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Introduction
What is Chemistry All About?

This computer model depicts three of the orbitals available in atoms for holding electrons. Shown are 
one of the three p orbitals in each of three different subshells. The inner pair of orbitals can hold two 
of the highest energy electrons for elements 5 through 10 in the Periodic Table of the Elements. The 
middle pair is available to hold two of the highest energy electrons for elements 13 through 18 in the 
periodic table, and the outer pair can hold two of the highest energy electrons belonging to elements 
31 through 36 in the periodic table.

In this Introduction, we touch briefly on electron orbitals. We treat the subject in more depth in 
Chapter 1.
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	 What is Chemistry All About?

Objectives for the Introduction

After studying this chapter and completing the exercises, you should be able to do each of the 
following tasks, using supporting terms and principles as necessary.

1.	 Briefly explain how electrons, electrical forces, minimizing energy, whole number ratios, and 
modeling can each be thought of as central to understanding what chemistry is all about.

2.	 State and explain examples illustrating a system moving to a lower energy state and a system 
experiencing an increase in entropy.

3.	 Briefly explain hydrogen bonding and why it plays such a large role in mixtures containing 
water.

4.	 Explain the relationship between energy and atomic orbitals.

I.1	 A Few Major Themes

Chemistry is the study of the elements, how they combine to form mixtures and compounds, 
the properties of these substances, and the processes involved. One of the astonishing things 
about the physical world is that as complex as the details are, we can understand a lot about how 
it works in terms of just a few basic principles from physics. This striking situation is a direct 
result of the fact that nature is governed by an orderly, mathematical set of physical laws—the 
laws set in place by God according to his wisdom when he created the universe. 

The existence of nature and of the laws of physics are two obvious clues to God’s role in cre-
ating the universe: the universe is here because God made it, and it is governed in an orderly, 
mathematical way because it was God’s pleasure to make it so. A third clue is that we can under-
stand it.

Studying chemistry involves learning a great deal of terminology, and exploring quite a few 
different types of processes. The amount of information involved can be daunting! But one way 
to help organize all this information is to be alert to a few fundamental principles that turn up 
time and again. In this introductory chapter, we take a brief look at a few of these principles. 
As you read through the chapters ahead, you will see again and again that we can understand a 
lot about topics such as molecular structure, solubility, and chemical reactions in terms of a few 
basic concepts.

I.1.1 Chemistry Is All About Electrons
You recall that atoms consist of a tiny nucleus containing particles called protons and neu-

trons, and that the nucleus is surrounded by cloud-like regions containing the atoms’ electrons. 
As it turns out, a lot of chemistry can be understood in terms of the atoms’ electrons—where 
they are, how many there are, whether an atom has ionized by gaining or losing electrons, 
whether an atom is sharing electrons with another atom, and so on.

The cloud-like regions containing an atom’s electrons are called orbitals, and electrons reside 
in different orbitals according to how much energy they have. The arrangement of the orbitals 
is the same for all atoms, although the specific energies associated with each orbital vary from 
atom to atom, depending on the size of the nucleus and how many electrons an atom has. The 
orbitals in atoms are grouped into different energy groupings called shells. There are seven main 
shells containing the orbitals with the electrons of all the elements discovered so far. There are 
additional shells above these that high-energy electrons can move into when they absorb more 
energy.

In each shell, there is a specific number of orbitals, and each orbital and set of orbitals holds a 
specific number of electrons. One of the essential facts about atomic behavior is that atoms seek 
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to gain, lose, or share electrons until they have just the right num-
ber of electrons so that they have only full shells, without any extra 
electrons and without electrons missing from any orbitals in the full 
shells. If only the first shell is full, an atom has two electrons. If the 
first two shells are full, 10 electrons. If the first three are full, 28 elec-
trons, and so on. Significantly, these numbers relate to the numbers 
of elements in the rows of the Periodic Table of the Elements. With 
this one fact, we can understand a great deal about how atoms of one 
element bond with atoms of other elements to form compounds.

The position of the electrons within an atom also has a lot to do 
with how an atom behaves. One aspect of atoms that affects the posi-
tion of electrons is the shapes of the different orbitals. Some orbitals 
are spherically shaped, some are shaped in pairs of protruding lobes 
often described as “dumbbells,” and some are shaped as rings. There 
are other more complex shapes as well. Since all electrons repel each 
other due to their negative electrical charge, electrons located in the 
lobes of dumbbell-shaped orbitals push away from each other, re-
sulting in molecules with very particular shapes. Examples are the 
water, ammonia, and methane molecules illustrated in Figure I.1.

Electron position is also affected by the fact that within mol-
ecules some atoms attract electrons more strongly than others, an 
effect denoted by a value called the electronegativity of the atom. We 
discuss this in more detail later, but I will mention an important 
example here to illustrate this point. The electronegativity values for 
oxygen and hydrogen are 3.44 and 2.20, respectively. This means the 
oxygen atoms in water molecules attract electrons more strongly 
than the hydrogen atoms do. As a result, the four bonding electrons 
in the molecule crowd over toward the oxygen atom, making the ox-
ygen region of the water molecule more 
electrically negative and the hydrogen 

regions more electrically positive. These differences make the water 
molecule electrically imbalanced—or polar, as we say—negative on 
one side and positive at the ends on the other side, as illustrated 
in Figure I.2. In this diagram, the arrows point from the positive 
regions of the molecule toward the negative region of the molecule.

The shapes and polarizations affect atomic behavior because of 
electrical attractions and repulsions, the basic theme we discuss in 
the next section.

I.1.2 Chemistry Is All About Electrical Forces
You know that there are two types of electrical charge: protons 

are positively charged, and electrons are negatively charged by ex-
actly the same amount. Like charges repel each other (such as two positive charges) and opposite 
charges attract (positive and negative).

The reason these electrical attractions and repulsions are so important for chemistry is 
that atoms and molecules are as prickly as porcupines with charges that repel or attract other 
charges. Some of these attractions and repulsions are stable and long-lasting, like the attraction 
between positive sodium ions and negative chlorine ions that holds together the atoms in the 
crystal lattice of sodium chloride (table salt). All ionic compounds are held together in rigid 

Figure I.1. Representations of 
the H2O water molecule (top), 
the NH3 ammonia molecule 
(middle), and the CH4 methane 
molecule (bottom).

+ +

–

Figure I.2. The higher 
electronegativity of oxygen 
atoms compared to hydrogen 
atoms results in the polar water 
molecule.
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crystal structures by the strong forces of electrical attraction and 
repulsion between the ions in the crystal lattice.

Other electrical interactions are sort of semi-stable, you might 
say, given the fact that molecules are moving around all the time. 
The world-class example of this is hydrogen bonding, which we 
examine in detail later. The most common example of hydrogen 
bonding takes us back to the polar water molecule described in 
the previous section. Since water molecules are polar, the positive 
regions of one water molecule are attracted toward the negative 
regions of other water molecules, as illustrated in Figure I.3.

The importance of the hydrogen bonding phenomenon cannot 
be overstated. Water is everywhere, and thus so is hydrogen bond-
ing. Hydrogen bonding explains why so many things dissolve in 
water, it explains why water travels upwards against the force of 
gravity when soaking into the fibers of a towel, and it explains why 
water gets less dense right before it freezes (which in turn explains 
why ice floats). Figure I.4 is a model of how the water molecules 
are arranged in ice. The dashed lines in the figure indicate the hy-
drogen bonds between water molecules. The result of these bonds 
is the three-dimensional, hexagonal structure of ice.

There are several other ways electrical forces between atoms 
and molecules are made man-
ifest. In general, these differ-
ent attractions and repulsions 
are called intermolecular forc-
es. There is an electron cloud 
around every atom (except in 
the case of a hydrogen atom 
that has lost its only electron 
due to ionization). There is 
also an electron cloud around 
and between the atoms of ev-
ery molecule. As the electrons 
swarm around in these clouds, 
there are moments when some 
regions in the molecule are 
more negatively charged be-
cause of electrons crowding 
together. There are other mo-
ments when regions are more 
positively charged because 
electrons have temporar-
ily moved away and the posi-
tive charge on the protons in 
atomic nuclei are dominant in 
the area. These electron move-
ments and crowding go on all 

Figure I.4. The crystal structure in ordinary water ice. In this model, 
oxygen atoms are red and hydrogen atoms are white. Hydrogen bonds 
are shown as dashed lines. Thick black lines indicate the bonding of 
hydrogen to oxygen inside individual water molecules.

+

–

+

–

Figure I.3. Hydrogen bonding 
in water molecules. Dashed 
lines indicate hydrogen bonds 
between water molecules.
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Hmm... Interesting.	 Why water forms beads 

As described in this chapter, the polarity of water molecules makes them cling to one an-
other. When nonpolar molecules are in contact with water, the water molecules are at-

tracted to each other but not to the nonpolar 
molecules. The molecules in waxy leaves and 
oil-based wood finishing products are nonpolar. 
When water molecules rest on a surface of non-
polar molecules, they cling to each other but not 
to the surface, and the result is the formation of 
water drops. Small drops are nearly spherical be-

cause this shape minimizes the energy 
between the molecules. Larger drops 
flatten out due to their greater weight.

Nonpolar molecules do not dissolve in water. The attractions between the polar water mol-
ecules squeeze out the nonpolar molecules, causing the two substances to separate. This is 
why oil and vinegar separate—oil molecules are nonpolar and vinegar is mostly water.

the time and at extremely high speeds, giving rise to ever-changing patterns of intermolecular 
forces.

I.1.3 Chemistry Is All About Minimizing Energy
One of the primary drivers causing atoms to do what they 

do is the natural tendency of all things to minimize the en-
ergy associated with the state they are in. Minimizing energy 
is a concept that explains a great deal of chemical behavior. 
Here we look at several examples of objects in different en-
ergy states. Then we apply the concept of minimizing energy 
to phenomena we see occurring in chemistry.

To begin, in a previous science course you may have stud-
ied different forms of potential energy. For example, gravita-
tional potential energy is the energy an object has after be-
ing lifted up in a gravitational field. Figure I.5 shows a ball 
up on the side of the hill. The ball is trapped in a small valley 
or depression. The ball is located up above the ground, so it 

Figure I.5. The ball is trapped in the 
lowest-energy region in its vicinity. 
However, if a tunnel to a lower-energy 
region opens up, the ball goes there.
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has gravitational potential energy. The ball always acts to reduce its potential energy if given a 
chance. If a tunnel opens up to a lower energy state, the ball goes there, releasing potential en-
ergy into some other form of energy (such as kinetic energy) as it goes. Another way for the ball 
to release potential energy and move to a lower state is for someone to hit it or kick it so that it 
has enough kinetic energy to get over the small hill where it is trapped. The point is that given 
the chance, the ball releases potential energy and moves to a lower energy state.

Another example of this idea is shown in Figure I.6. A cone held on its point has potential 
energy that is released if the cone is released and allowed to fall. In this case, the cone doesn’t 
even need any kind of push or kick; it spontaneously 
moves to the lower energy state (laying down on its 
side) if released.

As a third example, consider the act of stretching 
a rubber band. To stretch out a rubber band, you have 
to supply energy. That is, you have to do mechanical 
work on the rubber band. If you release the stretched 
rubber band, it spontaneously contracts back to its 
lower energy (unstretched) state.

Let’s now apply the idea of minimizing energy to a 
familiar chemical reaction: the combustion of hydro-
gen to produce water. The reactants are molecules of 
hydrogen and oxygen. Each of these gases exists as di-
atomic molecules, meaning that each hydrogen mol-
ecule is a pair of hydrogen atoms bonded together, 
and each oxygen molecule is a pair of oxygen atoms 
bonded together, as illustrated in Figure I.7. At room 
temperature, these gas molecules zoom around inside their container, colliding with one an-
other several billion times per second, but otherwise nothing else happens.

In terms of the energy of these molecules, they are in a situation similar to the ball in Figure 
I.5: there are lower energy states the molecules can go to, releasing energy in the process, but 
they can’t get there without a boost of energy to get the pro-
cess started. Now, if a spark or flame is introduced to this gas 
mixture, the heat from the spark or flame excites the nearby 
molecules, causing them to move much faster and slam into 
each other with enough energy to break the bonds holding 
the molecules together. The result—which only lasts for a tiny 
fraction of a second—is a soup of unbonded gas atoms.

At this point, we have a situation similar to the stretched 
rubber band the instant after being released, before it has had 
a chance to shrink. Electrical attractions between the protons 
and electrons in the isolated atoms of oxygen and hydrogen 
draw the atoms toward each other at an extremely high rate. 
Consider the collapse of the rubber band after it is released. 
It collapses to its unstretched state—a lower energy state—re-
leasing energy in the process. The energy released might result 
in a snap (kinetic energy) that stings your hand and a sound 
wave (kinetic energy in moving air molecules) producing a 
snapping sound. Just as the relaxed rubber band is at a lower energy state and releases energy to 
get there, the hydrogen and oxygen atoms collapse together to the lowest energy state they can 
find, which is to form water molecules (H2O). As they do so, they release a lot of energy in the 

Figure I.6. The cone on the left is in a higher 
energy state. When released, it falls to the 
lower energy state shown on the right.

Figure I.7. Diatomic oxygen and 
hydrogen gas molecules.

oxygen 
molecule

hydrogen 
molecule
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form of light and heat and all this happens in an 
instant. This is the explosion of hydrogen, captured 
in the photograph of Figure I.8.

This release of heat indicates the reaction is exo-
thermic—the reaction releases energy. When con-
sidering the way energy relates to various chemical 
processes, I have found it very helpful to remember 
the rubber band and to compare it in my mind to 
the way positive and negative ions are attracted to 
each other. If separated positive and negative ions 
are released and allowed to fly together, energy is 
released—the light and heat of the exothermic re-
action—as the ions move to a lower energy state. 
To separate them, one has to pull them apart by 
putting in energy (doing work on them) and thus 

moving them to a higher energy state—just like stretching the rubber band. This is an endother-
mic process, where energy is being absorbed by the ions. The most well-known example of an 
endothermic chemical reaction is the photosynthesis reaction that occurs in plants, depicted in 
Figure I.9.

