

DM-OLED22-612 Blue Graphic Oled Display with 8-Bit Parallel, I²C or 4-wire spi MPU Interface

Contents

Revision History

Main Features

Pin Description

Mechanical Drawing

Electrical Characteristics

Optical Characteristics

<u>Timing Characteristics</u>

68XX-Series MPU Parallel Interface Timing Characteristics:

80XX-Series MPU Parallel Interface Timing Characteristics

Serial Interface Timing Characteristics

I2C Interface Timing Characteristics

MCU Interface selection

MCU parallel 6800-series interface

MCU parallel 8080-series interface

MCU Serial Interface

MCU I2C Interface

Application Reference

Driver/Controller Information

Example Initialization Code

<u>Reliability</u>

Warranty and Conditions

1 Revision History

Date	Changes
2015-03-13	First release

2 Main Features

Item	Specification	Unit
Diagonal Size	2.23	inch
Display Mode	Passive Matrix OLED	-
Display Colors	Blue	
Resolution	128 x 32	pixel
Controller IC	SSD1305	-
Duty	1/32	
Interface	8-Bit 68XX/80XX Parallel、4-Wire SPI、I2C	-
Power Supply	3.3V	V
Viewing Area	57.0 x 15.1	mm
Weight	18.1	g

3 Pin Description

Pin No.	Symbol	Function Description								
		Ground of Logic Circuit								
1	VSS	This is a gro	This is a ground pin. It also acts as a reference for the logic pins. It must							
		be connecte	be connected to external ground.							
		Power Supp	Power Supply for Display Module Circuit							
2	VDD	This is a vol	tage supply p	oin. It connected to	o external	source.				
		Power Supr	ly for OEL Pa	nel						
3	VO	of the ch	ip.							
_		Please let it Float.								
		Data/Comm	and Control							
		This pin is [ata/Commai	nd control pin. Wh	en the pin	is pulled high, the				
	(D.C	input at D7	-D0 is treated	d as display data. V	Vhen the	pin is pulled low, the				
4	/DC	input at D7	-D0 will be tr	ansferred to the co	ommand i	register. For detail				
		relationship	to MCU inte	rface signals, pleas	se refer to	the Timing				
		Characteris	tics Diagrams	5.		-				
		Read/Write	Select or Wri	te						
		This pin is N	ICU interface	e input. When inter	facing to	a 68XX-series				
		microproce	ssor, this pin	while used as Rea	d/Write (F	R/W) selection input.				
5	/WR	Pull this pin	to "High" for	read mode and p	ull it to "L	ow" for write mode.				
		When 80XX	interface mo	de is selected, this	s pin will b	e the Write (WR)				
input. Data write operation is initiated when this pin is pulled low										
		the CS is pu	lled low.							
		Read/Write	Enable or Re	ad						
		This pin is N	ICU interface	e input. When inter	rfacing to	an 68XX-series				
		microprocessor, this pin will be used as the Enable(E) signal. Read/Write								
6	/RD	operation is	initiated wh	en this pin is pulle	d high an	d the CS is pulled				
		low. When	connecting to	an 80XX-micropro	ocessor, th	his pin receives the				
		Read(RD) si	gnal. Data rea	ad operation is init	tiated whe	en this pin is pulled				
		low CS is pu	lled low.	_						
		Host Data I	nput/output	BUS Jing ati ang data ku						
7-14	DB0-DB7	microproco	are 8-bits bi-0	irectional data bu	is to be co	innected to the				
		microproce		d DO will be the e	orial clock	input CCLK				
		Serial uata i	nput spin ar			input SCLK.				
15	CS.	This pip is t	no chin coloc	t input. The chin is	anablad	for MCU				
15	5		tion only who	n CS# is pulled to						
		Power Pose	t for Controll	or and Drivor	vv.					
16	Peset	This nin is r	eset signal in	er and Driver	is low ini	tialization of the				
10	Reset	chin is ever	utod	put. When the pin	15 10 vv, 1111					
		Communica	uteu.	Soloct						
		These ning	MCII interfer	e selection innut	See the fo	llowing table				
17	BC1	688	(-narallel	80XX-narallel		Serial				
12	BC2	BS1 0	, purunci	1	1	0				
10	252	BS2 1		1	0	0				
					U	v				
10	NC									
19	NC FC	Float or cor	nect to VSS							
20	FG	it connecte	to external	ground						

4 Mechanical Drawing

5 Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	VDD		2.8		3.5	V
Digital Operation Current	IDD	Ta=25°C		38	-	mA
Low Level Input Voltage	V _{IL}		0	-	0.2VDD	V
High Level Input Voltage	V _{IH}		0.8VDD	-	VDD	V
Low Level Output Voltage	V _{OL}		0		0.1VDD	V
High Level Output Voltage	V _{OH}		0.9VDD		VDD	V
Operating Temperature	TOP	Absolute Max	-40		85	°C
Storage Temperature	TST	Absolute Max	-45		90	°C

