

## Splint for light De Quervain Tenosynovitis

|                                   |      |               |                                       |                               | 7 - 10 |
|-----------------------------------|------|---------------|---------------------------------------|-------------------------------|--------|
|                                   |      | 2 2 2 2 2 2 2 |                                       | <ul> <li>• • • • •</li> </ul> |        |
| 8 8                               | <br> |               | · · · · · · · · · · · · · · · · · · · |                               |        |
|                                   | <br> |               |                                       |                               |        |
| $0,\ldots, 0,\ldots, 0,\ldots, 0$ | <br> |               |                                       |                               |        |
|                                   |      |               |                                       |                               |        |



- What is it ? Inflammation of a tendon sheet
- Level ? Pain at the radial side of the wrist
- Reason ? Friction between the tendons and sheets
   of Abductor pollicis longus and extensor pollicis
   brevis
- Treatment put the affected segment at rest with a SPLINT



- -Splint involves thumb and wrist
  - thumb part is circumferential
  - wrist/forearm : in severe case :circumferential
     : lighter case only radial side
- Splint boundaries
   distally proximal of the IP joint
   proximally 2/3 of forearm



Take the measurements from IP joint to the 2/3 of the forearm

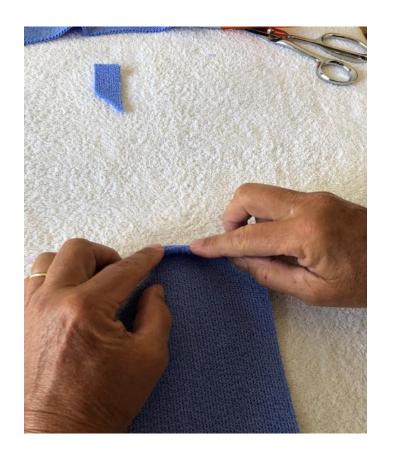


Transfer to a piece of ORFICAST MORE 12 or 15 CM 1 or 2 layers depending on requested strength