And I can’t help pointing out in passing the exquisite elegance of the photosynthesis reaction, 
a process both simple and incredibly complex that happens automatically and continuously all 
over the world. Consider the care with which God placed oxygen-breathing creatures like our-
selves on a planet covered with oxygen-producing vegetation. Of course, every school kid learns 
about photosynthesis, but do we also learn that the delicate balance displayed everywhere in the 
environment around us in creation is a tremendous gift? I encourage you, as a young student 

made in God’s image, to give thanks and worship to our 
loving Creator for this most wonderful gift!

There are two more important concepts about the role 
of energy in chemistry to note here. The first involves a 
quantity called entropy. Entropy is a term that originated 
in the field of thermodynamics. Entropy is a measure of the 
disorder present in a system, and the second law of thermo-
dynamics states that left to themselves, physical processes 
go in a direction that increases the entropy (disorder) in the 
system. As an example, consider a glass of water you may 
be holding in your hand versus a broken glass on the floor 
with water splashed everywhere. While the glass is intact 
with the water contained in it, the system of glass and water 
is in an orderly state. When you release the glass, disorder 
increases—the glass breaks and the water goes everywhere 
on the floor. If you leave the mess like this, the disorder con-
tinues to increase: the water evaporates and the water mole-
cules are not even together any more at all. Instead, they are 
randomly distributed around in the atmosphere. And with 
time, the chunks of glass get trampled and broken more and 
more until the remnants of the glass are completely gone. 
You will never see this process occur in reverse!

For some chemical processes, the minimizing of energy 
and the increase of entropy both pull in the same direction. 

Figure I.8. Energy released as heat and light as 
hydrogen and oxygen atoms combine to form 
water molecules.

Figure I.9. The photosynthesis 
reaction is endothermic, as light 
from the sun is used by plants to 
convert water and carbon dioxide 
into sugar and oxygen.

carbon dioxide water sugar oxygen

water

sunlight

oxygen

carbon
dioxide

6CO2  +  6H2O →
light

 C6H12O6  +  6O2
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In other cases, they try to pull the system in opposite directions. This sets up a sort of tug of war, 
and the process goes in the most favorable direction. We discuss this in more detail later.

Finally, some detail is in order regarding the boundaries surrounding energy minimization. 
Try this little thought experiment: imagine a hydrogen ion, which is simply a proton with its 
positive charge. Nearby is an negatively charged electron, as illustrated in Figure I.10. Since 
these particles have opposite charges, they are strongly attracted to each other, and since the pro-
ton’s mass is 1,836 times greater than the electron’s mass, the electron dashes toward the proton 
while the proton essentially stays put, waiting for the electron to arrive. You might expect that 
the electron would crash right into the proton, bringing the potential energy between them right 
down to zero. But this is not what happens.

In 1905, Albert Einstein theorized that energy is quantized—it comes in discrete chunks or 
packets. Since 1905, a host of scientists have explored the quan-
tization of energy, confirming Einstein’s proposal over and over 
and giving birth to the now well-developed theory of quantum 
mechanics. What quantum mechanics suggests for our proton-
electron scenario is that an electron in an orbital of an atom can-
not possess just any old amount of energy; it can only possess 
particular values of energy. In the context of dropping into one 
of the orbitals surrounding the proton, the electron can only 
possess an amount of energy corresponding to the one of the energies of the proton’s orbitals. 
The bottom line is that instead of crashing into the proton and sticking to it like cat hair stick-
ing to your pants, the electron instead pops into the lowest energy orbital available around the 
proton and stays there, captive, buzzing around furiously like a bee in a bottle. (But though this 
analogy may be suggestive, it is strictly metaphorical. Electrons are not at all like bees. For one 
thing, they don’t have wings. And they don’t make honey, either.)

I.1.4 Chemistry Is All About Whole Number Ratios of Atoms
It is strange to think that even as recently as the beginning of the 20th century there was no 

consensus among scientists as to whether atoms even existed. In 1803, English scientist John 
Dalton put forward the first detailed, scientific atomic theory. Dalton proposed that all material 
substances are composed of atoms, and that the way different compounds are formed is by at-
oms combining together. Since various substances are composed of discrete, individual particles 
and not just a continuum of matter, there is always a whole number of each type of atom in the 
substance.

Although many scientists throughout the 19th century refused to accept the existence of 
atoms, we now agree that Dalton was correct. Compounds do form with whole-number ratios 
of the atoms involved. (Back then, those who accepted the existence of atoms were called “at-
omists.” Today, everyone is an atomist, so we don’t need a name for this view any more.) As an 
example, sulfuric acid, H2SO4, has two hydrogen atoms, one sulfur atom, and four oxygen atoms 
in every molecule, so the ratio of oxygen atoms to hydrogen atoms in the molecule is 2 to 1. The 
ratio of oxygen atoms to sulfur atoms is 4 to 1. Of course, there are strange exceptions to every 
rule, including this one. Nevertheless, it is correct to say that just about every compound, re-
gardless of how the atoms are structured, consists of atoms of different elements joined together 
in predictable whole-number ratios. Figure I.11 contains a photo of the mineral fluorite along 
with a computer model of the crystal structure of fluorite, or calcium fluoride, which has the 
formula CaF2. In this crystal structure, the ratio of fluorine atoms to calcium atoms is 2 to 1. The 
caption in the figure explains this, using the computer model of the crystal structure as an aid.

The fact that atoms combine in whole-number ratios is a powerful computational tool. 
When we get into the math behind chemical reactions (stoichiometry, as it is called), we will ap-

(+)
proton electron

(–)

Figure I.10. Oppositely charged 
particles strongly attracted to each 
other.
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peal often to the whole-number ratios of atoms involved in order to compute how much of one 
compound reacts with a given quantity of another compound.

I.1.5 Chemistry Is All About Modeling
Chemical reactions are happening around us all the time. Just pour a can of soft drink into 

a glass and watch the carbonic acid (H2CO3) in the can convert into the carbon dioxide bubbles 
and water (CO2 and H2O). Light up the gas grill and watch methane (CH4) reacting with the 
oxygen (O2) in the air to produce carbon dioxide (CO2) and water (H2O). Heat up a pan of cake 
batter in an oven and the rather complicated molecules in the batter reacts and change into dif-
ferent complicated molecules in a cake.

In these examples, even though we see bulk materials going into a chemical reaction (the 
reactants) and resulting from the chemical reaction (the products), we are not able to see the 
actual atoms and molecules as they zoom around, combining with and separating from each 
other. Understanding the behavior of things we cannot see is tricky business.

As mentioned in the previous section, even in recent scientific history the existence of atoms 
was debated for a hundred years. The issue was finally resolved with experiments in the early 
20th century that gave more and more support to the theory that material substances were com-
posed of atoms. We certainly know a lot more today about atoms and their internal structure 
than we did just a few decades ago. We can even put this knowledge to use in designing amazing 
new engineering materials, specialty drugs, and even chemical delivery systems to get the drugs 
into our bodies. But there remains much we do not understand about atoms.

It is helpful to think of science as the process of building “mental models” of the natural 
world. These mental models are called theories. The information we use to build our mental 
models—scientific facts—comes from experiments, observations, and inferences from these.

Since chemistry deals so much with atoms and molecules, which we can’t see, we are almost 
completely dependent on inferences to develop atomic models describing how the atomic world 
works. Knowing that the gunpowder in a firecracker explodes when ignited doesn’t require a 

Figure I.11. The ratio of fluorine atoms (yellow) to 
calcium atoms (white) in fluorite is 2 to 1. To see this, 
note that there are 8 fluorine atoms completely within 
this crystalline cell. Each of the 8 calcium atoms at the 
corners is shared by 8 cells—the one shown and 7 other 
surrounding cells. Eight calcium atoms each shared 8 
ways contributes a net of 1 calcium atom to the cell. 

Then there are 6 calcium atoms on the faces of the cell, 
each shared by the cell shown and the adjacent cell. Six 
atoms each shared 2 ways contributes a net of 3 atoms 
to the cell. In total then, this cell claims 8 fluorine atoms 
and 4 calcium atoms, a ratio of 2 to 1.
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model. It is obvious to all of us that gunpowder is explosive. But why is it explosive? What are the 
rules governing how the atoms in those compounds behave? Understanding why gunpowder 
explodes does require a model. And the models we work with in chemistry come at us from two 
different directions.

First, there is the information we gather from experiments. Chemical experimentation has 
been going on for hundreds of years. In the early days of the scientific revolution, scientists were 
amazed to discover quantitative laws such as Dalton’s whole number ratios and the inverse rela-
tionship between the pressure and volume of a gas, a relationship known as Boyle’s Law. Second, 
there is the theoretical modeling that occurs when scientists attempt to apply physical principles 
from quantum mechanics, thermodynamics, and statistical mechanics to the solution of chemi-
cal problems. The shapes and sizes of the atomic orbitals, which we address in Chapter 1, are an 
example of this type of theoretical modeling.

The theoretical models developed by scientists are the basis for our entire understanding of 
how the natural world functions. Successful theories are those that account for the facts we know 
and lead to new hypotheses (predictions) that can be put to the test. It is helpful to think about 
the relationship between facts, theories, hypotheses, and experiments as illustrated in Figure 
I.12. This diagram illustrates what I call the Cycle of Scientific Enterprise. It is important for every 
student to develop a correct understanding of the kind of knowledge scientific study provides 
for us. The goal of science is to uncover the truth about how nature works, but scientific theories 
are always works in progress. Even our best theories are provisional and subject to change. For 

Theory

Analysis
Are the experimental results 

consistent with the theory we 
started with?

Fact

Yes

No

Our best explanation 
at present

Hypothesis
An informed prediction, 

based on a theory

Experiment
Putting the hypothesis 

to the test

Review
Reconsider experimental 

methods, appropriateness of 
hypothesis, adequacy of theory

Fact

Fact

New Fact
 

Figure I.12. The Cycle of Scientific Enterprise.
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this reason, science is not in the business of making truth claims about scientific knowledge. Sci-
ence is in the business of modeling how nature works with theories based on research.

As our theories develop over time, our hope is that they get closer and closer to the truth—
the amazing and profound truth about mysteries such as what protons and electrons are, why 
they have the properties they have, and how the two most successful theories of the 20th cen-
tury—quantum mechanics and general relativity—can be reconciled with each other. But the 
truth about nature is always out in front of us somewhere, always outside our grasp. To know the 
truth about nature we would have to understand nature as God understands it. We are nowhere 
close to that.

Here are some definitions to keep in mind as you consider the models we discuss in future 
chapters.

Fact	 A proposition based on a large amount of scientific data that is correct so far as 
we know. Facts are discovered by experiment, observation, and inferences from 
experiments and observations. Facts can and do change as new scientific knowl-
edge—new data—is acquired. Since facts are always subject to change, we gener-
ally avoid terms like true or proven. Instead, we say a fact is correct so far as we 
know.

Theory	 A mental model that accounts for the data (facts) in a certain field of research, and 
attempts to relate them together, interpret them, and explain them. Scientific theo-
ries are successful if they repeatedly allow scientists to form new hypotheses that 
can be put to experimental test. Successful theories are the glory and goal of science. 
Nevertheless, theories, like facts, are provisional and subject to change. Indeed, 
theories are almost constantly evolving as research continues. And as with facts, 
when referring to theories we avoid terms like true or proven. Instead, we speak in 
terms of how successful theories have been in generating hypotheses that are con-
firmed by experiments. A widely accepted scientific theory should be understood 
as our best explanation at present—our best model of how nature works.1

Hypothesis	 An informed prediction about what will happen in certain circumstances. Every 
hypothesis is based on a particular theory. It is hypotheses that are tested in scien-
tific experiments. 

Experiment	 A test designed to confirm or disconfirm a particular hypothesis. If a hypothesis  is 
confirmed through experiment, and if other scientists are able to validate the con-
firmation by replicating the experiment, then the new facts gained from the ex-
perimental results become additional support for the theory the hypothesis came 
from.

Chemistry is a subject loaded with facts and heavily based on theories—models—that we 
know are incomplete descriptions of nature. That is why the research continues, as our models 
(hopefully) get nearer and nearer to the truth.

I.2	 Conclusion

The goal of this introductory chapter is simply to alert you to some of the key concepts un-
dergirding our understanding of chemical processes. Over and over in the coming chapters, you 
will find that thinking about the content in terms of one or more of these central ideas will help 
you develop a better grasp of the material.

1	 Note that the term law is simply an obsolete term for what we call a theory. For historical 
reasons, the term is still in use.
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Chapter 1
Atomic Structure

When excited by heat or electricity, the atoms of each element emit a specific, unique set of 
wavelengths of light—the atomic spectrum for that element. The visible spectra emitted by mercury 
and neon are shown above. Atomic spectra were known and studied in the 19th century, but there was 
no theory at that time that could explain the source of the colors different elements emit. Then in 1913, 
Niels Bohr published his new model of the atom, locating the electrons in atoms in specific energy 
levels. Bohr theorized that when excited, electrons jump to higher energy levels, and that to drop back 
down to a lower energy level an electron emits a packet of electromagnetic energy—what we now 
call a photon. In 1901, Max Planck had published the equation relating specific amounts of energy 
to specific wavelengths (colors) of light. Bohr’s successful explanation for atomic spectra opened the 
door for detailed study of the internal structure of atoms.

The two spectra shown above were imaged in the Laser Optics Lab at Regents School of Austin in 
Austin, Texas.

Hg

Ne
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Objectives for Chapter 1

After studying this chapter and completing the exercises, you should be able to do each of the 
following tasks, using supporting terms and principles as necessary.
SECTION 1.1
1.	 Describe the electromagnetic spectrum and state approximate wavelengths for the ends of 

the visible spectrum.

