# Solutions Manual to Accompany 

## PHYSICS

## Modeling Nature

John D. Mays

Austin, Texas
2015

## © 2015, 2017 Novare Science \& Math LLC

Second printing
All rights reserved. Except as noted below, no part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by information storage and retrieval systems, without the written permission of the publisher.

Published by
Novare Science \& Math
novarescienceandmath.com

## 人 <br> NOVARE

Printed in the United States of America
ISBN: 978-0-9863529-4-2
Novare Science \& Math is an imprint of Novare Science \& Math LLC.
For the complete catalog of textbooks and resources available from Novare Science \& Math, visit novarescienceandmath.com.

## Contents

Acknowledgement ..... ii
Preface ..... iii
Chapter 1 ..... 1
Chapter 2 ..... 12
Chapter 3 ..... 37
Chapter 4 ..... 64
Chapter 5 ..... 79
Chapter 6 ..... 98
Chapter 7 ..... 111
Chapter 8 ..... 129
Chapter 9 ..... 147
Chapter 10 ..... 163
Chapter 11 ..... 178
Chapter 12 ..... 192
Chapter 13 ..... 215
Chapter 14 ..... 233
Chapter 15 ..... 251
Chapter 16 ..... 258

## Chapter 1

4. a.
$35.4 \mathrm{~mm} \cdot \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}=0.0354 \mathrm{~m}$
5. b.
$76.991 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{10^{6} \mu \mathrm{~L}}{1 \mathrm{~L}}=776,991 \mu \mathrm{~L}$
6. c.
$34.44 \mathrm{~cm}^{3} \cdot \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.03444 \mathrm{~L}$
7. d.
$6.33 \frac{\mathrm{~g}}{\mathrm{~cm}^{2}} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=63.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$
4.e.
$9.35 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{~s}}{1000 \mathrm{~ms}} \cdot \frac{1 \mathrm{~s}}{1000 \mathrm{~ms}}=0.00935 \frac{\mathrm{~mm}}{\mathrm{~ms}^{2}}$
8. f.
$542.2 \frac{\mathrm{~mJ}}{\mathrm{~s}} \cdot \frac{1 \mathrm{~J}}{1000 \mathrm{~mJ}}=0.5422 \frac{\mathrm{~J}}{\mathrm{~s}}$
9. g.
$56.6 \mu \mathrm{~s} \cdot \frac{1 \mathrm{~s}}{10^{6} \mu \mathrm{~s}} \cdot \frac{10^{3} \mathrm{~ms}}{1 \mathrm{~s}}=0.0566 \mathrm{~ms}$
10. h.
$44.19 \mathrm{~mL} \cdot \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}}=44.19 \mathrm{~cm}^{3}$
11. i.
$532 \mathrm{~nm} \cdot \frac{1 \mathrm{~m}}{10^{9} \mathrm{~nm}} \cdot \frac{10^{6} \mu \mathrm{~m}}{1 \mathrm{~m}}=0.532 \mu \mathrm{~m}$
12. j.
$96,963,000 \frac{\mathrm{~mL}}{\mathrm{~ms}} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}} \cdot \frac{1000 \mathrm{~ms}}{1 \mathrm{~s}}=96,963 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

## 4. k.

$295.6 \mathrm{cL} \cdot \frac{1 \mathrm{~L}}{100 \mathrm{cL}} \cdot \frac{10^{6} \mu \mathrm{~L}}{\mathrm{~L}}=2,956,000 \mu \mathrm{~L}$
4. 1.
$0.007873 \mathrm{~m}^{3} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}}=7873 \mathrm{~mL}$
4. m.
$8750 \mathrm{~mm}^{2} \cdot \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}} \cdot \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}=0.00875 \mathrm{~m}^{2}$
4. n.
$87.1 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.871 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
4. o.
$15.75 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.01575 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$
4. p.
$0.875 \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=875 \mathrm{~m}$
4. q.
$16,056 \mathrm{MPa} \cdot \frac{10^{6} \mathrm{~Pa}}{1 \mathrm{MPa}} \cdot \frac{1 \mathrm{kPa}}{10^{3} \mathrm{~Pa}}=16,056,000 \mathrm{kPa}$
4. r.
$7845 \mu \mathrm{~A} \cdot \frac{1 \mathrm{~A}}{10^{6} \mu \mathrm{~A}} \cdot \frac{1000 \mathrm{~mA}}{1 \mathrm{~A}}=7.845 \mathrm{~mA}$
16.
magnitude $=15 \mathrm{~km}$, direction, $-19^{\circ}$