6 Optical Characteristics

Item	Symbol	Min	Тур	Max	Unit
View Angles Left	AH		80		0
View Angles Right	AH		80		0
View Angles Top	AV		80		0
View Angles Bottom	AV		80		0
Response Time (25°C)	Tr + Tf		20		us
Contrast Ratio	CR	2000:1			
Brightness	Lv	120	150		cd/m²
Lifetime		20,000			Hrs

7 Timing Characteristics

7.1 68XX-Series MPU Parallel Interface Timing Characteristics:

TA=25°C,VDD-VSS=2.4V to 3.5V

Symbol	Item	Min	Тур	Max	Unit
t _{CYCLE}	Clock Cycle Time(write cycle)	300	-	-	ns
P _{WCSL}	Control Pulse Low Width(write cycle)	60			
P _{WCSH}	Control Pulse High Width(write cycle)	60			
t _{cycle}	Clock Cycle Time(read cycle)	200			
PW _{CSL}	Control Pulse Low Width(read cycle)	120	-		ns
PW _{CSH}	Control Pulse High Width(read cycle)	60	-		ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Data Setup Time	40	-	-	ns
t _{DHW}	Data Hold Time	7	-	-	ns
t _{ACC}	Access Time	-		140	
t _{oH}	Output Disable Time	-	-	70	ns
t _R	Rise Time	-	-	40	ns
t _F	Fall Time	-	-	40	ns

7.2 80XX-Series MPU Parallel Interface Timing Characteristics

TA=25°C,VDD-VSS=2.4V to 3.5V

Symbol	Item	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{oH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width(Read)	120	-	-	ns
	Chip Select Low Pulse Width(Write)	60			
PW _{CSH}	Chip Select High Pulse Width(Read)	60	-	-	ns
	Chip Select High Pulse Width(Write)	60			
t _R	Rise Time	-	-	40	ns
t _F	Fall Time	-	-	40	ns
t _{cs}	Chip Select Time	0			
t _{csH}	Chip Select Hold Time to Read signal	0			
t _{CSF}	Chip Select Hold Time	20			

7.3 Serial Interface Timing Characteristics

Symbol	Item	Min	Тур	Max	Unit
t _{CYCLE}	Clock Cycle Time	250	-	-	ns
t _{AS}	Address Setup Time	150	-	-	ns
t _{AH}	Address Hold Time	150	-	-	ns
t _{cs}	Chip Select Setup Time	120			
t _{csh}	Chip Select Hold Time	60			
t _{DSW}	Write Data Setup Time	50	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{clKI}	Clock Low Time	100	-	-	ns
t _{clkh}	Clock High Time	100	-	-	ns
t _R	Rise Time	-	-	40	ns
t _F	Fall Time	-	-	40	ns

7.4 I2C Interface Timing Characteristics

Symbol	Item	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	us
t _{HSTART}	Start Condition Hold Time	0.6	-	-	us
t _{HD}	Data Hold Time(for "SDAOUT" pin)	0	-	-	ns
	Data Hold Time(for "SDIN" pin)	300			ns
t _{sp}	Data Setup Time	100			ns
t _{sstart}	Start Condition Setup Time(Only relecant for a repeated Start condition)	0.6			us
t _{sstop}	Stop condition Setup Time	0.6	-	-	us
t _R	Rise Time for data and clock pin	-	-	300	ns
t _F	Fall Time for data and clock pin	-	_	300	ns
tious	Idle Time before a new transmission can start	1.3	-	_	us

8 MCU Interface selection

Bus	Data/Command Interface							Control Signal					
Interface	D7	D6	D5	D4	D3	D2	D1	D0	E	R/W	/CS	D/C	/RES
8-bit 6800	D[7:0]						Е	R/W	/CS	D/C	/RES		
8-bit 8080					D[7:0)]			/RD	/WR	/CS	D/C	/RES
SPI		Т	ie LO\	N		NC	SDI	SCLK	Tie	LOW	/CS	D/C	/RES
I2C		Т	ie LO\	N		SDA _{OUT}	SDA_{IN}	SCL		Tie LO	W	SA0	/RES

MCU Interface assignment under different bus interface mode:

8.1 MCU parallel 6800-series interface

The parallel interface consists of 8 bi-directional data pins (DB[7:0}), R/W, D/C,E and /CS. A LOW in R/W indicates WRITE operation and HIGH in R/W indicates READ operation. A LOW in D/C indicates COMMAND read/write and HIGH in D/C indicates DATA read/write. The E input serves as data latch signal while /CS is LOW. Data is latched at the falling edge of E signal.