2.	 Define quantum and explain what it means for energy to be quantized.

3.	 Given the Planck relation and Planck’s constant, determine the energy of a photon of a given 
wavelength and vice versa.

SECTION 1.2
4.	 Describe the Bohr model of the atom and relate how the model explained the phenomenon 

of atomic spectra.
SECTION 1.3
5.	 Distinguish qualitatively between the orbital energies in the hydrogen atom and those of 

other atoms. 

6.	 Describe the two main ways that atoms can possess energy.

7.	 State and describe the four quantum numbers required to describe the quantum state of an 
electron.

8.	 For the first three principle quantum numbers, describe the orbitals available for electrons.

9.	 State the Aufbau principle, the Madelung rule, and Hund’s rule, and relate them to the way 
electrons are located in atoms.

10.	State the Pauli exclusion principle and explain its relationship to the placement of electrons 
in atoms.

SECTION 1.4
11.	Given the periodic table, write electron configurations (full and condensed) and draw orbital 

diagrams for all elements in the first five periods (including the nine d-block elements with 
anomalous configurations).

SECTION 1.5
12.	Given the periodic table, determine the number of protons, electrons, and neutrons in the 

atoms of a given nuclide.

13.	Given isotope mass and abundance data, calculate the atomic mass of an element.

14.	Define the unified atomic mass unit, u, and state two definitions for the mole.

15.	Calculate the molar mass of a compound or molecule, and calculate the mass in grams of a 
given mole quantity of a compound or molecule, or vice versa.

16.	Calculate the number of atoms or molecules in a given quantity of substance.

17.	Given mass data for an unknown compound, determine the percent composition and em-
pirical formula of the compound.

18.	Use the percent composition along with the molar mass or molecular mass of an unknown 
compound to determine the molecular formula for the compound.

19.	Correctly use the rules for significant digits in computations, including the addition rule.
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1.1	 Atomic Spectra

1.1.1 The Electromagnetic Spectrum
Understanding our present theory of atomic structure and the story of how it unfolded re-

quires a basic understanding of the electromagnetic spectrum. We thus begin this chapter with 
a brief review of this topic.

The spectrum of visible light is shown in Figure 1.1. The visible spectrum runs through the 
colors of the rainbow—red, orange, yellow, green, blue, violet—and includes wavelengths from 
about 750 nm (red) down to about 400 nm (violet).

Visible light is just a small portion of a vast spectrum of electromagnetic radiation that oc-
curs in nature. Figure 1.2 shows the most important regions of the electromagnetic spectrum, 
from radiation with wavelengths in the range of 1 km, the region of AM Radio waves, down to 
the high-energy Gamma Rays, with wavelengths in the range of 1 picometer (pm). (The metric 
prefix pico–, which may be new to you, means 10–12. One picometer is one thousandth of a nano-
meter.) As you see from the figure, the solar emission spectrum runs from wavelengths of about 
1 mm down to wavelengths of about 0.1 μm. The solar spectrum includes the infrared, visible, 
and ultraviolet regions, and is strongest in the middle of the visible spectrum.

The contemporary theory of light (a shorter term for electromagnetic radiation in general) 
holds that light exhibits 
both wave-like proper-
ties and particle-like 
properties. Since light 
behaves like waves, we 
can refer to the wave-
lengths of particular 
colors. But light also 
behaves like particles. 
We call these particles 
photons, and each pho-
ton represents a single 
packet of energy. The 
packet of energy in a 
photon is also called 
a quantum of energy. 
(The plural is quanta.)
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Figure 1.2. The electromagnetic spectrum.

Figure 1.1. Colors and approximate wavelength ranges in the visible portion of the electromagnetic 
spectrum.
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When thinking of light as waves, we characterize those waves by the wavelength. When 
considering light as discrete packets of energy, we tend to think of the amount of energy in each 
packet (each photon). It turns out there is a simple equation relating these together.

It was in 1901 that German physicist Max Planck (Figure 1.3) con-
ceived of treating energy as if it were quantized. He was working on a 
different problem at the time (the so-called blackbody radiation prob-
lem), and he did not imagine that energy really is quantized. However, he 
introduced what he thought was a mathematical trick—the quantization 
of energy—and in the process, quantum theory 
was born. Planck won the Nobel Prize in Physics 
for this work in 1918. (It’s ironic, isn’t it, to win the 
Nobel Prize for a major discovery that the scientist 
thinks is just a mathematical trick?) Four years later 
in 1905, German physicist Albert Einstein (Figure 
1.4) proposed that energy really is quantized and 
used this idea to solve another problem (explaining 
the photoelectric effect). For this, Einstein won the 
Nobel Prize in Physics in 1921.

The equation Planck introduced is called the 
Planck relation. This important equation is:

E = hf 			   (1.1)

In this equation, E is the energy in the photon in joules (J). The next term 
in the equation, h, is a constant known as the Planck constant. The approximate value of h is 

h = 6.626×10−34  J ⋅s 				    (1.2)

The last term in the Planck relation, f, is the frequency of the wave. As you may recall from phys-
ics, the frequency and wavelength of a wave are related by the equation

v = λ f 				    (1.3)

In this equation, v is the velocity of the wave, which is the speed of light in this case 
(2.9979 × 108 m/s). The wavelength is represented by the Greek letter λ (lambda, the Greek 
lower-case letter l). If we solve Equation (1.3) for the frequency and insert it into the Planck 
relation, we have 

E = hv
λ 				  

(1.4)

With this equation, we can compute the energy in a single photon of light at any wavelength, 
or vice versa. To illustrate such a calculation, we have our first example problem. As you see 
below, example problems in this text are set off by two red triangles. In presenting this example, 
I am assuming you are:

•	 familiar with the SI System of units and unit prefixes
•	 proficient at performing unit conversions
•	 proficient at applying the basic rules for the use of significant digits in measurements and 

computations (except for the addition rule, covered later in the chapter).

Figure 1.3. German 
physicist Max Planck 
(1858–1947).

Figure 1.4. German 
physicist Albert Einstein 
(1879–1955).
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If you are lacking skills in any of these areas, please refer to Appendix A for a tutorial.

 Example 1.1

The bright blue line in the mercury vapor spectrum (see the upper image on the opening page of 
this chapter) has a wavelength of 435.8 nm. Determine the energy contained in a single photon 
of this blue light.

We begin by writing down the given information and the unknown we seek to find.

λ = 435.8 nm
E = ?

Next, we convert the given wavelength into the MKS1 length unit, meters.

λ = 435.8 nm ⋅ 1 m
109  nm

= 4.358×10−7  m

From this value, along with the Planck constant and the speed of light, we calculate the energy 
of a photon with this wavelength.

E = hv
λ

=
6.626×10−34  J ⋅s( ) 2.9979×108  m

s
⎛
⎝⎜

⎞
⎠⎟

4.358×10−7  m
= 4.558×10−19  J

This is an extremely small amount of energy, less than a billionth of a billionth of a joule. The 
given wavelength and the value for the Planck constant each have four significant digits. Thus, 
the result is stated with a precision of four significant digits.

1.1.2 Energy in Atoms
As mentioned in the caption on the opening page of this chapter, the atoms of every element 

emit a specific set of colors when excited. In the context of atomic theory, the term excitation re-
fers to the absorption of energy by atoms, either from electromagnetic radiation (light) or from 
collisions with other particles.

Let’s spend a moment considering the ways an individual atom can possess energy. There are 
two basic mechanisms by which atoms can possess energy. First, all atoms possess kinetic energy, 
the energy associated with motion. Kinetic energy in atoms is illustrated in Figure 1.5. In solids, 
the atoms are fixed in place and are not free to move around, so the kinetic energy is manifest in 
the atoms’ vibrations. In liquids and gases (fluids), atoms are free to move around, so the energy 
possessed by atoms in fluids is in their translational kinetic energy. Also, when atoms in fluids 
are bound together in molecules, the molecules can tumble and rotate, so some of their kinetic 
energy is in the energy of rotation. Atoms in molecules also vibrate, just as balls attached to one 
another by springs can wiggle back and forth. In all these cases, the kinetic energy in atoms and 

1	 MKS stands for meter-kilogram-second. The MKS system is a subset of the metric or SI 
System of units. Using MKS units for computations is always wise practice because the units 
of measure in the computation will all be consistent with each other, and the result of the 
computation always comes out in MKS units. For more on this, see Appendix A.
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molecules correlates directly to their temperature. The hotter they are, 
the more vigorously they vibrate and the faster they move.

 The second basic way an atom can possess energy is in the energies 
of the atom’s electrons. As mentioned in the Introduction and Chapter 
1 (and discussed in detail later in this chapter), the electrons in atoms 
are located in various orbitals, and different orbitals are associated with 
different amounts of electron energy. Atoms can absorb quanta of en-
ergy from the photons of electromagnetic radiation and from collisions 
with other particles, such as ions and free electrons. When an atom ab-
sorbs energy in this way, the quantum of energy absorbed by the atom 
is manifest in one or more of the atom’s electrons moving into higher-
energy orbitals. This is atomic excitation.

When an atom’s electrons are all in their lowest-energy orbitals, the 
atom is said to be in the ground state. Excitation occurs when an atom 
absorbs a quantum of energy causing an electron to move to a higher-
energy orbital. When this happens, the atom is said to be in an excited 
state. Atoms tend not to remain in excited states. Instead, after becom-
ing excited an atom typically heads straight back to the ground state, 
generally by emitting the energy it absorbed in the form of one or more 
new photons.2 

A newly emitted photon may not have the same amount of energy 
as the original quantum of energy the atom absorbed. To explain this, 
we need to introduce a commonly used graphical representation of the 
different energies electrons can possess. For now, let’s call these energy 
levels. We will relate these more carefully to the energies of electrons in 
atoms in the next few sections.

Figure 1.6 is a diagram representing four different energy levels ac-
tually available to an electron in a hydrogen atom, labeled in the figure 

n = 1, n = 2, and so on. I explain this diagram carefully below, but first we need to pause here to 
revisit one of the points made in the Introduction. In Section I.3, I note that when an electron is 

2	 In some substances, electrons in atoms can remain in excited states for an extended period of 
time. As the atoms in such a substance return to the ground state over time the substance gradu-
ally radiates the energy away. This is the way phosphorescence (glowing in the dark) works.

Hmm... Interesting.	 Neon signs and phonons

When excited atoms in gases return to the ground state they do so by emit-
ting photons. Neon signs are tubes of gas excited by high-voltage electric-
ity. Their glowing colors are caused by the atoms re-
turning to the ground state. When excited atoms in 
solids (and some liquids) return to the ground state, 
they can do so by emitting photons as gases do, but 
they can also emit phonons, packets of vibrational en-
ergy. Phonons can travel as waves through the crystal 
lattice in a solid, displacing the atoms from their equi-
librium positions. In the image on the right, the wave-
length of the emitted energy is shown in red (and the 
displacement of the atoms is greatly exaggerated).

λ

Figure 1.5. The atoms in 
the solid crystal at the top 
are blurred to illustrate 
their vibrations. The gas 
molecules at the bottom are 
translating and tumbling.
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held at a certain distance away from 
the positive nucleus, it has a high po-
tential energy. As the electron is al-
lowed to move closer to the nucleus, 
its potential energy decreases just as 
the gravitational potential energy of 
an object above the ground decreases 
with decreasing height. Since the elec-
tron’s potential energy decreases as the 
electron moves closer to the nucleus, 
the electron releases energy as it gets 
closer and closer to the nucleus.

In discussions of the energies of 
electrons in atoms, it is customary to 
assign a reference value of 0 joules to 
the energy an electron has when it is 
completely free from the nucleus—in 
other words, when it is very far away. 
Then, since the electron’s potential en-
ergy decreases as it gets closer to the 
nucleus, the energy an electron has 
is expressed as a negative value. This 
happens because instead of setting the 
potential energy to be zero at the nu-
cleus, we set the zero energy reference 
to be when the electron is far away 
from the nucleus. So don’t let the nega-
tive energy values bother you. It makes 

sense that the electron’s energy is set to zero when it is far away from the nucleus because at that 
point the electron really has nothing to do with that nucleus. But to be consistent with what we 
know about potential energy, the electron’s energy must decrease as it enters the area near the 
nucleus, so its energy takes on increasingly negative values relative to the zero-energy reference.

Going back now to Figure 1.6, let’s assume that an electron in a hydrogen atom is in the 
ground state, which means it has the lowest possible energy. Since hydrogen atoms only have 
one electron, this places the electron at the bottom of the figure at the first energy level, n = 1. An 
energy of –2.18 × 10–18 J is the energy an electron has when it is in this first energy level. Assume 
now that this electron absorbs a quantum of energy equal to 2.04 × 10–18 J from an incoming 
photon, indicated by the arrow pointing upward on the left side of the figure. From the Planck 
relation, you can verify that this corresponds to a wavelength of 97.3 nm, placing this photon in 
the ultraviolet region of the electromagnetic spectrum. The electron is now in the fourth energy 
level. If you subtract the energy of n = 1 from that of n = 4, the difference is the amount of energy 
the electron absorbed, 2.04 × 10–18 J.

Remember, energy in atoms is quantized. Electrons can only have certain specific values of 
energy, and the permissible values of energy an electron in a hydrogen atom can have (for the 
first four energy levels) are the energies listed down the left side of Figure 1.6. Very quickly the 
atom emits this energy in the form of new photons and the electron drops back down to the 
ground state. But as you can see from the right side of the figure, the electron in the hydrogen 
atom has four different ways of doing this. 

