

DM-OLED096-636 0.96" 128 X 64 MONOCHROME GRAPHIC OLED DISPLAY MODULE - I2C

Contents

- 1 Revision History
- 2 Main Features
- 3 Pin Description
 - 3.1 Panel Pin Description
 - 3.2 Module Pin Description
- 4 Mechanical Drawing
 - 4.1 Panel Mechanical Drawing
 - 4.2 Module Mechanical Drawing
- 5 Electrical Characteristics
- 6 Optical Characteristics
- 7 Timing Characteristics
 - 7.1 I2C Interface Timing Characteristics
 - 7.2 I2C Interface With Internal Charge Pump
- 8 Functional Specification
 - 8.1 Power down and Power up Sequence
 - 8.2 Reset Circuit
- 9 Module Schematic
- 10 Example Application
- 11 Command Table
- 12 Reliability
- Warranty and Conditions

1 Revision History

Date	Changes
2018-09-10	First release

2 Main Features

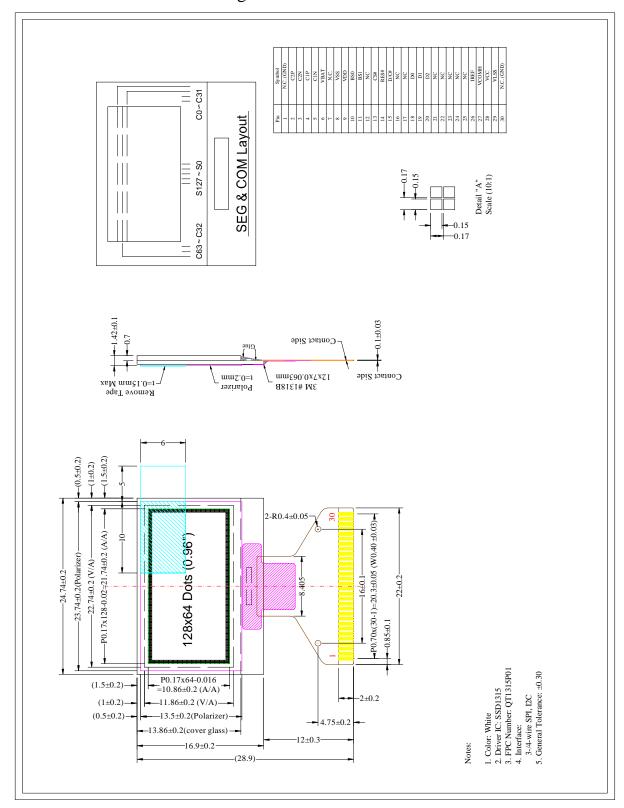
Item	Specification	Unit
Diagonal Size	0.96"	inch
Display Mode	Passive Matrix OLED	-
Display Colors	Monochrome	Colors
Resolution	128 x 64	pixel
Controller IC	SSD1315	-
Duty	1/64	duty
Interface	I2C	-
Active Area	21.74 x 10.86	mm
Module Dimension	26.0 x 26.0 x 2.7	mm
Weight	TBD	g

3 Pin Description

3.1 Panel Pin Description

Pin No.	Symbol	Function Description				
		Reserved Pin (Supporting Pin)				
1 1	NC(CND)	The supporting pins can reduce the influences from stresses on the				
1	NC(GND)	function pins. These pins must be connected to external ground as the ESD protection				
		circuit.				
		Negative Terminal of the Flying Boost Capacitor				
2-3	C2P/C2N	Positive Terminal of the Flying Inverting Capacitor				
4-5	C1P/C1N	The charge-pump capacitors are required between the terminals. They				
		must be floated when the converter is not used.				
		Power Supply for DC/DC Converter Circuit				
6	VBAT	This is the power supply pin for the internal buffer of the DC/DC voltage converter.				
0	VDAI	It must be connected to external source when the converter is used. It				
		should be connected to VDD when the converter is not used.				
		Reserved Pin				
7	NC	The N.C. pin between function pins are reserved for compatible and				
		flexible design.				
	*****	Ground of Logic Circuit				
8	VSS	This is a ground pin. It acts as a reference for the logic pins. It must be				
		connected to external ground.				
9	VDD	Power Supply for Logic This is a voltage supply pin. It must be connected to external source.				
		Communicating Protocol Select				
	BS0	These pins are MCU interface selection input. See the following table:				
10		BS0 BS1				
11	BS1	I2C 0 1				
		3-wire SPI 1 0				
		4-wire SPI 0 0				
12	NC	Reserved Pin The N.C. min between function mine are recognized for competible and				
12	INC.	The N.C. pin between function pins are reserved for compatible and flexible design.				
		Chip Select				
13	CS#	This pin is the chip select input. The chip is enabled for MCU				
		communication only when CS# is pulled low.				
		Power Reset for Controller and Driver				
14	RES#	This pin is reset signal input. When the pin is low, initialization of the chip				
		is executed. Keep this pin pull high during normal operation.				
		Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the				
		input at D7~D0 is treated as display data. When the pin is pulled low, the				
	D/C#	input at D7~D0 is it cated as display data. When the pin is puned low, the input at D7~D0 will be transferred to the command register.				
15		When the pin is pulled high and serial interface mode is selected, the data				
13		at SDIN will be interpreted as data. When it is pulled low, the data at				
		SDIN will be transferred to the command register. In I2C mode, this pin				
		acts as SA0 for slave address selection.				
		For detail relationship to MCU interface signals, please refer to the Timing				
		Characteristics Diagrams.				