17.
magnitude $=6.0 \mathrm{~cm}$, direction, $-92^{\circ}$

18.
$\underline{\text { magnitude }=16.2 \mathrm{~N}, \text { direction, } 98^{\circ}}$

19.
magnitude $=278 \mathrm{~km} / \mathrm{hr}$, bearing, $267^{\circ}$

20. a.
$\left(4.31 \times 10^{-26} \mathrm{~kg}\right) \cdot\left(2.994 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)=1.29 \times 10^{-19} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
$p=1.29 \times 10^{-19} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}, \theta_{p}=23^{\circ}$
20.b.
$-\left(2.25 \times 10^{-6} \mathrm{C}\right) \cdot(19.95 \mathrm{~V} / \mathrm{m})=-4.49 \times 10^{-5} \mathrm{~N}$
$F=-4.49 \times 10^{-5} \mathrm{~N}, \theta_{F}=161^{\circ}$
Re-expressing to include the negative sign with the angle, $\theta_{F}=161^{\circ}-180^{\circ}=-19^{\circ}$
$\underline{F}=4.49 \times 10^{-5} \mathrm{~N}, \theta_{F}=-19^{\circ}$
20.c.
$-(15.5 \mathrm{xg}) \cdot(57.9 \mathrm{jd})=-897 \mathrm{xg} \cdot \mathrm{jd}$
$R=-897 \mathrm{xg} \cdot \mathrm{jd}, \theta_{R}=-135^{\circ}$
Re-expressing to include the negative sign with the angle, $\theta_{R}=-135^{\circ}+180^{\circ}=45^{\circ}$
$R=897 \mathrm{xg} \cdot \mathrm{jd}, \theta_{R}=45^{\circ}$
21. a.
$|\mathbf{v}|=\sqrt{\left(v_{1 x}\right)^{2}+\left(v_{1 y}\right)^{2}}=\sqrt{\left(25 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\left(14 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=29 \frac{\mathrm{~m}}{\mathrm{~s}}$
21. b.

$$
\left|\mathbf{v}_{f}\right|=\sqrt{\left(v_{f x}\right)^{2}+\left(v_{f y}\right)^{2}}=\sqrt{\left(-24.765 \frac{\mathrm{~cm}}{\mathrm{~s}}\right)^{2}+\left(-67.001 \frac{\mathrm{~cm}}{\mathrm{~s}}\right)^{2}}=71.431 \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

21. c.

$$
|\mathbf{d}|=\sqrt{\left(d_{x}\right)^{2}+\left(d_{y}\right)^{2}}=\sqrt{\left(-1.00 \times 10^{-3} \mathrm{~cm}\right)^{2}+\left(-6.77 \times 10^{-4} \mathrm{~cm}\right)^{2}}=0.00121 \mathrm{~cm}
$$

21. d.

$$
\left|\mathbf{F}_{1}\right|=\sqrt{\left(F_{1 x}\right)^{2}+\left(F_{1 y}\right)^{2}}=\sqrt{(-355 \mathrm{~N})^{2}+(865 \mathrm{~N})^{2}}=935 \mathrm{~N}
$$

21.e.

$$
|\mathbf{a}|=\sqrt{\left(a_{x}\right)^{2}+\left(a_{y}\right)^{2}}=\sqrt{\left(-2.124 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)^{2}+\left(3.910 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)^{2}}=4.450 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

## 21. f.

$$
|\mathbf{E}|=\sqrt{\left(E_{x}\right)^{2}+\left(E_{y}\right)^{2}}=\sqrt{\left(-0.0091 \frac{\mathrm{~V}}{\mathrm{~m}}\right)^{2}+\left(-0.0104 \frac{\mathrm{~V}}{\mathrm{~m}}\right)^{2}}=0.0138 \frac{\mathrm{~V}}{\mathrm{~m}}
$$

22. a.

$$
\theta_{v 1}=\tan ^{-1} \frac{v_{1 y}}{v_{1 x}}=\tan ^{-1}\left(\frac{14 \frac{\mathrm{~m}}{\mathrm{~s}}}{25 \frac{\mathrm{~m}}{\mathrm{~s}}}\right)=29^{\circ}
$$