Figure 1.6. An energy-level diagram illustrating how quanta 
of energy are absorbed and released by electrons in 
hydrogen atoms.
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First, the electron can release the smallest permissible amount of energy each time it emits a 
photon. This causes it to drop down one energy level at a time, emitting three separate photons 
on its way back to the ground state, as shown by the sequence of three downward pointing ar-
rows leading from n = 4 to n = 1. Second, the electron can first drop from n = 4 to n = 3 and 
then drop to n = 1. Third, the electron can first drop from n = 4 to n = 2 and then drop to n = 1. 
For this possibility, the emitted amounts of energy are shown in the figure. The energy emitted 
when dropping from n = 4 to n = 2 is 4.09 × 10–19 J. Using the Planck relation, you can calculate 
the wavelength of a photon with this energy. Doing so gives a wavelength of 486 nm, which is 
in the visible portion of the electromagnetic spectrum. A check of Figure 1.1 indicates that this 
wavelength corresponds to blue light. The drop from n = 2 to n = 4 is a much larger energy drop, 
1.63 × 10–18 J. This energy corresponds to a wavelength of 122 nm, which is in the ultraviolet 
region and is not visible.

Finally, the electron can drop back to n = 1 by emitting 2.04 × 10–18 J, the same amount of 
energy it absorbed in the first place. This energy produces a new ultraviolet photon with the 
same wavelength as the photon originally absorbed by the atom.

Note from Equation (1.4) that energy and wavelength are inversely proportional. Longer 
wavelengths represent lower energies; 
shorter wavelengths represent higher en-
ergies. This relationship is illustrated in 
Figure 1.7.

The spectrum of wavelengths emitted 
by each element is unique, which means 
that light spectra can be used to identify 
the element’s presence in a gas or solu-
tion. The science of such identifications is 
called spectroscopy.

1.1.3 The Hydrogen Atom
The hydrogen atom is the simplest atom, with only one electron, and thus it has been studied 

extensively. The wavelengths for the possible electron energy transitions in the first six energy 
levels of the hydrogen atom are shown in Figure 1.8. All the arrows in this diagram are shown 
pointing in both directions because the wavelengths shown can represent either the absorption 
or emission of energy. These are the energies hydrogen atoms can absorb and emit.

In 1885, Swiss mathematician and physicist Johann Balmer discovered the formula that pre-
dicts the lines in the visible hydrogen spectrum. This series of lines is now called the Balmer 
series. In 1888, Swedish physicist Johannes Rydberg worked out the more general formula for all 
the hydrogen wavelengths. The ultraviolet and infrared lines in the hydrogen spectrum were not 
known initially (because they are invisible). But in 1906, American physicist Theodore Lyman 
observed the ultraviolet series that bears his name, and in 1908, German physicist Friedrich 
Paschen observed the infrared series of lines in the hydrogen spectrum.

The Rydberg formula that predicts all these wavelengths has an interesting mathematical 
structure, and is worth showing here. Here it is:

1
λ
= R 1

n1
2 −

1
n2

2

⎛
⎝⎜

⎞
⎠⎟ 				  

(1.5)

The R in this equation is the so-called Rydberg constant (1.097 × 107 m–1), and n1 and n2 rep-
resent the numbers for the two energy levels in question. Whenever I see mathematical patterns 
like this in nature, I am always reminded that the mathematical structure found everywhere in 

Figure 1.7. Wavelengths and energies in and near the 
visible spectrum.

longer wavelength
lower energy

shorter wavelength
higher energy
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nature could not have arisen apart from the 
hand of an intelligent Creator. The mathemat-
ics embedded in creation is strong evidence 
that the physical universe we are studying 
in our science courses is a great and beauti-
ful gift, and as Nicolaus Copernicus said, was 
“built for us by the Best and most Orderly 
Workman of all.” 

1.2	 The Bohr Model of the Atom

As mentioned on the opening page of 
this chapter, Danish physicist Niels Bohr in-
troduced his new model of the atom in 1913. 
This new atomic model was of tremendous 
importance in the development of atomic the-
ory. Rydberg’s formula predicting the lines in 
the hydrogen spectrum had been known since 
1888, but until Bohr’s model there was no the-
oretical basis for the observed spectrum.

In Bohr’s atomic model, the electrons orbit 
the nucleus like planets orbiting the sun. In 
the model, the electrons have fixed energies, 
the same energies as those shown in Figures 
1.6 and 1.8. These different energy levels cor-
respond to different orbits around the nucleus.

Bohr correctly described the cause of the 
specific lines in the emission spectra of at-
oms—electrons absorbing energy and mov-
ing to higher energy levels and then releasing 
photons at specific energies as they move back 
to lower energy levels.

Another significant feature of the Bohr 
model is the number of electrons that he per-
mitted at 
each energy 
level. These 
numbers are 

shown in Figure 1.9. If you compare these numbers to the Pe-
riodic Table of the Elements shown on the inside back cover of 
this text, you see that the number of electrons in each energy 
level corresponds to the number of elements in each period 
(row) of the table: two in the first, eight in the second, eight in 
the third, and 18 in the fourth, etc.

As powerful as it is, the Bohr model was known to have 
weaknesses from the start. For one thing, there is no explana-
tion for why electrons are able to stay in their orbits. Electrons 
moving in circles radiate energy, so one would think  electrons 
in orbits would gradually lose energy, slow down, and spiral 
in to the nucleus. Another issue is that for atoms other than 

Figure 1.8. Wavelengths for electron transitions in the 
first six energy levels of the hydrogen atom.
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hydrogen, the energies between the energy levels do not match up precisely with the observed 
wavelengths in the emission spectra of elements.

1.3	 The Quantum Model of the Atom

1.3.1 Schrödinger and Pauli
In 1926, Austrian physicist Erwin Schrödinger (Figure 1.10) pub-

lished what is now called the Schrödinger equation. This was a land-
mark achievement and one of the hallmarks of 20th-century physics.  
For this work, Schrödinger received the Nobel Prize in Physics in 1933.

Solutions to the Schrödinger equation are now understood to pro-
vide us with the details of the internal structure of energy levels in at-
oms. With the arrival of the Schrödinger equation, the quantum model 
of the atom began to unfold. The history of quantum physics is still be-
ing written. There are many mysteries associated with the behavior of 
electrons as described by the quantum model. But quantum theory has 
a colossally impressive string of achievements, and its success in pre-
dicting atomic behavior is undeniable. We know the quantum model 
will continue to evolve, and may some day even be replaced. But the 
details we consider in this section are now generally accepted as cor-
rect. Remember, chemistry is all about modeling—developing the-
ories. Theories are explanations, and the quantum model is widely 
accepted as our best explanation of how atoms are structured.

In addition to Schrödinger’s equation, there is one other theo-
retical milestone that we need to have in hand to understand the 
details to follow. In 1925, while Schrödinger was working on his 
equation, another Austrian physicist, Wolfgang Pauli (Figure 1.11) 
formulated what is now known as the Pauli exclusion principle. In 
short, the Pauli exclusion principle holds that no two electrons in the 
same atom can occupy the same quantum state. We will unpack this 
further as we go along. For this important contribution to quantum 
theory, Pauli won the Nobel Prize in Physics in 1945.

1.3.2 Shells, Subshells, and Orbitals
The quantum state of an electron in an atom—its unique ad-

dress, we might say, within the atomic quantum realm—is specified 
by four different quantum numbers. According to the Pauli exclu-
sion principle, every electron in an atom has a unique quantum 
state. This is one of the laws of nature governing the way atoms are 
structured. This situation in atoms is analogous to postal addresses. Every postal customer in 
the U.S. has a unique address. For a house, this unique address requires four pieces of informa-
tion—the street number, street name, city, and state. For an apartment complex, an apartment 
number is also required. (The zip code doesn’t have any additional location information in it; it 
just helps speed things up.)

The physics behind these quantum numbers is quite complicated, and as an introductory 
chemistry student you would not normally be required to get much into that. However, intro-
ductory chemistry classes do generally now require students to learn the arrangement of shells, 
subshells, and orbitals in atoms for “energy levels” n = 1 through n = 4 because knowing this 
structure allows us to specify where the electrons are in an atom. And as you recall from the In-

Figure 1.10. Austrian 
physicist Erwin Schrödinger 
(1887–1961).

Figure 1.11. Austrian physicist 
Wolfgang Pauli (1900–1958).



24

Chapter 1

troduction, chemistry is all about electrons! So here we go. There is a lot of detail in this section, 
and it is all important.

The phrase energy levels is in quotes just above for an important reason. We are transitioning 
now from the energy levels in Bohr’s atomic model to those of the far more accurate quantum 
model. In Bohr’s model, and in the hydrogen atom as we still understand it, there is only one 
energy level for each value of n. The quantum model is quite different, as we will see.

Recall from Figure 1.9 that the numbers of electrons permitted in the first four levels of 
Bohr’s model are 2, 8, 8, and 18. These numbers correspond to the number of elements in the 
first four periods of the periodic table. Bohr was on the right track, but did not initially perceive 
the correct pattern. We now refer to n as the principle quantum number, and in every atom ex-
cept hydrogen there are multiple energy levels associated with each value of n. As explained in 
detail below, the number of electrons allowed for each value of n is actually 2n2. This gives us 2, 
8, 18, and 32 electrons in the various energy levels associated with n = 1 through n = 4.

The clusters of energy levels associated with each value of n are commonly called shells. As I 
state just above, the quantum state of an electron in an atom, including its energy, is specified by 
four quantum numbers; the principle quantum number—the shell number—is the first of them. 
So beginning with the principle quantum number you are already familiar with, here is a list of 
the names and other details for the four quantum numbers:

1. Principle Quantum Number, n  Values for n are the integers 1, 2, 3, 4, 5, ... These are the 
main clusters of energy levels in the atom, also called shells. So far as we know, there is no high-
est value for n.

2. Azimuthal Quantum Number, l  Within each shell except the first one 
(n = 1), there are subshells. The number of subshells in a shell is equal to 
the principle quantum number. For example, for n = 3 there are three sub-
shells. Values for l are integers ranging from 0 to (n – 1). Typically, these 
subshells are referred to by the letters s, p, d, f, and g rather than by the 
values of l. These common letter designations are shown Table 1.1. The 
azimuthal quantum numbers describe specific types of subshell configura-
tions. So for example, within any shell the s subshell is always structured 
the same way. Likewise, the p subshell has the same general structure in 
every shell except n = 1 (since n = 1 doesn’t have a p subshell). Again, 
the number of subshells in a given shell is equal to the principle quantum 
number. So, in the first shell there is one subshell, denoted as 1s. In the n 
= 2 shell, there are two subshells, denoted as 2s and 2p, and so on. (Note: 
The azimuthal quantum number is also sometimes called the angular mo-
mentum quantum number.)

3. Magnetic Quantum Number, ml  Within each subshell (numbered l), the possible values 
for ml are the integers ranging from –l to l. So, in a subshell with l = 2, the values for ml are –2, 
–1, 0, 1, and 2. The magnetic quantum number is associated with specific shapes and orienta-
tions of orbitals within a subshell. A important point to note is that any orbital in an atom can 
hold at most two electrons.

4. Spin Projection Quantum Number, ms  As you recall, the Pauli exclusion principle requires 
every electron in an atom to be in a unique quantum state. That is, each electron has a unique set 
of quantum numbers. And since each orbital can hold two electrons, we need one more piece of 
information to distinguish from one another the quantum states of the two electrons. This char-

l value
Common 

Letter 
Designation

0 s
1 p
2 d
3 f
4 g

Table 1.1. Letters used 
to designate values of 
the azimuthal quantum 
number, l.
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acteristic is called spin. Unfortunately, it’s a very misleading term because electrons aren’t really 
spinning. In fact, it’s pretty hard to say exactly what they are doing. But anyway, accepting spin 
as a real property analogous in some way to spinning, any two electrons in the same orbital have 
opposite spins. The two possible values for electron spin are ms = +1/2 and ms = –1/2, and we 
call these “spin up” and “spin down.” At this point in your career you really don’t need to worry 
about what these strange names and numbers mean. The fact is, if there are two electrons in the 
same orbital (and there can be at most two) one has spin up and one has spin down. This final 
quantum specification allows each electron in every atom to inhabit a unique quantum state.

All this information pertaining to the first three quantum numbers is summarized in Table 
1.2. Hopefully your understanding of all these shells, subshells and orbitals will be enhanced 
by looking at images of computer models of the orbitals. Let’s be a bit clearer about what these 
orbitals are: they represent the solutions to the Schrödinger equation for electrons in atoms with 
different energies. Table 1.3 depicts the orbitals in the various subshells associated with the first 
three shells, n =1 through n = 3. Note first that in each shell there is an s orbital. These are spheri-
cal in shape. The models shown depict the sphere cut in half so you can see the relative sizes. 
If you look carefully at the 2s orbital, you can see the tiny 1s orbital inside it. And inside the 3s 
orbital you can see both the 1s and 2s orbitals inside it. We are coming back to electron energy 
soon, but for now note that within any shell, the s orbital is the lowest energy orbital in that shell. 
Note also that for all these orbital arrangements, the atomic nucleus is at the center. All orbitals 
are symmetric about the nucleus.

Beginning with n = 2, there is a p subshell in each shell, and beginning with n = 3 there is 
also a d subshell in each shell. The orbitals in the p subshell are usually described as resembling 
“dumbbells” because of their twin lobes. There are three of these twin-lobed orbitals in each p 
subshell, each oriented at right angles to the other two. For this reason, they are designated the 
px, py, and pz orbitals—they can be thought of as lined up along the x, y, and z axes in a three-
dimensional Cartesian coordinate system as depicted in Figure 1.12. (I explain the elongated 
appearance of the orbitals shown in Figure 1.12 shortly.) In Table 1.3, in order to make the s 
orbitals large enough to see and still have room to fit the p and d orbitals on the page, the p and 
d orbitals are shown much smaller than their actual size relative to the s orbitals.

Looking now at the n = 3 orbitals in Table 1.3, note that the 3p orbitals are shown surround-
ing the 2p orbitals. The three 3p orbitals are superimposed on each other just as the 2p ones are 

n Possible 
Values of l

Subshell 
Name

Possible Values of ml

(Each value corresponds 
to one orbital.)