		December 1 Pin
		Reserved Pin
16-25	NC	The N.C. pin between function pins are reserved for compatible and
		flexible design.
		Current Reference for Brightness Adjustment
26	IREF	This pin is segment current reference pin. A resistor should be connected
		between this pin and VSS. Set the current at 12.5μA maximum.
		Voltage Output High Level for COM Signal
27	VCOMH	This pin is the input pin for the voltage output high level for COM signals.
		A capacitor should be connected between this pin and VSS.
	VCC	Power Supply for OEL Panel
		This is the most positive voltage supply pin of the chip. A stabilization
28		capacitor should be connected between this pin and VSS when the
		converter is used. It must be connected to external source when the
		converter is not used.
20	VII CC	Ground of Analog Circuit
29	VLSS	This is an analog ground pin. It should be connected to VSS externally.
		Reserved Pin (Supporting Pin)
		The supporting pins can reduce the influences from stresses on the
30	NC(GND)	function pins.
		These pins must be connected to external ground as the ESD protection
		circuit.


3.2 Module Pin Description

Pin No.	Symbol	Function Description
1	GND	Ground
2	VCC_IN	Power Supply (2.8~5.5V)
3	SCL	IIC Clock
4	SDA	IIC Date


4 Mechanical Drawing

4.1 Panel Mechanical Drawing

4.2 Module Mechanical Drawing

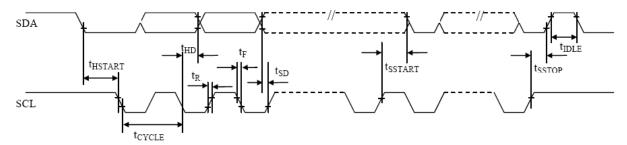
5 Electrical Characteristics

Item	Symbol	Condition	Min	Тур.	Max	Unit
Supply Voltage for Logic	VDD		1.65	2.8	3.3	V
Supply Voltage for DC/DC	VBAT	Internal DC/DC Enable	3.5	-	4.2	V
Supply Voltage for Display	VCC	Internal DC/DC	7.0	-	7.5	V
(Generated by Internal DC/DC)		Enable				
Operating Current	ICC	Note 1	-	25	32	mA
Low Level Input Voltage	$V_{\rm IL}$		0	-	$0.2xV_{DD}$	V
High Level Input Voltage	V_{IH}		$0.8 \mathrm{xV}_\mathrm{DD}$	-	$V_{ m DD}$	V
Low Level Output Voltage	V_{OL}		0		$0.1 \text{xV}_{\text{DD}}$	V
High Level Output Voltage	V_{OH}		$0.9 \text{xV}_{\text{DD}}$		$V_{ m DD}$	V
Operating Temperature	TOP	Absolute Max	-40		85	°C
Storage Temperature	TST	Absolute Max	-40		85	°C

Note 1: VDD = 2.8V, VCC = 7.25V, 100% Display Area Turn on.

6 Optical Characteristics

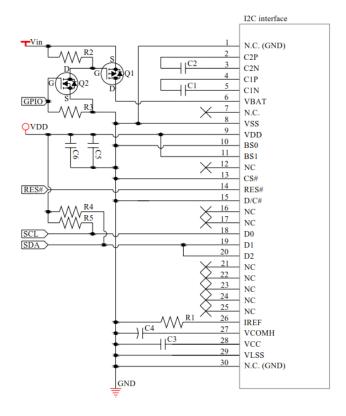
Item	Symbol	Min	Тур	Max	Unit
View Angles			Free		0
Response Time (25 ℃)	Tr + Tf				us
Brightness		90	-	-	cd/m ²
Contrast Ratio	CR		2,000:1		
Lifetime		10,000			Hrs



