
1

CMC Driver Framework Core Manual
by Choose Movement Consulting, LLC

1010001-01-01 REV A

Contents
1. General Information ... 2

1.1. User Manual Content .. 2

1.2. Introduction .. 3

 General Description .. 3

 Product Support .. 3

1.3. System Requirements ... 3

1.4. End User License Agreement .. 4

1.5. Referenced Documents... 4

1.6. Acronyms, Definitions, and Abbreviations.. 4

 Acronyms .. 4

 Definitions ... 4

 Abbreviations .. 4

2. Software Installation ... 4

2.1. First Time Install .. 4

2.2. Subsequent Installations ... 5

 CMC Driver Framework Installer ... 5

 NI Package Manager ... 5

3. Software Activation ... 5

4. Software Component Descriptions ... 7

4.1. CMC Configuration Manager .. 7

 Menu Options ... 8

 Configuration Settings... 12

 User Configurations .. 12

 Status Indicator ... 12

4.2. Console .. 13

 Menu Options ... 14

 Refresh .. 17

2

 Instrument Selector .. 17

 Console Log ... 17

 Injector Message ... 18

 Send Message ... 18

 Console API ... 18

4.3. Instrument Control ... 19

 API ... 20

 Classes ... 22

5. Tutorials .. 27

5.1. CMC Configuration Manager .. 27

 TCP Listener Demo VI .. 28

 TCP Client Demo VI ... 29

 Configuration .. 30

 Run Demo .. 32

5.2. Console Tutorial .. 33

 Viewing Console Logs .. 33

 Injection .. 33

5.3. TCP Tutorial ... 34

 Creating UI .. 35

 Creating Processor .. 44

 Running UI and Processor ... 51

6. Troubleshooting Recommendations ... 52

6.1. Console Refuses to Inject into a connection that has active communication. 52

6.2. Additional Resources. ... 52

1. General Information
1.1. User Manual Content

This user manual covers the description, system requirements, installation instructions,
operating instructions, tutorials, and suggested troubleshooting tips for the CMC Driver
Framework Core software.

3

1.2. Introduction
 General Description

The CMC Driver Framework is an advanced framework for developing and implementing
hardware abstraction layers in LabVIEW. It consists of:

A) The Configuration Manager: A graphical user interface used to create instrument and
simulated instrument configurations.

B) The Console: A graphical user interface that may be used to monitor, record, and inject
communication between the PC and instrument.

C) The Instrument Control API: A set of VIs used to abstract communication interfaces (i.e.
Serial, TCP).

D) Device Type APIs: A set of VIs used to abstract specific device types (i.e. DC Power Supply).

Using these tools, a developer can implement instrument automation code once and change
device or communication interface by selecting a new configuration file. The CMC Driver
Framework Core is the foundation for the CMC Driver Framework. It includes the Configuration
Manager, Console, and Instrument Control API.

 Product Support
For technical support:

 Post to the CMC Driver Framework community located at https://forums.ni.com/t5/CMC-
Driver-Framework/gp-p/5394.

 Email support@choose-mc.com.

It is encouraged to use the CMC Driver Framework community when possible so that others can
learn from your questions.

1.3. System Requirements
System requirements match the requirements for the version of LabVIEW that the CMC Driver
Framework is being installed for. For more details, see: https://www.ni.com/en-
us/support/documentation/supplemental/17/system-requirements-for-labview-development-
systems-and-modules.html.

The CMC Driver Framework also requires the software in the following table. With the exception of
LabVIEW, the software modules will be installed or upgraded as part of the installation process.

Software Requirement Minimum version
LabVIEW Development System 2017 SP1
NI-LabVIEW Command Line Interface x86 2.1
NI-488.2 Runtime 19.5
NI-Serial Runtime 17.5
NI-VISA Runtime 18.0

4

1.4. End User License Agreement
Copyright © 2016, Choose Movement Consulting, LLC. All rights reserved. This software is part of
the CMC Driver Framework. By using this software, you agree to the CMC Driver Framework and
CMC Driver End User License Agreement that is found at https://choose-mc.com/pages/legal.

1.5. Referenced Documents
Document Source

CMC EULA https://choose-mc.com/pages/legal
LabVIEW System
Requirements

https://www.ni.com/en-
us/support/documentation/supplemental/17/system-requirements-for-
labview-development-systems-and-modules.html

1.6. Acronyms, Definitions, and Abbreviations
 Acronyms
Acronym Meaning

CMC Choose Movement Consulting, LLC
EULA End User License Agreement
UI User Interface
VI Virtual Instrument
API Application Programming Interface
IO In/Out

 Definitions
Term Definition

.instconfig The file extension used by the Driver Framework to identify file that
contain all the necessary files to configure an Instrument.

Configuration File Refers to an .instconfig
Driver Framework Refers to the CMC Driver Framework.

 Abbreviations
None.

2. Software Installation
The first installation of the CMC Driver Framework should use the Driver Framework Installer.exe. After
the first time the installer is run, there are additional methods available - described below - for initiating
installation of Driver Framework components. The first time through, the support files and runtime
engines are installed. Subsequent Driver Framework component installations will use the support files.

2.1. First Time Install
1. Run Driver Framework Installer.exe. It is found in the ZIP file download for the CMC Driver

Framework. Be sure to expand the ZIP file before running the installer.
2. Follow prompts to select which Driver Framework components to install.

5

2.2. Subsequent Installations
For subsequent installations, you can either use the CMC Driver Framework Installer.exe or NI
Package Manager. See instructions below.

 CMC Driver Framework Installer
1. Run Driver Framework Installer.exe from the folder you expanded it to.

2. Follow prompts to select which Driver Framework components to install.

 NI Package Manager
1. Click on the Start Menu icon.
2. Scroll down and expand the "National Instruments" folder.
3. Select "NI Package Manager"; it might be necessary to run it with elevated privileges

depending on your computer's settings.
4. Confirm that you want to allow NI Package Manager to make changes to your system.
5. When NI Package Manager has finished updating the feeds, select a tab as follows:

a. UPDATES: to install a newer version of an already installed API or Driver.
b. INSTALLED: to uninstall an already installed API or Driver.
c. PACKAGES: to install either a new API or Driver, or an API or Driver to a new version

of LabVIEW.
6. Select the check box next to each version of an API or Driver to be installed, updated or

uninstalled and click the button that will initiate your selection.
7. Follow the prompts from NI Package Manager to finish the action.

3. Software Activation
The CMC Driver Framework Core software is free and does not require activation. To activate licensed
CMC Driver Framework add-ons, complete the following steps:

1. Open the version of LabVIEW the CMC Driver Framework was installed to.
2. Go to the Tools menu and select CMC Tools >> License Manager…

6

Figure 1: Activation Window

3. Enter your information in the respective fields. Serial Number is typically sent to the purchaser
automatically upon purchase.

