

QUALITY ASSURANCE REPORT

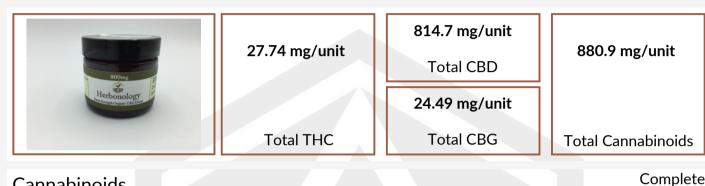
Powered by Confident Cannabis 1 of 8

Sample Description: N/A

Sample: 230124TRI002.002

Sample Received: 01/24/2023; Report Created: 01/30/2023;

Herbonology


1257 Jennifer Lane Manahawkin, NJ 08050 herbonology@gmail.com (201) 638-7456

Topical

Topical, Lotion

Sampled By: Client;

Cannabinoids

Date Analyzed: 01/25/2023				
Analyte	LOD	LOQ	Result	Result
THCa	mg/unit 0.6694	mg/unit 2.231	mg/unit ND	% ND
Δ9-THC	0.6694	2.231	27.74	0.04892
Δ8-THC	0.6694	2.231	ND	ND
THCVa	0.6694	2.231	ND	ND
THCV	0.6694	2.231	ND	ND
CBDa	0.6694	2.231	ND	ND
CBD	0.6694	2.231	814.7	1.344
CBDVa CBDV	0.6694	2.231 2.231	ND 8.773	ND 0.01547
CBDV	0.6694	2.231	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBGa	0.6694	2.231	ND	ND
CBG	0.6694	2.231	24.49	0.04320
CBCa	1.300	4.333	ND	ND
CBC	0.6694	2.231	2.555	0.004506
CBL	0.6694	2.231	2.634	0.004645
Total			880.9	1.461

1 Unit = 2 oz Container, 56.70g

Unit Mass/Volume provided by Client and may affect the validity of "mg/unit" results. SOP.102, AOAC 2018.11 (Modi ed); UHPLC-PDA. Total THC = THCa * $0.877 + \Delta 9$ -THC; Total CBD = CBDa * 0.877 + CBD; Total CBG = CBGa * 0.878 + CBG. Pass/Fail THC criteria, if listed, is in accordance with 86 FR 5596 issued by the USDA for pre-harvest hemp clearance (total THC - uncertainty $\leq 0.3\%$ THC). Dry weight percent of cannabinoids, if listed, is calculated using the dried weight determined by the moisture content prior to extraction, indicated as follows (SOP.702; Gravimetry).

2021-9) issued by the New Jersey Cannabis Regulatory Commission. Values reported relate only to the product tested and batched under the batch number identified above. Trichome Analytical makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. All analytical work is performed using validated methods and in accordance with state and/or federal guidelines. This certificate may only be reproduced in full.

Powered by Confident Cannabis 2 of 8

Sample Description: N/A

Sampled By: Client;

Sample: 230124TRI002.002

Sample Received: 01/24/2023; Report Created: 01/30/2023;