Number of 
Orbitals in 

the Subshell

Total Number of 
Orbitals in the 

Shell (= n2)
1 0 1s 0 1 1
2 0 2s 0 1

4
1 2p –1, 0, 1 3

3 0 3s 0 1
91 3p –1, 0, 1 3

2 3d –2, –1, 0, 1, 2 5
4 0 4s 0 1

16
1 4p –1, 0, 1 3
2 4d –2, –1, 0, 1, 2 5
3 4f –3, –2, –1, 0, 1, 2, 3 7

Table 1.2. Subshells and orbitals for the n = 1 through n = 4 shells.
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(Figure 1.12). Finally, you can see that shapes of the five 3d orbitals are pretty bizarre. These 
orbitals are also superimposed on each other, and the whole bunch of them is superimposed 
on top of all the other orbitals in the table. Then, of course, there are all the orbitals for higher 
principle quantum numbers superimposed on top of them. Beginning with the n = 4 shell (not 
shown in the table) there is an f subshell in each shell. There are seven orbitals in each f subshell, 

Shell
n = 1 n = 2 n = 3

Su
bs

he
ll

s 
orbitals 1s 2s 3s

p 
orbitals

2px

2py

2pz

3px

3py

3pz

d 
orbitals

3dz2

3dxz        3dyz

3dxy        
3dx2−y2

Table 1.3. Shapes of s, p, and d orbitals for the n = 1, n = 2, and n = 3 shells.
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and they sort of resemble the d orbitals, only with six or 
eight lobes instead of four.

Recall that each orbital can house a maximum of two 
electrons (with opposite spins). For example, just to be 
clear, the 2px orbital with its two lobes is a single orbital 
(even though Table 1.3 shows the two lobes in different 
colors). Likewise, the 3dz2 orbital with its two lobes and 
doughnut around the middle is also a single orbital. With a 
maximum of two electrons in each orbital, you can see that 
the first shell, n = 1, can hold at most two electrons, both in 
the 1s orbital. The n = 2 shell can hold a maximum of eight 
electrons: two in the 2s orbital, and two in each of the three 
2p orbitals. The n = 3 shell can hold up to 18 electrons: two 
in the 3s orbital, six in the 3p orbitals, and a total of 10 in 
the 3d orbitals.

Before we move on and get back to talking about en-
ergy, one more important point should be made about or-
bitals. As noted above, the orbitals shown in Table 1.3 are 
the solutions to the Schrödinger equation. However, it is 
not correct to think of these shapes as locating where the electrons are. (Remember, the world of 
quantum mechanics is weird.) But it turns out that if we square the solutions to the Schrödinger 
equation we get shapes indicating probabilities of where the electrons are. This is what is depict-
ed in Figure 1.12. Squaring the 2p solutions elongates the shapes of the orbitals. These orbitals 
that come from squaring solutions to the Schrödinger equation are called probability distribu-
tions. They should be envisioned as fuzzy at the edges and denser in the middle, indicating a 
lower probability that an electron is at the edge of the orbital and a higher probability that an 
electron is in the center part of the orbital.

Note just one more feature of the orbital arrangements: just because an orbital has more than 
one part—like the two lobes of a p orbital—does not mean that one electron is in one lobe and 
the other electron is in the other lobe. Instead, both electrons inhabit both lobes. Even stranger, 
to pass from one lobe to the other the electron somehow passes right through the atomic nu-
cleus. (Don’t hurt your brain by trying too hard to understand this. No one else understands it 
either! Electrons are very strange.)

1.3.3 The Aufbau Principle, the Madelung Rule, and Hund’s Rule
Now that you know how the orbitals are arranged, we return to the topic of electron energies. 

Let’s begin by recalling how one knows how many electrons an atom has. Unless it has ionized, 
an atom has the same number of electrons as protons, and the number of protons is given by 
the atomic number (Z). For example, if you check the periodic table inside the back cover of the 
book, you see that iron is element 26. This means an atom of iron has 26 protons and 26 elec-
trons. The protons are all in the nucleus with the neutrons. The electrons are distributed around 
in various orbitals.

Figure 1.13 is another type of energy level diagram and illustrates the energies associated 
with the different orbitals. In this diagram, each little square represents an orbital, and each 
string of connected squares represents a subshell. On the left are the orbital energies for the 
hydrogen atom. As you see, all orbitals associated with a given principle quantum number have 
the same energy. These are the energies shown in Figures 1.6 and 1.8.

On the right side of Figure 1.13 is a general arrangement depicting the energies for atoms 
other than hydrogen. Here the energies go up with each subshell. For example, subshell 4f has 

Figure 1.12. The elongated “probability 
distributions” of the 2s and 2p orbitals 
shown together. (2s = green; 2px = 
yellow, 2py = blue, 2pz = red)
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a higher energy than 4d, which has a higher energy than 4p, which has a higher energy than 
4s. Also, note especially that the energies associated with different principle quantum numbers 
(shells) overlap. Thus, subshell 4s has a lower energy than subshell 3d.

An important point to note about the right side of Figure 1.13 is that the exact energies asso-
ciated with various subshells are different for every atom. With only one electron, the orbitals in 
an energy level of a hydrogen atom are basically all the same. But with multiple electrons repelling 
each other in an atom, the subshells begin spreading upward and each subshell is at a different 
energy. The amount of spread—and thus the exact energy associated with each subshell—is dif-
ferent for every atom. The important consequence of this for what we have covered so far in this 

chapter pertains to atomic spectra. The energy released by 
an electron transition from, say, a 5d orbital to a 4p orbital 
depends on the atom—that is, the element—involved. As 
you know, the energy in an emitted photon determines 
its wavelength and color (the Planck relation). The fact 
that the energies for the different orbitals depend on the 
element is the reason why spectroscopy can be used to 
identify the presence of elements in a sample. Each atom 
emits its own spectrum of wavelengths corresponding to 
the unique energy differences between the orbitals in that 
particular kind of atom.

The colors emitted by excited atoms in two metals are 
illustrated in Figure 1.14. The images show lithium and 
copper wires heated in a stove-top gas flame, causing elec-
trons in the metal atoms to absorb photons of heat energy 
(electromagnetic radiation in the infrared region). As the 
electrons return to the ground state, they emit photons of 
visible light, and the colors produced depend on the ener-
gies of the subshells in the atoms of the respective metals. 
If the flames are observed through a prism, the colors in 
the flames are separated into a line spectrum and the in-

Figure 1.13. In hydrogen atoms, all orbitals within a given shell are at the same energy level. In atoms of other 
elements, orbital energy increases with increasing azimuthal quantum number, and the sequence of energies 
follows the Madelung rule.
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dividual color wavelengths can be identified. A test like this that uses flame as the energy source 
for exciting the metal is called a flame test.

With the energy picture under our belts, we are finally ready to describe how electrons are 
arranged in atoms. We are describing here the electron positions when atoms are in the ground 
state. You already know that when atoms are excited, electrons jump from ground state energies 
up to higher energies.

There are three principles involved in determining electron arrangement in ground state 
atoms. The first is the Aufbau principle, named after a German word meaning “building up.” The 
Aufbau principle states that electrons fill places in orbitals in order of increasing energy, starting 
from the lowest energy orbital and going up from there. Remember: chemistry is all about mini-
mizing energy. Electrons in a ground-state atom go into the lowest energy orbitals available.

The second principle is the Madelung rule. This principle specifies the order of the shells 
and orbitals for increasing energy. On the right side of Figure 1.13, the 
sequence the orbitals are in as energy increases follows the Madelung rule. 
Another common way of depicting the sequence of energies according 
to the Madelung rule is shown in Figure 1.15. If you start at the top and 
follow the arrows in descending order, you get the same sequence of orbit-
als as shown on the right side of Figure 1.13. The mathematical principle 
involved is that each arrow in Figure 1.15 represents a particular value of 
the sum of the principle quantum number and the azimuthal quantum 
number, n + l.

For example, look at the arrow starting at the 3d orbital. For 3d, n = 3 
and l = 2, so n + l = 5. (The values of l are shown in Table 1.1.) For 4p, n = 4 
and l = 1, and n + l = 5. For 5s, n = 5 and l = 0, so n + l = 5. So the subshells 
fill up in the sequence shown in Figure 1.15.

The third principle involved in electron arrangements is Hund’s rule, 
which applies to the case of subshells that are only partially filled. Hund’s 
rule states that if orbitals of equal energy are available within a subshell, 
electrons fill them all up singly before they begin doubling up in orbitals. For 
example, as you can see from the right side of Figure 1.13, the 3d subshell 
contains five orbitals of equal energy. According to Hund’s rule, if there 
are electrons in this subshell, but not enough electrons to fill the subshell, the electrons go into 
the orbitals as one electron per orbital until each of the five orbitals has one electron in it. After 
that, any remaining electrons go in as the second electron in each orbital until each electron has 
a place. And again, remember that all orbitals can hold at most two electrons.

The principle at work behind Hund’s rule is again energy minimization. Spreading single 
electrons in the orbitals of unfilled subshells is a lower energy configuration than putting pairs 
of electrons together when other orbitals remain empty. Minimizing the energy this way also 
makes the atom more stable, just as the cone on its side in Figure I.6 is more stable than the cone 
on its point.

1.4	 Electron Configurations

1.4.1 Electron Configurations and Orbital Diagrams
You may be pleased to know that the ocean of information described in the previous section 

will be a lot easier to remember after you have had a bit of practice writing electron configura-
tions to indicate where all the electrons are in an atom of a given element. The electron configu-
ration for a given element is a list, written in a particular format, of all the subshells in use in an 
atom and how many electrons are in each one. As an example, consider iron, atomic number 26 

1s
2s 2p
3s 3p 3d
4s 4p 4d 4f
5s 5p 5d 5f
6s 6p 6d (etc.)

7s 7p
Figure 1.15. Since each 
red arrow represents a 
particular value of n + 
l, this diagram shows 
the order in which 
the subshells fill with 
electrons, according to 
the Madelung rule.
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(Z = 26). There are 26 electrons in an atom of iron. The subshells required to hold them all, in 
order of increasing energy according to the Madelung rule, are as follows:

1s 2s 2p 3s 3p 4s 3d

 holds 2
electrons

holds 2
electrons

holds 6
electrons

holds 2
electrons

holds 6
electrons

holds 2
electrons

holds 6 electrons
in 10 places

The electron configuration is formed simply by chaining these together, placing the numbers 
of electrons as superscripts on the subshells they go with, without any punctuation. In front of 
the electron configuration, it is customary to place the element’s chemical symbol followed by a 
colon. So, the electron configuration for iron is written as follows:

Fe:    1s22s22p63s23p64s23d 6

Electron configurations only indicate subshells; they do not indicate which orbitals electrons 
are in inside the subshells. But we can use an orbital diagram similar to Figure 1.13 to show more 
precisely where the electrons are. Remember, Hund’s rule comes into play, 
requiring that orbitals of equal energy each receive one spin-up electron 
before any of them take a second spin-down electron. A great metaphor for 
this was first used by Wolfgang Pauli, who formulated the Pauli exclusion 
principle. Pauli said that when filling up the orbitals in a subshell, electrons 
are like passengers filling a bus. Each takes a seat by himself until every seat 
has one person in it. After that, people start doubling up.

Figure 1.16 shows the electron arrangement for phosphorus, Z = 15. 
Each of the little arrows represents one electron, with upward arrows repre-
senting spin up and downward arrows representing spin down. Notice that 
the three electrons in the 3p subshell are placed so that each orbital contains 
one spin-up electron, as Hund’s rule requires.

To make an orbital diagram, you simply show the orbitals in order, side 
by side, and put in the arrows representing the electrons. Thus, the orbital 
diagram and electron configuration for phosphorus are as follows:

Orbital Diagram Electron Configuration
1s 2p2s 3s 3p P:    1s22s22p63s23p3

Here are three more examples: sodium (Na) with 11 electrons, chlorine (Cl) with 17 elec-
trons, and nickel (Ni) with 28 electrons:

Z Orbital Diagram Electron Configuration

11 1s 2p2s 3s Na:     1s22s22p63s1

17 1s 2p2s 3s 3p Cl:     1s22s22p63s23p5

28 4s 3d1s 2p2s 3s 3p Ni:     1s22s22p63s23p64s23d8

Note in each case that the superscripts add up to the number of electrons being represented in 
the notation, 11, 17, and 28 in the three examples above.

1s

2s

2p

3s
3p

Figure 1.16. The 
electron arrangement 
for phosphorus, with 15 
electrons.
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To write an electron configuration, you need to know the atomic number (Z) to get the 
number of electrons, the number of electrons that can reside in each of the types of subshells (s, 
p, d, and  f; we won’t deal with g subshells), and the energy sequence according to the Madelung 
rule. The periodic table itself is the best aid to writing an electron configuration. Figure 1.17 is 
a depiction of the periodic table in its full, long form. The rare-earth elements, normally shown 
separated out beneath the main table, are shown in their rightful place.3 Notice the captions 
on the different blocks of elements in the table. There are two groups (columns) in the s block, 
because s subshells can only hold two electrons. The p subshells can hold six electrons because 
there are three orbitals in each p subshell, and the p block is six groups wide. In the same way, 
the d block is 10 groups wide, and the f block is 14 groups wide. (See Table 1.2 to confirm the 
number of orbitals in a subshell, keeping in mind that each orbital can hold up to two electrons.)

Now look what happens as we move in order through elements in the table:

•	 Hydrogen (H) has one electron, helium (He) has two. In the element at the end of the 1st 
period (row)—helium—the 1s subshell is full.

•	 Lithium (Li) has three electrons, beryllium (Be) has four. With Be, the 1s and 2s sub-
shells are full. The 5th electron possessed by boron (B) goes into the 2p subshell. So do 
all the additional electrons added in elements 6 through 10. Neon (Ne) has 10 electrons, 
so in the element at the end of the 2nd period (neon), subshells 1s, 2s, and 2p are all full.