4. Click Activate.

Figure 2: Software Activated

7

5. For offline activation, copy the PC Identification Code and send it along with your request to
support@choose-mc.com or info@choose-mc.com.

4. Software Component Descriptions
4.1. CMC Configuration Manager

Figure 3: CMC Configuration Manager user interface

The CMC Configuration Manager provides a user interface that enables the creation of configuration
files (.instconfig) for a supported instrument. These .instconfig files are used by the various Driver
Framework APIs to manage the configuration of the instrument and communication with the
instrument. For a tutorial on using the CMC Configuration Manager, please refer to Section 5.1.

Number Name Description Section

1 Menus May be used to access to the various actions the CMC
Configuration Manager can perform.

4.1.1

2 Configuration
Name

Displays the name of the currently selected
configuration.

4.1.2

3 Configuration
Settings

Provides access to all configuration items for the
specific configuration. These will change according to
the instrument type selected.

NA

4 User
Configurations

Lists of all .instconfig configurations that have been
found on the system.

4.1.3

1

2

3

4

5

8

Number Name Description Section
5 Status

Indicator
Displays user feedback on the status of the CMC
Configuration Manager.

4.1.4

 Menu Options
The CMC Configuration Manager has two menus in its menu bar: File and Manage.

4.1.1.1. File Menu
The File menu handles the following operations:
 Create New
 Save
 Save All
 Save For New Hardware (Not available for this release)
 Exit

9

 Create New

Figure 4: Create New Configuration Dialog

Selecting this menu option will launch the Create New Configuration dialog. The Create
New Configuration dialog provides a user interface that enables the creation of a new
configuration file. New configurations must have a unique name and an instrument type
selected. Clicking OK will launch a file explorer dialog that the user may use to specify
the file location where the configuration file will be saved. The new configuration is then
created and selected in the CMC Configuration Manager.

 Save
Saves the currently selected configuration.

 Save All
Saves all the configurations.

10

 Save For New Hardware

Figure 5: Save for New Hardware Dialog

This feature is not available in the current release.
Selecting this menu option while a configuration is selected will launch the Save for New
Hardware dialog. The Save for New Hardware dialog provides a user interface for the
creation of a new configuration file using an existing configuration file for the initial
values. The existing configuration and new configuration do not need to be of the same
instrument type or class. If they are both the same type, then all the configuration
settings will be copied. If they are both the same class, then the settings supported by
both will be copied. If they are neither the same class, nor type, then only the

11

instrument control settings will be copied, provided both instruments use an instrument
control.

 Exit

Figure 6: Save Changes Dialog

When this menu option is selected, the CMC Configuration Manager will check if any
configuration files have unsaved changes. If there is at least one unsaved change, it will
launch the Save Changes dialog.

Name Description

Files With Changes Displays all the configuration files with unsaved changes. Selecting an
item in this list will display the unsaved changes in the Changes list.

Changes Displays all the unsaved changes in the selected file. These are
organized by the section (in brackets). Each change is listed as its
name (Key), original value and the new value.

Save Saves the currently selected File With Changes. If this is the last file,
the dialog closes and the CMC Configuration Manager will close.

Discard Discards the all the unsaved changes in the currently selected File
With Changes. If this is the last file, the dialog closes and the CMC
Configuration Manager will close.

Save All Saves all the Files With Changes. The dialog then closes and the CMC
Configuration Manager will close.

Discard All Discards all the unsaved changes. The dialog then closes and the CMC
Configuration Manager will close.

12

Name Description
Cancel Cancels the exit. All unsaved changes will remain unsaved. They will

not be discarded or saved.

4.1.1.2. Manage Menu
The Manage Menu handles the following operations:
 Refresh
 Import .instconfig
 Delete Configuration

 Refresh
Refreshes the User Configurations list.

 Import .instconfig
Opens a file explorer window that the user may use to navigate to an .instconfig file.
Once a file is selected, it will be copied to the default configuration directory.

 Delete Configuration
Deletes the currently selected configuration.

 Configuration Settings
This displays the name of the selected user configuration. Beneath the name, the instrument’s
configuration interface is displayed. Since these interfaces vary by instrument, see the
instrument’s respective user manual or help dialog for more information on the items here.

 User Configurations
The User Configurations list displays all the .instconfig files found in the system. These files are
grouped together according to file location (italics), then instrument class (bold), then by
instrument type (second column) and finally alphabetically.

The User Configurations supports a right-click menu with the following options:

Name Description

Save Saves any changes to the currently selected configuration.

Delete Prompts the user if they are certain they would like to delete the selected
configuration. If the user responds positively, then the selected configuration is
deleted.

 Status Indicator
Displays what the manager is currently doing. Most actions will update this with appropriate
information. Once an action is completed, this will display “Ready”.

13

4.2. Console

Figure 7: Console User Interface

The Console provides an interface that may be used to monitor communication between Driver
Framework Instruments and the host computer. These communications are saved to a text file for
later review. The Console may also be used to send commands and queries directly to the selected
instrument. The Console runs as a background process whenever a Driver Framework Class is used.
Its UI can be launched through the Instrument Control API Initialize VI (CMC >> Instrument Control
Palette) or the Launch Console VI (CMC >> Console Palette).

The Console requires the VIs writing to it to be inside a LabVIEW project in order for the Console to
properly log the data to an output.

Number Name Description Section
1 Menus Provides access to the various actions the Console can

perform.
4.2.1

2 Status Display Displays what the Console is doing. NA
3 Refresh Refreshes the list of instruments available in the

Instrument Selector.
4.2.2

4 Instrument
Selector

Provides an interface that may be used to select which
instrument’s IO to display.

4.2.3

5 Console Log Displays the selected instrument’s IO. 4.2.4
6 Injector

Message
Provides an interface that may be used to inject
messages into an instrument’s IO.

4.2.5

1

3

4

5

6

7

2

14

7 Send Message Sends the Injector Message to the selected
instrument.

4.2.6

 Menu Options
The Console has four following menus in its menu bar:
 File
 Edit
 Operate
 Tools

4.2.1.1. File Menu
The File Menu handles the following operation:
 Exit

 Exit
Closes the console UI. Any closed instruments are removed from the available
instruments and complete log files are generated. Log files are placed at
C:\Users\<UserName>\AppData\Local\CMC\DF\Console by default. Log files are named
in the following format: <ConsoleName>-mm_dd_yyyy_hh_mm_ss_AM|PM.txt.

4.2.1.2. Edit Menu
The Edit Menu handles the following operations:
 Undo
 Redo
 Cut
 Copy
 Paste

 Undo
Reverts the previous action. Note that some actions, like instrument injection cannot be
undone.

 Redo
Redoes an action that had been undone previously.

 Cut
Copies the selected text to the clipboard and deletes it.

 Copy
Copies the selected text to the clipboard.