QUALITY ASSURANCE REPORT

Herbonology

1257 Jennifer Lane Manahawkin, NJ 08050 herbonology@gmail.com (201) 638-7456

Topical

Topical, Lotion

Terpenes

Date Analyzed: 01/26/2023

Analytes	LOD	100	Result	Result		
Analytes		<u>100</u>	%	mg/g		
Linalool	% 0.000323	0.00108	0.0715	0.715		S . S
α-Pinene	0.000323	0.00108	0.00468	0.0468		Siz.
δ-Limonene	0.000323	0.00108	0.00455	0.0455		Λ^{-}
3-Carene	0.000323	0.00108	0.00373	0.0373		Lavender
β-Pinene	0.000323	0.00108	0.00316	0.0316	L	
Sabinene	0.000323	0.00108	0.00243	0.0243	E E	
Ocimene	0.000323	0.00108	0.00242	0.0242		
Caryophyllene	0.000323	0.00108	0.00210	0.0210		_
	0.000323	0.00108	ND	ND		
a-Cedrene	0.000323	0.00108	ND	ND		Ŧ
α-Humulene	0.000323	0.00108	ND	ND		Pine
α-Phellandrene	0.000323	0.00108	<loq< th=""><th><loq< th=""><th>L</th><th></th></loq<></th></loq<>	<loq< th=""><th>L</th><th></th></loq<>	L	
α-Terpinene	0.000323	0.00108	ND	ND	Г	
β-Myrcene	0.000323	0.00108	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
Borneol	0.000647	0.00216	ND	ND		(BK)
Camphene	0.000323	0.00108	ND	ND		
Camphor	0.000970	0.00323	ND	ND		
			ND	ND		Lemon
Caryophyllene Oxide	0.000323	0.00108			L	
Cedrol	0.000323	0.00108	ND	ND	Г	
Fenchyl Alcohol	0.000323	0.00108	ND	ND		
Eucalyptol	0.000323	0.00108	ND	ND		
Fenchone	0.000647	0.00216	ND	ND ND		
γ-Terpinene	0.000323	0.00108	ND ND	ND		r
Geraniol	0.000323	0.00108	ND ND	ND		Eucalyptus
Geranyl Acetate	0.000323	0.00108	ND	ND	L	
Guaiol	0.000323	0.00108	ND	ND) r	
Isoborneol	0.000323	0.00108	ND	ND		
Isopulegol	0.000323	0.00108	ND	ND		
Menthol	0.000323	0.00108	ND	ND		
Nerol	0.000323	0.00108	ND	ND		
Nerolidol	0.000323	0.00108	ND	ND		Clove
Pulegone	0.000323	0.00108	ND	ND		
Sabinene Hydrate	0.000323	0.00108	ND	ND		
Terpineol	0.000304	0.000914	ND	ND		0.09%
Terpinolene	0.000323	0.00108	ND	ND		
Valencene	0.000323	0.00108				Total Terpenes
					L	•

SOP.202; HS-GC-MS.

ND=Not Detected, NR=Not Reported, LOD=Limit of Detection, LOQ=Limit of Quantitation. Action levels reported for contaminants are in accordance with N.J.S.A. 24:61-19 (CRC Resolution 2021-9) issued by the New Jersey Cannabis Regulatory Commission. Values reported relate only to the product tested and batched under the batch number identified above. Trichome Analytical makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. All analytical work is performed using validated methods and in accordance with state and/or federal guidelines. This certificate may only be reproduced in full.

Primary Aromas

QUALITY ASSURANCE REPORT

Powered by Confident Cannabis 3 of 8

Sample Description: N/A

Sampled By: Client;

Sample: 230124TRI002.002

Sample Received: 01/24/2023; Report Created: 01/30/2023;

Herbonology

1257 Jennifer Lane Manahawkin, NJ 08050 herbonology@gmail.com (201) 638-7456

Topical

Topical, Lotion

Microbials

Date Analyzed: 01/28/2023

Analytes	Limit	Result	Status
	CFU/g	CFU/g	
Total Aerobic Count	100000	<100	Pas
E. Coli	1	<1	Pas
Salmonella SPP	Detected in 1g	Not Detected	Pas
Yeast & Mold	10000	<100	Pass
02, SOP.606, SOP.607; qPCR, SOP.604; Plating	, and/or SOP.605; MPN.		
6000 Commerce Parkway Suite I	No (A	Confider	nt Cannabis
Maximat Lawred NU	gholeful		s Reserved
(854) 316-0600	Kristen Goedde Tom Barkley	auna art Gaan fidantaa	
		10/17) 506-5866
http://www.trichomeanalytical.com	Lah Manager Technical Mana		500 5000
 http://www.trichomeanalytical.com Lic# ISO/IEC 17025:2017 A2LA CERT# 59 	Lab Manager	7 www.confidentca	

Analytical makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. All analytical work is performed

using validated methods and in accordance with state and/or federal guidelines. This certificate may only be reproduced in full.