Control	pins	of	6800	interface
001101	P	۰.	0000	meenace

Function	Е	R/W	/CS	D/C
Write command	\downarrow	L	L	L
Read status	\downarrow	Н	L	L
Write data	\downarrow	L	L	Н
Read data	Ļ	Н	L	Н

Note: ↓ stands for falling edge of signal

H stands for HIGH in signal

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown as follows.

Data read back procedure-insertion of dummy read

8.2 MCU parallel 8080-series interface

The parallel interface consists of 8 bi-directional data pins (DB[7:0]), /RD, /WR, D/C and /CS. A LOW in A0 indicates COMMAND read/write and HIGH in D/C indicates DATA read/write. A rising edge of /ER input serves as a data/command WRITE latch signal while /CS is kept LOW.

Control pins of 8080 interface (Form 1)

Function	/RD	/WR	/CS	D/C
Write command	Н	↑	L	L
Read status	1	Н	L	L
Write data	Н	1	L	Н
Read data	↑	Н	L	Н

Note: (1) \downarrow stands for falling edge of signal

(2) H stands for HIGH in signal

(3) L stands for LOW in signal

(4) Refer to Figure 13-2 for Form 1 8080-Series MPU Parallel Interface

Timing Characteristics.

Alternatively, /RD and /WR can be keep stable while /CS serves as the data/command latch signal.

Control	pins o	f 8080	interface	(Form 1)
00110101	p		meenace	(1 01111 1)

Function	/RD	/WR	/CS	D/C
Write command	Н	L	↑	L
Read status	L	Н	1	L
Write data	Н	L	1	Н
Read data	L	Н	1	Н

Note: (1) ↓ stands for falling edge of signal

- (2) H stands for HIGH in signal
- (3) L stands for LOW in signal
- (4) Refer to Figure 13-3 for Form 2 8080-Series MPU Parallel Interface
 - Timing Characteristics.

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is performed which requires the insertion of a dummy read before the first actual display data read. This is shown as follows.

8.3 MCU Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN , D/C ,/CS. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W can be connected to an external ground.

Control pins of Serial interface

Function	Е	R/W	/CS	D/C
Write command	Tie Low	Tie Low	L	L
Write data	Tie Low	Tie Low	L	Н

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. A0 is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock. Under serial mode, only write operations are allowed.

Write procedure in SPI mode

8.4 MCU I2C Interface

The I2C communication interface consists of slave address bit SA0, I2C-bus data signal SDA(SDAOUT/D2 for output and SDAIN/D1 for input) and I2C-bus clock signal SCL (D0). Both the data and clock signals must be connected to pull-up resistors. /RES is used for the initialization of device.

a) Slave address bit (SA0)

SSD1305 has to recognize the slave address before transmitting or receiving any informationby the I2C-bus. The device will respond to the slave address following by the slave addressbit("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format.b7b6b5b4b3b2b1b0

-			-		-	-		
0	1	1	1	1	0	SA0	R/W	
"SA0"	bit provides an	extension	bit for the s	slave address.	Either '	'0111100" or	"0111101", ca	n

be selected as the slave address of SSD1305. DC pin acts as SA0 for slave address selection. "R/W" bit is used to determine the operation mode of the I2C-bus interface. R/W=1, it is in read mode. R/W=0, it is in write mode.

b) I2C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgment would not be possible to attain a valid logic 0 level in "SDA". "SDAIN" and "SDAOUT" are tied together and serve as SDA. The "SDAIN" pin must be connected to act as SDA. The "SDAOUT" pin is disconnected, the acknowledgement signal will be ignored in the I2C-bus.

c) I2C-bus clock signal (SCL)

The transmission of information in the I2C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

8.4.1 I2C-bus Write data

The I2C-bus interface gives access to write data and command into the device. Please refer to the following Figure for the write mode of I2C-bus in chronological order.

I2C-bus data format

Note: Co – Continuation bit D/C# - Data / Command Selection bit ACK – Acknowledgement SA0 – Slave address bit R/W# - Read/Write Selection bit S – Start Condition / P – Stop Condition

Write mode

8.4.2 Write mode for I2C

- 1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in the following Figure(1). The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
- 2) The slave address is following the start condition for recognition use. For the SSD1305, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (DC pin acts as SA0).
- 3) The write mode is established by setting the R/W bit to logic "0"
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W bit. Please refer to the following Figure (2) for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of CO and AO bits following by six "0" 's.
 - a) If the Co bit is set as logic "0", the transmission of following information will contain data bytes only.
 - b) The A0 bit determines the next data byte is acted as a command or a data. If the A0 bit is set to logic "0", it defines the following data byte as a command. If the A0 bit is set to logic "1", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
- 6) Acknowledge bit will be generated after receiving each control byte or data byte.