 Paste
Copies the text in the clipboard into the selected position of a control.

4.2.1.3. Operate Menu
The Operate Menu handles the following operations:

15

 Refresh
 Abort Transmission
 Injection Mode

 Refresh
Checks for updates to the active instruments. Any new instruments are added to the
selector.

 Abort Transmission
Aborts the current transmission that is taking place with the selected instrument. Note that
this can introduce errors in the selected instrument and should be used with care.

 Injection Mode
Provides a way for the user to select how the injected message will be handled. Two
options are provided:

 Query: Sends a message and collects a response.
 Write Only: Sends a message, but does not look for a response.

 For more details, see Section 4.3.1.3.

4.2.1.4. Tools Menu
The Tools Menu handles the following operations:
 Options…
 Help

16

 Options…

Figure 8: Console Options window

Selecting this menu option launches the Console Options window. This window may be
used to customize the Console behavior.

The Options window provides the following options:

Name Description
Single Stream Size This defines the maximum characters a single instrument can have in

the console at a time. Once this value is exceeded, the Console
removes the oldest data to prevent excessive memory use.

Auto Scroll When this option is checked the Console automatically scrolls to the
newest entry when it is added.

Percent to Save This is the percentage of the Console data that is removed when the
size is exceeded. Allowed values are 1-100%.

Console Output This defines where the Console will store the log files that it
generates.

Read Duration (ms) This defines how long the Console will wait, in milliseconds, for an
Injected Query to return data. Once the Duration has completed, any
collected data is returned.

17

Name Description
Max Log Size The maximum number of characters that can be stored in a single log

file. If the log exceeds this size, it will create an additional log file to
store additional content.

OK Button Saves the current Options and applies them to the Console.
Cancel Button Discards any changes to the Console settings.

 Help
Opens this document.

 Refresh
Updates the list of instruments available in the Instrument Selector.

 Instrument Selector
This dropdown will show all the instruments currently registered in the Console. The selected
instrument has its IO messages displayed in the Console Log.

 Console Log
Displays all the communication between the host computer and the selected instrument. There
are four type of messages that can be displayed. The Console Log supports a right-click menu
that enables the user to toggle the auto scrolling feature. The Console Log also has a limited size
to prevent excessive memory usage, once this size is exceeded, the oldest data is removed and
saved to file.

For more details on the Console Log options, see Section 4.2.1.4.1.

4.2.4.1. Incoming Message
Incoming messages are messages that have been sent to the selected instrument. These are
displayed in the following format: >>Timestamp>>Message.

4.2.4.2. Outgoing Message
Outgoing messages are messages that have been received from the selected instrument.
These are displayed in the following format: <<Timestamp<<Message.

4.2.4.3. Comment Message
Comment messages are simply useful information that is sent to the Console, but is not sent
to any instrument. These messages are displayed in the following format:
<>Timestamp<>Message.

4.2.4.4. Error Message
Error messages are generated when the Write to Stream function receives an incoming
error that is not suppressed. These are displayed in the following format:
>!<Timestamp>!<Message

18

 Injector Message
This enables the user to type the text to send to the instrument. This supports a right-click menu
that provides a way for the user to change the input display type between normal text,
backslash codes and hexadecimal codes.

 Send Message
Clicking this button will send the text in the Injector Message to the selected instrument. This
can operate in two different modes, which are controlled by the Write to Instrument menu
option, see Section 4.2.1.3.3 for more details.

Name Description
Write In write mode, the button will display ‘Write’. Clicking the button in this state will

send a message to the selected instrument.
Query In query mode, the button will display ‘Query’. Clicking the button in this state

will send a message to the selected instrument and read back a response.

 Console API
The Console API provides direct access to some of the console’s functions.

Figure 9: Console API LabVIEW Palette

4.2.7.1. Create Stream
Creates a Console Stream with the provided Name. If the Console is not already running, it is
launched. If an instconfig is provided, it will also configure the Stream. If Open Console
Window is set to True, it will open the Console’s User Interface.

4.2.7.2. Write to Stream
Writes the provided message to the associated Stream if Console is set to True and the
Mode is Selected. If the Mode is All, the message will also be written to the Stream. Any
other configuration of Console and Mode will not write to the Stream.

19

This function will also write error messages to the Stream, provided that there is an
unsuppressed error and the function would be able to write to the Stream if there wasn’t an
incoming error.

4.2.7.3. Destroy Stream
Destroys the Stream associated with the provided Console, or the provided name.

4.2.7.4. Configure Stream
Configures the Stream according to the provided settings file. These settings pertain to Error
Suppression and the initial Mode.

4.2.7.5. Open Stream
Informs the Console that the Stream is open. Streams must be opened before injection is
allowed. Writing to an unopened Stream is still permitted in most cases.

4.2.7.6. Enable Stream
Changes the Stream’s Mode to All, so that any message provided will be written to the
Stream.

4.2.7.7. Disable Stream
Changes the Stream’s Mode to None, so that any message provided will not be written to
the Stream.

4.2.7.8. Open Console Window
Opens the Console’s User Interface. If the Console is not already running, it will be launched.

4.2.7.9. Close Console Window
Closes the Console’s User Interface. The Console will continue to run while its User Interface
is closed. If there are no active Streams, the Console will stop executing.

4.3. Instrument Control
Instrument Control provides an abstraction layer for any supported Instrument IO operation. This
enables the user to program using the same functions, regardless of the specific protocol that will be
used for the communication.

20

 API

Figure 10: Instrument Control API LabVIEW Palette

The Instrument Control API is the functions provided on the LabVIEW Palette for programming
with the Instrument Control.

4.3.1.1. Initialize
Initializes the Instrument Control. It returns a generic Instrument Control object. This also
launches the Console and adds the Instrument Control to the Console (with the user
provided name) so that the communication can be observed.

4.3.1.2. Load Instrument
Generates a specific Instrument Control object from the input.

 Load From Configuration File
Takes a file path to the .instconfig file that the Instrument Control will be created from.

 Load From Configuration Tool
This instance takes the name of the .instconfig file. Note that this is the name found in
the .instconfig file as the Configuration_Name of the Instrument section, not the name
of the file. This is the same name as it appears in the CMC Configuration Manager.

4.3.1.3. Read Write Instrument
Handles writing to and reading from the Instrument.

 Read Bytes from Instrument
Reads a specified number of bytes from the Instrument.

 Read Until Data from Instrument
Reads data from the Instrument until it reads a specified string.

 Query Instrument (Bytes)
Sends a message to the instrument and then reads a specified number of bytes from the
instrument.

21

 Query Instrument (Data)
Sends a message to the instrument and then reads data from the Instrument until it
reads a specified string from the instrument.

 Write to Instrument
Sends a message to the instrument.

4.3.1.4. Close Instrument
Closes the instrument communication. If Destroy is TRUE (default), then the class is also
reset to its default state.