•	 Sodium (Na) has 11 electrons, and the 11th one goes in the 3s subshell. Magnesium 
(Mg) has 12, and the 12th one fills the 3s subshell. Aluminum (Al) has 13, and the 13th 
one goes in the 3p subshell. In the element at the end of the third period—argon (Ar)—
the 1s, 2s, 2p, 3s, and 3p subshells are full.

•	 The 4th period begins with potassium (K) and calcium (Ca), in which new electrons 
are placed in the 4s subshell. Then look what happens next: the next element, scandium 
(Sc), has 21 electrons and the 21st one goes into a d subshell, the 3d subshell, in fact. 
Each new electron for elements 21 through 30 goes into the 3d subshell. Then the 31st 
electron in gallium (Ga) is placed in the 4p subshell. In the element at the end of the 4th 
period—krypton (Kr)—the 1s, 2s, 2p, 3s, 3p, 4s, 3d, and 4p subshells are full.

3	 The f-block elements shown are also called the inner transition metals or rare-earth elements. 
They are usually removed from the table and shown beneath it for the simple reason that 
with them in place, the table is inconveniently wide. Since most of our work in chemistry is 
with s-, p-, and d-block elements, the removal of the f-block elements in the standard repre-
sentation of the periodic table doesn’t cause much trouble.

1 18

1
1 2

H 2 13 14 15 16 17 He

2
3 4 5 6 7 8 9 10

Li Be B C N O F Ne

3
11 12 13 14 15 16 17 18

Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar

4
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

5
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

6
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

7
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

s-block elements 
(includes He)

p-block elements

d-block elements

f-block elements

Figure 1.17. Common terms applied to groups of elements based on the type of suborbital that is being filled 
as we move through the block in a given period (row). Group numbers shown are the numbers typically shown 
on the standard table with the f-block elements taken out.
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This pattern continues, and the order of new shells coming into use continues to follow the 
Madelung rule. Now you can see why the blocks of elements in Figure 1.16 are identified the 
way they are. Moving from left to right across any period in the table, the additional electron 
for atoms of the next element goes into a subshell of the type indicated by the name of the block 
the element is in.

Be careful when writing electron configurations for elements at the beginning of the d and 
f blocks. The first d subshell that occurs in the sequence of shell filling is the 3d subshell, even 
though the elements that fill it are in the 4th period. Table 1.2 and Figure 1.15 will help remind 
you that the number of subshells for a particular principle quantum number n is equal to n.

1.4.2 Condensed Electron Configurations
You may already know that the elements in Group 18, the noble gases, are very unreactive. 

In fact, these elements eluded discovery by researchers for a long time. Since they don’t form 
compounds, scientists didn’t even know they existed!

The reason the noble gases are so nonreactive is that their 
electron arrangements are very stable, low-energy configura-
tions. Obviously, each of the noble gases is at the end of a 
period in the periodic table (Group 18). Figure 1.18 illustrates 
the pattern that occurs in the orbital filling of these elements. 
In each case, all orbitals are filled up to but not including the 
s orbital of the next principle quantum number.

Since the noble gases are so stable, occurring as they do 
at the end of each period, the chemical symbols of the noble 
gases are used to form the so-called condensed electron con-
figurations. The condensed electron configuration is a shorter, 
more convenient form.

Here’s an example to show how this works. A glance at the 
periodic table shows that the only difference in the electron 
configurations of, say, titanium (Ti, Z = 22) and argon (Ar, 
Z = 18), is that titanium has four extra electrons. The electron 
configurations for argon and titanium are:

Ar:     1s22s22p63s23p6

Ti:     1s22s22p63s23p64s23d 2

The condensed electron configuration for any element is written by using the chemical sym-
bol of the noble gas in the previous period to represent all the filled orbitals up to that point, 
and then just adding on the orbitals in the period where the element is. The noble gas chemical 
symbol is always written in square brackets. The condensed electron configuration for titanium 
is written as

Ti:     [Ar]4s23d2

As one more example, the condensed electron configuration for phosphorus (Z = 15) is writ-
ten as

 P:     [Ne]3s23p3

In the condensed electron configuration, the inner-shell electrons lumped together under 
the noble gas symbol are called the core electrons.

Figure 1.18. The orbital filling pattern 
of the noble gases.

1s

2p

2s

3s

4s
3p

4p
3d

4d

4f

5s

5p
5d

5f

6s

6p7s

He

Ne
Ar

Kr
Xe
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1.4.3 Anomalous Electron Configurations
There are a few elements with electron configurations that are notable exceptions to the 

ordinary rules. All these exceptions are d-block or f-block elements, as shown in Figure 1.19.
We would expect the condensed electron 

configuration for chromium (Z = 24) to be

Cr:     [Ar]4s23d 4

However, it is not! One of the 4s electrons 
goes into the 3d subshell instead, giving

Cr:     [Ar]4s13d 5

Copper (Z = 29), does the same thing. We 
would expect the condensed electron con-
figuration to be

Cu:     [Ar]4s23d 9

Instead, it is

Cu:     [Ar]4s13d10

The electron configurations 
for all the anomalous elements are 
shown in Table 1.4. Notice that pal-
ladium (Z = 46) is so anxious to get 
electrons into the 4d subshell that 
it steals both the electrons that or-
dinarily would be in the 5s subshell 
and places them in the 4d subshell 
to fill it up.

The electron configurations for 
these elements are not difficult to 
remember. For the d-block excep-
tions, except for palladium, they 
move one s-subshell electron into a 
d subshell at the highest energy in 
the atom. Palladium is the exception 
among exceptions: it moves two.

The f-block exceptions move one 
f subshell electron into a d subshell 
at the highest energy in the atom. 
As with the d-block exceptions, 
there is one exception among the 
f-block anomalies: thorium moves 
two f-subshell electrons into the d 
subshell.

Although the details are com-
plex, the bottom line for these ex-
ceptions to the normal rules is that 

Element Atomic 
Number, Z Symbol Condensed 

Configuration
chromium 24 Cr Cr: [Ar]4s13d 5

copper 29 Cu Cu: [Ar]4s13d10

niobium 41 Nb Nb: [Kr]5s14d 4

molybdenum 42 Mo Mo: [Kr]5s14d 5

ruthenium 44 Ru Ru: [Kr]5s14d 7

rhodium 45 Rh Rh: [Kr]5s14d 8

palladium 46 Pd Pd: [Kr]4d10

silver 47 Ag Ag: [Kr]5s14d10

lanthanum 57 La La: [Xe]6s25d1

cerium 58 Ce Ce: [Xe]6s24f 15d1

gadolinium 64 Gd Gd: [Xe]6s24f 75d1

platinum 78 Pt Pt: [Xe]6s14f 145d 9

gold 79 Au Au: [Xe]6s14f 145d10

actinium 89 Ac Ac: [Rn]7s26d1

thorium 90 Th Th: [Rn]7s26d2

protactinium 91 Pa Pa: [Rn]7s25f 26d1

uranium 92 U U: [Rn]7s25f 36d1

neptunium 93 Np Np: [Rn]7s25f 46d1

curium 96 Cm Np: [Rn]7s25f  76d1

Table 1.4. Elements with anomalous electron configurations.

Figure 1.19. Elements with anomalous electron 
configurations.

24 29

Cr Cu
41 42 44 45 46 47

Nb Mo Ru Rh Pd Ag
78 79
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there are other factors coming into play in their atomic structure. At high energy levels, the or-
bital energies are very close together. The anomalous configurations represent the arrangement 
of electrons that minimizes the energy in the atom.

1.5	 Isotopes and Atomic Masses

1.5.1 Isotopes
As you know, the atomic number (Z) of an element designates the number of protons in 

the nucleus of an atom of that element. For a given element, the atomic number is fixed: if an 
atom has a different number of protons, it is an atom of a different element. But the number of 
neutrons that may be present in the nucleus is not fixed. For most elements, there are variations 
in the number of neutrons that can be present in the nucleus. The varieties are called isotopes. 
For most elements, there is one isotope that is the most abundant in nature and several other 
isotopes that are also present but in smaller quantities. The general term for any isotope of any 
element is nuclide. 

Isotopes are designated by writing the name of the element followed by the number of 
nucleons (protons and neutrons) in the isotope. The number of nucleons in a nucleus is called 
the mass number. For example, the most common isotope of carbon is carbon-12, accounting 
for about 98.9% of all the naturally occurring carbon. In the nucleus of an atom of carbon-12 
there are six protons and six neutrons. There are two other naturally occurring carbon isotopes. 
Carbon-13 with seven neutrons accounts for about 1.1% of natural carbon. Atoms of carbon-14, 
of which only a trace exists in nature, have eight neutrons in the nucleus.

1.5.2 The Unified Atomic Mass Unit
The mass of a single atom is an extremely small number. But so much of our work in chemis-

try depends on atomic masses that scientists having been using units of relative atomic mass for 
a long time—all the way back to John Dalton, before actual masses of atoms were even known. 
Prior to the discovery of isotopes in 1912, the so-called atomic mass unit (amu) was defined as 
1/16 the mass of an oxygen atom. After the discovery of isotopes, physicists defined the amu as 
1/16 the mass of an atom of oxygen-16, but the definition used by chemists was 1/16 the aver-
age mass of naturally occurring oxygen, which is composed of several isotopes. To eliminate the 
confusion resulting from these conflicting definitions, the new unified atomic mass unit (u) was 
adopted in 1961 to replace them. Many texts continue to use the amu as a unit, but they define 
it as the u is defined. Technically, the amu is an obsolete unit that has been replaced by the u.

The unified atomic mass unit, u, is defined as exactly 1/12 the mass of an atom of carbon-12. 
Table 1.5 lists a few nuclides and their atomic masses using the u as a unit of mass. All the ele-
ments listed exist as other isotopes in addition to those shown, but as you see from the percent-
age abundances, the ones shown are the major ones for the elements represented in the table.

1.5.3 Atomic Masses
In addition to the atomic number, the Periodic Table of the Elements lists the atomic mass 

in unified atomic mass units (u) for each element. But since there are multiple isotopes for just 
about every element, the atomic mass values in the periodic table represent the weighted average 
of the masses of naturally occurring isotopes.

An example of a weighted average is the average age of the students in the sophomore class at 
your school. Let’s say there are 47 sophomores, 40 of whom are 15 years old and 7 of whom are 
16 years old at the beginning of the school year. To determine the average age of these students, 
let’s first determine the proportion of the students at each age.
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40
47

= 0.851  (85.1%)

7
47

= 0.149  (14.9%)

To calculate the average age, we first 
multiply each student age by the 
proportion of students of that age 
to find the contribution to the aver-
age from each age group. Then we 
add the contributions together to 
find the weighted average age for the 
sophomore class.

15 years ⋅0.851=12.8 years
+16 years ⋅0.149= 2.38 years

=15.2 years

We perform a similar calculation 
when computing the average atomic 
mass of an element from the masses 
of its isotopes, as shown in the fol-
lowing example.

 Example 1.2

Given the isotope masses and abun-
dances for copper-63 and copper-65 in Table 1.5, determine the atomic mass for naturally oc-
curring copper.

Multiply each isotope’s mass by its abundance to get the isotope’s contribution to the average 
atomic mass of the element. Then add together the contributions from each isotope. The data 
from the table are:

copper-63: mass = 62.9296 u, abundance = 69.15%

copper-65: mass = 64.9278 u, abundance = 30.85%

62.9296 u ⋅0.6915= 43.51 u
+   64.9278 u ⋅0.3085= 20.03 u

= 63.55 u

Compare this value to the value shown in the periodic table inside the back cover of the text.

The unified atomic mass unit, u, is defined as 1/12 the mass of an atom of carbon-12. Al-
though the value of this mass is quite close to the masses of the proton and neutron, it is not ex-
act because of the mass of the electrons in atoms of carbon-12, and also because of the mass-en-

Z Nuclide Mass (u) Abundance (%)
1 hydrogen-1 1.0078 99.9885
1 hydrogen-2 2.0141 0.0115
6 carbon-12 12.0000 98.93
6 carbon-13 13.0034 1.078

14 silicon-28 27.9769 92.223
14 silicon-29 28.9765 4.685
14 silicon-30 29.9738 3.092
17 chlorine-35 34.9689 75.76
17 chlorine-37 36.9659 24.24
20 calcium-40 39.9626 96.941
20 calcium-42 41.9586 0.647
26 iron-54 53.9396 5.845
26 iron-56 55.9349 91.754
26 iron-57 56.9354 2.119
26 iron-58 57.9333 0.282
29 copper-63 62.9296 69.15
29 copper-65 64.9278 30.85
92 uranium-235 235.0439 0.7204
92 uranium-238 238.0508 99.2742

Table 1.5. Major isotopes for a few elements.
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ergy involved in binding the nucleus of the atom together. (The 
mass of nucleons bound together in a nucleus does not equal the 
sum of their individual masses.) Table 1.6 shows the masses of 
the three basic subatomic particles in unified atomic mass units. 

Still, the proton and neutron masses are very close to unity 
(one) and the electron mass is extremely small. This means that 
for elements with a very large abundance of one isotope we can 
use the atomic mass and atomic number in the periodic table to 
determine the numbers of protons and neutrons in the nucleus 

of the most common isotope. For example, from Table 1.5, the mass of uranium-238 is very 
close to 238 u. Since an atom of uranium-238 has 92 protons, the balance of the mass is essen-
tially all neutrons. Thus, there are 238 – 92 = 146 neutrons in uranium-238.

1.5.4 The Mole and the Avogadro Constant
When solving problems in chemistry, we are generally working with chemical reactions in 

which huge numbers of atoms are involved, including all the naturally occurring isotopes, so 
performing reaction calculations with the masses of individual atoms is not practical. However, 
the mass of a given multiple of some kind of atom is simply that multiple times the atomic mass. 
The mass of one million atoms of aluminum is simply 1,000,000 times the atomic mass of alu-
minum.

