

DM-OLED13-663 1.3" 128 X 64 MONOCHROME GRAPHIC OLED DISPLAY MODULE - I2C

Contents

- 1 Revision History
- 2 Main Features
- 3 Pin Description
 - 3.1 Panel Pin Description
 - 3.2 Module Pin Description
- 4 Mechanical Drawing
 - 4.1 Panel Mechanical Drawing
 - 4.2 Module Mechanical Drawing
- 5 Electrical Characteristics
- 6 Optical Characteristics
- 7 Timing Characteristics
 - 7.1 IIC Interface Timing Characteristics
 - 7.2 I2C Interface With Internal Charge Pump
- 8 Functional Specification
 - 8.1 Power down and Power up Sequence
 - 8.2 Reset Circuit
- 9 Example Application
- 10 Command Table
- 11 Reliability
- 12 Warranty and Conditions

1 Revision History

Date	Changes
2020-09-9	First release

2 Main Features

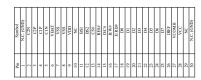
Item	Specification	Unit
Diagonal Size	1.3'	inch
Display Mode	Passive Matrix OLED	-
Display Colors	Monochrome	Colors
Resolution	128 x 64	pixel
Controller IC	SSD1315	-
Duty	1/64	duty
Interface	I2C	-
Active Area	29.42 x 14.7	mm
Module Dimension	32.42 x 21.36 x 1.427	mm
Weight	TBD	g

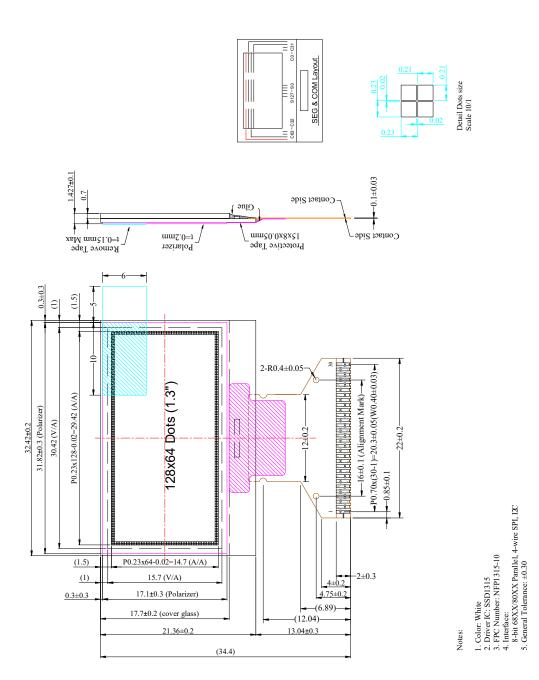
3 Pin Description

3.1 Panel Pin Description

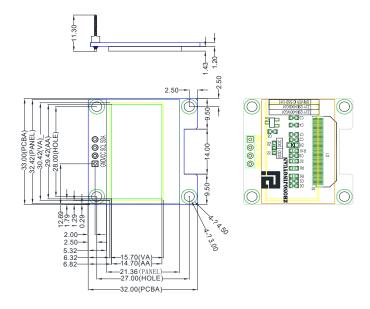
Pin No.	Symbol	Function Description				
1,30	NC(GND)	Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground as the ESD protection circuit.				
2-3 4-5	C2P/C2N C1P/C1N	Negative Terminal of the Flying Boost Capacitor Positive Terminal of the Flying Inverting Capacitor The charge-pump capacitors are required between the terminals. They must be floated when the converter is not used.				
6	VBAT	This is the power supply converter. It must be connected to	Power Supply for DC/DC Converter Circuit This is the power supply pin for the internal buffer of the DC/DC voltage converter. It must be connected to external source when the converter is used. It should be connected to VDD when the converter is not used.			
7,10,29	NC	Reserved Pin The N.C. pin between fu flexible design.	unction pins are re	served for compat	ible and	
8	VSS		Ground of Logic Circuit This is a ground pin. It acts as a reference for the logic pins. It must be			
9	VDD	Power Supply for Logic	Power Supply for Logic This is a voltage supply pin. It must be connected to external source.			
11 12	BS1 BS2	Communicating Protocol These pins are MCU into I2C 4-wire SPI 8-bit 68xx parallel 8-bit 80xx parallel		put. See the follow BS2 0 1	ving table:	
13	CS#	This pin is the chip select communication only wh	Chip Select This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low.			
14	RES#	This pin is reset signal in	Power Reset for Controller and Driver This pin is reset signal input. When the pin is low, initialization of the chip is executed. Keep this pin pull high during normal operation.			
15	D/C#	Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the input at D7~D0 is treated as display data. When the pin is pulled low, the input at D7~D0 will be transferred to the command register. When the pin is pulled high and serial interface mode is selected, the data at SDIN will be interpreted as data. When it is pulled low, the data at SDIN will be transferred to the command register. In I2C mode, this pin acts as SA0 for slave address selection.				