7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure (1). The stop condition is established by pulling the "SDA in " from LOW to HIGH while the "SCL" stays HIGH.

Figure (1): Definition of the Start and Stop Condition

Please be noted that the transmission of the data bit has some limitations.

- The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure (3) for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

DM-OLED22-612

9 Application Reference

The Parallel (8080 Series MCU)Reference Example

The Parallel (6800 Series MCU)Reference Example

DM-OLEDZZ-61

The Serial 4 Line SPI Reference Example

If SA0(PIN4)Connected to the ground The Serial I2C Reference Example Write Slave Address:0x78 Read Slave Address:0x79

10 Driver/Controller Information

Built-in SSD1305 Controller:

https://drive.google.com/file/d/0Bxu0OURUiyL5RUE0R2VCVXl1ZnM/view?usp=sharing

11 Example Initialization Code

void Write_Data(unsigned char dat)

```
{
     RS=1:
     CS=0:
      _RW=0;
     DATA BUS=dat;
     Delayms(2);
      _RW=1;
     CS=1;
}
void Write_Instruction(unsigned char cmd)
{
      RS=0;
      CS=0;
      RW=0;
     DATA_BUS=cmd;
     Delayms(2);
      RW=1;
     CS=1:
}
void LCD initialize(void)
    RES=0;
    Delayms(200);
    RES=1;
    Delayms(200);
    Write_Instruction(0xae); //--turn off oled panel
    Write_Instruction(0xd5); //--set display clock divide ratio/oscillator frequency
    Write_Instruction(0xa0); //--set divide ratio
    Write_Instruction(0xa8); //--set multiplex ratio(1 to 64)
    Write_Instruction(0x1f); //--1/32 duty
    Write_Instruction(0xd3); //-set display offset
    Write_Instruction(0x00); //-not offset
    Write_Instruction(0xad); //--Set Master Configuration
    Write_Instruction(0x8e); //--
    Write_Instruction(0xd8); //--Set Area Color Mode On/Off & Low Power Display Mode
    Write_Instruction(0x05); //
    Write_Instruction(0xa1); //--set segment re-map 132 to 0
    Write_Instruction(0xC8); //--Set COM Output Scan Direction 64 to 1
    Write_Instruction(0xda); //--Set COM Pins Hardware Configuration
    Write_Instruction(0x12);
    Write_Instruction(0x91); //--Set current drive pulse width of BANK0, Color A, Band C.
    Write_Instruction(0x3f);
    Write_Instruction(0x3f);
    Write_Instruction(0x3f);
    Write_Instruction(0x3f);
    Write Instruction(0x81); //--set contrast control register
    Write_Instruction(Contrast_level);
    Write_Instruction(0xd9); //--set pre-charge period
    Write Instruction(0xd2);
    Write Instruction(0xdb); //--set vcomh
    Write Instruction(0x34);
    Write_Instruction(0xa6); //--set normal display
    Write Instruction(0xa4); //Disable Entire Display On
    Write Instruction(0xaf); //--turn on oled panel
```

}

{

12 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high	90°C	2
	storage temperature for a long time.	200hrs	-
Low Temperature Storage	Endurance test applying the high	-45°C	12
	storage temperature for a long time.	200hrs	1,2
High Temperature	Endurance test applying the electric	85°C	
Operation	stress (Voltage & Current) and the	200hrs	2
	thermal stress to the element for a		-
	long time.		
Low Temperature	Endurance test applying the electric	-40 °C	
Operation	stress under low temperature for a	200hrs	1,2
	long time.		
High Temperature/	The module should be allowed to	60°C,90%RH	
Humidity Operation	stand at 60°C,90%RH max, for 96hrs	96hrs	
	under no-load condition excluding the		1,2
	polarizer. Then taking it out and drying		
	It at normal temperature.	4000 (0500	
Thermal Shock Resistance	The sample should be allowed stand	-40°C/85°C	
	the following TU cycles of operation	TU cycles	
	-40°C 25°C 85°C₊		
			-
	20min 5min 20min		
	1 cycle.		
Vibration Test	Endurance test applying the vibration	Total fixed	
	during transportation and using	amplitude:	
		15mm; Vibration:	
		10~55Hz;	
		One cycle 60	3
		seconds to 3	
		directions of X, Y,	
		Z, tor each 16	
		minutes.	
Static Electricity Test	Endurance test apply the electric	VS=800V,	
	stress to the terminal.	KS=1.5kΩ,	-
		CS=100pF,	
		l'i time.	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

Note3: Test performed on product itself, not inside a container.

13 Warranty and Conditions

http://www.displaymodule.com/pages/faq