4.3.1.5. Flush Data Buffers
Flushes the input and output buffers of the instrument.

4.3.1.6. Open
Opens the communication protocol.

4.3.1.7. Abort Action
Aborts the current communication action. This can be used locally, on the Instrument
Control this is wired to, or applied to every Instrument Control.

22

 Classes
4.3.2.1. TCP

Figure 11: TCP Configuration User Interface

Name Description
IP Address Specifies the IP address of the TCP Instrument to which this instconfig file is

intended to communicate.
Service Name Allows for a TCP session to be named.
TCP Port The port over which the host computer and TCP instrument are intended to

communicate.
TCP Write
Timeout (ms)

Specifies the time, in milliseconds, that the TCP write command uses as the
timeout before returning an error.

23

Name Description
TCP Open
Timeout (ms)

Specify the time, in milliseconds, that the Open command waits for a
connection to the TCP instrument to be established before returning an
error.

Connection
Type

The type of TCP connection, default is Standard Connection.
 Standard Connection: Creates a TCP Client.

Create Listener: Creates a TCP Listener.
Timeout (ms) Specifies the read timeout, in milliseconds, normally used for waiting for

completed messages to be returned from the TCP instrument. This timeout
can be overridden by specific read operations, but by default this Timeout
value will be used.

Termination
Character

Specifies the character that defines the end of a data packet.

Enabled Specifies whether the Termination Character setting is used or not.
Console Mode Specifies how the send and receive messages interact with the console.

 All: Sends all messages to and from the TCP instrument to the
Console.

 Selected: Enables the user to specify, in the software, which messages
are written to the Console.

 None: Does not send any messages to the Console.
Suppress
Timeout

Specifies whether the Console Stream will suppress the Driver Framework
Timeout Error code.

Help Button Opens a help window that explains the other user interface items for a TCP
configuration.

24

4.3.2.2. Serial

Figure 12: Serial Configuration User Interface

Name Description

Resource The physical resource that is used for the serial connection.
Baud Rate The amount of bits sent through the connection per second. Common baud

rates are 4800, 9600, 19200 and 115200.
Parity A method of detecting transmission errors. The serial instrument's

documentation should specify this value; most commonly, this is None.
Stop Bits Defines how many stop bits are expected.

25

Name Description
Flow Control Determines the type of handshaking (if any) that is done between the host

computer and the serial instrument.
Data Bits How many bits the data packet is composed of.
Inbound Buffer
Size

The number of bits can be stored in the inbound buffer, waiting for the host
computer to process them.

Outbound
Buffer Size

The number of bits can be stored in the outbound serial buffer, waiting for
the instrument to read them.

Timeout (ms) Specifies the read timeout, in milliseconds, normally used for waiting for
completed messages to be returned from the serial instrument. This
timeout can be overridden by specific read operations, but by default this
Timeout value will be used.

Termination
Character

The character that defines the end of a data packet.

Enabled Specifies whether the Termination Character setting is used or not.
Console Mode Specifies how the send and receive messages interact with the console.

 All: Sends all messages to and from the TCP instrument to the
Console.

 Selected: Enables the user to specify, in the software, which messages
are written to the Console.

 None: Does not send any messages to the Console.
Suppress
Timeout

Specifies whether the Console Stream will suppress the Driver Framework
Timeout Error code.

Help Button Opens a help window that explains the other user interface items for a
serial configuration.

26

4.3.2.3. VISA

Figure 13: VISA Configuration User Interface

Name Description
Resource The physical resource that is used for the VISA connection. VISA supports a

variety of interfaces such as GPIB, USB and LAN/LXI.
Timeout (ms) Specifies the read timeout, in milliseconds, normally used for waiting for

completed messages to be returned from the TCP instrument. This timeout
can be overridden by specific read operations, but by default this Timeout
value will be used.

Termination
Character

Specifies the character that defines the end of a data packet.

27

Name Description
Enabled Specifies whether the Termination Character setting is used or not.
Console Mode Specifies how the send and receive messages interact with the console.

 All: Sends all messages to and from the TCP instrument to the
Console.

 Selected: Enables the user to specify, in the software, which
messages are written to the Console.

None: Does not send any messages to the Console.
Suppress
Timeout

Specifies whether the Console Stream will suppress the Driver Framework
Timeout Error code.

Help Button Opens a help window that explains the other user interface items for a VISA
configuration.

5. Tutorials
5.1. CMC Configuration Manager
This tutorial will explain how to create configuration files (instconfig) that can be used in the
included demo. The demo consists of a client and listener that communicate with each other
through any supported protocol. As such, it includes several details about the demo (Sections 5.1.1,
5.1.2, and 5.1.4) as well as the steps required to create an instconfig file (Section 5.1.3).

The demo can be opened in the following ways:

Method Instructions
LabVIEW example
finder

1. Open LabVIEW.
2. On the home screen, go to the Help Menu >> Find Examples…
3. In the NI Example Finder, either:

a. In browse, open Toolkits and Modules >> Third-Party Add-Ons
>> Other.

b. In search, type CMC and click search.
4. Open Client.vi and Listener.vi.

LabVIEW Palettes 1. Create a new VI.
2. Right-click on the block diagram.
3. In the Palettes, locate CMC >> Instrument Control >> Examples.
4. Open Client.vi and Listener.vi.

28

 TCP Listener Demo VI

Figure 14: Listener Demo Front Panel

This is a simple Listener. It will send data to the Client. Once this Listener is initialized, it counts
how many times it has looped and sends that number to the Client. It then checks for any Client
messages. If there aren’t any, it repeats. If there is a message from the Client, the Listener shuts
down.

5.1.1.1. Initialize
First and foremost, the Listener will need to initialize an instrument control. The initialize
function just needs a name that is unique and sufficiently descriptive. This is used to register
the instrument control with the Console so that it is easier to keep track of.

5.1.1.2. Load Instrument
Now that an instrument control has been created, it needs to be loaded from file. This
creates a specific instance of an Instrument Control object that the subsequent functions
will use. For the sake of this tutorial, it will be assumed that it is a TCP instrument control.

5.1.1.3. Open
Opens the TCP connection. Since this is the Listener, it will create a TCP Listener and wait for
a Client to connect to it. Once it has a Client, it will start looping through its Listener code.

5.1.1.4. Write to Instrument
The data the Listener sends to the Client comes in two packets. The first is a single character
that tells the Client how many characters will be in the following data packet. The second is
the number of times the Listener has looped.

29

5.1.1.5. Read Bytes
Once the Listener has finished communicating to the Client, it waits for a response from the
Client for 50 milliseconds. If the Client responds, this is interpreted as a close prompt.
However, if no response is received, the Listener will rerun the loop.