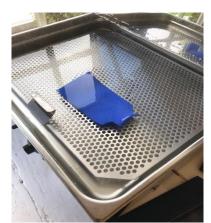


#### Cut out 2 corners of +- 5cm by 2 2.5 cm



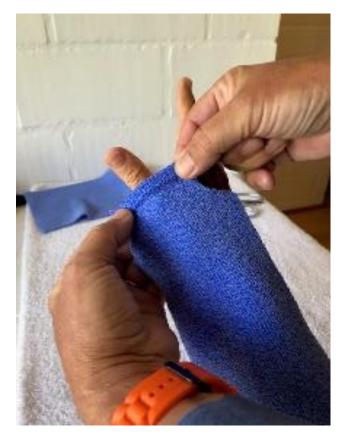



Dip the distal edge in the water




#### fold it over and press together










Activate your piece in a water bath or dry heater

Start positioning your piece at the IP level







### Overlap both sides in the web space and press together





Stretch material out and pinch together at the ulnar side





#### Bring in correct position

Wrist 10-15° extension

CMC joint 40-50° palmar abduction

MP joint 5-10° flexion





#### Mark your trim lines





#### and cut away all excess material



© Orfit Industries 2018



## Place Velcro straps : not shown as at this corona time I don't have them at home .

#### STAY SAFE

Marc Blij Product Specialist at Orfit

© Orfit Industries 2018



# www.orfit.com

|     |                             |           |       |      |                            | (n) = (n)         |                     |   |     |                       |                     |     |     |              |                 | 1.0   |   |     |                               |     |   |     |       |                                       |       |                |      |     |                                       |        |     |   | $\mathcal{L}_{i} = \{ i \in \mathcal{L}_{i} \}$ |                           |                                        |                 |     |     |      |     |     |     |     |           |     |     | $\mathcal{A}_{i} = \mathcal{A}_{i}$ |          |          |     |     |     |    |
|-----|-----------------------------|-----------|-------|------|----------------------------|-------------------|---------------------|---|-----|-----------------------|---------------------|-----|-----|--------------|-----------------|-------|---|-----|-------------------------------|-----|---|-----|-------|---------------------------------------|-------|----------------|------|-----|---------------------------------------|--------|-----|---|-------------------------------------------------|---------------------------|----------------------------------------|-----------------|-----|-----|------|-----|-----|-----|-----|-----------|-----|-----|-------------------------------------|----------|----------|-----|-----|-----|----|
| 1   |                             |           |       | 1    |                            | ${\bf r}={\bf r}$ |                     |   |     | $\epsilon = \epsilon$ |                     |     |     |              | $2 - \delta$    |       | 2 |     |                               |     |   |     |       |                                       |       | 3.3            |      |     |                                       |        |     |   | ${\boldsymbol x} = \{{\boldsymbol x}\}$         |                           |                                        |                 |     |     |      |     |     |     |     |           |     | 8   | r = r                               |          |          |     |     |     | ł  |
|     | $\rightarrow$ $\rightarrow$ |           | - × - | 1.00 | $(0,1) \in \mathbb{R}^{n}$ |                   | $\sim - \tau$       |   | ×   |                       | $\hat{x} = x$       |     |     | $c = \infty$ | $\sim 10^{-10}$ | 10.00 |   |     |                               |     |   |     |       |                                       | 8.000 | $\sim \sim -3$ | 100  |     |                                       |        |     |   |                                                 | (n) = n                   | $\mathbf{x}_{i}^{\prime}=(\mathbf{x})$ | $(a_i) = (a_i)$ |     |     |      |     |     |     |     | $\sim -1$ |     |     |                                     |          |          |     |     |     | 1  |
| 0   | $\bar{x}_{i}=\bar{x}_{i}$   | $\sim -1$ | 8.8   |      |                            | 0 0               | $\hat{a} = \hat{a}$ |   |     | + +                   | $\hat{x} = \hat{x}$ |     |     |              | x = x           |       | 0 |     | $\overline{z} = \overline{z}$ |     |   |     |       | $(\mathbf{x}_{i}) \in \mathbf{x}_{i}$ |       |                |      |     |                                       |        |     |   | 0 0                                             | $\mathbf{x} = \mathbf{x}$ |                                        |                 |     |     |      |     |     |     |     |           |     |     |                                     |          |          |     |     |     | 1  |
|     |                             |           |       |      |                            | 0 0               | 0 0                 |   |     | 0 0                   |                     |     |     |              | 0 0             | 0 0   |   |     | $\epsilon = 0$                |     |   |     | 5.8   |                                       | <br>  |                |      |     |                                       |        | 5.3 |   | 0 0                                             | 0 0                       |                                        |                 |     |     |      | 3.1 |     | 0 0 |     |           |     |     | 0 0                                 | - 10 - F |          |     |     |     | 1  |
|     | 0 0                         |           | 0.1   | 0 0  | 0 0                        | 0 0               | 0.0                 |   |     | 0 0                   | 0 0                 |     |     | 0 0          | 0 0             | 0 0   |   |     | + 0                           |     |   |     |       | 0.0                                   | 0 0   |                |      |     |                                       | $\sim$ | -   | 0 | 0 0                                             | 0 0                       | 0 0                                    | 0.0             | 0.0 |     |      |     |     | 0 0 |     | 0.0       | 0   |     | 0 0                                 | 0        | 1        | ×   |     |     | 1  |