In chemistry, the standard bulk quantity of substance used in calculations is the mole (mol). 
The mole is a particular number of particles of a substance, just as the terms dozen, score, and 
gross refer to specific numbers of things. The mole may be defined two different but equivalent 
ways. The first is as follows:

A mole is the amount of a substance that contains the same number of particles as there 
are atoms in 12 grams of carbon-12. 

And how many atoms are there is 12 grams of carbon-12? Answer: there are 6.022142 × 1023 
atoms of carbon-12 in 12 grams of carbon-12.

This value is known today as the Avogadro constant, NA. More formally, the Avogadro con-
stant is defined as:

NA = 6.022142×1023  mol−1

			   (1.6)

Usually we just round this value to 6.022 × 1023 mol–1. Now, don’t freak out over the unit 
of measure. Allow me to explain. Raising a unit of measure to the power –1 is mathematically 

equivalent to placing the unit in a denominator, because x
−1 = 1

x
. In other words, Equation (1.6) 

is the same thing as saying “6.022 × 1023 per mole.” To make things even clearer, it’s okay to say 
it this way: “NA equals 6.022 × 1023 particles per mole.” This is the way I like to think of it when 
performing unit conversions, as we do quite a lot in coming chapters. Without the units of mea-
sure, the value 6.022 × 1023 is called Avogadro’s number. With the units, it is called the Avogadro 
constant.

The definition given above for the mole refers to particles of a substance. For substances that 
exist as molecules, the particles are the molecules. For substances that exist as individual atoms, 
the particles are the individual atoms. Metals are like this, since a metal is composed of indi-
vidual, identical atoms joined together in a crystal lattice. The noble gases are also like this. The 
noble gases are located in the far right-hand column of the Periodic Table of the Elements. As I 
discuss more in coming chapters, atoms of noble gases are almost completely unreactive—they 

Particle Mass
proton 1.007276 u

neutron 1.008665 u
electron 0.0005486 u

Table 1.6. Masses in u of the three 
basic subatomic particles.
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don’t bond with other atoms at all. At ordinary temperature and pressure, the noble gases are 
gases composed of individual atoms.

For crystalline compounds, the “particles” in a mole of the substance are the formula units 
in the crystal lattice. A formula unit is one set of the atoms represented by the chemical formula 
of the compound. For example, the chemical formula for calcium carbonate is CaCO3. One for-
mula unit of calcium carbonate includes one calcium atom, one carbon atom, and three oxygen 
atoms.

Now that you know there are 6.022 × 1023 particles in one 
mole of carbon-12, we can offer this equivalent definition for 
the mole:

A mole is the amount of a pure substance (element or com-
pound) that contains Avogadro’s number of particles of the 
substance.

The value of the Avogadro constant was determined by 
French Physicist Jean Perrin (Figure 1.20) in the early 20th cen-
tury. Perrin determined the value of the constant through sever-
al different experimental methods. His research put the atomic 
nature of matter beyond dispute, and for this work he received 
the Nobel Prize in Physics in 1926. Perrin proposed naming the 
constant after Amedeo Avogadro, a 19th-century Italian scien-
tist who was the first to propose that the volume of a gas at a 
given temperature and pressure was proportional to the number 
of particles of the gas (atoms or molecules), regardless of the 
identity of the gas. In fact, at 0°C and atmospheric pressure, one 
mole of any gas occupies a volume of 22.4 L.

1.5.5 Molar Mass and Formula Mass
As defined above, there are exactly 12 grams of carbon-12 in one mole of carbon-12. But the 

definition of the unified atomic mass unit is that an atom of carbon-12 has a mass of 12.0000 u. 
So according to these definitions, an atom of carbon-12 has a mass of 12.0000 u, and a mole of 
carbon-12 has a mass of 12.0000 grams. This quantity, the mass of one mole of a substance, is 
called the molar mass. Because of the way the molar and atomic masses are defined, the molar 
mass for an atom is numerically equivalent to the atomic mass.

These are very handy definitions! For example, from the periodic table we find that the aver-
age mass of 1 atom of silicon (Z = 14) is 28.0855 u. This also tells us that the mass of 1 mole of 
silicon is 28.0855 g. So the molar mass of silicon is 28.0855 g/mol. Likewise, from the periodic 
table we find that the average mass of 1 atom of copper (Z = 29) is 63.546 u. This also tells us 
that the mass of 1 mole of copper is 63.546 g, so the molar mass of copper is 63.546 g/mol. For 
the elements that exist as single atoms, the molar mass in g/mol and the atomic mass in u are 
numerically equivalent.

From the periodic table, we can also determine the molar mass of compounds—the mass of 
a mole of the compound. We simply add up the molar masses for the elements in the chemical 
formula, taking into account any subscripts present in the formula, and we have the molar mass 
for the compound in g/mol. If we add up the element atomic masses in unified atomic mass 
units we obtain what is called the formula mass of the compound in u. If the compound is mo-
lecular, then the formula mass may also be referred to as the molecular mass, the average mass 
of a single molecule of the substance.

The details of these three different mass terms are summarized in Table 1.7.

Figure 1.20. French physicist Jean 
Perrin (1870–1942).
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 Example 1.3

Determine the formula mass and molar mass for water, H2O. We note that since water is com-
posed of molecules, the formula mass may also be called the molecular mass.

From the periodic table, the atomic masses of hydrogen (H) and oxygen (O) are:

H: 1.0079 u
O: 15.9994 u

There are two hydrogen atoms and one oxygen atom in each water molecule, so we multiply 
these numbers by the element atomic masses and add them up to get the formula mass of H2O.

2×1.0079 u( )+ 1×15.9994 u( )=18.0152 u

Thus, the formula mass for water is 18.0152 u. This is also the molecular mass. The calculation 
of the molar mass is identical, except we use units of g/mol instead of u.

From the periodic table, the molar masses of hydrogen (H) and oxygen (O) are:

H: 1.0079 g
mol

O: 15.9994 g
mol

There are two hydrogen atoms and one oxygen atom in each water molecule, so we multiply 
these numbers by the element masses and add them up to get the molar mass of H2O.

2×1.0079 g
mol

⎛
⎝⎜

⎞
⎠⎟ + 1×15.9994 g

mol
⎛
⎝⎜

⎞
⎠⎟ =18.0152 g

mol

 Example 1.4

Determine the molar mass for nitrogen gas, N2.

From the periodic table, the atomic mass of nitrogen (N) is:

Quantity Units Definition
molar mass g/mol The mass of one mole of a substance, equal to the sum of the 

atomic masses of the elements in a chemical formula, taking into 
account the subscripts indicating atomic ratios in the compound.

formula mass u The mass of one formula unit of a substance. Numerically 
equivalent to the molar mass.

molecular 
mass

u The average mass of a single molecule of a molecular substance. 
Numerically equivalent to the formula mass. (May also be con-
verted to grams and expressed in grams, see Section 1.5.6.)

Table 1.7. Definitions and units for molar mass, formula mass, and molecular mass.
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N: 14.0067 g
mol

There are two nitrogen atoms in each molecule, so we multiply the atomic mass by two to get 
the molar mass of N2.

2×14.0067 g
mol

⎛
⎝⎜

⎞
⎠⎟ = 28.0134 g

mol

 Example 1.5

Determine the mass in grams of 2.5 mol sodium bicarbonate, NaHCO3 (baking soda).

In any problem like this, we first find the molar mass of the given compound. Then we simply 
use that molar mass to compute the mass of the given quantity. From the periodic table, the 
atomic masses of the elements in the compound are:

Na: 22.9898 g
mol

H: 1.0079 g
mol

C: 12.011 g
mol

O: 15.9994 g
mol

The oxygen appears three times in the formula, so its mass must be multiplied by three and 
added to the others.

22.9898 g
mol

+1.0079 g
mol

+12.011 g
mol

+ 3×15.9994 g
mol

⎛
⎝⎜

⎞
⎠⎟ = 84.007 g

mol

This value is the molar mass for NaHCO3. To find the mass of 2.5 mol we multiply:

2.5 mol ⋅84.007 g
mol

= 210 g

 Example 1.6

A scientist measures out 125 g of potassium chloride (KCl). How many moles of KCl does this 
quantity represent?

First, determine the molar mass of KCl. From the periodic table:
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K: 39.098 g
mol

Cl: 35.4527 g
mol

The formula includes one atom of each, so we add them to obtain the molar mass:

39.098 g
mol

+35.4527 g
mol

= 74.551 g
mol

Beginning now, always think of the molar mass of any substance as a conversion factor that 
can be written right side up or upside down to convert grams to moles or vice versa. For KCl, 
74.551 g is equivalent to 1 mol, so these quantities can be written as conversion factors, like this:

 74.551 g
1 mol

= 1 mol
74.551 g

This makes the last step of this problem easy. Just select the way of writing the molar mass 
conversion factor that cancels out the given units (g) and gives the units required (mol). This is 
nothing but a unit conversion.

125 g ⋅ 1 mol
74.551 g

=1.68 mol

The photograph in Figure 1.21 shows one mole of 
each of four substances. The first is one mole of copper, 
equal to 63.5 g. The second is a 250-mL beaker contain-
ing one mole of water. As you can see, this is not much 
water—only 18 mL. In the upper right is a weigh tray 
containing one mole of sodium chloride, 40.0 g. (This 
is just under 1/4 cup.) Finally, one mole of baking soda, 
84.1 g. (This is right at 1/3 cup.)

 Example 1.7

Calculate the number of water molecules in a 1.00-liter 
bottle of water.

The logic of this problem, in reverse, is as follows: To 
calculate a number of molecules, we must use the Avo-
gadro constant. To use the Avogadro constant, we need to know the number of moles of water 
we have. To determine the number of moles, we need to know both the molar mass and the mass 
of the water. To determine the mass from a volume, we use the density equation.

So we begin with the given information and the density equation to determine the mass of water 
we have. The given information and unit conversions are as follows:

Figure 1.21. Clockwise from left are shown 
1 mole of copper, 1 mole of water, 1 mole of 
table salt, and 1 mole of baking soda.
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V =1.00 L ⋅1000 cm3

1 L
=1.00×103  cm3

ρ = 0.998 g
cm3

m = ?

Now we write down the density equation and solve for the mass:

ρ =m
V

m = ρ ⋅V = 0.998 g
cm3 ⋅1.00×103  cm3 = 998 g

Next we need the molar mass of water. We calculated this in Example 1.3 and obtained 
18.0152 g/mol. We use this molar mass as a conversion factor to convert the mass of water into 
a number of moles of water:

998 g ⋅ 1 mol
18.0152 g

= 55.40 mol

This intermediate result has four significant digits—one more than we need in the final result. 
Finally, with the number of moles in hand we use the Avogadro constant to determine how 
many particles of water this is, which is identical to the number of water molecules.

55.40 mol ⋅6.022×1023  particles
 mol

= 3.34×1025  particles

1.5.6 Gram Masses of Atoms and Molecules
The molar mass from the periodic table and the Avogadro constant can be used to calculate 

the mass in grams of an individual atom. Recall that the atomic mass value in the periodic table 
gives both the average atomic mass in u, and the molar mass in g/mol. Knowing the molar mass 
in g/mol we can simply divide by the number of atoms there are in one mole to find the mass of 
one atom in grams. Although this kind of calculation is quite simple, I have found that it is very 
easy for students to get confused and not be able to determine whether one should multiply or 
divide or what. So here’s a problem solving tip: let the units of measure help you figure out what 
to do. If you include the units of measure in your work and pay attention to how the units cancel 
out or don’t cancel out, these calculations are pretty straightforward. Keep this principle firmly 
in mind throughout your study of chemistry! Units of measure are not an annoying burden; they 
are the student’s friend.

 Example 1.8

Determine the average mass in grams of an atom of boron.

From the periodic table we find that the molar mass of boron is 10.811 g/mol. One mole con-
sists of Avogadro’s number of atoms of boron, so if we divide the molar mass by the Avogadro 
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constant, we will have the mass of a single atom of boron. Let’s begin by setting up the division I 
just described, and then use the old invert-and-multiply trick for fraction division to help with 
the unit cancellations.

10.811 g
mol

6.0221×1023  particles
mol

=10.811 g
mol

⋅ 1
6.0221×1023  mol

particles

= 10.811
6.0221×1023  g

particle
=1.7952×10−23  g

particle

So the average mass of one boron atom is 1.7952 × 10–23 g. Note that I use five digits in the value 
of the Avogadro constant to preserve the precision we have in the molar mass.

For molecular substances, the molar mass can be used to compute the molecular mass in 
grams, the average mass of one molecule. This is done by first computing the molar mass of the 
compound, just as we did before. Then we simply divide by the Avogadro constant to obtain the 
mass of one molecule.  

Like the atomic mass, the molecular mass is an average mass, since the atomic masses used 
in calculating the molar mass are all based on the average mass of different isotopes with their 
abundances taken into account. The molecular mass for a specific molecule would have to be 
calculated based on the specific masses of the nuclides in the molecule.

 Example 1.9

Determine the mass in grams of one molecule of carbon tetrachloride, CCl4.

From the periodic table we find that the molar masses of carbon and chlorine are 12.011 g/mol 
and 35.4527 g/mol, respectively. From this we calculate the molar mass of CCl4:

1×12.011 g
mol

⎛
⎝⎜

⎞
⎠⎟ + 4×35.4527 g

mol
⎛
⎝⎜

⎞
⎠⎟ =153.822 g

mol

With this molar mass we use the Avogadro constant to get the molecular mass in grams. This 
time, instead of writing the Avogadro constant in the denominator of a big fraction, I simply 
treat it as a conversion factor and write it in the equation such that the mole units cancel out. 
(This is the way I always perform such calculations.) I also use six digits in the Avogadro con-
stant to preserve the precision we have in the molar mass.