5.1.1.6. Close
Once the Listener has received a stop command, it tells the Console that the connection has
been closed and closes the connections. However, the TCP instrument control is not
destroyed, so it could be reopened later. After the connection has been closed, the Listener
shuts down.

 TCP Client Demo VI

Figure 15: Client Demo Front Panel

The Client establishes a connection with the Listener and then reads data from it. Once the
Client counts to 100, it stops and sends a message to the Listener, telling it to stop.

5.1.2.1. Initialize
Like the Listener, the Client will need to initialize its instrument control. Since the names are
used to keep track of the instrument control in the Console, it must have a unique name.

5.1.2.2. Load
Now the Client will have to load its instrument control from file.

30

5.1.2.3. Open
Once the instrument control is successfully loaded, it needs to establish a connection with
the Listener. It is important that the Listener is already running at this point. Once the
connection is established, the Client will continually read data from the Listener.

5.1.2.4. Read Bytes
The Client expects data from the Listener in two packets. The first packet is a single
character that tell the Client how many characters will be in the following packet. If this
number is zero, it doesn’t look for a second packet. If it is a non-zero value, then it reads
that many bytes from the Listener. This data is expected to be a number, so it is converted
and checked. If the number from the Listener is 100 or greater, the Client beings to shut
down.

5.1.2.5. Write to Instrument
In this program, the Client needs to tell the Listener that it is shutting down. It does this by
writing a ‘Q’ to the Listener. The Listener will interpret this as a command to shut down.

5.1.2.6. Close
Once the Listener has been told to shut down, the last thing to do is close the connection.
This also informs the Console that the Client’s instrument control has been closed.

 Configuration
This section outlines how to use the CMC Configuration Manager to create a configuration file.
For more details on the CMC Configuration Manager, see Section 4.1.

31

5.1.3.1. Listener Configuration

Figure 16: Demo Listener Configuration

1. In LabVIEW, go to Tools >> CMC Tools >> CMC Configuration Manager.
2. In the CMC Configuration Manager, go to the File menu and select Create New. This will

bring up the Create New Configuration dialog.
3. In the Create New dialog, give the configuration a unique name. For this tutorial, it will

be assumed that it is named “My Test Listener”.
4. Select TCP (Instrument >> Instrument Control >> TCP) as the instrument type.
5. Click OK.
6. In the file dialog that pops up, click Ok.
7. Set the IP Address to 127.0.0.1.
8. Set the Connection Type to be “Create Listener”.
9. Set the Port to 1234. If this port is already used, enter an unused port number. Ensure

that any local firewall settings do not block LabVIEW from using this port.
10. Select File >> Save, or press Ctrl+S to save the changes to the .instconfig.

32

5.1.3.2. Client Configuration

Figure 17: Demo Client Configuration

1. In the CMC Configuration Manager, go to the File menu and select Create New. This will
bring up the Create New Configuration dialog.

2. In the Create New Configuration dialog, give the configuration a unique name. For this
tutorial, it will be assumed that it is named “My Test Client”.

3. Select TCP (Instrument >> Instrument Control >> TCP) as the instrument type.
4. Click OK.
5. In the file dialog that pops up, click Ok.
6. Set the IP Address to 127.0.0.1.
7. Set the Connection Type to be “Standard Connection”.
8. Set the Port to the port number chosen for the Listener Configuration.
9. Select File >> Save, or press Ctrl+S to save the changes to the .instconfig.

 Run Demo
In order to test that the newly created instconfig files work correctly, change the paths on the
demo front panels to point to the new instconfig files. These can be found in the user’s
application data directory. On Windows 10, this is found at
C:\Users\<UserName>\AppData\Local\CMC\DF\Config. Once these have been changed, the

33

demo may be run. If both files are configured correctly, the Client will start filling its progress
bar. Once the bar is full, both VIs will terminate.

5.2. Console Tutorial
This tutorial will provide an overview of Console. The Console provides an interface where the
communication with one or more instruments can be observed. This tutorial will make use of the
demo VIs. Since these VIs are discussed in more detail in the previous tutorial (see Section 5.1), it is
recommended to read through that before starting this tutorial.

The Console can be launched by the Initialize VI from the Instrument Control Palette or by the
Launch Console VI from the Console Palette. For more details on the various components that
compose the Console, see Section 4.2.

 Viewing Console Logs
One of the uses of the Console is to provide the user with a window into the communication of
the instrument to monitor the messages that are sent and received. This can be helpful for
debugging unexpected instrument behavior.

Open the Console using the Launch Console VI from the CMC >> Console Palette. When the
Console is initially launched, there won’t be any instruments registered with it, so the
Instrument Selector will be empty, as well as the Console Log.

In order to populate the Console’s Instrument Selector and Console Log, run the TCP Listener
Demo VI with the TCP Client Demo VI. Once they being execution, the Console will automatically
select the Listener in the Instrument Selector, since the Console didn’t have anything selected
and the Listener will initialize first. While they execute, their Console logs will update as they
communicate with each other. These can be switched between by selecting the desired
instrument with the Instrument Selector.

Once the TCP Listener and Client Demo VIs finish executing, the Console will remain open with
their respective logs still available for viewing. When the Console is closed, the logs will be saved
to file.

 Injection
Another use of the Console is to provide an interface that enables the user to send messages to
the instrument during execution.

For example, the TCP Listener Demo VI can be prematurely shut down using console injection by
the following steps:

1. Start the TCP Listener Demo VI and TCP Client Demo VI.
2. With the Client selected in the Console, enter a ‘Q’ into the Injector Message.
3. Click the Write button or press enter. This inserts a ‘Q’ that is sent to the instrument that

the Client is controlling, in this case, the Listener. The Listener will read this message and
shutdown. However, since the Client hasn’t finished counting, it will continue to look for
messages from the Listener.

4. Click the stop button to stop the Client.

34

Similarly, the Client can also be shut down early by console injection.

1. Start the TCP Listener Demo VI and TCP Client Demo VI.
2. Select the Listener in the Instrument Selector of the Console.
3. Type ‘3100’ into the Injector Message.
4. Click the Write button or press enter.

The Client will read this in as two separate messages. The first message, the 3, will inform it of
the length of the second message, the 100. It will read in the 100 and since that is greater than
99, it will run its normal shutdown procedure, which will also shut down the Listener.

5.3. TCP Tutorial
This tutorial will walk the user through creating a simple client/listener pair along with the required
configuration files. The client (UI) will be a simple UI for the Listener (Processor), which will do all
the processing.

This tutorial will use common controls, indicators and programming functions and assumes some
amount of familiarity with the LabVIEW programming environment. It will make use of the
Instrument Control API, which can be found in the block diagram palette set under CMC >>
Instrument Control, see Section 4.3.1 for more details.