22. b.
$\theta_{v f}=\tan ^{-1} \frac{v_{f y}}{v_{f x}}-180^{\circ}=\tan ^{-1}\left(\frac{-67.001 \frac{\mathrm{~cm}}{\mathrm{~s}}}{-24.765 \frac{\mathrm{~cm}}{\mathrm{~s}}}\right)-180^{\circ}=-110.29^{\circ}$
22.c.
$\theta_{d}=\tan ^{-1} \frac{d_{y}}{d_{x}}-180^{\circ}=\tan ^{-1}\left(\frac{-6.77 \times 10^{-4} \mathrm{~cm}}{-1.00 \times 10^{-3} \mathrm{~cm}}\right)-180^{\circ}=-34.1^{\circ}$
23. d.
$\theta_{F 1}=\tan ^{-1} \frac{F_{1 y}}{F_{1 x}}+180^{\circ}=\tan ^{-1}\left(\frac{865 \mathrm{~N}}{-355 \mathrm{~N}}\right)+180=112.3^{\circ}$
Note that prior to adding $180^{\circ}$, the result should have 3 sig digs. By adding 180 we gain a digit of precision.
24. e.
$\theta_{a}=\tan ^{-1} \frac{a_{y}}{a_{x}}+180^{\circ}=\tan ^{-1}\left(\frac{3.910 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{-2.124 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}\right)+180=118.51^{\circ}$
25. f.
$\theta_{E}=\tan ^{-1} \frac{E_{y}}{E_{x}}-180^{\circ}=\tan ^{-1}\left(\frac{-0.0104 \frac{\mathrm{~V}}{\mathrm{~m}}}{-0.0091 \frac{\mathrm{~V}}{\mathrm{~m}}}\right)-180=-131^{\circ}$
26. 


$v_{1 x}=-(45.6 \mathrm{~cm} / \mathrm{s}) \cdot \cos 57.0^{\circ}=-24.84 \mathrm{~cm} / \mathrm{s} \quad v_{1 y}=(45.6 \mathrm{~cm} / \mathrm{s}) \cdot \sin 57.0^{\circ}=38.24 \mathrm{~cm} / \mathrm{s}$
$v_{2 x}=(98.1 \mathrm{~cm} / \mathrm{s}) \cdot \cos 16.1^{\circ}=94.25 \mathrm{~cm} / \mathrm{s} \quad v_{2 y}=(98.1 \mathrm{~cm} / \mathrm{s}) \cdot \sin 16.1^{\circ}=27.20 \mathrm{~cm} / \mathrm{s}$
$R_{x}=v_{1 x}+v_{2 x}=-24.84 \mathrm{~cm} / \mathrm{s}+94.25 \mathrm{~cm} / \mathrm{s}=69.41 \mathrm{~cm} / \mathrm{s}$
$R_{y}=v_{1 y}+v_{2 y}=38.24 \mathrm{~cm} / \mathrm{s}+27.20 \mathrm{~cm} / \mathrm{s}=65.44 \mathrm{~cm} / \mathrm{s}$
$R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{\left(69.41 \frac{\mathrm{~cm}}{\mathrm{~s}}\right)^{2}+\left(65.44 \frac{\mathrm{~cm}}{\mathrm{~s}}\right)^{2}}=95.4 \mathrm{~cm} / \mathrm{s}$
$\theta_{R}=\tan ^{-1} \frac{R_{y}}{R_{x}}=\tan ^{-1}\left(\frac{65.44}{69.41}\right)=43.3^{\circ}$
24.

$a_{1 x}=0 \quad a_{1 y}=45.0 \mathrm{~m} / \mathrm{s}^{2}$
$a_{2 x}=-\left(100.7 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot \sin 35^{\circ}=-57.76 \mathrm{~m} / \mathrm{s}^{2} \quad a_{2 y}=-\left(100.7 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot \cos 35^{\circ}=-82.49 \mathrm{~m} / \mathrm{s}^{2}$
$R_{x}=a_{1 x}+a_{2 x}=0-57.76 \mathrm{~m} / \mathrm{s}^{2}=-57.76 \mathrm{~m} / \mathrm{s}^{2}$
$R_{y}=a_{1 y}+a_{2 y}=45.0-82.49 \mathrm{~m} / \mathrm{s}^{2}=-37.49 \mathrm{~m} / \mathrm{s}^{2}$
$R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{\left(-57.76 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)^{2}+\left(-37.49 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)^{2}}=68.9 \mathrm{~m} / \mathrm{s}^{2}$
$\theta_{R}=\tan ^{-1} \frac{R_{y}}{R_{x}}+180^{\circ}=\tan ^{-1}\left(\frac{37.49}{57.76}\right)+180^{\circ}=213^{\circ}$
25.