| 0 0 | 0 0                         | 0 0       | 0.0   | 0 0  | 0 0                        | 0 0               | 0 0                 | 0 |     | 0 0                   | 0 0                 | 0.1 | 0.0 | 0 0          | 0 0             | 0 0   | 0 | 0 0 | + 0                           | 0.1 | 6 | 0   | + - 0 | 0 0                                   |       | 0 0            | 0    |     | $\mathbf{x}_{i} = \{\mathbf{x}_{i}\}$ | a = a  |     | 0 | 0 0                                             | 0 0                       | 0 0                                    | 0.0             | 0 0 | 0.1 | 0.00 |     |     | 0 0 | 0 0 | 0.0       | 0   |     | 0 0                                 | 0.1      | i (6) (i |     |     | 3   |    |
| 0 0 | 0 0                         | 0.0       | 0.0   | 0 0  | 0 0                        | 0 0               | 0 0                 | 0 | 0 0 | 0 0                   | 0 0                 | 0.0 |     | 0 0          | 0 0             | 0 0   |   | 0 0 |                               | 0 0 |   |     |       | 0.0                                   | 0 0   | 0 0            | 0.00 | • • | 0 0                                   | 0 0    | 0 0 | 0 | 0 0                                             | 0 0                       | 0 0                                    | 0.0             | 0 0 | 0.0 | 0 0  |     | 0.1 |     | 0 0 | 0 0       | 0   | 0 0 | 0 0                                 | 0.4      | 0.1      |     | 0 0 | -1  |    |
|     |                             | 0 0       |       | 0 0  |                            | 0 0               |                     |   |     | 0 0                   |                     | 0.0 |     | 0 0          |                 |       |   | 0 0 |                               | 0 0 |   | 0   | 0 0   | 0.0                                   |       | 0.0            |      | 0 0 | 0 0                                   | 0 0    | 0.0 | 0 | 0 0                                             | 0 0                       |                                        |                 | 0 0 | 0.0 | 0.0  |     |     |     | 0 0 |           | 0   |     |                                     | 0.0      | i 0 i    | 0.0 | 0 0 | 0   |    |
|     | 0 0                         | 0 0       |       | 0 0  |                            | 0 0               |                     |   |     | 0 0                   | 0 0                 | 0.0 |     | 0 0          | 0.0             | 0.0   |   | 0 0 |                               | 0 0 |   | 0   | 0 0   | 0.0                                   | 0 0   | 0.0            | 0 0  | 0 0 | 0 0                                   | 0 0    | 0.0 | 0 | 0 0                                             | 0.0                       |                                        |                 | 0 0 | 0.0 | 0.0  | 0.0 | 0.0 |     | 0 0 | 0.0       | 0.0 |     | 0.0                                 | 0.0      | 0.0      | 0.0 | 0 0 | 0 0 | .0 |
|     |                             |           |       |      |                            |                   |                     |   |     |                       |                     |     |     |              |                 |       |   |     |                               |     |   | 0 0 |       |                                       |       |                |      |     | 0 0                                   |        |     |   |                                                 |                           |                                        |                 |     |     | 0 0  |     | 0 0 |     |     |           |     |     |                                     |          |          |     | 0.0 | 0.0 |    |
|     |                             |           |       |      |                            |                   |                     |   |     |                       |                     |     |     |              |                 |       |   | 0.0 |                               |     |   |     |       |                                       |       |                |      |     |                                       |        |     |   |                                                 |                           |                                        |                 |     |     |      |     |     |     |     |           |     |     |                                     |          |          |     | 0 0 | 0.0 |    |
|     |                             |           |       |      |                            |                   |                     |   |     |                       |                     |     |     |              |                 |       |   |     |                               |     |   |     |       |                                       |       |                |      |     |                                       |        |     |   |                                                 |                           |                                        |                 |     |     |      |     |     |     |     |           |     |     |                                     |          |          |     |     |     |    |
|     |                             |           |       |      |                            |                   |                     |   |     |                       |                     |     |     |              |                 |       |   |     |                               |     |   |     |       |                                       |       |                |      |     |                                       |        |     |   |                                                 |                           |                                        |                 |     |     |      |     |     |     |     |           |     |     |                                     |          |          |     |     |     |    |