35

 Creating UI
5.3.1.1. Configuration

Figure 18: UI Configuration

The UI will need an .instconfig in order to actually know what type of Instrument Control it
should be. In order to create it, use the following steps:

1. Open the CMC Configuration Manager. (Tools >> CMC Tools >> CMC Configuration
Manager…)

2. In the File Menu, select Create New.
3. For the Name, enter CMCTutorialUI. If this turns red, click Cancel and skip to step 7. An

instconfig with this name already exists.

36

4. Select TCP as the instrument type.
5. Click OK.
6. Click OK in the file dialog that pops up.
7. In the CMC Configuration Manager, make sure that the configuration named

CMCTutorialUI is selected.
8. Set the IP Address to 127.0.0.1. This is the local host IP Address. Since there isn’t an

external instrument to connect to, using the local host is a safe option. For a newly
created .instconfig, the IP Address will default to 127.0.0.1.

9. Decide if a Service Name would be useful. For this tutorial, it will not, change it to be
blank.

10. Select the Connection Type. Since the UI will be the client, set the Connection Type to
Standard Connection.

11. Pick an unused TCP port for the communication to be transmitted over. Assuming 1234 is
not used for anything, use that.

12. Decide how long the TCP connection will wait for a Write action to complete. For this
tutorial, the default value of 2000 milliseconds will be fine.

13. Set the TCP Open Timeout to be long enough for the UI to connect to the Processor. For
the UI, 20000 milliseconds will work.

14. Set the Console to None. The Console will not be used in this tutorial, so it doesn’t need to
be enabled.

15. Set the Timeout to 1000 milliseconds. This will be important so that our query doesn’t
timeout before the Processor can finish calculating and returning its response.

16. Uncheck Enabled. This will remove the termination character from being added to the
transmission.

17. Save the Configuration and exit.

5.3.1.2. Front Panel

Figure 19: UI Front Panel

37

The front panel will consist of the following controls and indicators:

 Decrement Button.
o Silver >> Boolean >> Buttons >> Remove Button (Silver).
o Change the Label to “Decrement Button”.

 Increment Button.
o Silver >> Boolean >> Buttons >> Add Button (Silver).
o Change the Label to “Increment Button”.

 Stop Button.
o Silver >> Boolean >> Buttons >> Stop Button (Silver).
o Change the Label to “Stop Button”.

 Numeric Indicator.
o System >> Numeric >> System Numeric.
o Change the Label to “Value”.
o Right-click >> Change to indicator.
o Right-click >> Representation >> I32.

5.3.1.3. Block Diagram
The block diagram will start off with setting up the instrument control. Then it will move to
the main loop, which will handle button press events. Finally, it will close the instrument
control.

 Instrument Control Setup
Initialize the Instrument Control, as shown in Figure 20.
 Place an Initialize VI from the CMC >> Instrument Control Palette onto the Block

Diagram.
 Place a String Constant from the Programming >> String Palette onto the Block

Diagram.
 Enter “UI” into the String Constant.
 Wire the String Constant to the Instrument Name terminal of the Instrument

Control Initialize VI.

Figure 20: UI Instrument Control Initialization

Load the instconfig into the Instrument Control, as shown in Figure 21.
 Place a Get System Directory VI from the Programming >> File I/O >> File

Constants Palette onto the Block Diagram.
 Right click the system directory type terminal and select Create Constant.
 In the newly created enum, select User Application Data.
 Place a Build Path function from the Programming >> File I/O Palette onto the

Block Diagram.
 Wire the system directory terminal from the Get System Directory VI to the base

path terminal of the Build Path Function.

38

 Place a String Constant from the Programming >> String Palette onto the Block
Diagram.

 Enter “CMC\DF\Config\CMCTutorialUI.instconfig” into the String Constant.
 Wire the String Constant to the name or relative path terminal of the Build Path

function.
 Place a Load VI from the CMC >> Instrument Control Palette onto the Block

Diagram.
 Wire the Instrument output terminal from the Instrument Control Initialize VI to

the Instrument input terminal of the Instrument Control Load VI.
 Wire the error out terminal from the Instrument Control Initialize VI to the error

in (no error) terminal of the Instrument Control Load VI.
 Wire the appended path terminal from the Build Path function to the

Configuration File terminal of the Instrument Control Load VI.

Figure 21: UI Instrument Control Load Instrument

Open the communications shown in Figure 22.
 Place an Open VI from the CMC >> Instrument Control Palette onto the block

Diagram.
 Wire the Instrument output terminal from the Instrument Control Load VI to the

Instrument input terminal of the Instrument Control Open VI.
 Wire the error out terminal of the Instrument Control Load VI to the error in (no

error) terminal of the Instrument Control Open VI.

Figure 22: UI Instrument Control Open

 Main Process
Now that the Instrument Control has been created, configured and opened, the
communication process needs to be built up.

Create the basic architecture, as shown in Figure 23.
 Place a Case Structure from the Programming >> Structures Palette onto the Block

Diagram.

39

 Wire the Instrument output terminal from the Instrument Control Open VI into
the Case Structure.

 Wire the error out terminal from the Instrument Control Open VI to the Case
Selector of the Case Structure.

 Place a While Loop from the Programming >> Structures Palette inside the Case
Structure.

 Wire the Instrument tunnel from the Case Structure into the While Loop.
 Wire the Error tunnel from the Case Structure into the While Loop.
 Place an Event Structure from the Programming >> Structures Palette inside the

While Loop.

Figure 23: UI Main Process Loop

Handle the Error Case, as shown in Figure 24.
 Wire the Instrument tunnel through the “Error” case of the Case Structure.
 Wire the Error tunnel through the “Error” case of the Case Structure.

Figure 24: UI Main Process Error

Create the base process and fill in the Timeout Event of the Event Structure, as shown in
Figure 25.
 Place a String Constant from the Programming >> String Palette inside the

Timeout Event of the Event Structure.
 Enter “?” into the String Constant.
 Wire the String Constant to the Event Structure as an output tunnel.

40

 Place a False Constant from the Programming >> Boolean Palette inside the
Timeout Event of the Event Structure.

 Wire the False Constant to the Event Structure as an output tunnel.
 Place a Read/Write Instrument VI from the CMC >> Instrument Control Palette

inside the While Loop.
 Set the Instrument Control Read/Write Instrument polymorphic VI to use the

“Query (Data)” instance.
 Wire the Instrument tunnel from the While Loop to the Instrument input terminal

of the Instrument Control Query (Data) VI.
 Wire the Instrument output terminal from the Instrument Control Query (Data) VI

to the Instrument output tunnel of the Case Structure.
 Wire the Error tunnel from the While Loop to the error in (no error) terminal of

the Instrument Control Query (Data) VI.
 Wire the error out terminal of the Instrument Control Query (Data) VI to the Error

output tunnel of the Case Structure.
 Wire the String output from the Event Structure to the Data input terminal of the

Instrument Control Query (Data) VI.
 Place a String Constant from the Programming >> String Palette inside the While

Loop.
 Enter “A” into the String Constant.
 Wire the String Constant to the Desired Data terminal of the Instrument Control

Query (Data) VI.
 Place a Decimal String to Number from the Programming >> String >>

String/Number Conversion Palette inside the While Loop.
 Wire the Data output terminal from the Instrument Control Query (Data) VI to the

String terminal of the Decimal String to Number function.
 Move the terminal of the Value Indicator inside the While Loop.
 Wire the number terminal from the Decimal String to Number to the terminal of

the Value Indicator.
 Wire the Boolean from the Event Structure to the Conditional Terminal of the

While Loop.