Powered by Confident Cannabis

Sample Description: N/A

Sampled By: Client;

Sample: 230124TRI002.002

Sample Received: 01/24/2023; Report Created: 01/30/2023;

QUALITY ASSURANCE REPORT

4 of 8

Herbonology

1257 Jennifer Lane Manahawkin, NJ 08050 herbonology@gmail.com (201) 638-7456

Topical

Topical, Lotion

Mycotoxins

Date Analyzed: 01/25/2023

án B1 án B2 án G1 án G2		μg/g 0.00650 0.00650	μg/g 0.0195	μg/g	μg/g	
kin B2 kin G1			0.0195			_
kin G1			0.0405	0.0200	ND	Pass
			0.0195	0.0200	ND	Pass
(in (₁ ')		0.00650	0.0195	0.0200	ND	Pass
		0.00650	0.0195	0.0200	ND	Pass
A atoxins		0.00/50	0.0105	0.0000	ND	Tested Pass
		0.00050	0.0175	0.0200	ND	Fass
S/MS			-			
<u> </u>						
000 Commerce Park	way Suite I	ίν. CA		\times D	Confiden	t Cannabis
	and y balle i	gholalel	9	The second secon		Reserved $\sqrt{2}^{\mu}$
ount Laurel, NJ		11-0-0-0-0-		om Barkley	support@confidentcar	nabis.com (°(
56) 316-0600		Kristen Goedde				
56) 316-0600	analytical.com	Kristen Goedde Lab Manager		nical Manager		506-5866
56) 316-0600 tp://www.trichome c# ISO/IEC 17025:2	2017 A2LA CERT#	Lab Manager # 5913.01 // DEA# RTC	Techr 0581098 // NJ HEMP		(866) www.confidentcar are in accordance with N.J.S	nabis.com
	toxin A S/MS.					

Powered by Confident Cannabis

Sample Description: N/A

Sampled By: Client;

Sample: 230124TRI002.002

Sample Received: 01/24/2023; Report Created: 01/30/2023;

QUALITY ASSURANCE REPORT

5 of 8

Herbonology

1257 Jennifer Lane Manahawkin, NJ 08050 herbonology@gmail.com (201) 638-7456

Topical

СН ۱N TI-

Topical, Lotion

Heavy Metals

Date Analyzed: 01/26/2023

Pass

Analytes	LOD	LOQ	Limit	Result	Status
	μg/g	µg/g	µg/g	µg/g	
Antimony	0.00805	0.0241		ND	Teste
Arsenic	0.00651	0.0482	0.400	ND	Pas
Cadmium	0.000512	0.0241	0.400	ND	Pass
Chromium	0.0259	0.0722	0.600	ND	Pas
Copper	0.103	0.489		ND	Teste
Iron	0.516	2.41		ND	Testeo
Lead	0.00609	0.0241	1.00	ND	Pas
Manganese	0.0155	0.489		<loq< td=""><td>Testeo</td></loq<>	Testeo
Mercury	0.00276	0.00722	0.200	ND	Pass
Nickel	0.0266	0.0722		ND	Testeo
Selenium	0.0126	0.0963		ND	Testeo
Zinc	0.0679	0.489		0.693	Teste
02; ICPMS. 6000 Commerce Parkwa	(Suite I)/. (A			Confiden	t Cannabis
	y Suite I		n Barkley		it Cannabis s Reserved nabis.com

ND=Not Detected, NR=Not Reported, LOD=Limit of Detection, LOQ=Limit of Quantitation. Action levels reported for contaminants are in accordance with N.J.S.A. 24:61-19 (CRC Resolution 2021-9) issued by the New Jersey Cannabis Regulatory Commission. Values reported relate only to the product tested and batched under the batch number identified above. Trichome Analytical makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. All analytical work is performed using validated methods and in accordance with state and/or federal guidelines. This certificate may only be reproduced in full.

Powered by Confident Cannabis

Sample Description: N/A

Sampled By: Client;

Sample: 230124TRI002.002

Sample Received: 01/24/2023; Report Created: 01/30/2023;