153.822 g
mol

⋅ 1 mol
6.02214×1023  particles

= 2.55427×10−22  g
particle

1.5.7 Percent Composition and Empirical Formulas
Laboratory chemical analysis of a substance enables a chemist to determine the percent com-

position of the substance. When a new compound is discovered, chemists place a high priority 
on determining the percentages, by mass, of each element in the substance. This is the percent 



43

	 Atomic Structure

composition. From the percent composition a so-called empirical formula for the substance can 
be worked out—a formula that represents the ratios of the elements in the substance.

For example, suppose laboratory analysis of a 221.6-g sample of ascorbic acid (vitamin C) 
results in the following mass data:

H: 10.15 g
C:  90.68 g
O: 120.8 g

If we divide each of the mass values by the total mass of the sample we have the percent composi-
tion of the sample:

H: 10.15 g
221.6 g

= 0.04580

C: 90.68 g
221.6 g

= 0.4092

O: 120.8 g
221.6 g

= 0.5451

Thus, the percent composition is 4.58% hydrogen, 40.92% carbon, and 54.51% oxygen. Note 
that we expect these percentages to add up to 100%, but due to limits on the precision of the 
data they add to 100.01%.

Given either the percent composition or the actual masses from a sample we can determine 
the empirical formula for a substance. The empirical formula may differ from the actual molecu-
lar formula of the substance. An empirical formula represents the smallest whole number ratios 
of the elements in the substance, while the molecular formula represents the actual numbers of 
each element in the molecule.

For example, hydrogen peroxide, H2O2, is a common household disinfectant. Molecules of 
hydrogen peroxide contain two atoms of hydrogen and two atoms of oxygen, so the molecular 
formula for this substance is H2O2. But the empirical formula is HO, because the empirical for-
mula contains the smallest whole number values that can represent the ratios in the compound. 
Since each molecule of H2O2 contains two atoms of H and two atoms of O, the ratio of H to O in 
the molecule is 1 : 1, giving an empirical formula of HO.

In many cases, the empirical and molecular formulas are identical. The molecular formula 
for methane, for example, is CH4. This formula indicates a ratio of carbon to hydrogen atoms in 
the molecule of 1 : 4. This same formula is the empirical formula, because 1 and 4 are the small-
est whole numbers that can represent this ratio.

 To determine the empirical formula from percent composition, assume you have a sample of 
the substance with a mass of exactly 100 g. Use the percent composition to determine the masses 
of each element in the 100-g sample, then use the mass data from the periodic table to convert 
each of these masses to numbers of moles. Finally, divide each of the mole values by the smallest 
number of moles to determine the whole number ratios in the formula. An example illustrates 
the calculation.

 Example 1.10

Given percent composition data for ascorbic acid (see above), determine the empirical formula 
for this substance.



44

Chapter 1

We assume a sample with a mass of exactly 100 g. We begin by using the percent composition to 
obtain masses in grams for each element in the substance. Assuming a 100-g sample just makes 
this easy. Since hydrogen is 4.58% of the 100-g sample, the mass of the hydrogen in the sample 
is 4.58 g. Similarly, the masses of the carbon and oxygen are 40.92 g and 54.51 g, respectively.

Next, we use the molar masses for each element to convert each of these masses to number of 
moles. We use the molar mass as a conversion factor, just as we have before.

4.58 g H ⋅ 1 mol
1.0079 g

= 4.54 mol H

40.92 g C ⋅ 1 mol
12.011 g

= 3.407 mol C

54.51 g O ⋅ 1 mol
15.9994 g

= 3.408 mol O

Next, to determine the ratios of elements in the substance, divide each of these mole amounts 
by the smallest of them.

4.54 mol
3.407 mol

=1.33

3.407 mol
3.407 mol

=1.00

3.408 mol
3.407 mol

=1.00

These values tell us that the ratio of hydrogen to carbon to oxygen in ascorbic acid is 
1.33 : 1.00 : 1.00. Now, we need the smallest whole numbers that preserve this same ratio. Not-
ing that the value 1.33 is very close to 4/3, we multiply all the values by 3 to get whole number 
ratios of 4 : 3 : 3 for hydrogen : carbon : oxygen. Finally, we use these ratios to write the empirical 
formula. In formulas containing these three elements it is traditional to write the elements in the 
formula in the order C—H—O. Doing so gives us

C3H4O3.

1.5.8 Determining a Molecular Formula from an Empirical Formula
The empirical formula determined in the previous example relates to the molecular formula 

by some simple multiple. Recall that the subscripts in the molecular formula of hydrogen perox-
ide, H2O2, are simply double the subscripts in the empirical formula, HO. We can determine the 
molecular formula for a compound from the empirical formula if we have access to the molecu-
lar mass of the compound. We do this by computing the formula mass for the empirical formula 
and comparing this to the molecular mass to see what the multiple is between the empirical 



45

	 Atomic Structure

formula mass and the molecular mass. Then we can multiply the subscripts in the empirical 
formula by the same multiple to get the molecular formula. In other words,

whole number multiple = molecular mass
empirical formula mass

This calculation is illustrated in the following example. Note that although this example uses 
atomic masses and molecular mass in u, the same computation can be performed using molar 
masses in g/mol.

 Example 1.11

The experimentally determined molecular mass for ascorbic acid is 176.1 u. Use this value and 
the empirical formula from Example 1.9 to determine the molecular formula for ascorbic acid.

We begin by determining the formula mass for the empirical formula, C3H4O3.

C: 12.011 u
H: 1.0079 u
O: 15.9994 u

3×12.011 u( )+ 4×1.0079 u( )+ 3×15.9994 u( )= 88.063 u

Next we calculate the whole number ratio by dividing the molecular mass by the empirical 
formula mass:

whole number multiple = 176.1 u
88.063 u

= 2.000

Finally, we multiply all the subscripts in the empirical formula by this multiple to obtain the 
molecular formula:

C6H8O6.

1.5.9 Significant Digit Rules for Addition
As noted just before Example 1.1, I have been assuming in this chapter that students using 

this text are already familiar with the use of significant digits in scientific measurements and 
computations. If you are not, then now is the time to study the tutorial on the subject in Ap-
pendix A.

If you have used the significant digits rules prior to this course, your experience with the use 
of significant digits may be limited to computations involving multiplication and division. The 
rule for these kinds of computations is based on the number of significant digits in the values 
used in the computation: the result must have the same number of significant digits as the least 
precise value in the computation. With this rule, the limitation on the result is the number of 
significant digits in the least precise value used in the computation.

For addition, a completely different rule applies. If you pay attention to the significant digits 
in Example 1.3, you notice that our result contains six significant digits, even though one of the 
values used in the computation has only five significant digits. This is a result of the addition 
rule.
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When performing addition, it is not the number of significant digits that governs the pre-
cision of the result. Instead, it is the place value of the last digit that is farthest to the left in the 
numbers being added that governs the precision of the result. To illustrate, consider the following 
addition example:

	 13.65
	 1.9017
	 + 1,387.069
	 1,402.62

Of the three values being added, 13.65 has digits out to the hundredths place, the second num-
ber goes out to the ten thousandths place, and the last number goes out to the thousandths place. 
Looking at the final digits of these three, you can see that the final digit farthest to the left is the 
5 in 13.65, which is in the hundredths place. This is the digit that governs the final digit of the re-
sult. There can be no digits to the right of the hundredths place in the result. The justification for 
this rule is that one of our measurements is precise only to the nearest hundredth, even though 
the other two are precise to the nearest thousandth or ten thousandth. Since one of our values is 
precise only to the nearest hundredth, it makes no sense to have a result that is precise to a place 
more precise than that, so hundredths are the limit.

Correctly performing addition problems in science (where nearly everything is a measure-
ment) requires that you determine the place value governing the precision of your result, per-
form the addition, then round the result. In the above example, the sum is 1,4602.6207. Round-
ing this value to the hundredths place gives 1,4602.62.

Going back to Example 1.3, performing the multiplications gives the following addition 
problem:

	 2.0158
	 + 15.9994
	 18.0152

Both values are precise to the nearest ten thousandth, and so is the result. In this case, we 
gain precision because now we have a value with six significant digits. The same thing occurs in 
the illustration above. One of the values in the addition has only four significant digits, but the 
result has six.

Chapter 1 Exercises
SECTION 1.1
1.	 Determine the energy in a photon of light from a green laser with a wavelength of 543 nm.

2.	 An atom absorbs a photon, causing one of its electrons to move to an orbital associated with 
2.2718 × 10–19 J higher energy. Determine the wavelength of the absorbed photon and state 
what region of the electromagnetic spectrum it is in.

3.	 For a single photon to ionize a ground-state hydrogen atom, its energy has to raise the energy 
of the atom’s electron to 0 J. What wavelength of light does this and what part of the electro-
magnetic spectrum is it in?

4.	 Calculate the energies for the four lines in the visible spectrum of the hydrogen atom.
SECTION 1.2
5.	 What are two of the limitations of the Bohr model of the atom?

6.	 In the Bohr model, how many electrons would you expect the 5th energy level to be able to 
hold? Explain your response.
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SECTION 1.3
7.	 A certain atom is in the ground state. The 3p subshell of this atom is 2/3 full.

a.	 Identify the element this atom represents.

b.	 How many unpaired electrons are there in the atom? (A paired electron is one in an or-
bital with another one possessing opposite spin.)

8.	 In a certain ground-state atom, the 4d subshell has two electrons in it.

a.	 Identify the element this atom represents.

b.	 How many unpaired electrons are there in the atom?

9.	 How do the values of the azimuthal quantum number and magnetic quantum number relate 
to the principle quantum number?

10.	Demonstrate mathematically that the 4f subshell can accommodate 14 electrons.

11.	Generally speaking, what is the explanation for an atom’s electron configuration not follow-
ing the sequence described by the Madelung rule?

SECTION 1.4
12.	For each of the following elements, draw the orbital diagram and write the full-length elec-

tron configuration.

a.	 chlorine b.	 oxygen c.	 ruthenium
d.	 potassium e.	 vanadium f.	 bromine

13.	For each of the following elements, write the condensed electron configuration.

a.	 chlorine b.	 nitrogen c.	 aluminum
d.	 yttrium e.	 strontium f.	 tungsten
g.	 cesium h.	 iodine i.	 neodymium

14.	Compare the electron configurations for beryllium, magnesium, and calcium. Formulate a 
general rule for the condensed electron configuration of a Group 2 element.

15.	For which group of elements does the electron configuration always end with np2? Explain 
how you know.

16.	Write the condensed electron configurations for ytterbium, einsteinium, and nobelium.
SECTION 1.5
17.	Which two nuclides in Table 1.5 have 20 neutrons?

18.	In Table 1.5, how many neutrons are there in the heaviest nuclide listed? How many neutrons 
are there in the lightest nuclide listed?

19.	Determine the number of atoms in each of the following.

a.	 73.2 g Cu b.	 1.35 mol Na c.	 1.5000 kg W

20.	Determine the mass in grams for each of the following.

a.	 6.022 × 1023 atoms K b.	 100 atoms Au c.	 0.00100 mol Xe
d.	 2.0 mol Li e.	 4.2120 mol Br f.	 7.422 × 1022 atoms Pt

21.	Determine the number of moles present in each of the following.
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a.	 25 g Ca(OH)2 b.	 286.25 g Al2(CrO4)3 c.	 2.111 kg KCl
d.	 47.50 g LiClO3 e.	 10.0 g O2 f.	 1.00 mg C14H18N2O5

22.	As mentioned in the text, the sum of the masses of the particles in an atom does not equal 
the mass of the atom. Some of the mass of the individual particles is converted to energy, and 
the atom weighs less than the sum of the weights of its parts. How much mass is converted 
into energy when the individual protons, neutrons, and electrons are assembled to form an 
atom of uranium-238?

23.	Referring to Table 1.5, calculate the atomic mass for silicon, calcium, iron, and uranium. 
Compare your results to the values shown in the periodic table.

24.	Calculate the molar mass for each of the following compounds or molecules.

a.	 ammonia, NH3 b.	 carbon dioxide, CO2 c.	 chlorine gas, Cl2

d.	 copper(II) sulfate, CuSO4 e.	 calcium nitrite, Ca(NO2)2 f.	 sucrose, C12H22O11

g.	 ethanol, C2H5OH h.	 propane, C3H8 i.	 glass, SiO2

25.	Determine the formula masses for these compounds:

a.	 MgCl2 b.	 Ca(NO3)2 c.	 (SO4)
2– (The 2– indicates this is an ion with an electrical 

charge of –2. The charge does not affect your calculation.)

d.	 CuSO4 e.	 BF3 f.	 CCl4

26.	Determine the mass in grams of 2.25 mol silver nitrate, AgNO3.

27.	Given 2.25 kg CCl4, answer these questions:

a.	 How many moles CCl4 are present?

b.	 How many carbon atoms are present?

c.	 Approximately how many carbon-13 atoms are present?

28.	Given 1.00 gal H2O at 4°C, answer the questions below. (Hint: You must use the appropriate 
volume conversion and the density of water to determine the mass of 1.00 gal H2O. See the 
information in Tables B.3 and B.5 in Appendix B.)

a.	 How many moles H2O are present?

b.	 How many hydrogen atoms are present?

c.	 Approximately how many deuterium (hydrogen-2) atoms are present?

29.	Automobile antifreeze is composed of ethylene glycol. This green liquid is 38.7% C, 9.7% H, 
and 51.6% O by mass. The molecular mass is 62.1 u. Determine the empirical formula and 
the molecular formula for ethylene glycol.

30.	A scientist isolates 47.593 g of a new, unidentified substance. The scientist also determines 
the following masses for the elements in the substance: carbon: 43.910 g; hydrogen: 3.683 g. 
Finally, the scientist is also able to determine the molecular mass of the substance to be 
78.11 u. From these data, determine:

a.	 the percent composition

b.	 the empirical formula

c.	 the molecular formula