Let Austin to Atlanta vector $=\mathrm{A}$, St. Louis to Atlanta vector $=\mathrm{B}$, Austin to St. Louis vector $=\mathrm{C}$

$\mathbf{C}+\mathbf{B}=\mathbf{A}$, thus $\mathbf{C}=\mathbf{A}-\mathbf{B}$
$A_{x}=1319 \mathrm{~km} \cdot \cos 20.5^{\circ}=1235 \mathrm{~km}$
$A_{y}=1319 \mathrm{~km} \cdot \sin 20.5^{\circ}=462 \mathrm{~km}$
$B_{x}=753 \mathrm{~km} \cdot \cos 44.0^{\circ}=542 \mathrm{~km}$
$B_{y}=-753 \mathrm{~km} \cdot \sin 44.0^{\circ}=-523 \mathrm{~km}$
$C_{x}=A_{x}-B_{x}=1235 \mathrm{~km}-542 \mathrm{~km}=693 \mathrm{~km}$
$C_{y}=A_{y}-B_{y}=462 \mathrm{~km}-(-523 \mathrm{~km})=985 \mathrm{~km}$
$C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(693 \mathrm{~km})^{2}+(985 \mathrm{~km})^{2}}=1204 \mathrm{~km}$
$\theta_{C}=\tan ^{-1} \frac{C_{y}}{C_{x}}=\tan ^{-1}\left(\frac{693}{985}\right)=35.1^{\circ}$
Note that when calculating $C$, the sum under the radical has four sig digs, allowing us to keep four digits in the magnitude of $C$.
26.

Let vector from 1 to $2=\mathbf{A}$, from 2 to $3=\mathbf{B}$, and from 3 to $4=\mathbf{C}$

$A_{x}=13.00 \mathrm{~cm} \cdot \cos 75.00^{\circ}=3.3646 \mathrm{~cm}$
$B_{x}=-17.00 \mathrm{~cm} \cdot \cos 45.00^{\circ}=-12.021 \mathrm{~cm}$
$C_{x}=4.50 \mathrm{~cm}$
$A_{y}=13.00 \mathrm{~cm} \cdot \sin 75.00^{\circ}=12.557 \mathrm{~cm}$
$B_{y}=-17.00 \mathrm{~cm} \cdot \sin 45.00^{\circ}=-12.021 \mathrm{~cm}$
$R_{x}=A_{x}+B_{x}+C_{x}=3.3646 \mathrm{~cm}-12.021 \mathrm{~cm}+4.50 \mathrm{~cm}=-4.156 \mathrm{~cm}$
$R_{y}=A_{y}+B_{y}=12.557 \mathrm{~cm}-12.021 \mathrm{~cm}=0.536 \mathrm{~cm}$
$R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{(-4.156 \mathrm{~cm})^{2}+(0.536 \mathrm{~cm})^{2}}=4.19 \mathrm{~cm}$
$\theta_{R}=\tan ^{-1} \frac{R_{y}}{R_{x}}+180^{\circ}=\tan ^{-1}\left(-\frac{0.536}{4.156}\right)+180^{\circ}=-7.35^{\circ}+180^{\circ}=172.7^{\circ}$
Note that the $-7.35^{\circ}$ still carries an extra digit of precision. With two digits, it has one decimal place, and so when added to $180^{\circ}$ (which is exact), results in an angle with one decimal place.
27.