QUALITY ASSURANCE REPORT

6 of 8

Herbonology

1257 Jennifer Lane Manahawkin, NJ 08050 herbonology@gmail.com (201) 638-7456

Topical

Topical, Lotion

Pesticides

Date Analyzed: 01/25/2023

Analytes	LOD	LOQ	Limit	Result	Status
	µg/g	μg/g	µg/g	µg/g	
Abamectin	0.0254	0.0762	0.500	ND	Pass
Acetamiprid	0.0254	0.0762	0.200	ND	Pass
Aldicarb	0.0254	0.0762	0.400	ND	Pass
Ancymidol	0.0508	0.152	0.200	ND	Pass
Azoxystrobin	0.0254	0.0762	0.200	ND	Pass
Bifenazate	0.0254	0.0762	0.200	ND	Pass
Bifenthrin	0.0254	0.0762	0.200	ND	Pass
Boscalid	0.0508	0.152	0.400	ND	Pass
Carbaryl	0.0254	0.0762	0.200	ND	Pass
Carbofuran	0.0254	0.0762	0.200	ND	Pass
	0.0254	0.0762	0.200	ND	Pass
Chlorantraniliprole	0.0254	0.0762	0.200	ND	Pass
Chlorpyrifos	0.0254	0.0762	0.200	ND	Pass
Clofentezine	0.325	0.975	1.00	ND	Pass
Cy uthrin	0.325	0.975	1.00	ND	Pass
Daminozide	0.0254	0.0762	0.200	ND	Pass
Diazinon	0.0254	0.0762	0.100	ND	Pass
Dichlorvos	0.0254	0.0762	0.200	ND	Pass
Dimethoate	0.325	0.975	1.00	ND	
Ethephon	0.0254	0.0762	0.200	ND	Pass
Etoxazole	0.0254	0.0762	0.500	ND	Pass
Fenpyroximate	0.0254	0.0762	0.400	ND	Pass
Fipronil	0.325	0.975	1.00	ND	Pass
Flonicamid	0.0254	0.0762	0.400	ND	Pass
Fludioxonil	0.0234	0.0702	0.400		Pass

Analytes	LOD	LOQ	Limit	Result	Status
	μg/g	μg/g	μg/g	μg/g	
Flurprimidol	0.0254	0.0762	0.200	ND	Pass
Hexythiazox	0.0254	0.0762	1.00	ND	Pass
Imazalil	0.0254	0.0762	0.200	ND	Pass
Imidacloprid	0.0254	0.0762	0.400	ND	Pass
Kresoxim Methyl	0.0254	0.0762	0.400	ND	Pass
Malathion	0.0254	0.0762	0.200	ND	Pass
Metalaxyl	0.0254	0.0762	0.200	ND	Pass
Methiocarb	0.0254	0.0762	0.200	ND	Pass
Methomyl	0.0254	0.0762	0.400	ND	Pass
Myclobutanil	0.0254	0.0762	0.200	ND	Pass
Naled	0.163	0.488	0.500	ND	Pass
Oxamyl	0.0254	0.0762	1.00	ND	Pass
Paclobutrazol	0.0254	0.0762	0.400	ND	Pass
Permethrins	0.163	0.488	0.500	ND	Pass
Phosmet	0.0254	0.0762	0.200	ND	
	0.0254	0.0762	1.00	ND	Pass
Piperonyl Butoxide	0.0254	0.0762	0.400	ND	Pass
Propiconazole	0.325	0.975	1.00	ND	Pass
Pyrethrins	0.0254	0.0762	0.200	ND	Pass
Spinosad	0.0650	0.195	0.200	ND	Pass
Spiromesifen	0.0254	0.0762	0.200	ND	Pass
Spirotetramat	0.0254	0.0762	0.200	ND	Pass
Thiacloprid	0.0254	0.0762	0.200	ND	Pass
Thiamethoxam	0.0254	0.0762	0.200	ND	Pass
Tri oxystrobin	0.0204	5.07.02	5.200		Pass

SOP.404; LC-MS/MS.

6000 Commerce Parkway Suite I Mount Laurel, NJ (856) 316-0600 http://www.trichomeanalytical.com Lib Manager Technical Manager Lic# ISO/IEC 17025:2017 A2LA CERT# 5913.01 // DEA# RT0581098 // NJ HEMP# 34 00077

Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

ND=Not Detected, NR=Not Reported, LOD=Limit of Detection, LOQ=Limit of Quantitation. Action levels reported for contaminants are in accordance with N.J.S.A. 24:61-19 (CRC Resolution 2021-9) issued by the New Jersey Cannabis Regulatory Commission. Values reported relate only to the product tested and batched under the batch number identified above. Trichome Analytical makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. All analytical work is performed using validated methods and in accordance with state and/or federal guidelines. This certificate may only be reproduced in full.

