
Phone Trigger for NPC
Prepared by: Manasa Korkanti

8 April 2024

Use cases 1

Solution 2

PhoneNoUtilities Apex Class 2

AccPhNoFormatter Apex Class 3

TriggerOnAccount 5

Due to the increased integrations available in Salesforce, proper formatting of
phone numbers is more important than ever. This allows us to utilise dialling
functionality directly from the record view.

Use cases

A few use cases of number formatting

● Australian Landline numbers
○ Area code with the phone number 0312345678 formatted to +61 3

1234 5678
○ Area code with the phone number 03 03 1234 5678 formatted to +61

3 1234 5678
● Australian mobile numbers

○ 0412345678 formatted to +61 412 345 678
○ 61412345678 formatted to +61 412 345 678

● Australian Toll-Free numbers will not include country code.
○ 611300123456 formatted to 1300 123 456

https://www.linkedin.com/in/manasa-korkanti/


Solution

● An Apex class (PhoneNoUtilities) that has a single static method where you
can pass the parameters and test it.

● An Apex class for each of the standard objects (Account, Contact, Lead)
that utilises the ‘PhoneNoUtilities’ Class to format the numbers.

● Finally, a trigger Apex for all three objects to fire the trigger after insertion
and after updating to format the numbers as per our requirement.

This formatting style can be used for any custom objects requiring similar
formatting by implementing an Apex class for the custom object and utilising the
PhoneNoUtilities class along with a trigger on the custom object.

PhoneNoUtilities Apex Class

The first Apex class to be written should be PhoneNoUtilities, which contains a
single method that does not instantiate any objects of the class.

The method should accept a string phone number (e.g., "04 123 456 78"), a string
variable countryCode to store the value '+61', a string variable newPhone to store
the phone number after modifications, and an empty string ph to store the final
output.

We used the try and catch block to catch any errors or exceptions if the try block
failed to execute the code.

The first step of the code is formatting the number to remove any spaces, or
special characters, starting with zero and 61 to be replaced with an empty string.

Phone Trigger for NPC – Blaze Your Trail – April 2024 2

https://blazeyourtrail.org/


Toll-free numbers will be formatted without the country code that starts with 1300
and 1800.

When the phone number starts with 4, indicating Australian mobile numbers, we
format it accordingly.

Finally, if the phone numbers have Australian landline codes such as 02, 03, 04, or
07, we format them accordingly. We have also included handling for rare
instances like the country code being repeated twice, as in "(08) 0812345678", to
format the number appropriately. Once the formatting is completed, we exit the
method, handling any exceptions in the catch block.

AccPhNoFormatter Apex Class

The second step is to write an apex class logic to handle our triggers. Let’s
consider this for the account object where the salesforce org has personal
accounts enabled.

We have created a property named 'isFirstTime' and initialised it to true. We utilise
this property in the trigger to ensure that the trigger logic executes only once per
transaction. This helps prevent continuous recursion caused by trigger firing
repeatedly. The trigger updates the phone format according to the logic defined
in the Account Apex class.

Phone Trigger for NPC – Blaze Your Trail – April 2024 3

https://blazeyourtrail.org/


The method accountPhoneValidation accepts a list of accounts, which is stored in
the AccountList parameter. Another list named update account is used to store
the updated accounts that have been formatted according to the specified
conditions.

We utilise a try-catch block to handle any errors that may occur within the try
block. The provided code illustrates the types of fields available in person
account-enabled orgs, and we apply the formatting logic to each phone-type
field. You have the flexibility to exclude or include any fields based on your
preferences.

In the first step, we initialise a Boolean parameter called changeMade and set it to
false. This allows us to track accounts where changes have been made.

Next, we check if each phone-type field is not null. If this condition is true, we
invoke the method and class from the PhoneNoUtilities class to apply formatting
to the corresponding phone field. After formatting, we set changeMade to true.

Once formatting is complete for all phone field types, we check if there are any
accounts with changeMade set to true, and add them to the updateAccounts list.

Phone Trigger for NPC – Blaze Your Trail – April 2024 4

https://blazeyourtrail.org/


TriggerOnAccount

The third step is to fire a trigger to specify when to format the numbers. For this,
we write TriggerOnAccount and consider after insert and after update of the fields
in the Account object.

This line defines the trigger named TriggerOnAccount on the Account object. The
trigger fires after records are inserted or updated and declare an empty list of
Account records named accountList.

Queries Account records from the Trigger.new context variable. Selects specific
fields such as Id, Phone, PersonHomePhone, PersonOtherPhone,
PersonMobilePhone, and IsPersonAccount. We consider IsPersonAccount to verify
if the account type is a Person account.

Check if the accountlist is not empty and isFirstTime true, the property we
considered in AccPhNoFormatter so the trigger can fire. The static variable
AccPhNoformatter.isFirstTime is set to false to block from recurring and fire only
one time per account.

Phone Trigger for NPC – Blaze Your Trail – April 2024 5

https://blazeyourtrail.org/


Now we need to consider the trigger context for both standard accounts and
person accounts. Iterates through the queried account list and separates
standard accounts from person accounts based on the IsPersonAccount field.
Adds standard accounts to the standardAccounts list and person accounts to the
personAccounts list.

Validates phone numbers for both standard accounts and person accounts using
a method called accountPhoneValidation in the AccPhNoFormatter class. Calls
the accountPhoneValidation method for both standard and person accounts
separately.

The final step is to write the test class for AccNoPhFormatter Apex class and the
coding is always done on the sandbox or scratch orgs and tested rigorously. The
code can only be deployed to the production org if the code coverage for the
classes is at least 75% or above.

Phone Trigger for NPC – Blaze Your Trail – April 2024 6

https://blazeyourtrail.org/


This above code declares a test class named TestAccPhNoFormatter with the
@isTest annotation, indicating that it contains test methods. This line declares a
test method named testInsertAccount. The method is annotated with @isTest,
indicating that it's a test method.

The account variable is considered to store the list of accounts that is initially
empty. We have created our test class to hold a standard account (Account c1)
where the account name is mandatory. Account c2 and Account c3 are person
accounts as you can see Lastname is mandatory and the type of fields you have
are person account fields. We added the created accounts to the empty list
variable Acct.

Queries the inserted Account records (A3, A4, A5) from the database based on
their Ids in the test case created Accounts. Asserts that the formatted phone
numbers match the expected values for each Account record.

Similar way you can use the PhoneNoUtilities class and write an apex class to
handle the logic and triggers to fire after insert, after update for any standard or
custom objects in salesforce org.

Phone Trigger for NPC – Blaze Your Trail – April 2024 7

https://blazeyourtrail.org/