The $x$-components are:
$-3.4 \times 10^{-6} \mathrm{~N}$
$-3.2 \times 10^{-6} \mathrm{~N} \cdot \cos 59^{\circ}=-1.65 \times 10^{-6} \mathrm{~N}$
$1.2 \times 10^{-6} \mathrm{~N} \cdot \cos 67^{\circ}=4.69 \times 10^{-7} \mathrm{~N}$
Thus, $R_{x}=-3.4 \times 10^{-6} \mathrm{~N}-1.65 \times 10^{-6} \mathrm{~N}+4.69 \times 10^{-7} \mathrm{~N}=-4.58 \times 10^{-6} \mathrm{~N}$
The $y$-components are:
0
$3.2 \times 10^{-6} \mathrm{~N} \cdot \sin 59^{\circ}=2.74 \times 10^{-6} \mathrm{~N}$
$1.2 \times 10^{-6} \mathrm{~N} \cdot \sin 67^{\circ}=1.11 \times 10^{-6} \mathrm{~N}$
Thus, $R_{y}=2.74 \times 10^{-6} \mathrm{~N}+1.11 \times 10^{-6} \mathrm{~N}=3.85 \times 10^{-6} \mathrm{~N}$
$R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{\left(-4.58 \times 10^{-6} \mathrm{~N}\right)^{2}+\left(3.85 \times 10^{-6} \mathrm{~N}\right)^{2}}=6.0 \times 10^{-6} \mathrm{~N}$
$\theta_{R}=\tan ^{-1} \frac{R_{y}}{R_{x}}+180^{\circ}=\tan ^{-1}\left(-\frac{3.85}{4.8}\right)+180^{\circ}=-40.0^{\circ}+180^{\circ}=1.40 \times 10^{2}$ degrees
28.


The $x$-components are:
$F_{1 x}=-72.1 \mathrm{~N} \cdot \cos 63^{\circ}=-32.73 \mathrm{~N}$
$F_{2 x}=73.0 \mathrm{~N} \cdot \cos 46.4^{\circ}=50.34 \mathrm{~N}$
$F_{3 x}=-84.2 \mathrm{~N} \cdot \cos 39^{\circ}=-65.44 \mathrm{~N}$
Thus, $R_{x}=-32.73 \mathrm{~N}+50.34 \mathrm{~N}-65.44 \mathrm{~N}=-47.83 \mathrm{~N}$
The $y$-components are:
$F_{1 y}=-72.1 \mathrm{~N} \cdot \sin 63^{\circ}=-64.24 \mathrm{~N}$
$F_{2 y}=73.0 \mathrm{~N} \cdot \sin 46.4^{\circ}=52.86 \mathrm{~N}$
$F_{3 y}=84.2 \mathrm{~N} \cdot \sin 39^{\circ}=52.99 \mathrm{~N}$
Thus, $R_{y}=-64.24 \mathrm{~N}+52.86 \mathrm{~N}+52.99 \mathrm{~N}=41.61 \mathrm{~N}$
$R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{(-47.83 \mathrm{~N})^{2}+(41.61 \mathrm{~N})^{2}}=63.4 \mathrm{~N}$
$\theta_{R}=\tan ^{-1} \frac{R_{y}}{R_{x}}+180^{\circ}=\tan ^{-1}\left(-\frac{41.61}{47.83}\right)+180^{\circ}=-41.0^{\circ}+180^{\circ}=139^{\circ}$
29.


The $x$-components are:
$F_{1 x}=2450 \mathrm{~N} \cdot \cos 25.0^{\circ}=2220.5 \mathrm{~N}$
$F_{2 x}=1965 \mathrm{~N} \cdot \cos \left(-13.5^{\circ}\right)=1910.7 \mathrm{~N}$
$F_{3 x}=1370 \mathrm{~N} \cdot \cos 175.1^{\circ}=-1365.0 \mathrm{~N}$
$F_{4 x}=2009 \mathrm{~N} \cdot \cos \left(-101.5^{\circ}\right)=-400.5 \mathrm{~N}$
Thus, $R_{x}=2220.5 \mathrm{~N}+1910.7 \mathrm{~N}-1365.0 \mathrm{~N}-400.5 \mathrm{~N}=2365.7 \mathrm{~N}$
The $y$-components are:
$F_{1 y}=2450 \mathrm{~N} \cdot \sin 25.0^{\circ}=1035.4 \mathrm{~N}$
$F_{2 y}=1965 \mathrm{~N} \cdot \sin \left(-13.5^{\circ}\right)=-458.7 \mathrm{~N}$
$F_{3 y}=1370 \mathrm{~N} \cdot \sin 175.1^{\circ}=117.0 \mathrm{~N}$
$F_{4 y}=2009 \mathrm{~N} \cdot \sin \left(-101.5^{\circ}\right)=-1968.7 \mathrm{~N}$
Thus, $R_{y}=1035.4 \mathrm{~N}-458.7 \mathrm{~N}+117.0 \mathrm{~N}-1968.7 \mathrm{~N}=-1275.0 \mathrm{~N}$
$R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{(2365.7 \mathrm{~N})^{2}+(-1275.0 \mathrm{~N})^{2}}=2690 \mathrm{~N}$
$\theta_{R}=\tan ^{-1} \frac{R_{y}}{R_{x}}=\tan ^{-1}\left(-\frac{1275.0 \mathrm{~N}}{2365.7 \mathrm{~N}}\right)=-28.3^{\circ}$
30. a.