		For detail relationship to MCU interface signals, please refer to the Timing
		Characteristics Diagrams.
		Read/Write Select or Write
		This pin is MCU interface input. When interfacing to a 68XX-series
		microprocessor, this pin will be used as Read/Write (R/W#) selection
16	R/W#	input. Pull this pin to "High" for read mode and pull it to "Low" for
10	10 ** //	write mode. When 80XX interface mode is selected, this pin will be the
		Write (WR#) input. Data write operation is initiated when this pin is
		pulled low and the CS# is pulled low.
		When serial or I2C mode is selected, this pin must be connected to VSS
		Read/Write Enable or Read
		This pin is MCU interface input. When interfacing to a 68XX-series
		microprocessor, this pin will be used as the Enable (E) signal. Read/write
17	E/RD#	operation is initiated when this pin is pulled high and the CS# is pulled
		low. When connecting to an 80XX-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled
		low and CS# is pulled low.
		When serial or I2C mode is selected, this pin must be connected to VSS.
		Host Data Input/ Output Bus
		These pins are 8-bit bi-directional data bus to be connected to the
	D0~D7	microprocessor's data bus. When serial mode is selected, D1 will be the
18-25		serial data input SDIN and D0 will be the serial clock input SCLK. When
		I2C mode is selected, D2 & D1 should be tired together and serve as
		SDAout & SDAin in application and D0 is the serial clock input SCL.
		Unused pins must be connected to VSS except for D2 in serial mode.
		Current Reference for Brightness Adjustment
26	IREF	This pin is segment current reference pin. A resistor should be connected
		between this pin and VSS. Set the current at 12.5µA maximum.
		Voltage Output High Level for COM Signal
27	VCOMH	This pin is the input pin for the voltage output high level for COM signals.
		A capacitor should be connected between this pin and VSS.
		Power Supply for OEL Panel
20	VCC	This is the most positive voltage supply pin of the chip. A stabilization
28		capacitor should be connected between this pin and VSS when the
		converter is used. It must be connected to external source when the
		converter is not used.


3.2 Module Pin Description


Pin No.	Symbol	Function Description
1	GND	Ground of logic circuit
1	GND	This is a ground pin.It must be connected to ground
2	VCC	Power Supply for OLED(3.3~5V)
		This is a voltage supply pin, It must be connected to source
3	SCL	The serial clock input SCL
4	SDA	The serial data input SDA

4 Mechanical Drawing


4.1 Panel Mechanical Drawing

4.2 Module Mechanical Drawing

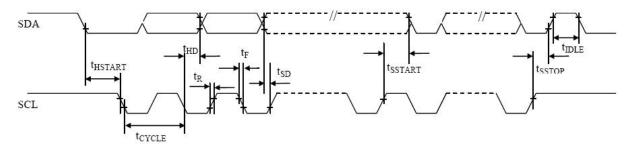
5 Electrical Characteristics

Item	Symbol	Condition	Min	Тур.	Max	Unit
Supply Voltage for Logic	VDD		1.65	2.8	3.5	V
Supply Voltage for Display (Supplied Externally)	VCC	Internal DC/DC Disable	8.5	9.0	9.5	V
Supply Voltage for DC/DC	VBAT	Internal DC/DC Enable	3.6	-	4.5	V
Supply Voltage for Display (Generated by Internal DC/DC)	VCC	Internal DC/DC Enable	7.0	-	7.5	V
Operating Current	Ibat	Note 1	-	44	46	mA
Low Level Input Voltage	V _{IL}		0	-	$0.2 \mathrm{xV}_{\mathrm{DD}}$	V
High Level Input Voltage	$V_{ m IH}$		$0.8 \mathrm{xV}_{\mathrm{DD}}$	-	$V_{ m DD}$	V
Low Level Output Voltage	Vol		0		$0.1 \mathrm{xV}_{\mathrm{DD}}$	V
High Level Output Voltage	V_{OH}		$0.9 \text{xV}_{\text{DD}}$		$V_{ m DD}$	V
Operating Temperature	TOP	Absolute Max	-40		85	°C
Storage Temperature	TST	Absolute Max	-40		85	°C

Note 1: VDD = 2.8V, VCC = 7.25V, 100% Display Area Turn on.