2

Tom Barkley

Powered by Confident Cannabis

Sample Description: N/A

Sampled By: Client;

Sample: 230124TRI002.002

Sample Received: 01/24/2023; Report Created: 01/30/2023;

QUALITY ASSURANCE REPORT

7 of 8

Herbonology

1257 Jennifer Lane Manahawkin, NJ 08050 herbonology@gmail.com (201) 638-7456

Topical

Topical, Lotion

Residual Solvents

Date Analyzed: 01/26/2023

Analytes	LOD	LOQ	Limit	Result	Status
	μg/g	µg/g	µg/g	µg/g	
1,1-	0.0313	0.0938		ND	Tested
Dichloroethene	0.125	0.375		ND	Tested
1,2-Dichloroethane	12.5	37.5		ND	Tested
Acetone	12.5	37.5		ND	Tested
Acetonitrile	0.0313	0.0938	2.00	ND	Pass
Benzene	12.5	37.5	5000	ND	Pass
Butane	0.0313	0.0938		ND	Tested
Chloroform	12.5	37.5	5000	ND	Pass
Ethanol	12.5	37.5		ND	Tested
Ethyl acetate	12.5	37.5		ND	Tested
Ethyl ether	0.125	0.375		ND	Tested
Ethylene oxide	12.5	37.5	5000	ND	Pass
Heptane	12.5	37.5	5000	108	Tested
Isopropyl alcohol	12.5	37.5		ND	Tested
Methanol	0.0625	0.188		ND	Tested
Methylene chloride	6.25	18.8	000	ND	Pass
n-Hexane	3.13	9.38	290	ND	Tested
Pentane	6.25	18.8	5000	ND	Pass
Propane	6.25	18.8	5000	ND	Pass
Toluene	0.0313	0.0938	890	ND	Tested
Trichloroethylene	6.25	18.8	0470	ND	Pass
Xylenes			2170		
,					

SOP.204; HS-GC-MS.

ND=Not Detected, NR=Not Reported, LOD=Limit of Detection, LOQ=Limit of Quantitation. Action levels reported for contaminants are in accordance with N.J.S.A. 24:61-19 (CRC Resolution 2021-9) issued by the New Jersey Cannabis Regulatory Commission. Values reported relate only to the product tested and batched under the batch number identi ed above. Trichome Analytical makes no claims as to the ef cacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. All analytical work is performed using validated methods and in accordance with state and/or federal guidelines. This certi cate may only be reproduced in full.

Powered by Confident Cannabis 8 of 8

QUALITY ASSURANCE REPORT

Sample: 230124TRI002.002

Sample Description: N/A

Sample Received: 01/24/2023; Report Created: 01/30/2023; Sampled By: Client;

Herbonology 1257 Jennifer Lane Manahawkin, NJ 08050

herbonology@gmail.com

Topical

Topical, Lotion

(201) 638-7456

Foreign Matter

Date Analyzed: 01/26/2023

Pass
Foreign Matter

SOP.706; Microscopy. Screened for: mold, combustion by-products, cinders, sand, soil, dirt, hair, insect parts, rodent feces, and other foreign material. Pass/fail criteria determined by the laboratory based on the limit of detection of the method, which is as follows: 1% by weight, 10% visual area estimation, 1 foreign material particulate such as insect parts, hair, etc. per 3 grams of material.

TRI— Mount Laurel, NJ CHOME (856) 316-0600	grotelill		All Rights Reserved	10 FIDEN
(856) 316-0600 ANALY- http://www.trichomeanalytical.com TI-CAL Lic# ISO/IEC 17025:2017 A2LA CERT# 59	Kristen Goedde Lab Manager 13.01 // DEA# RT0581098	Tom Barkley Technical Manager 3 // NJ HEMP# 34_00077	support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com	C C P N N A B

ND=Not Detected, NR=Not Reported, LOD=Limit of Detection, LOO=Limit of Quantitation, Action levels reported for contaminants are in accordance with N.J.S.A. 24:61-19 (CRC Resolution 2021-9) issued by the New Jersey Cannabis Regulatory Commission. Values reported relate only to the product tested and batched under the batch number identified above. Trichome Analytical makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. All analytical work is performed using validated methods and in accordance with state and/or federal guidelines. This certificate may only be reproduced in full.