7 Timing Characteristics

7.1 I2C Interface Timing Characteristics

TA=25°C,*VDD-VSS*=1.65-3.5*V*


Symbol	Item	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	μs
t _{HSTART}	Start Condition Hold Time	0.6	-	-	μs
+	Data Hold Time (for "SDA _{OUT} " Pin)	0	-	-	ns
$t_{ m HD}$	Data Hold Time (for "SDA _{IN} " Pin)	300	-	-	ns
t_{SD}	Data Setup Time	100	-	-	ns
t _{SSTART}	Start Condition Setup Time	0.6	-	-	μs
	(Only relevant for a repeated Start Condition)				
t _{SSTOP}	Stop Condition Setup Time	0.6	-	-	μs
t_R	Rise Time for Data and Clock Pin	-	-	300	ns
$t_{\rm F}$	Fall Time for Data and Clock Pin	-	-	300	ns
t _{IDLE}	Idle Time before a New Transmission can Start	1.3	=	=	μs

7.2 I2C Interface With Internal Charge Pump

When design main board, Please add Electronic Switch circuit, otherwise, will be caused leak current

Recommended Components:

C1, C2: 1 µ F / 16V, X5R

C3: 2.2 µ F / 16V, X7R

C4: 4.7 µ F / 16V, X7R

C5, C6: $1 \mu F / 6.3V$, X5R

R1: $560k\Omega$, R1 = (Voltage at IREF - VSS) / IREF

R2, R3: 47kΩ

R4, R5: $4.7k\Omega$

Q1: FDN338P

Q2: FDN335N

Notes:

VDD: 1.65~3.3V, it should be equal to MPU I/O voltage.

Vin: 3.5~4.2V

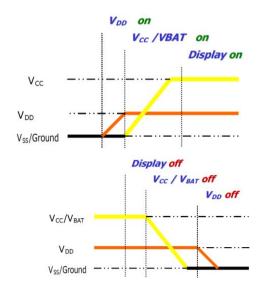
The I2C slave address is 0111100b'. If the customer ties D/C# (pin 15) to VDD, the I2C slave address

will be 0111101b'(0x7a).

* VBAT will be connected to VDD when VCC be connected to external source (9V), R1 should be replaced as 560 k Ω .

8 Functional Specification

8.1 Power down and Power up Sequence

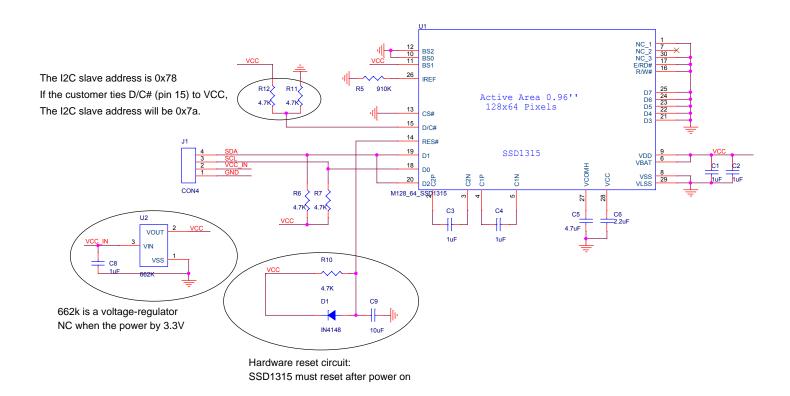

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

Power up Sequence

- 1. Power up V_{DD}/V_{BAT}
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up V_{CC}
- 6. Delay 100ms(When V_{CC} is stable)
- 7. Send Display on command

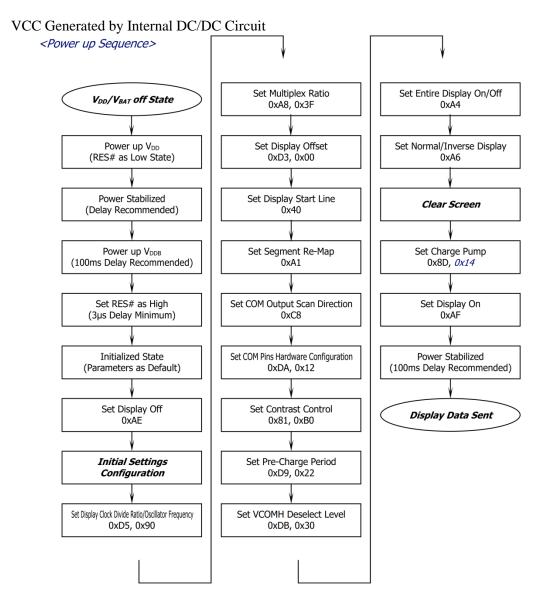
Power down Sequence

- 1. Send Display off command
- 2. Power down V_{CC}/V_{BAT}
- 3. Delay 100ms (When V_{CC}/V_{BAT} is reach 0 and panel is completely discharges)
- 4. Power down V_{DD}