$\mathbf{A} \cdot \mathbf{B}=A B \cos \theta=(14.6 \mathrm{~N})(16.0 \mathrm{~m}) \cos 52.8^{\circ}=141 \mathrm{~N} \cdot \mathrm{~m}$
30.b.

$W=\mathbf{F} \cdot \mathbf{d}=F d \cos \theta=\left(9.21 \times 10^{4} \mathrm{~N}\right)\left(4.021 \times 10^{-5} \mathrm{~m}\right) \cos 135.9^{\circ}=-2.66 \mathrm{~N} \cdot \mathrm{~m}$
30. c.

$U=-\mathbf{p} \cdot \mathbf{E}=-p E \cos \theta=-(0.0258 \mathrm{~m} \cdot \mathrm{C})\left(6.02 \times 10^{4} \mathrm{~N} / \mathrm{C}\right) \cos 90.3^{\circ}=8.13 \mathrm{~m} \cdot \mathrm{~N}$
(I wrote the units as they would appear they should be written from the problem statement.
But actually, more advanced physics students might recognize that this is an actual equation in
which the variable $U$ represents potential energy, which has units of $\mathrm{N} \cdot \mathrm{m}$ or J.)
31. a.

$|\mathbf{A} \times \mathbf{B}|=A B \sin \theta=(53.2 \mathrm{~m})(16.0 \mathrm{~N}) \sin 73.3^{\circ}=815 \mathrm{~m} \cdot \mathrm{~N}$
The direction of $\mathbf{A} \times \mathbf{B}$ is into the page.

## 31. b.

Since these are the same vectors as in 31. a.
$|\mathbf{B} \times \mathbf{A}|=|\mathbf{A} \times \mathbf{B}|=815 \mathrm{~m} \cdot \mathrm{~N}$
The direction of $|\mathbf{B} \times \mathbf{A}|$ is out of the page.
31.c.

$\boldsymbol{\tau}=|\mathbf{r} \times \mathbf{F}|=r F \sin \theta=(0.0234 \mathrm{~m})\left(6.18 \times 10^{-5} \mathrm{~N}\right) \sin 103^{\circ}=1.41 \times 10^{-6} \mathrm{~m} \cdot \mathrm{~N}$
The direction of $\tau$ is into the page.
31. d.

$\boldsymbol{\tau}=|\mathbf{p} \times \mathbf{E}|=p E \sin \theta=\left(1.75 \times 10^{-3} \mathrm{~m} \cdot \mathrm{C}\right)\left(4.96 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \sin 132.5^{\circ}=6.40 \times 10^{2} \mathrm{~m} \cdot \mathrm{~N}$
The result is written in scientific notation because three sig digs are required. The direction of $\tau$ is out of the page.
32.


For a proton, $q=+1.60 \times 10^{-19} \mathrm{C}$. Thus,
$|\mathbf{F}|=q(|\mathbf{v} \times \mathbf{B}|)=q v B \sin \theta=\left(1.60 \times 10^{-19} \mathrm{C}\right)(750 \mathrm{~m} / \mathrm{s})(0.15 \mathrm{~T}) \sin 77^{\circ}=1.8 \times 10^{-17} \mathrm{~N}$
The direction of $\mathbf{F}$ is out of the page.
For an electron, $q=-1.60 \times 10^{-19} \mathrm{C}$. The negative sign reverses the direction of $\mathbf{F}$, so the magnitude of $\mathbf{F}$ is the same, but the direction is into the page.