41

Figure 25: UI Main Process Timeout

Configure the Increment Message, as shown in Figure 26.
 Right-click the Event Structure and select “Add Event Case”.
 Select “Increment Button” as the Event Source.
 Select “Value Change” as the Event.
 Click “OK”.
 Place a String Constant from the Programming >> String Palette inside the

“Increment Button”: Value Change Event Case.
 Enter “+” into the String Constant.
 Wire the String Constant to the String tunnel of the Event Structure.
 Place a False Constant from the Programming >> Boolean Palette inside the

“Increment Button”: Value Change Event Case.
 Wire the False Constant to the Boolean tunnel of the Event Structure.

Figure 26: UI Main Process Add

Configure the Decrement Message, as shown in Figure 27.
 Right-click the Event Structure and select “Add Event Case”.
 Select “Decrement Button” as the Event Source.
 Select “Value Change” as the Event.
 Click “OK”.
 Place a String Constant from the Programming >> String Palette inside the

“Decrement Button”: Value Change Event Case.
 Enter “-” into the String Constant.
 Wire the String Constant to the String tunnel of the Event Structure.

42

 Place a False Constant from the Programming >> Boolean Palette inside the
“Decrement Button”: Value Change Event Case.

 Wire the False Constant to the Boolean tunnel of the Event Structure.

Figure 27: UI Main Process Subtract

Configure the Stop Message, as shown in Figure 28.
 Right-click the Event Structure and select “Add Event Case”.
 Select “Stop Button” as the Event Source.
 Select “Value Change” as the Event.
 Click “OK”.
 Place a String Constant from the Programming >> String Palette inside the “Stop

Button”: Value Change Event Case.
 Enter “X” into the String Constant.
 Wire the String Constant to the String tunnel of the Event Structure.
 Place a True Constant from the Programming >> Boolean Palette inside the “Stop

Button”: Value Change Event Case.
 Wire the True Constant to the Boolean tunnel of the Event Structure.

Figure 28: UI Main Process Stop Event

The last event needed is for the Stop Button. When this button is pressed, the UI will
send an ‘X’ to the Processor. This case will also have a TRUE wired to the While Loop
terminal.

 Close
Close the Instrument Control, as shown in Figure 29.
 Place a Close VI from the CMC >> Instrument Control Palette onto the Block

Diagram.
 Wire the Instrument output tunnel from the Case Structure to the Instrument

input terminal of the Instrument Control Close VI.
 Wire the Error output tunnel from the Case Structure to the error in (no error)

terminal of the Instrument Control Close VI.

43

Figure 29: UI Close

The Main process is now complete.

44

 Creating Processor
5.3.2.1. Configuration

Figure 30: Processor Configuration

The Processor will need an .instconfig in order to actually know what type of instrument control
it should be. In order to create it, use the following steps:

1. Open the CMC Configuration Manager. (Tools >> CMC Tools >> CMC Configuration
Manager…)

2. In the File Menu, select Create New.
3. For the Name, enter CMCTutorialProcessor. If this turns red, click Cancel and skip to step

7. An instconfig with this name already exists.
4. Select TCP as the instrument type.

45

5. Click OK.
6. Click OK in the file dialog that pops up.
7. In the CMC Configuration Manager, make sure that the configuration named

CMCTutorialProcessor is selected.
8. Set the IP Address to 127.0.0.1. This is the local host IP Address. Since there isn’t an

external instrument to connect to, using the local host is a safe option. For a newly
created .instconfig, the IP Address will default to 127.0.0.1. In order for the UI to
communicate with the Processor, both must be configured to use the same IP Address.

9. Decide if a Service Name would be useful. For this tutorial, it will not, change it to be
blank.

10. Select the Connection Type. Since the Processor will be the Listener, set the Connection
Type to Create Listener.

11. Pick the same TCP port that was used for the UI’s configuration for the communication to
be transmitted over.

12. Decide how long the TCP connection will wait for a Write action to complete. For this
tutorial, the default value of 2000 milliseconds will be fine.

13. Set the TCP Open Timeout to be long enough for the UI to connect to the Processor. For
the UI, 20000 milliseconds will work.

14. Set the Console to None. The Console will not be used in this tutorial, so it doesn’t need to
be enabled.

15. Set the Timeout to 1000 milliseconds. This is not particularly important since the
Processor will wait forever for a message from the UI. Once it gets the message, it will
perform some action and return the updated Value to the UI.

16. Uncheck Enabled. This will remove the termination character from being added to the
transmission.

17. Save the Configuration and exit.

5.3.2.2. Front Panel
The Processor doesn’t have anything on its front panel.

5.3.2.3. Block Diagram
The Block Diagram will setup the Instrument Control, manage communication with the UI and
close the Instrument Control once the Processor is no longer needed.

 Instrument Control Setup
Initialize the Instrument Control, as shown in Figure 31.
 Place an Initialize VI from the CMC >> Instrument Control Palette onto the Block

Diagram.
 Place a String Constant from the Programming >> String Palette onto the Block Diagram.
 Enter “Processor” into the String Constant.
 Wire the String Constant to the Instrument Name terminal of the Instrument Control

Initialize VI.

46

Figure 31: Processor Instrument Control Initialize

Load the instconfig into the Instrument Control, as shown in Figure 32.
 Place a Get System Directory VI from the Programming >> File I/O >> File Constants

Palette onto the Block Diagram.
 Right click the system directory type terminal and select Create Constant.
 In the newly created enum, select User Application Data.
 Place a Build Path function from the Programming >> File I/O Palette onto the Block

Diagram.
 Wire the system directory terminal from the Get System Directory VI to the base path

terminal of the Build Path Function.
 Place a String Constant from the Programming >> String Palette onto the Block Diagram.
 Enter “CMC\DF\Config\CMCTutorialProcessor.instconfig” into the String Constant.
 Wire the String Constant to the name or relative path terminal of the Build Path

function.
 Place a Load VI from the CMC >> Instrument Control Palette onto the Block Diagram.
 Wire the Instrument output terminal from the Instrument Control Initialize VI to the

Instrument input terminal of the Instrument Control Load VI.
 Wire the error out terminal from the Instrument Control Initialize VI to the error in (no

error) terminal of the Instrument Control Load VI.
 Wire the appended path terminal from the Build Path function to the Configuration File

terminal of the Instrument Control Load VI.