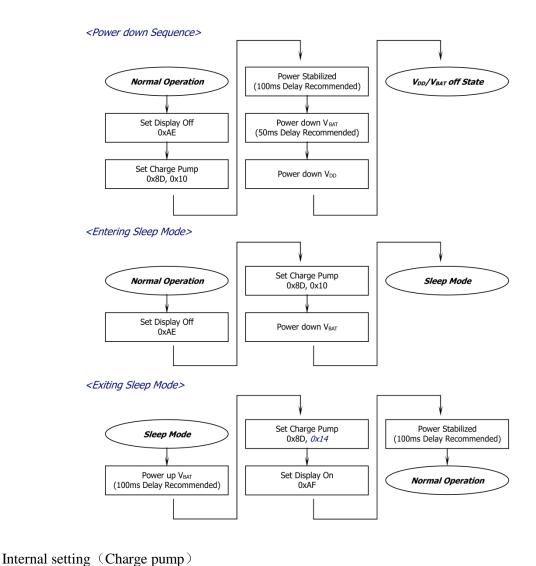

8.2 Reset Circuit

When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128x64 Display Mode
- 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)



9 Module Schematic



10 Example Application

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.


```
RES=1;
delay(1000);
RES=0;
delay(1000);
RES=1;
delay(1000);
write_i(0xAE); /*display off*/
write_i(0x00); /*set lower column address*/
write_i(0x10); /*set higher column address*/
write_i(0x40); /*set display start line*/
write_i(0xB0); /*set page address*/
write_i(0x81); /*contract control*/
write_i(0xb0); /*128*/
write_i(0xA1); /*set segment remap*/
write_i(0xA4);
write_i(0xA6); /*normal / reverse*/
write_i(0xA8); /*multiplex ratio*/
```



```
write_i(0x3F); /*duty = 1/64*/
write_i(0xC8); /*Com scan direction*/
write_i(0xD3); /*set display offset*/
write_i(0x00);
write_i(0xD5); /*set osc division*/
write_i(0x90);
write_i(0xD9); /*set pre-charge period*/
write_i(0x22);
write_i(0xDA); /*set COM pins*/
write_i(0x12);
write_i(0xdb); /*set vcomh*/
write_i(0x30);
write_i(0x8d); /*set charge pump enable*/
write_i(0x14);
write_i(0xAF); /*display ON*/
}
void write_i(unsigned char ins)
unsigned char m,da;
unsigned int j;
DC=0;
CS=0;
da=ins;
for(j=0;j<8;j++)
{
m=da;
SCL=0;
m=m&0x80;
if(m==0x80)
{
SDA=1;
}
else
SDA=0;
da=da<<1;
SCL=1;
CS=1;
}
void write_d(unsigned char dat)
```



```
unsigned char m,da;
unsigned int j;
DC=1;
CS=0;
da=dat;
for(j=0;j<8;j++)
{
m=da;
SCL=0;
m=m\&0x80;
if(m==0x80)
SDA=1;
}
else
SDA=0;
da=da<<1;
SCL=1;
CS=1;
void delay(unsigned int i)
while(i>0)
i--;
```

11 Command Table

Please check Driver IC datasheet

12 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature Storage	Endurance test applying the high storage	85°C	2
X B G	temperature for a long time.	200hrs	
Low Temperature Storage	Endurance test applying the high storage	-40°C	1,2
XX. 1 m	temperature for a long time.	200hrs	,
High Temperature	Endurance test applying the electric stress	85°C	
Operation	(Voltage & Current) and the thermal stress	200hrs	-
	to the element for a long time.		
Low Temperature	Endurance test applying the electric stress	-40 °C	1
Operation	under low temperature for a long time.	200hrs	-
High Temperature/	The module should be allowed to stand at	60°C,90%RH	
Humidity Operation	60°C,90%RH max, for 96hrs under no-load	96hrs	
	condition excluding the polarizer. Then		1,2
	taking it out and drying it at normal		
	temperature.		
Thermal Shock Resistance	The sample should be allowed stand the	-40°C/85°C	
	following 10 cycles of operation	10 cycles	
	-40°C 25°C 85°C√		
			-
	30min 5min 30min-		
	1 cycle₂		
Vibration Test	Endurance test applying the vibration during	Total fixed	
Vibration Test	transportation and using	amplitude:	
	transportation and using	15mm; Vibration:	
		10~55Hz;	
		One cycle 60	3
		seconds to 3	3
		directions of X,	
		Y, Z, for each 16	
Static Electricity Test	Enduments to strongly the electric strong to	minutes.	
Static Electricity Test	Endurance test apply the electric stress to	VS=800V,	
	the terminal.	RS=1.5k Ω ,	-
		CS=100pF,	
		1 time.	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

Note3: Test performed on product itself, not inside a container.

13 Warranty and Conditions

 $\underline{http://www.displaymodule.com/pages/faq}\ HYPERLINK$

"http://www.displaymodule.com/pages/faq"