6 Optical Characteristics

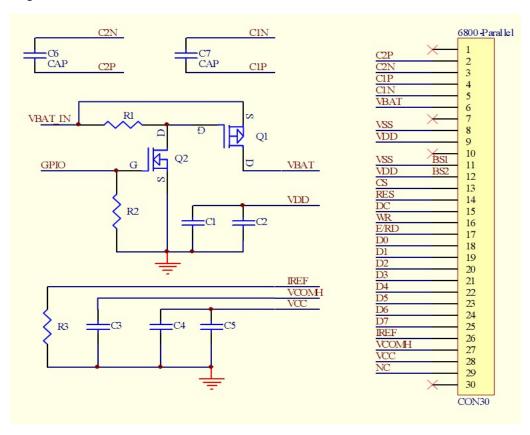
Item	Symbol	Min	Тур	Max	Unit
View Angles		-	Free	-	degree
Brightness (Vcc generated by internal DC/DC)	Lbr	60	80	-	cd/m²
Brightness (Vcc supplied Externally)	Lbr	60	-	-	cd/m²
Contrast Ratio	CR	-	2000:1	-	
Lifetime		10,000			Hrs



7 Timing Characteristics

7.1 IIC Interface Timing Characteristics

TA=25°C,VDD-VSS=1.65-3.5V


Symbol	Item	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	μs
t _{HSTART}	Start Condition Hold Time	0.6	-	-	μs
t	Data Hold Time (for "SDA _{OUT} " Pin)	0	-	-	ns
$t_{ m HD}$	Data Hold Time (for "SDA _{IN} " Pin)	300	-	-	ns
t_{SD}	Data Setup Time	100	-	-	ns
tsstart	Start Condition Setup Time	0.6	-	-	μs
	(Only relevant for a repeated Start Condition)				
t _{SSTOP}	Stop Condition Setup Time	0.6	-	-	μs
t_R	Rise Time for Data and Clock Pin	-	-	300	ns
t_{F}	Fall Time for Data and Clock Pin	-	-	300	ns
t _{IDLE}	Idle Time before a New Transmission can Start	1.3	-	-	μs

7.2 I2C Interface With Internal Charge Pump

When design main board, Please add Electronic Switch circuit, otherwise, will be caused leak current

Recommended Components:

C3: 2.2MF /16V C4: 4.7 µ F / 16V, X7R

C5: $0.1 \mu F / 16V, X7R$ C6, C7: $1 \mu F / 16V, X7R$

R1,R2: $47k\Omega$, R3: $47k\Omega$ R3: $620K\Omega$, R3 = (Voltage at IREF - VSS) / IREF

Notes:

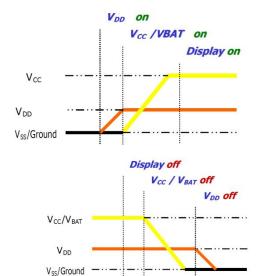
VDD: 1.65~3.3V, it should be equal to MPU I/O voltage.

Vin: 3.5~4.5V

* VBAT will be connected to VDD when VCC be connected to external source (12V), R3 should be replaced as 910 k Ω .

8 Functional Specification

8.1 Power down and Power up Sequence


To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

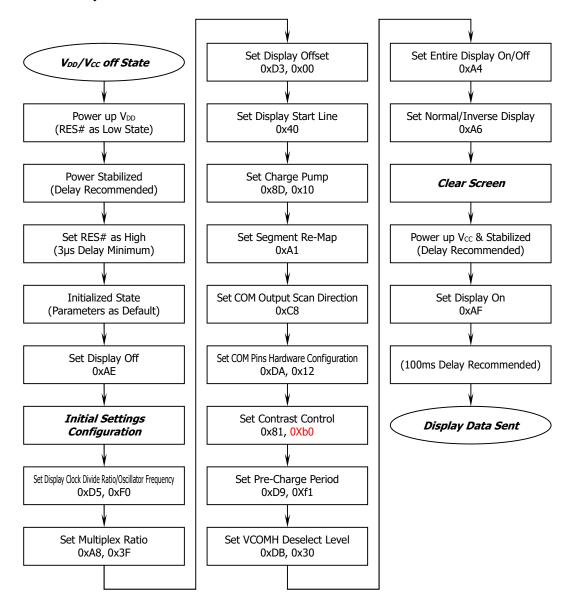
Power up Sequence

- 1. Power up V_{DD}
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up V_{CC}/V_{bat}
- 6. Delay 100ms(When V_{CC} is stable)
- 7. Send Display on command