Figure 32: Processor Instrument Control Load

Open the communications, as shown in Figure 33.
 Place an Open VI from the CMC >> Instrument Control Palette onto the block Diagram.
 Wire the Instrument output terminal from the Instrument Control Load VI to the

Instrument input terminal of the Instrument Control Open VI.
 Wire the error out terminal of the Instrument Control Load VI to the error in (no error)

terminal of the Instrument Control Open VI.

47

Figure 33: Processor Instrument Control Open

 Main process
Now that the Instrument Control has been created, configured and opened, the process to
handle the messages from the UI needs to be made.

Create the basic architecture, as shown in Figure 34.
 Place a Case Structure from the Programming >> Structures Palette onto the Block

Diagram.
 Wire the Instrument output terminal from the Instrument Control Open VI into the Case

Structure.
 Wire the error out terminal from the Instrument Control Open VI to the Case Selector of

the Case Structure.
 Place a While Loop from the Programming >> Structures Palette inside the Case

Structure.
 Wire the Instrument tunnel from the Case Structure into the While Loop.
 Wire the Error tunnel from the Case Structure into the While Loop.

Figure 34: Processor Main Loop

Handle the Error Case, as shown in Figure 35.
 Wire the Instrument tunnel through the “Error” case of the Case Structure.
 Wire the Error tunnel through the “Error” case of the Case Structure.

48

Figure 35: Processor Main Error

Add code so that the Processor will read messages from the UI and respond, as shown in
Figure 36.
 Place a Read/Write Instrument VI from the CMC >> Instrument Control Palette inside

the While Loop.
 Set the Instrument Control Read/Write Instrument polymorphic VI to use the “Read

(Bytes)” instance.
 Wire the Instrument tunnel of the While Loop to the Instrument input terminal of the

Instrument Control Read (Bytes) VI.
 Wire the Error tunnel of the While Loop to the error in (no error) terminal of the

Instrument Control Read (Bytes) VI.
 Place an Equal? function from the Programming >> Comparison Palette inside the While

Loop.
 Wire the Data terminal of the Instrument Control Read (Bytes) VI to the x terminal of

the Equal? function.
 Place a String Constant from the Programming >> String Palette inside the While Loop.
 Enter “X” into the String Constant.
 Wire the String Constant to the y terminal of the Equal? function.
 Wire the x =y? terminal from the Equal? function to the Conditional Terminal of the

While Loop.
 Place a Format Into String function from the Programming >> String Palette inside the

While Loop.
 Wire the error out terminal of the Instrument Control Read (Bytes) VI to the error in

terminal of the Format Into String function.
 Place a String Constant from the Programming >> String Palette inside the While Loop.
 Enter “%dA” into the String Constant.
 Wire the String Constant to the format string terminal of the Format Into String

function.

49

 Place a Read/Write Instrument VI from the CMC >> Instrument Control Palette inside
the While Loop.

 Set the Instrument Control Read/Write Instrument polymorphic VI to use the “Write”
instance.

 Wire the Instrument output terminal from the Instrument Control Read (Bytes) VI to the
Instrument input terminal of the Instrument Control Write VI.

 Wire the resulting string terminal from the Format Into String function to the Data
terminal of the Instrument Control Write VI.

 Wire the error out terminal from the Format Into String function to the error in (no
error) terminal of the Instrument Control Write VI.

 Wire the Instrument output terminal from the Instrument Control Write VI to the
Instrument tunnel of the Case Structure.

 Wire the Instrument output terminal from the Instrument Control Write VI to the
Instrument tunnel of the Case Structure.

Figure 36: Processor Main Loop Base

Add a variable and message processing, as shown in Figure 37.
 Right-click on the While Loop and select “Add Shift Register”.
 Place a Numeric Constant from the Programming >> Numeric Palette inside the Case

Structure, but outside the While Loop.
 Wire the Numeric Constant to the Shift Register.
 Place a Case Structure from the Programming >> Structures Palette inside the While

Loop.
 Wire the Data terminal from the Instrument Control Read (Bytes) VI to the Case Selector

of the Case Structure.
 Select the default case of the Case Structure.
 Replace “False” with “?” in the Selector Label of the Case Structure.
 Wire the Numeric Constant from the Shift Register through the default case of the Case

Structure and into the other side of the Shift Register.

50

Figure 37: Processor Main Loop Read Write

Handle the decrement message, as shown in Figure 38.
 Select the “True” case of the Case Structure.
 Replace “True” with “-“.
 Place a Decrement function from the Programming >> Numeric Palette inside the Case

Structure.
 Wire the Numeric Constant input tunnel to the x terminal of the Decrement function.
 Wire the x-1 terminal of the Decrement function to the Numeric Constant output

tunnel.

Figure 38: Processor Main Loop Decrement Message

Handle the Increment message, as shown in Figure 39.
 Right click the Case Structure and select “Add Case After”.
 Enter “+” into the Case Selector.
 Place an Increment function from the Programming >> Numeric Palette inside the

Case Structure.
 Wire the Numeric Constant input tunnel to the x terminal of the Increment function.
 Wire the x+1 terminal of the Increment function to the Numeric Constant output

tunnel.

Figure 39: Processor Main Loop Increment Message

51

Handle the Close message, as shown in Figure 40.
 Right click the Case Structure and select “Add Case After”.
 Enter “X” into the Case Selector.
 Wire the Numeric Constant input tunnel to the Numeric Constant output tunnel.

Figure 40: Processor Main Loop Close Message

The Processor’s message handling is now complete.

 Close
With all the functionality of the Processor completed, once it finishes executing, the
Instrument Control will need to be close, as shown in Figure 41.
 Place a Close VI from the CMC >> Instrument Control Palette onto the Block Diagram.
 Wire the Instrument tunnel of the Case Structure to the Instrument input terminal of

the Instrument Control Close VI.
 Wire the Error tunnel of the Care Structure to the error in (no error) terminal of the

Instrument Control Close VI.

Figure 41: Processor Main Loop Close

 Running UI and Processor
Now that both the UI and the Processor are complete, they can be run. Since the Processor is a
listener, it will need to be started before the UI. This is to ensure that the UI has something to
connect to.

52

6. Troubleshooting Recommendations
6.1. Console Refuses to Inject into a connection that has active communication.
The Console reports “Unable to Injection into a closed connection” when injection is attempted, but
the Console also reports ongoing communication with the device.
This can happen if the user doesn’t call Instrument Control.Open. This VI tells the Console that the
connection is active. If the Console hasn’t been told that the connection is active, it assumes that it
is closed and will not attempt to inject.

6.2. Additional Resources.
See the NI forums user group for the Driver Framework. https://forums.ni.com/t5/CMC-Driver-
Framework/gp-p/5394

