection circuit is connected between V_{CI} , V_{DDIO} and V_{CC} , V_{CC} becomes lower than V_{CI} whenever V_{CI} , V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 7-1 and Figure 7-2.

- $^{(2)}V_{CC}$ should be kept float (disable) when it is OFF.
- $^{(3)}$ $V_{\text{CI}},$ V_{DDIO} should not be Power OFF before V_{CC} Power OFF.
- ⁽⁴⁾ The register values are reset after t1.

 $^{(5)}$ Power pins (V_{DD}, V_{CC}) can never be pulled to ground under any circumstance.

8 Module Schematic

9 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high storage temperature for a long time.	90°C 500hrs	2
Low Temperature Storage	Temperature StorageEndurance test applying the high storage temperature for a long time.		1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	85°C 500hrs	-
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-40 °C 500hrs	1
High Temperature/ Humidity Operation	The module should be allowed to stand at 60°C,90%RH max, for 96hrs under no-load condition excluding the polarizer. Then taking it out and drying it at normal temperature.	60°C,90%RH 240hrs	1,2
Thermal Shock Resistance	c Resistance The sample should be allowed stand the following 10 cycles of operation $-40^{\circ}C \ 25^{\circ}C \ 85^{\circ}C_{e^{i}}$ $30min \ 5min \ 30min_{e^{i}}$ $1 \ cycle_{e^{i}}$		-

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

10 Warranty and Conditions

http://www.displaymodule.com/pages/faq HYPERLINK "http://www.displaymodule.com/pages/faq"