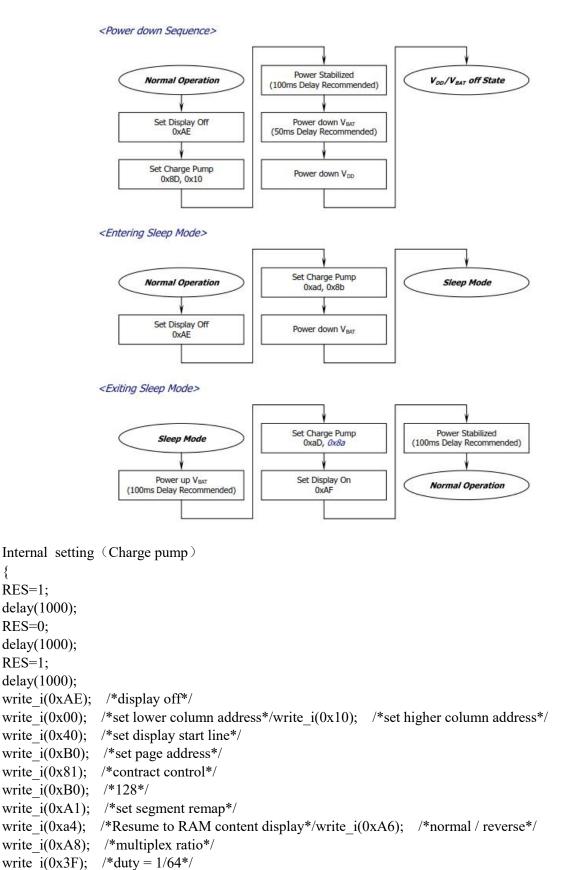
Power down Sequence

- 1. Send Display off command
- 2. Power down V_{CC}/V_{BAT}
- 3. Delay 100ms (When V_{CC}/V_{BAT} is reach 0 and panel is completely discharges)
- 4. Power down V_{DD}

8.2 Reset Circuit


When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128x64 Display Mode
- 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)


9 Example Application

VCC Generated by Internal DC/DC Circuit

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

write i(0xC8); /*Com scan direction*/


```
write i(0xD3); /*set display offset*/
write i(0x00);
write_i(0xD5); /*set osc division*/
write_i(0xF0);
write i(0xD9); /*set pre-charge period*/
write i(0Xf1);
write i(0xDA); /*set COM pins*/
write_i(0x12);
write i(0xdb); /*set vcomh*/
write_i(0x30);
write_i(0x8d); /*set charge pump disable*/
write i(0x95);
write_i(0xAF); /*display ON*/
void write_i(unsigned char ins)
DC=0;
CS=0;
WR=1;
          /*inst*/
P1=ins;
WR=0;
WR=1;
CS=1;
void write d(unsigned char dat)
DC=1;
CS=0;
WR=1;
P1=dat;
          /*data*/WR=0;
WR=1;
CS=1;
void delay(unsigned int i)
while(i>0)
i--;
```


10 Command Table

Please check Driver IC datasheet

11 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high storage	85°C	2
	temperature for a long time.	200hrs	
Low Temperature Storage	Endurance test applying the high storage	-40°C	1,2
	temperature for a long time.	200hrs	1,2
High Temperature	Endurance test applying the electric stress	85°C	
Operation	(Voltage & Current) and the thermal stress	200hrs	-
	to the element for a long time.		
Low Temperature	Endurance test applying the electric stress	-40 °C	1 1
Operation	under low temperature for a long time.	200hrs	1
High Temperature/	The module should be allowed to stand at	60°C,90%RH	
Humidity Operation	60°C,90%RH max, for 96hrs under no-load	96hrs	
	condition excluding the polarizer. Then		1,2
	taking it out and drying it at normal		
	temperature.		
Thermal Shock Resistance	The sample should be allowed stand the	-40°C/85°C	
	following 10 cycles of operation	10 cycles	
	-40℃ 25℃ 85℃		
			-
	30min 5min 30min		
	1 cycle₽		
Vibration Test	Endurance test applying the vibration during	Total fixed	
Violation Test	transportation and using	amplitude:	
	dumsportation and asing	15mm; Vibration:	
		10~55Hz;	
		One cycle 60	3
		seconds to 3	
		directions of X,	
		Y, Z, for each 16	
		minutes.	
Static Electricity Test	Endurance test apply the electric stress to	VS=800V,	
	the terminal.	RS=1.5k Ω ,	
		CS=100pF,	-
		1 time.	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

Note3: Test performed on product itself, not inside a container.

12 Warranty and Conditions

http://www.displaymodule.com/pages/faq